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Universality and critical behavior 
of the dynamical Mott transition 
in a system with long-range 
interactions
Louk Rademaker1, Valerii M. Vinokur2 & Alexey Galda2,3

We study numerically the voltage-induced breakdown of a Mott insulating phase in a system of charged 
classical particles with long-range interactions. At half-filling on a square lattice this system exhibits 
Mott localization in the form of a checkerboard pattern. We find universal scaling behavior of the 
current at the dynamic Mott insulator-metal transition and calculate scaling exponents corresponding 
to the transition. Our results are in agreement, up to a difference in universality class, with recent 
experimental evidence of a dynamic Mott transition in a system of interacting superconducting vortices.

Materials exhibiting electric field-driven (dynamic) Mott metal-insulator transition (MIT) have a high potential 
for replacing semiconductors due the unique property of controllable energy gap, making them extremely prom-
ising for future low-energy electronics. While the physical mechanism behind dynamic MITs in most experi-
mental systems is still unclear1,2, several theories have been proposed, including avalanche breakdown3,4 and 
Schwinger-Landau-Zener tunneling5–8 associated with parity-time symmetry-breaking9.

In this Letter we investigate a classical system of long-range interacting charged particles experiencing 
voltage-induced Mott MIT near half-filling on a square lattice at small temperatures. At sufficiently low applied 
voltage across the system, particles arrange themselves in a checkerboard pattern. Strong inter-particle interaction 
impedes any motion at exactly half-filling, forming a Mott insulator. This state can be broken by either increasing 
temperature (thermodynamic transition) or by applying sufficiently strong external electric field or voltage, caus-
ing a dielectric breakdown characterized by finite conductivity. We observe scaling behavior at the dynamic Mott 
MIT with differential conductivity of the system being a universal function of − − εV V f f/c c , where V is the 
applied voltage, |f −  fc| is deviation from commensurate particle density, fc =  0.5, ε is some scaling exponent, and 
Vc is the critical amplitude of applied voltage inducing the transition.

Model and simulation details
We study a lattice gas model with long-range Coulomb interactions on a two-dimensional square lattice, with 
energy of the system given by the expression
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where ni =  0, 1 represents the particle occupation number of site i, and rij is the distance between sites i and j. At 
low temperatures T →  0 and half-filling f =  0.5 the system exhibits Mott localization and displays a corresponding 
checkerboard charge order pattern (periodic boundary conditions make our system a compact surface of a 3D 
torus, thus Earnshaw’s theorem stating that a stable configuration of free charges interacting according to the 
Coulomb law is impossible, does not hold)10. To realize the dynamic Mott transition we apply an electric field 
along the x-direction,
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Here V is the electric potential and xi is the x-coordinate of the site x. In the remainder of this section we will 
describe how we simulated this model.

We consider a square lattice of linear dimension L with periodic boundary conditions and take into 
account the long-range nature of Coulomb interaction by employing the Ewald summation method11. In the 
two-dimensional case, the Ewald sum is split into a constant energy term and two rapidly converging sums over 
real and reciprocal space, correspondingly:
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where n and m are integer vectors.
We performed Monte Carlo simulation with the heat-bath local update algorithm. At each computational step 

one randomly chosen particle is proposed to move to one of its neighboring sites. The acceptance probability is 
=→ +

−∆

−∆Pi j
e

e1

E T

E T

/

/
, where Δ E is the corresponding change in energy. Since we aim at relating our study with exper-

imental results of ref. 1 obtained in the conditions of thermally activated dynamics, the explicit inclusion of 
quantum tunneling is not necessary. To promote particle conductivity, the electric field applied along the x axis of 
equation (2) is modeled by including in Δ E a lowering (raise) by V if the suggested move is to the right (left). Note 
that due to periodic boundary conditions, the total energy of a particle configuration is only defined up to a mul-
tiple of VL. Because the Monte Carlo simulation is only dependent on energy differences, however, this does not 
pose a problem.

In what follows we will assume that all particles have a unit charge, and take the lattice spacing as a unit of dis-
tance, making V also a measure of applied electric field in dimensionless units. To calculate the current generated 
during simulations, we count the number of particles crossing the x =  0 line per single Monte Carlo sweep, where 
one sweep is defined as L2 proposed moves. Note that the current measured this way is limited by the number of 
particles present in the system and, therefore, has an unphysical upper bound. This fact limits the validity of our 
approach to studying particle conductivity at low voltages. To what extent such saturation effects influence the 
results can be probed by checking the acceptance rate of moves in the x direction.

Each complete Monte Carlo simulation has been performed at a fixed overall particle density f in two stages. 
First, the system’s thermal equilibrium state was reached by annealing in the absence of an external applied volt-
age at temperature T =  0.04, followed by incremental increases in the applied electric field by dV =  1/600 and 
measurements of particle conductivity at each voltage.

Our results were obtained for lattice size L =  36 with 628 to 668 particles, corresponding to the range of den-
sities ≈ . .f [0 485, 0 515]. Each data point presents an average over 2.88 million Monte Carlo sweeps. We also 
studied the system at smaller sizes L =  12, 24 which gave similar results, however, for clarity we will only present 
the data for the largest lattice size L =  36. Differential conductivity data, dI/dV, were obtained from IV curves by 
a five-point stencil.

Results
From the calculated dI/dV curves, we find the critical voltage Vc =  0.233 ±  0.005 near half-filling, see Fig. 1, below 
which the system behaves as an insulator, and above which it is conducting with significant non-zero current 
flowing through the system. Simulations revealed that in the immediate vicinity of f =  0.5 (region of absent data 
in Fig. 1), particle current is mostly generated by an avalanche-like motion of melted clusters in the checkerboard 
arrangement and not by excitation of individual particles driving the dynamic MIT. We found that current, as a 
function of particle density f, experiences discontinuity at f =  0.5, i.e. ≠ .→ . I f Ilim ( ) (0 5)f 0 5 . A study of this col-
lective effect lies outside the scope of the present Letter and will be considered elsewhere.

Figure 1. dI/dV curves in the vicinity of half-filling. The critical voltage, Vc =  0.233 ±  0.005, is determined 
from the criterion =

=
( ) 0d

df
dI
dV V Vc

. The corresponding dI/dV curves are marked by black solid dots.
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To show that the field-driven MIT considered here is a phase transition, we study the behavior of charge 
current generated in the system by applied transverse voltage. As expected for a phase transition, we observe 
power-law scaling of the current both as a function of applied voltage,
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and as a function of particle density,

∼ − δI V f f f( , ) , (5)c c
1/

see Figs 2 and 3, correspondingly.
In Fig. 2a we plot the IV curves for f <  0.5, revealing a sharp increase in measured current above the critical 

voltage Vc, which becomes progressively more pronounces as particle density f approaches fc. Nonlinear regres-
sion analysis was performed for the I(fc, V) data12 to achieve the best fit to the function (4) and resulted in the 
scaling exponent β =  0.5 ±  0.1 and critical voltage Vc =  0.238 ±  0.002, which is in full agreement with Vc deter-
mined based on the dI/dV curves from Fig. (1). The critical region corresponding to the power-law fitting (4) was 
determined based on the extent of the linear range of I(fc, V −  Vc) in double-logarithmic coordinates, see Fig. 2b. 
The nearest to Vc data point seems to be largely affected by fluctuations of the measured current near the transi-
tion, and, together with the data at − > .∼V V 0 02c  does not belong to the critical regime of the Mott MIT transi-
tion. In fact, we observe a noticeable deviation of the scaling exponent β from the 0.5 value at V ≥  0.26, which can 
be attributed to the onset of finite system size effects.

In the regime of fixed voltage, at V =  0.237 near the critical voltage value, we find the power-law scaling of I(f) 
in the form of equation (5) in the vicinity of fc =  0.5, see Fig. 2a, with the critical exponent 1/δ =  0.5 ±  0.1. 
Figure 2b reveals the extent of the critical regime with power-law scaling. The nearest to fc =  0.5 data points appear 

Figure 2. (a) Current, I, as a function of applied voltage, V, near the dynamic Mott MIT for a range of densities 
near fc, fc −  f <  0.015. Red line represents the best fit of data in the form (4) for f =  0.499. Solid (empty) circles 
represent data points outside (inside) of the critical regime. (b) Current, I, as a function of deviation of applied 
voltage from the critical value, V −  Vc, for Vc =  0.238. Red straight line fits data points in the critical regime with 
power-law scaling above the transition (for V >  Vc).

Figure 3. (a) Current, I, as a function of particle particle density, f, for a range of applied voltages, V. Red lines 
show the best fit of I(Vc, f) curves, Eq. (5) in the critical regime near fc. (b) Current as a function of deviation 
from critical particle density, I(|f −  fc|) at V =  0.237. Solid and empty circles represent data points outside and 
inside of the critical regime with power-law scaling (5), correspondingly.
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to be affected by the avalanche physics, while at − > .∼f f 0 01c  the power-law scaling starts to deviate from the 
investigated critical one, given by Eq. (5).

Our main result comes from analysis of the whole set of data around the critical point, {Vc, fc}, where we 
observe universal scaling behavior of the measured current in the following form:
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F±(x) are the scaling functions in the metallic (V >  Vc) and insulating (V <  Vc) phases, correspondingly. It 
follows from the scaling relations (4)–(5) that ∼± F x( 1) const, and ∼ β

+ F x x( 1) .
We have performed scaling analysis of the I(V, f) data in the form:
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The scaling parameters were obtained by maximizing the non-adjusted coefficient of determination, R2, for 
the non-linear fit model (7), which resulted in 1/δ =  0.5, Vc =  0.24 and ε =  1.0, see Fig. 4a. The above values are in 
full agreement with the separate analysis based on Eqs (4) and (5). We found that the scaling relation ε =  (δβ)−1, 
cf. Eqs (6) and (7), holds with remarkable accuracy.

Due to the current-saturation effect at > .∼V 0 26 caused by finite system size, scaling of the upper branch 
(V >  Vc) in Fig. 4a is considerably less accurate. In fact, for V >  0.26 one obtains universal scaling behavior with 
ε =  0.66, see Fig. 4b, which explains poor scaling in the transient voltage range between 0.24 and 0.26.

Following ref. 1, we have analyzed differential conductance data, dI/dV (V, f). We have also observed universal 
scaling behavior in the form
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The critical parameters determined from the best fit to Eq. (8) were found to be Vc =  0.238 and ε′  =  1.5, see 
Fig. 5. It follows from Eq. (6) that the scaling exponent ε′  must satisfy the following relation:

ε β
δβ

β ε′ =
−

= −
2 (2 ) ,

(9)

which for ε =  1, 1/δ =  0.5 and β =  0.5 yields ε′  =  1.5. Note that only scaling of differential conductance on the 
lower branch (V <  Vc) was performed due to the saturation effect at high voltages mentioned earlier, which lim-
ited the amount of scaling-suitable data points with reasonably small errors at V >  Vc. Additionally, noise levels 
in dI/dV data are significantly higher than in the raw I(V, f) data due to numerically calculated first derivative.

Figure 4. (a) Universal scaling of current according to Eq. (6). Lower branch corresponds to applied voltages 
below critical, V <  Vc, while the upper branch shows a small range of data at voltage directly above critical, 
0.24 <  V <  0.25. Fitting analysis results in the scaling exponent ε =  1.0 neat Mott MIT. (b) Universal scaling of 
current at V >  0.26, where finite number of particles in the system causes a different from the Mott MIT scaling 
behavior, with a scaling exponent ε =  0.66.
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Conclusions
In a simple model of interacting classical particles with long-range interactions, we have observed universality 
of critical behavior near the transition between the insulating Mott state with checkerboard order and the con-
ducting liquid-like state above a critical value of applied voltage Vc. The main critical exponents, β =  0.5, 1/δ =  0.5 
and ε =  1.5 satisfy to a remarkable accuracy scaling relations corresponding to a scaling form of the current and 
differential conductance around the critical point.

A few comments are in order. First, our exponents differ from the ones in a dynamical MIT in a Josephson 
junction array1, where ε =  2/3 at density f =  1 and ε =  1/2 at f =  0.5. We attribute the difference in universal-
ity classes of these two transitions to the form of interaction potential. While classical particles considered in 
the present Letter interact via 1/r Coulomb interaction, the interaction potential between vortices in Josephson 
junction arrays is logarithmic. An experimental realization of true Coulomb interactions is possible by taking a 
two-dimensional electron gas (2DEG) and applying an external periodic potential to mimic the square lattice. 
Second, although the checkerboard charge-ordered system is unstable toward the electronic phase separation at 
any deviation from the half-filling of the lattice sites13, one can expect that the critical dynamics may not be much 
affected by the specific charge configuration as long as the state we are interested in can be still identified as an 
insulator. This conclusion is supported by the results by14 that demonstrated the same critical BKT behavior for 
both regular and random systems. Yet, effects of the phase separation are important and call for further studies.

Finally, it is worth mentioning that so far most of the works on a delocalization transition have focused on 
disordered systems, see, for example15–18. The transitions investigated there are fundamentally different as their 
main mechanism is depinning, rather than the reduction of the Mott gap. The dynamical Mott transition in clean 
systems, as first observed in ref. 1, demands a much firmer theoretical understanding.
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