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Lausanne, Switzerland

bDepartment of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
cDevelopmental Imaging an Psychopathology Laboratory, Office Médico-Pédagogique, Department of Psychiatry, University

of Geneva, Geneva, Switzerland
dDepartment of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

eAthinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
fFriedrich Miescher Institute for Biomedical Research, Basel, Switzerland

Keywords: 22q11.2 deletion syndrome – resting-state fMRI dynamics – positive psychotic symptoms –

anxiety – salience network – amygdala-prefrontal connectivity

Number of words in abstract: 246

Number of words in main text (including headers): 4191

Number of figures: 5

Number of tables: 1

Number of supplementary documents: 1

∗Corresponding author
Email address: daniela.zoller@epfl.ch (Daniela Zöller)
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Abstract

Background. Prodromal positive psychotic symptoms and anxiety are two strong risk factors for schizophre-

nia in 22q11.2 deletion syndrome (22q11DS). The analysis of large-scale brain network dynamics during rest

is promising to investigate aberrant brain function and identify potentially more reliable biomarkers.

Methods. We retrieved and examined dynamic properties of large-scale functional brain networks using

innovation-driven co-activation patterns (iCAPs). The study included resting-state functional magnetic

resonance scans from 78 patients with 22q11DS and 85 healthy controls. After group comparison of temporal

brain network activation properties, functional signatures of prodromal psychotic symptoms and anxiety were

extracted using multivariate partial least squares correlation.

Results. Patients with 22q11DS had shorter activation in cognitive brain networks, longer activation in

emotion processing networks and generally increased segregation between brain networks. The functional

signature of prodromal psychotic symptoms confirmed an implication of cingulo-prefrontal salience network

activation duration and coupling. Further, the functional signature of anxiety uncovered an implication of

amygdala activation and coupling, indicating differential roles of dorsal and ventral sub-divisions of anterior

cingulate (ACC) and medial prefrontal cortices (mPFC). Coupling of amygdala with dorsal ACC and mPFC

was promoting anxiety, whereas coupling with ventral ACC and mPFC had a protective function.

Conclusions. In summary, using iCAPs for dynamic large-scale brain network analysis, we uncovered pat-

terns of brain network activation duration and coupling that are relevant in clinical risk factors for psychosis

in 22q11DS. Our results confirm that the dynamic nature of brain network activation contains essential

function to develop clinically relevant imaging markers of psychosis vulnerability.
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Introduction

Schizophrenia is a strongly debilitating mental disorder both for affected individuals and in terms of

societal cost (1, 2). Converging evidence suggests that schizophrenia is a progressive neurodevelopmental

disorder, given that in most cases, sub-clinical psychiatric and cognitive symptoms of the disorder are present

several years prior to the onset of a full-blown psychotic episode (1, 3, 4, 5, 6, 7). The neurodevelopmental

model critically implies that earlier interventions might prove more effective in preventing the progression

towards psychosis (5, 8). Hence extensive research has been devoted to characterizing the prodromal disease

stage, also known as psychosis High-Risk State (3). In particular, the presence of attenuated positive psy-

chotic symptoms, operationalized in the Ultra-High-Risk criteria (9), confers a strongly increased 30-40%

risk of developing psychosis (10). While current clinical management is based purely on clinical observa-

tion (11, 12), the identification of biomarkers of early psychosis could improve our understanding of the

pathophysiology in its earliest disease stage (13). In this sense, the addition of imaging markers to the

existing clinical diagnostic tools could allow the establishment of more precise biomarker-informed stages

in the evolution of psychosis, which would give way to more targeted therapeutic strategies and improved

clinical outcomes (1, 8, 13).

Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental disorder coming with a

highly elevated risk for schizophrenia with a 30%-40% prevalence by adulthood (14). Most patients with

22q11DS are diagnosed already during childhood, which allows to characterize the earliest stages of schizophre-

nia’s disease course (1, 15). Similarly to the general population the presence of attenuated psychotic symp-

toms strongly increases the risk of psychosis in 22q11DS pointing to a common clinical trajectory with

non-syndromic schizophrenia (16). Moreover, anxiety has emerged as another strong risk factor for psy-

chosis in 22q11DS (17, 18). These clinical findings point to the particular importance of understanding the

pathophysiology and characterizing biomarkers of attenuated psychotic symptoms and anxiety in 22q11DS.

Among the tools to characterize biomarkers, resting-state functional magnetic resonance imaging (rs-

fMRI) has emerged as promising (19). FMRI provides the unique opportunity to non-invasively observe

brain function, and the resting condition is especially well-suited in clinical populations because it requires

minimal compliance from participants. Most studies on rs-fMRI in psychosis to date have used static

functional connectivity (sFC); i.e., the correlation between the activation in different brain regions over the

whole scanning time (20). However, a limitation of such static approaches is that they ignore the inherently

dynamic nature of brain activity with potentially valuable information contained in dynamic changes of

activation and connectivity (21, 22, 23, 24, 25). In this perspective, dynamic approaches have the potential
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to identify more precise and more reliable biomarkers, and are particularly promising in schizophrenia, given

the multiplicity of affected behavioral domains and brain circuits (26, 27, 28, 29, 20). Studies on dynamic

brain function in schizophrenia point towards disrupted dynamic interaction between several brain states,

in particular of subcortico-cortical connectivity (30) and connections of the default mode network (DMN;

31, 32, 33, 34). The few studies to date investigating dynamic FC (dFC) in individuals at clinical high risk

found reduced dFC of salience network (SN) and DMN (35) and stronger alterations in early schizophrenia

patients than subjects at ultra high risk (36), underlining the potential of dynamic brain function to improve

our understanding of the pathophysiology in subjects at risk for schizophrenia.

Despite these promises of dynamic fMRI analysis, functional neuroimaging research in 22q11DS has so

far mostly focused on static functional features (37, 38, 39, 40, 41), often targeting only specific networks

such as the DMN (42, 43). The studies who explicitly investigated psychotic symptoms in 22q11DS showed

correlations of DMN dysconnectivity with prodromal psychotic symptoms (37), as well as successful discrim-

ination between patients at high vs. low risk based whole-brain rs-fMRI (38) and hypoconnectivity of DMN,

SN, anterior cingulate cortex (ACC) and frontoparietal network (FPN; 40). Further, in the only two studies

to date investigating a dynamic feature of brain function in 22q11DS – the variability of blood-oxygenation

level dependent (BOLD) signals – we found widespread reductions in brain variability in 22q11DS (44),

and reduced variability in the dorsal ACC in patients with higher prodromal psychotic symptoms (45). In

general, aberrant function, but also structure of the ACC has been suggested as a neuroimaging marker for

the development of psychosis in 22q11DS (46) and might reflect dysfunctional self-monitoring and salience

processing, possible mechanisms for the emergence of psychosis (47).

Among the multiple methods to investigate dynamic fMRI (23), many have already been applied in

schizophrenia as outlined above (26, 36). Sliding-window dFC tracks changes in FC by computing FC in a

temporal window that is shifted over time (21, 34), but are limited by the necessity to choose the window

size, and can only detect relatively slow changes in FC (48). Alternatively, so-called first-order approaches

rely on temporal clustering of fMRI frames to obtain “co-activation patterns” (CAPs) (49). Here, even

fast changes can be traced as no minimum activation duration needs to be specified. However, only one

brain state (or CAP) can be active at a time point. To overcome these limitations, the recently introduced

innovation-driven co-activation patterns (iCAPs) framework detects moments of significantly changing brain

activity to extract large-scale brain networks and their dynamic properties (50, 25, 51). Here, brain networks

are retrieved from dynamic activation changes, which allows to robustly retrieve spatially and temporally

overlapping brain networks.
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In this study, we complement the existing literature on dFC in schizophrenia by using iCAPs combined

with multivariate pattern analysis to identify potential biomarkers for psychosis vulnerability in 22q11DS.

We detect functional fingerprints of anxiety and positive prodromal symptoms, two symptoms that have

emerged as reliable predictors of psychosis in 22q11DS (18, 16).

Methods and Materials

Participants

The study included 221 subjects (111 patients with 22q11DS, 110 healthy controls (HCs), both aged 8–30

years). We excluded 33 patients and 25 HCs to ensure good data quality (see Supplementary Methods).

The final sample included 78 patients with 22q11DS (37 males) and 85 HCs (36 males, see Table 1). HCs

were recruited among patients’ siblings and through the Geneva state school system and had no present or

past history of neurological or psychiatric disorders.

Prodromal positive psychotic symptoms in patients with 22q11DS were assessed using the Structured

Interview of Prodromal Symptoms (SIPS; 52). The SIPS was not conducted in HCs. Anxiety was assessed

both in HCs and patients with 22q11DS by combining the Child Behavioral Checklist (CBCL) Anxious-

Depressed scale (53), and the Adult Behavioral Checklist (ABCL) Anxious scale in adults above 18 years

old (54).

Participants and their parents (for minors) gave their written informed consent and the research protocols

were approved by the Institutional Review Board of Geneva University School of Medicine.

Image acquisition

All MRI brain scans were acquired at the Centre d’Imagerie BioMédicale (CIBM) in Geneva on a Siemens

Trio (12-channel coil; 54 HCs, 42 patients) and a Siemens Prisma (20-channel coil; 31 HCs, 36 patients)

3 Tesla scanner. Structural images were obtained with a T1-weighted sequence of 0.86×0.86×1.1 mm3

volumetric resolution (192 coronal slices, TR = 2500 ms, TE = 3 ms, acquisition matrix = 224 × 256, field

of view = 22 cm2, flip angle = 8◦). Rs-fMRI data were recorded with a T2*-weighted sequence of 8 minutes

(voxel size = 1.84×1.84×3.2 mm, 38 axial slices, TR = 2400 ms, TE = 30 ms, flip angle = 85◦). Subjects

were instructed to fixate a cross on the screen, let their mind wander and not to fall asleep.

Preprocessing

Before applying the iCAPs pipeline, MRI scans were preprocessed using Statistical Parametric Mapping

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/) and functions of the Data Processing Assistant for Resting-
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Table 1: Participants demographics. N/A = not applicable.

HC 22q11DS p-value
Number of subjects (M/F) 85 (36/49) 78 (37/41) 0.514 (χ2)
Age mean ± SD 16.73 ± 5.85 17.19 ± 5.37 0.603
(range) (8.1-30.0) (8.1-29.7)
Right handed* 80.00% 77.94% 0.715 (χ2)
IQ** 110.12 ± 13.78 70.01 ± 12.41 <0.001

N. subjects meeting criteria for N/A 43 (55%)
psychiatric diagnosis

Anxiety disorder N/A 9
Attention deficit hyperactivity N/A 8

disorder
Mood disorder N/A 5
Schizophrenia or Schizoaffective Disorder N/A 4
More than one psychiatric disorder N/A 17

N. subjects medicated
Methylphenidate 0 9
Antipsychotics 0 3
Anticonvulsants 0 1
Antidepressants 0 1
More than one class of medication 0 3

* Handedness was measured using the Edinburgh laterality quotient, right-handedness was
defined by a score of more than 50. ** IQ was measured using the Wechsler Intelligence Scale
for Children–III (55) for children and the Wechsler Adult Intelligence Scale–III (56) for adults.

State fMRI (DPARSF; 57) and Individual Brain Atlases using Statistical Parametric Mapping (IBASPM;

58) toolboxes. After realignment of functional scans, we applied spatial smoothing with an isotropic Gaus-

sian kernel of 6 mm full width half maximum and coregistered structural scans to the functional mean.

Structural images were segmented with the SPM12 Segmentation algorithm (59) and a study-specific tem-

plate was generated using Diffeomorphic Anatomical Registration using Exponential Lie algebra (DARTEL;

60). Then, the first five functional scans were excluded and average white-matter and CSF signals were re-

gressed out from the BOLD timeseries. We applied motion scrubbing (61) for correction of motion artifacts,

marking frames with a framewise displacement of more than 0.5 mm. As the filters implemented in the

iCAPs framework require a constant sampling rate, marked frames were replaced by the spline interpolation

of previous and following frames. Finally, motion frames were excluded before computation of temporal

characteristics (described below).
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Total Activation and iCAPs

We used openly available Matlab code (https://c4science.ch/source/iCAPs/) to apply iCAPs (50, 25, 51).

We first employed Total Activation (62, 63, 64), which applies hemodynamically-informed deconvolution

to the fMRI timeseries through spatio-temporal regularization. Significant activation changepoints (i.e.,

transients), derived from deconvolved timeseries, were concatenated across all subjects and fed into temporal

K-means clustering to obtain simultaneously transitioning brain patterns, the iCAPs. The optimum number

of 17 clusters was determined by consensus clustering (65, see Supplementary Figures S1 and S2). Finally,

time courses were obtained for all iCAPs using spatio-temporal transient-informed regression (51). A detailed

description of all steps can be found in the Supplementary Methods.

Extraction of temporal properties

For computation of temporal properties, iCAPs time courses were z-scored within each subject and

thresholded at a z-score > |1| to determine ‘active’ timepoints (50). For each iCAP, we then computed the

total duration of overall activation as percentage of the total non-motion scanning time.

Further, coupling and anti-coupling duration of two iCAPs were calculated as timepoints of same-signed

or oppositely-signed co-activation measured as percentage of the total non-motion scanning time or as

Jaccard score; i.e., percent joint activation time of the two respective iCAPs.

Statistical analysis

Group comparisons of iCAPs activation measures. Duration and coupling measures between groups were

compared using two-sample t-tests. P-values were corrected for multiple comparisons with the false discovery

rate (FDR).

Partial Least Squares Correlation. To evaluate multivariate patterns of correlation between behavioral vari-

ables and iCAPs activation measures, we used behavior partial least squares correlation (PLSC; 66). Briefly,

we first computed a correlation matrix between behavioral variables and brain variables. Group-specific cor-

relation matrices of HCs and patients with 22q11DS were concatenated and singular value decomposition

of this matrix then lead to several correlation components (CorrComps). Each CorrComp is composed of a

set of “behavior weights” and “iCAPs duration/coupling weights”, which indicate how strongly each vari-

able contributes to the multivariate brain-behavior correlation. Significance of CorrComps was determined

by permutation testing (1000 permutations). Stability of brain and behavior weights was obtained using

bootstrapping (500 bootstrap samples). See Supplementary Methods for a detailed outline of PLSC.
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Here, we first conducted two PLSC analyses with duration of altered iCAPs as brain variables and

psychotic symptoms, respectively anxiety, as behavioral variables. In four more PLSC analyses, we then

investigated positive couplings and anti-couplings of one selected iCAP for each behavioral measure. Due

to differences in design of each PLSC in terms of measure type and number of items, we did not correct for

multiple comparisons.

Nuisance variable regression. Age, gender and motion were included as nuisance regressors in group com-

parisons and PLSC analyses. Nuisance regressors were standardized within each group to avoid linear

dependence with the effects of interest.

Results

Extracted spatial maps correspond to known resting-state networks

We applied the iCAPs framework to rs-fMRI scans of both HCs and patients with 22q11DS. Identified

iCAPs correspond to well-known resting-state networks (see Figure 1 and Supplementary Table S2). The

obtained networks included sensory-related networks such as primary visual (PrimVIS1 and PrimVIS2),

secondary visual (SecVIS), auditory/sensorimotor (AUD/SM) and sensorimotor (SM) networks. The default

mode network (DMN) was decomposed into anterior (aDMN), posterior (pDMN) and precuneus/ventral

DMN (PREC/vDMN). There were two attention-related iCAPs; i.e., fronto-parietal network (FPN) and

visuospatial network (VSN). Two iCAPs included regions commonly considered as the salience network:

the anterior insula (aIN) and dorsal anterior cingulate cortex together with dorso-lateral prefrontal cortex

(dACC/dlPFC). The remaining iCAPs comprised a language network (LAN), inferior temporal and fusiform

(iTEMP/FUS), amygdala and hippocampus (AMY/HIP), orbitofrontal cortex (OFC) and prefrontal cortex

(PFC).

Altered iCAPs’ activation and coupling in 22q11DS

To probe into alterations of the identified networks’ temporal properties in patients with 22q11DS, we

first investigated aberrant activation duration followed by the analysis of altered network interactions; i.e.,

duration of positive coupling (co-activation with same sign) or anti-coupling (co-activation with opposite

sign) between all pair-wise combinations of iCAPs.
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Figure 1: Spatial patterns of the 17 iCAPs retrieved from all subjects, including both HCs and patients with 22q11DS. Locations
denote displayed slices in MNI coordinates. Blue values denote the average consensus of each cluster, purple values indicate
the total number of innovation frames that were assigned to this cluster. PrimVIS1 - primary visual 1, SecVIS - secondary
visual, aIN - anterior insula, LAN - language network, dACC/dlPFC - dorsal anterior cingulate cortex/dorsolateral prefrontal
cortex, SM - sensorimotor, PREC/vDMN - precuneus/ventral default mode network, PrimVIS2 - primary visual 2, FPN -
fronto-parietal network, aDMN - anterior default mode network, pDMN - posterior default mode network, VSN - visuospatial
network, AUD/SM - auditory/sensorimotor, iTEMP/FUS - inferior temporal/fusiform, AMY/HIP - amygdala/hippocampus,
OFC - orbitofrontal cortex, PFC - prefrontal cortex.
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Figure 2: Statistics of total temporal duration for each iCAP. P-values are FDR-corrected for the 17 multiple comparisons
and age, gender and motion were included as covariates. Significant group differences (p<0.05) were marked with an asterisk.
Error bars indicate bootstrapping 5th to 95th percentiles. Single-subject duration measures were included as scatterplots.
Corresponding test statistics (p-values, effect size) can be found in Supplementary Table S3.

Altered duration of iCAPs’ activation. Figure 2 shows duration for all 17 iCAPs in percentage of total

non-motion scanning time. Median total activation time ranged from 34.36 % for LAN to 1.54 % for PFC.

Patients with 22q11DS had significantly shorter activation of dACC/dlPFC, PrimVIS2, FPN, aDMN and

pDMN and significantly longer activation of SM, iTEMP/FUS, AMY/HIP and OFC.

Alterations in coupling between networks. Figure 3 shows significant group differences in iCAPs’ coupling.

For several networks the duration of coupling was longer in patients with 22q11DS than in controls. This

was true for 6 positive couplings and 13 anti-couplings. Fewer networks had shorter duration of coupling in

patients with 22q11DS (1 positive coupling, 5 anti-couplings). Globally, alterations were more numerous for

anti-couplings (25 in total) than for positive couplings (6 in total).

Functional signature of positive psychotic symptoms

To look into the behavioral relevance of these aberrant activation and coupling, we conducted behavior

PLSC including positive symptoms.

Altered iCAPs’ duration associated with psychotic symptoms. A first PLSC analysis including positive SIPS

items in 22q11DS and iCAPs’ activation duration of the nine altered iCAPs (see figure 2) resulted in

one significant CorrComp (p=0.05, see figure 4A). Duration of dACC/dlPFC, FPN and iTEMP/FUS was

positively correlated with all five positive psychotic symptoms.
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(16)
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A. Longer coupling duration in 22q11DS B. Shorter coupling duration in 22q11DS

Figure 3: Significant duration differences of positive couplings (red) and anti-couplings (blue) between patients with 22q11DS
and HCs. A) Couplings with significantly longer duration in 22q11DS. B) Couplings with significantly shorter duration in
22q11DS. Couplings were measured in terms of percentage of total scanning time, or in percentage of the joint activation time
of the two respective iCAPs (Jaccard score). We here show only differences that were significant in both coupling measures.
Underlying group comparison statistics can be found in Supplementary Figure S4 and Supplementary Table S4.

Altered couplings of dACC/dlPFC associated with psychotic symptoms. Next, we investigated the relevance

of couplings for psychotic symptoms. For this, we selected the dACC/dlPFC network based on its appearance

in the previous analysis (see figure 4A), as well as literature associating ACC alterations with psychosis in

22q11DS (46). We included coupling time of dACC/dlPFC with iCAPs that had altered couplings (aIN,

AUD/SM, iTEMP/FUS and AMY/HIP; see figure 3) and with iCAPs whose duration was significantly

correlated with psychotic symptoms (FPN and iTEMP/FUS; see figure 4A).

A first PLSC analysis for anti-coupling time between dACC/dlPFC and these networks resulted in one

significant CorrComp (p=0.02, see figure 4B) showing an association between higher positive symptoms and

longer anti-coupling of dACC/dlPFC with FPN and iTEMP/FUS.

A second PLSC analysis for positive coupling time between dACC/dlPFC and these networks did not

give any significant CorrComp (p=0.58).

Functional signature of anxiety

Finally, we conducted similar analyses to investigate dynamic brain network alterations associated with

anxiety, another behavioral risk factor for psychosis in 22q11DS.
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dACC/dlPFC
(5)

A. Positive symptoms PLSC — iCAPs durations (p=0.05)

B. Positive symptoms PLSC —  dACC/dlPFC anti-couplings (p=0.02)

Figure 4: PLSC results for positive psychotic symptoms (Five SIPS items: Delusions, Suspiciousness, Grandiosity, Hallucina-
tions and Disorganized Communication) in patients with 22q11DS. A) Behavior weights and brain weights for PLSC including
duration of nine iCAPs with altered duration in 22q11DS. There is a positive correlation of positive psychotic symptoms with
duration of dACC/dlPFC, FPN and iTEMP/FUS. B) Behavior weights and brain weights for PLSC including anti-couplings of
dACC/dlPFC that were altered in 22q11DS. Longer anti-coupling of dACC/dlPFC with FPN and iTEMP/FUS is associated
with higher positive symptoms. Error bars indicate bootstrapping 5th to 95th percentiles, robust results were indicated by
yellow background. Exact values of bootstrap mean and 5-95 percentiles are reported in Supplementary Table S5. PLSC results
for positive couplings were not significant (p=0.6) and are thus not reported here.

Altered iCAPs’ duration associated with anxiety. We performed PLSC analysis between CBCL/ABCL anx-

iety scores in 22q11DS and HCs and iCAPs’ duration, again including the nine iCAPs with altered duration

(see figure 2). There was one significant CorrComp (p=0.03, see figure 5A). Both in HCs and patients with

22q11DS, longer activation of iTEMP/FUS and AMY/HIP and shorter activation of aDMN were associated

with higher anxiety.

Altered couplings of AMY/HIP associated with anxiety. To further investigate coupling effects related to

anxiety, we selected the AMY/HIP network, because its duration was related to anxiety in the previous

analysis (see figure 5A) and because of the well-established involvement of these brain regions in anxiety

(67). We included coupling time of AMY/HIP with iCAPs that had altered couplings (LAN, dACC/dlPFC,

PREC/vDMN and FPN; see figure 3) and with iCAPs whose duration was significantly associated with

anxiety (aDMN and iTEMP/FUS; see figure 5A).

A first PLSC analysis for anti-couplings between AMY/HIP and these networks gave no significant

CorrComp (p=0.07).

A second PLSC analysis including positive couplings between AMY/HIP and these networks gave one
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AMY/HIP 
(15)

A. Anxiety PSLC — iCAPs durations (p=0.03)

B. Anxiety PSLC — AMY/HIP positive couplings (p=0.006)

Figure 5: PLSC results for anxiety scores. A) Behavior weights and brain weights for PLSC including duration of nine altered
iCAPs. There is a positive correlation of anxiety with duration of iTEMP/FUS and AMY/HIP and a negative correlation
with duration of aDMN. B) Behavior weights and brain weights for PLSC including positive couplings of AMY/HIP. Longer
positive coupling of AMY/HIP with LAN and dACC/dlPFC, and shorter positive coupling with aDMN are associated with
higher anxiety only in patients with 22q11DS. Error bars indicate bootstrapping 5th to 95th percentiles, robust results were
indicated by yellow background. Exact values of bootstrap mean and 5-95 percentiles are reported in Supplementary Table S6.
PLSC results for anti-couplings were not significant (p=0.07) and are thus not reported here.

significant CorrComp (p=0.006, see figure 5B). Behavior weights were only robust for patients with 22q11DS,

indicating that the corresponding pattern of correlation weights was specific for patients. Longer positive

coupling of AMY/HIP with LAN and dACC/dlPFC was positively associated with anxiety, whereas positive

coupling with aDMN was negatively associated with anxiety.

Discussion

In this study, we investigated dynamic features of network brain activity in patients with 22q11DS,

with a particular focus on the identification of functional signatures of prodromal psychotic symptoms and

anxiety, two behavioral risk factors for the transition to psychosis. To the best of our knowledge, this is

the first study to investigate dynamics of large-scale functional brain networks in 22q11DS. We used iCAPs

to go beyond static connectivity analysis and look into precise moments of brain network activation and

interaction, which is particularly promising to provide more sensitive imaging markers in schizophrenia (26).

We detected alterations of brain networks’ duration and couplings in 22q11DS and associations between
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these patterns of alterations with positive psychotic symptoms and anxiety.

Alterations in 22q11DS: implication of cognitive and emotional brain networks

Individuals with 22q11DS had a varied pattern of longer and shorter network activations, suggesting

that they ‘over-engage’ in certain brain states, while ‘under-engaging’ in others. In particular, we found

shorter activation of FPN, DMN and cingulo-prefrontal SN. According to the triple-network hypothesis, the

dynamic interaction between these three networks, characterized by a shift between internally-oriented DMN

and externally-oriented FPN mediated by salience-attributing SN, is central for higher cognitive functions

(68). Conversely their dysfunction could account for several psychiatric symptoms. Here we observe reduced

activation of all three networks in 22q11DS, possibly suggesting a malfunction of these basic brain dynamics,

which speculatively may underlie broad impairments in higher cognitive function described both in 22q11DS

and psychosis (69, 1). In turn, there was longer activation in networks comprising limbic regions including

amygdala, medial temporal and orbitofrontal cortices. While the dichotomy between cognitive and emotional

brain is arguably artificial, longer activation in regions highly involved in emotional processing such as

amygdala and orbitofrontal cortex could reflect higher emotional load during scanning in patients with

22q11DS (70, 71).

The pattern of activation was significantly, but oppositely, related with age in both groups (see Supple-

mentary Results), suggesting that the atypical activation pattern observed in 22q11DS emerges with age, in

accordance with the neurodevelopmental model of schizophrenia (1, 6).

Besides duration of activation, the iCAPs approach allowed us to probe the pattern of aberrant coupling

between networks, which was characterized by predominantly longer anti-couplings in 22q11DS, accounting

for more than half (13/25) of the alterations. Longer anti-coupling is suggestive of increased segregation

between brain networks and is in agreement with evidence of increased segregation and decreased integration

of structural and functional brain networks in both 22q11DS and non-syndromic psychosis (72, 73, 74, 75, 20,

76). Network segregation is a central feature of brain function that is important for cognition and attention

(77) and its alterations in 22q11DS may be reflective of cognitive disabilities on a more global level than the

above mentioned alterations in triple network activation that concentrates on three core networks.

Functional signature of psychosis prodrome: aberrant salience network duration and coupling

The presence of prodromal psychotic symptoms was associated with longer activation of iTEMP/FUS,

dACC/dlPFC and FPN. Increased activation of inferior temporal and fusiform gyrus has been previously

reported in schizophrenia in terms of relative cerebral blood flow (78, 79) and BOLD variability (80).
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Also in 22q11DS, we observed higher BOLD variability in inferior temporal and fusiform regions in a

partially overlapping sample (44), suggesting that increased BOLD variability might reflect longer network

activation. Further, prodromal psychotic symptoms were associated with longer activation of dACC/dlPFC.

The dACC is considered a key node of the SN involved in attributing subjective salience to internally and

externally generated events (68, 81). Aberrant salience attribution has been proposed as key mechanism

in the emergence of positive psychotic symptoms (47). Together with electroencephalogram (EEG) studies

in psychosis and 22q11DS that consistently reported longer representation of the EEG topography that

corresponds to SN (82, 83, 84, 85), our findings support this hypothesis.

However, whilst duration of both dACC/dlPFC and FPN was positively correlated with psychotic symp-

toms, it was reduced overall in 22q11DS compared to HCs. Converging evidence from both structural and

functional MRI points towards altered connectivity of the ACC in individuals with 22q11DS and psychotic

symptoms (86, 73, 38, 45), reviewed in (46). Hence we suspected that the quality of the activations; i.e.,

the coupling with other networks, might be relevant for higher psychotic symptoms. Indeed, the analy-

sis of dACC/dlPFC couplings revealed a significant relationship between higher psychotic symptoms and

anti-coupling with FPN and iTEMP/FUS. Taken together, these results suggest that whilst activations of

dACC/dlPFC and FPN occur less frequently in 22q11DS in general, they are more frequently anti-coupled

with one another and with iTEMP/FUS in patients with higher psychotic symptoms. The triple-network

model proposes that activation of the SN is instrumental in re-orienting attention by mediating the shifts

between DMN and FPN (68). Our findings of longer anti-coupling between SN and FPN suggest that this

functional role of the cingulo-prefrontal SN is disrupted in individuals with higher psychotic symptoms.

Altogether, the richness of our iCAPs approach permitted to characterize a pattern reflecting SN activa-

tions that contribute to the pathophysiology of psychotic symptoms, both in terms of duration and quality.

Our findings support the key role of network dynamics in the ACC in higher psychosis vulnerability (46) and

point towards disrupted triple network function centered on the SN, which might reflect aberrant salience

processing in patients with psychotic symptoms (68, 47).

Functional signature of anxiety: aberrant amygdala & hippocampus duration and coupling

For both HCs and patients with 22q11DS anxiety was associated with a pattern of longer activation

of AMY/HIP, iTEMP/FUS and shorter activation of aDMN. Evidence in animal models and humans has

revealed a central role of the amygdala in fear exposure, anticipation and reaction (70, 87, 88, 89, 67, 90).

Further, increased metabolic activity in amygdala, hippocampus and inferior temporal cortex was found

in rhesus monkeys with anxious temperament (91, 92) and cerebral blood flow in amygdala and fusiform
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cortex has been associated with trait anxiety in humans (93). The iCAPs approach allowed us to quantify

moments of network activation and confirmed that hyperactivity of AMY/HIP and iTEMP/FUS at rest

could indeed represent trait markers of anxiety in both HCs and 22q11DS. Hyperactivity of AMY/HIP and

iTEMP/FUS observed in 22q11DS could therefore account for increased prevalence of anxiety disorders in

this population.

Importantly, the amygdala does not operate in isolation, but is part of a complex circuit involved in

regulating emotional responses (94). Indeed, in accord with the role in salience processing mentioned above,

dorsal ACC and mPFC promote amygdala activity and are critical in the appraisal and expression of fear

behavior (94). Oppositely, subgenual-ACC and ventral mPFC largely dampen amygdala activity and are

essential for fear extinction (94). This functional sub-division of the frontal lobe is further supported by

extensive literature on fear circuitry in rodents, where dorsal pre-limbic and ventral infra-limbic cortices are

found to have opposing roles on amygdala activation, fear expression, respectively fear extinction (87, 94,

95, 96, 97, 98, 99, 100). Given these findings, we speculated that the modulation of AMY/HIP activity

particularly by the dACC/dlPFC and aDMN network might play a crucial role in the pathophysiology

of anxiety. Indeed, we showed a significant positive association between anxiety and coupling duration

between AMY/HIP and dACC/dlPFC and LAN. Coupling duration between AMY/HIP and aDMN had an

opposite, protective role on anxiety in accordance with the modulating role of mPFC-AMY projections on

fear expression. Of note, the effects of amygdala coupling on anxiety appeared specific to individuals with

22q11DS, which could suggest that effects of amygdala modulation are nonlinear and relate only to more

severe anxiety observed in 22q11DS.

In conclusion, we observed a dynamic functional pattern characterized both by longer AMY/HIP acti-

vations and atypical prefrontal AMY/HIP modulation, which might constitute a trait maker of anxiety and

contribute vulnerability to psychosis in 22q11DS.

Methodological aspects

The iCAPs framework. The present study is one of the first to apply the iCAPs framework in a clinical

population and, due to the flexibility of the framework, we were able to discover distinct patterns of functional

activation and interaction characteristic for prodromal psychotic symptoms and anxiety. The framework is

unique in its ability to detect spatially and temporally overlapping networks (50, 51), and the robustness

and richness of the presented results underlines its potential. Of note, extracted spatial patterns were

highly similar to previously observed iCAPs retrieved from HCs (50, 51), which reassures the framework’s

performance in a clinical population. Furthermore, the sub-division of classical resting-state networks such
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as DMN and SN into multiple subnetworks confirms previously observed findings (50) and suggests that

different subnetworks have distinct dynamic properties, which are difficult to detect by static approaches.

While iCAPs themselves were retrieved from a purely dynamic measure (i.e., the innovations), the

measure of coupling between networks is closely linked to sFC (see Supplementary Results & Discussion).

Activation duration, however, is a measure specific to each network which cannot be explained in terms of

static connectivity.

BOLD signal analysis and motion. In any fMRI study non-neural confounds are always a concern (101).

We have minimized the effects by taking several measures for motion correction and through additional

analysis of motion (discussed in more detail in Supplementary Results & Discussion). However, as motion

is strongly correlated with symptoms severity, it remains a limitation of our study.

Conclusion

In summary, we here presented functional signatures of anxiety and positive psychotic symptoms in

22q11DS in terms of brain network activation and coupling. Our results confirm the implication of SN

activity and connectivity in the emergence of psychotic symptoms. We further uncovered differential roles

of dorsal and ventral ACC and mPFC coupling with AMY that are relevant for anxiety. Together, these

findings shed light into the pathophysiology of two clinical risk factors that might represent relevant imaging

markers for psychosis vulnerability.
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