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ABSTRACT

Systematic interrogation of mutation or pro-
tein modification data is important to identify
sites with functional consequences and to de-
duce global consequences from large data sets.
Mechismo (mechismo.russellab.org) enables simul-
taneous consideration of thousands of 3D struc-
tures and biomolecular interactions to predict rapidly
mechanistic consequences for mutations and mod-
ifications. As useful functional information often
only comes from homologous proteins, we bench-
marked the accuracy of predictions as a function
of protein/structure sequence similarity, which per-
mits the use of relatively weak sequence similar-
ities with an appropriate confidence measure. For
protein–protein, protein–nucleic acid and a subset
of protein–chemical interactions, we also developed
and benchmarked a measure of whether modifica-
tions are likely to enhance or diminish the interac-
tions, which can assist the detection of modifications
with specific effects. Analysis of high-throughput se-
quencing data shows that the approach can identify
interesting differences between cancers, and appli-
cation to proteomics data finds potential mechanistic
insights for how post-translational modifications can
alter biomolecular interactions.

INTRODUCTION

High-throughput sequencing (HTS) has led to the system-
atic identification of thousands of protein variants (1) from
which the aim is to identify those most likely to impact bi-
ological systems or cause disease. Advances in proteomics
have similarly produced data sets of thousands of post-
translational modifications (PTMs) (2) also aiming to find
those of biomedical consequence. These are just two exam-
ples of the wider trend in life science research where data
generation is often faster than interpretation, making tools
for aiding the ranking and analysis of such findings of in-
creasing importance.

The current flood of variant and modification data is con-
current with a growing set of protein 3D structures and in-
teractions. Virtually all protein domains now have at least
one representative structure, and the number of interactions
for which structures are known or modelled grows contin-
uously (3–7). Intense interaction discovery efforts also pro-
vide an increasingly complete set of biomolecular interac-
tions (e.g. (8,9)) and there are now tens of thousands of in-
teractions known for most of the major model organisms.

To study even a single residue change in terms of poten-
tial functional impacts can require simultaneous consider-
ation of dozens of 3D structures and interactions, and al-
most invariably requires consideration of homologous pro-
teins; even if a structure of a particular protein is available,
functional insights might come only from one with lower
sequence similarity that is nevertheless bound to a relevant
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Figure 1. (A) Schematic of the data sources and pipeline. Numbers from
the PDB (3D structures) at the top denote the complete set of interactions
of each type, the second list (nr) refer to those that are non-redundant when
grouping identical sequences. The final numbers (Mechismo Core DB) are
those with the least stringent filtering criteria, though still requiring some
sequence similarity and knowledge of protein–protein interactions (weak-
est). The totals without any filtering are 2 952 035 protein–protein, 51 182
protein–chemical and 13 186 protein–DNA/RNA, which in practice are
only useful with species with small genomes and/or lacking structure data
(e.g. yeast and bacterial species). (B) ROC curves (top) for predicting sites
at protein, chemical and DNA/RNA interfaces, plotted by modifying the
sequence identity threshold and reporting FPR/TPR. The associated val-
ues of sequence identity for key FPRs derived from this plot are shown
in the plot below. (C) Box-plots (Tukey) showing contacts preserved (Jac-
card index) versus sequence identity for protein–protein interactions where
contacts are either inferred using an alignment to a 3D template (aln) or
taken from a model of the interface constructed by homology modelling.
For the box-plots we ignored datapoints where the Jaccard index was <0.1,
as these denote different interfaces. Equivalent plots for protein–chemical
and protein–DNA/RNA are shown in Supplementary Figure S1.

ligand. To study sets of thousands of protein changes ac-
cordingly requires the integration of a vast set of informa-
tion. Ideally, one would model each change in every avail-
able biomolecular interaction context, but to do so would
be time-consuming and unfruitful owing to the small like-
lihood that any one of the thousands of models required
would alone be functionally informative. Moreover, com-
parative modelling at low sequence identities is difficult and
prone to inaccuracies, and often simple inspections of an
alignment with a template 3D structure are as effective as
models.

Several efforts have been made to bridge interactomes
and structures (e.g. (4,10–13)) though these have only sec-
ondarily addressed protein changes related to mutations or
PTMs. Resources such as Interactome3D (4) and 3DID (14)
provide an excellent view into the putative structures and
molecular mechanism of protein–protein interactions, but
do not readily allow the user to consider specific sets of po-
sitional changes. Modelling resources, such as ModBase (3)
or the SwissModel repository (15), provide millions of pre-
computed structures that allow the study of mutations in
any individual structure, but models are normally only in
one specific context (i.e. one specific template) and often
lack functionally informative bound partner proteins, small
molecules or nucleic acids, which could very well be only

in poorer quality structural templates not used in the mod-
elling processes that are normally aimed at individual model
quality and not necessarily functional interpretation.

There are also many methods to predict deleterious mu-
tations, which typically consider protein sequence conser-
vation and/or properties from individual protein structures
(or homologues) to estimate deleteriousness (e.g. (16–20)).
Newer approaches focus more specifically on aspects of
protein function as revealed by sequence conservation pat-
terns (18), though none are designed for detailed analy-
sis of the molecular mechanism of mutations or modifica-
tions in the context of known biomolecular interactions.
Nevertheless, there is growing evidence that these interac-
tions and 3D interfaces could improve predictions (e.g. (21–
24)), in line with the many instances of mutations known
specifically to modulate particular interfaces. For instance,
Apert syndrome, characterized by skull malformation, syn-
dactyly and mental deficiencies, is caused by mutations in
the fibroblast growth factor receptor 2 (FGFR2) that se-
lectively increase the affinity for FGF2 (25). Missense mu-
tations in the DNA methyltransferase DNMT3B, impli-
cated in immunodeficiency, centromeric instability, facial
anomalies syndrome, affect both the catalytic site and an
N-terminal PWWP domain, involved in protein–protein in-
teractions (26). Mutations are also known to prevent the as-
sembly of functional multi-protein complexes, such as those
in the RFXANK gene, implicated in bare lymphocyte syn-
drome (27), that hamper its ability to assemble a regulatory
factor X complex required for the expression of MHC class
II genes.

To help predict and understand the impact of mutations
or modifications on protein function, we present here a
new online resource Mechismo (Mechanistic Interpretation
of Structural Modifications) that identifies residue changes
(mutations or modifications), from uploaded sets of thou-
sands, likely to have functional consequences by affecting
interactions with proteins, small molecules or nucleic acids.
To predict the functional impact of a residue change, the
method makes use of all possible homologous structures
and all available protein–protein interactions and provides
an easy interface for non-experts to access a vast and com-
plicated underlying data set.

MATERIALS AND METHODS

Data sources and defining 3D interfaces

We extracted sequence fragments from 3D structures (28)
as either entire chains or domains defined in the Structural
Classification of Proteins (SCOP) database (29). We did not
restrict structures on the basis of resolution or other qual-
ity measures as we do not want to exclude lower quality that
might nevertheless contain bound molecules absent in bet-
ter quality structures (though we did do this for parame-
ter calculations; see below). We defined 3D protein–protein
interactions as pairs of fragments with at least 30 pairs of
residues having side-chain atoms within 5Å in biological
assemblies (ignoring crystal-contacts). We grouped interac-
tions when they involved instances of fragments with iden-
tical sequences, and when pairs of residues in contact were
the same, and selected one representative 3D interaction for
subsequent use.
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We defined interactions between proteins and small
molecules or DNA/RNA by identifying side-chains within
5Å of atoms excluding solvents commonly used in crystal-
lization and experimental modifications (30). We also de-
fined 57 classes of chemicals of known structure by all-
against-all fingerprints searches (31), manual inspection
and cross-referencing to DrugBank (32) to capture the ma-
jor types of chemicals in the database (e.g. metals, nu-
cleotides, amino acids), metabolites, known drugs or com-
pounds very similar to them and larger categories for other
compounds (Organic, Inorganic, Organometallic). These
classes are listed in Supplementary Table S1.

We compared UniProt (33) sequences to the represen-
tatives above using Basic Local Alignment Search Tool
(BLAST) (34) considering matches with E-value threshold
of 0.0001 and storing the best match for each position in
the UniProt sequence. Best matches (by sequence identity)
of pairs of UniProt sequences from the same species to rep-
resentative 3D interactions were selected as models for the
interaction. For all sequences we also defined protein do-
mains by significant HMMscan matches to Pfam domains
(35), and intrinsically disordered residues as those where the
mean IUPred (36) long disorder of the matching fragment
residue over a sliding window of 11 residues was ≥0.5. We
also used the domain graphics library from Pfam to display
domain diagrams.

Protein interaction data

We merged protein–protein interactions from four major
primary protein interaction databases: BIND, BioGRID,
IntAct and MINT (33,37–41) making all of them centric
on Uniprot by accession mapping. The resulting data set
contains 845 944 unique biophysical/biochemical interac-
tions from 1 058 604 interaction records and 49 285 publi-
cations. We used UniRef (33) to group interactions at dif-
ferent degrees of sequence similarity and to map interac-
tions to orthologues. To define direct-physical interactions
we used the MI Ontology (42) of detection methods, ex-
cluding mass-spectrometry identified complexes from this
set. We defined high-throughput experiments as those hav-
ing 300 or more interactions in a single publication, and
high-quality interactions as those detected by two or more
distinct publications or detection methods. Note that all in-
teractions are stored in the database, though through the
interface users can restrict interactions to only those that
are direct-physical, high-quality or to select the degree to
which homology (Uniref100, Uniref90 or Uniref50) is used
to infer interactions between organisms. For the analyses in
the text, all possibly physical interactions between proteins
are considered, provided they have at least one interface of
known 3D structure on which to model them.

HTS and phosphoproteomic data sets

We downloaded specific tables from the original papers for
Medulloblastoma (43), Pancreatic Cancer (44) sequencing
and Escherichia coli phosphoproteomics studies (45) and
mapped both to sequencing data using Uniprot (33) acces-
sion matching or genomic coordinates via Ensembl (46).
For the phosphoproteomics data we considered all posi-
tions if there was an ambiguity about site assignment (i.e.

multiple phosphorylateable residues in the same peptide),
and for mutations we only considered non-synonymous
changes, ignoring frame-shifts or stop-gains.

Measures of prediction confidence

We defined a gold-standard positive set of sites as residues
from model proteomes in contact with any interacting
molecule (protein, chemical or DNA/RNA) with a se-
quence to structure similarity of ≥90%, and a negative
set as those residues not in the positives and predicted
to interact with molecules using templates structures with
≤20% identity. The negative set includes some positives
as these can still occur at low similarities, thus making
confidence measures conservative. We then computed the
proportion of sites recovered using model proteome se-
quences sharing sequence identities between 20–90% with
structures, computing true-positive and false-positive rates
(TPR and FPR) for each type of interaction (protein,
chemical or DNA/RNA) and sequence identity. Note that
these values are for whether a changed amino acid is in
contact with another molecule; the accuracy of predict-
ing directions (i.e. enhancing or diminishing) is described
in the next section. The entire data set is available from
mechismo.russelllab.org.

Assessing whether changes enhance or diminish interactions

We computed interface pair-potentials (47) for residues to
be in contact with other residues, chemicals or DNA/RNA
by considering a non-redundant set of individual interfaces
defined initially using high-quality (in terms of resolution,
refinement, etc.) representatives (48) of SCOP domains,
though by keeping only one instance of proteins in any
Uniref50 group. To deal with phosphorylated Ser/Thr/Tyr
(pS, pT, pY) and acetylated Lys (aK) residues we also
added interaction structures containing these residues (400,
612, 501 and 114, respectively) that we then made non-
redundant by the same process. For protein–protein inter-
actions, we defined side-chain contacts as van der Waals
(VDW, C-C or C-S within 4.5 angstroms) or electrostatic
(including Hbond; N or O atoms within 5.5 angstroms) and
defined meaningful contacts as those involving the func-
tional aspects of side-chains (VDW: A, C, F, G, I, L, M,
P, V, W, Y, pY, aK; Electrostatic: D, E, H, K, N, Q, R, S,
T, W, Y, pS,pT, pY, aK). We made no such distinction in
side-chain atom type for DNA or chemical interactions, re-
quiring only side-chain contacts with any non-protein atom
from the particular molecule class. The distance thresholds
were assigned according to previous studies of protein in-
teractions (47,49), and are essentially the upper limits for
electrostatic or hydrogen-bonding distances (50) and twice
the Carbon van der Waals radius (3.8 angstroms) plus a
fudge factor (0.7 angstroms) to allow for resolution issues.
Matrices generated with simpler cutoffs (e.g. all-atom 4.0,
4.5, 5.0, 5.5 and 6.0 angstroms) showed poorer reproduc-
tion of expected groupings of the amino acids (negative:
D/E/Sp/Tp/Yp; positive: R/K; aromatic: Y/W/H; hy-
drophobic: I/L/M/V/F; small-hydroxyl S/T; amide Q/N;
small P/A/C) compared to the matrix derived with the first
parameters above. The small size of the benchmark (below)
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makes it difficult to perform a systematic analysis of differ-
ent thresholds; all sets tested gave similar results.

For each type of interaction (protein, DNA/RNA or
chemicals) we defined the expected frequency (fexp) as the
product of interface residue frequencies (protein–protein in-
teractions), or as the frequency of the residue in proteins
binding to DNA/RNA or particular chemical classes (i.e. a
molar-fraction random model (47)). For each residue type
we then measured the observed frequency (fobs) to be in con-
tact with a particular residue, chemical or DNA/RNA, and
computed:

I PPaa = log
(

f obs
f exp

)
I Echange=

∑
all res conts

(
I PPchange − I PPwt

)

where IPPaa is the value for a particular pair (with IPPwt as
the value for the wild-type and IPPchange as the value for the
altered residue).

For the majority of chemical classes, there was insignifi-
cant enrichment or depletion of residues to make the mea-
sures above useful (i.e. log odds <1), so these were ex-
cluded. This is likely due to the failure of this generic ap-
proach to capture the diversity in molecules with varied
properties (e.g. adenosine triphosphate (ATP) has both hy-
drophobic and negatively charged moieties). Nevertheless,
we obtained satisfactory IPPaa values for protein–protein,
protein–DNA/RNA and interactions with Zn, Mg, Fe, Mn,
Cu ions. Updates will include similar parameters for repeti-
tive chemical moieties, such as phosphate, sulphate and car-
boxylate. Note that IPPaa values shown in the figures are
multiplied by 10 and capped at 9 for clarity (11 values).

IE change is the score associated with mutations or mod-
ifications, with contacts involving the mutated/modified
residue being presumed to be the same as the original
residue. Note that we also presume the same contacts when
the template structure differs from the original sequence.
High positive values indicate modifications predicted to
favour an interaction (e.g. changing Asp interacting with
two Phe residues to Leu gives a value of 2.4), whereas nega-
tive values would be predicted to disfavour it (e.g. changing
Arg interacting with two Glu residues to Cys gives a value
of −3.8).

We defined the benchmark set by extracting all human
mutations from Uniprot (MUTAGEN and VARIANT)
marked features and their associated text. From these 135
275 mutations we then looked for descriptions containing
‘bind*’ or ‘interact*’ leaving 6283, which we inspected man-
ually, labelling them whether they disabled/enabled (the
positives for receiver operator characteristic (ROC) anal-
ysis) or had no effect (negatives) on the interaction with
particular proteins, complexes, protein classes, chemicals,
chemical classes, DNA or RNA. For sites targeting com-
mon complexes or classes (actin, clathrin, collagen, G-
proteins, Histone H3, importin alpha/beta, microtubules,
nucleoporin, ribosome, RNA polymerase II and tubulin),
we allowed the possibility that the mutation could affect in-
teractions with any of the proteins in these human com-
plexes or classes. This expansion plus the fact that many
sites described effects on multiple individual proteins (e.g.
abolishes interactions with A, B and C, but has no effect on
D binding), led to a final set of 12 527 mutation/interactions
pairs.

We defined a total positional impact (Mechismo) score
as the sum of the highest absolute IEchange values plus 1 for
each protein, chemical or DNA/RNA site found. This addi-
tion allows for incalculable IEchange values in chemicals and
gives non-zero values to all sites at any functional interfaces.
We also defined a total protein impact score as the sum of
these values for all sites in a protein from a particular data
set.

Comparison with protein comparative modelling

We compared mechismo (i.e. alignments with structures) to
full protein modelling by first selecting a random sample of
4146 non-redundant interfaces (205 protein–protein, 2660
protein–chemical, 1281 protein–DNA/RNA); for chem-
icals we defined redundancy according to the chemical
classes in Supplementary Table S1 (instead of discrete
chemicals). For each of these we found all other interfaces
(i.e. templates) involving homologous proteins or similar
chemicals/DNA/RNA and grouped these according to se-
quence identity (bins at intervals of 10%) to the selected in-
terface. We then selected one interface from each bin and
used the alignment from the database to construct models
using the Automodel feature in MODELLER (51). We then
calculated the proportion of interface contacts in the se-
lected structure that were reproduced using either the mod-
elled structure (model) or the alignment to the template
(aln) as a Jaccard index (the intersection divided by the
union).

Shuffling data sets and assessing significance

We created shuffled data sets by both moving particular
modifications to random positions in the same protein (sites
only) or by moving them to a random position in a ran-
domly selected protein from the same data set (proteins and
sites). In doing so we did not permit the original site to be
chosen, which for rare amino acids in shorter proteins could
be problematic for the sites-only data set (e.g. if a protein
of 30 amino acids has only a single Arginine that is mu-
tated). For certain contexts (e.g. PTMs) it is worthwhile to
consider sets with a similar distribution of surface/buried
residues. We constructed this set from the entire data set,
but taking the best 3D template for any proteome segment
(any significant BLAST match as above) and computing
NACCESS (52) accessibilities, computing relative accessi-
bilities to define classes of buried (≤5%), intermediate (>5,
≤25%) and exposed (>25%) and an additional class for in-
stances when no 3D data was available. When randomizing,
we required the same distribution across the four classes.
We refer to these as surface-biased (proteins and) sites shuf-
fled data sets. To assess the significance of the overlap, we
used a two-sided Fisher’s exact test, considering the total
number of sites in the data set and the sites of a particu-
lar class (e.g. protein–protein, protein–chemical, protein–
DNA/RNA) in the two sets being compared. Note that
these sets are not used as negatives in any of the ROC anal-
yses: negatives are defined in different ways, but are never
shuffled data sets.
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Studying deleterious mutation prediction methods

We used ConDel (20) to extract PolyPhen2 (16), SIFT (17)
and MutationAssesor (18) predictions for 19 800 deleteri-
ous and 24 082 neutral mutations collated from multiple
sources (53). Differences in genome versions and accessions
meant that only 14 837 deleterious and 16 068 neutral mu-
tations were available for all three methods.

Open reading frame cloning

For the interactions with mutations discussed for RhoA
(see Results and Discussion), we obtained 11 clones as se-
quence optimized synthetic DNA from commercial suppli-
ers (LifeTechnologies/IDT), in terms of codon optimiza-
tion for expression in Saccharomyces cerevisiae, GC-content
and restriction sites. The sequences encoding the proteins
were flanked by attb-Gateway sites (Invitrogen) for further
cloning. All constructs were shuttled into the Donor vector
pDONR221 by Gateway BP-reaction and subsequently by
LR-reaction into the Y2H bait and prey vectors pDEST32
and pDEST22, respectively, for the Yeast two-Hybrid ex-
periments. All constructs were sequence verified.

Yeast two-hybrid assays

We performed two-hybrid assays following an altered
‘Testing specific Two-Hybird interaction’ protocol of
the ProQuestTM Two-Hybrid System Handbook (Invit-
rogen). Briefly, we co-transformed all interaction pairs
(Interactor/RhoA) into yeast strain MaV203 (Invitrogen,
MaV203 Competent Yeast Cells, Library Scale cat# 11281–
011). Colonies from each transformation were grown on
15-cm plates of synthetic complete media lacking leucine
and tryptophan (Sc-Leu-Trp). After 2–3 days we picked
three individual colonies of each transformation and sus-
pended them in 100 �l autoclaved saline in a 96-well plate.
To achieve a uniform cell density, we transferred 10 �l of
the suspension to 150 �l SC-Leu-Trp medium in another
96-well plate. These cultures were grown overnight at 30◦C
in an incubator without shaking to reach saturation. We
re-suspended the cultures by vigorous shaking followed by
replication with a 96-needle replicator onto rectangular SC-
Leu-Trp-His readout agar plates containing different con-
centrations (5, 10, 25, 50 and 100 mM) of the inhibitor
3-aminotriazol. We interpreted phenotypes 2–5 days after
plating.

RESULTS AND DISCUSSION

The database

The core database currently combines 86k 3D structures
(including 117k protein–protein, 72k protein–chemical and
2k protein–DNA/RNA non-redundant interfaces) cross-
referenced to 846k protein–protein interactions and 60k
proteins in eight model organisms (Figure 1A) with 59k
sequences and 30 million residues (Figure 1A). Coverage
is extensive in terms of the proportions of proteins mak-
ing at least one contact with proteins, chemicals or nu-
cleic acids. Overall, 51.0% of all proteins have at least
one known or potential protein–protein interface, 45.7%

have at least one protein–chemical interface and 13.6% a
protein–DNA/RNA interface, with differences across the
species (Supplementary Table S2) probably reflecting biases
in species used for structure determination. The fraction
of residues lying within functionally informative structures
(i.e. structural matched regions that bind other proteins,
chemical or nucleic acids) is 23.2% for protein–protein,
18.5% protein–chemical and 4.5% protein–DNA/RNA and
33.9% when all three are combined (N.B.: this is not a sum-
mation as several regions bind more than one molecule
type). This combined residue coverage ranges from 29.3%
in S. cerevisae to 55.2% in E. coli.

User data, parameters and interface

Uploaded proteins and changes are mapped to the
database and 3D interfaces filtered by thresholds for
sequence/structure similarity and for interactions to be
used. Users can modify the stringency of data consid-
ered in terms of the lowest sequence similarity and the
nature of protein–protein interactions (e.g. higher qual-
ity, low-throughput or direct physical interactions). In all
the examples discussed below, we used the least stringent
setting: considering protein–protein interactions with any
published evidence of a physical association between pro-
teins, and any sequence identity to statistically significantly
matched structures (‘low stringency’ on the website). In-
creasing stringency can be useful when considering proteins
with substantial structural and/or interaction partners (e.g.
GTPases, P53, etc.).

After job completion, the user is presented with overall
totals for proteins/positions, a network view of interactions
and changes, and summary tables for proteins and changes.
Additional pages describe individual proteins/changes, and
still others describe structural matches, giving alignments,
domain diagrams, views of changed positions in structures
and references describing interactions. For simplicity and
speed, we do not construct or download homology mod-
els, but present alignments beside matched structures, high-
lighting differences between the original sequence and the
structure that might affect prediction accuracy (see below).

Assessing accuracy of individual functional site predictions

Even if the structure of a particular protein is known, those
with interacting proteins, chemicals or DNA/RNA are of-
ten only available for homologues with lower sequence iden-
tities. To use such a diversity of structures requires measures
of prediction confidence as a function of sequence similar-
ity, which we devised by defining gold-standard positives
and negatives and testing the ability of sequence/structure
matches with different degrees of identity to predict them
(Materials and Methods).

Residues at functional interfaces in structures identical
or nearly identical to proteins from model organisms are
considered to be positives, and those from structures with
very low sequence similarity (but not in the positives) are
defined as negatives. The negatives likely contain many pos-
itives that are only identified at very low sequence identi-
ties, making the benchmark conservative. All other struc-
tures (20–90% sequence identity) are then used to predict
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all positive and negative sites. ROC analysis gives FPRs that
provide confidence measures when predicting a site for each
type of interaction at any sequence identity (Figure 1B).
These values vary across the different molecule types, with
protein–protein interactions having high-confidence at as
low as 40% identity, but protein–DNA/RNA interactions
requiring a higher threshold (56%) to reach the same degree
of confidence.

A natural question is whether it would be more accu-
rate to construct homology models of all proteins, as op-
posed to interrogating an alignment beside a 3D structure.
We tested this by sampling 4000 3D interfaces of all three
types, modelling (51) them on homologous interfaces at a
range of sequence identities and comparing the interface
contacts between the model/template to the original struc-
ture. The results suggest that there is little difference be-
tween homology models constructed this way and the sim-
pler alignment/template strategy (Figure 1C; Supplemen-
tary Figure S1). More careful modelling strategies might
give an improvement, but these are not practical to run over
many thousands of mutations or modifications.

Assessing where modifications enhance or diminish interac-
tions

Mutations and modifications can either enhance or di-
minish biomolecular interactions. To predict such effects,
we used pair-potentials (54) for protein interaction inter-
faces developed previously (47) and extended to consider
phosphorylated/acetylated residues, protein–chemical and
protein–DNA/RNA interactions (Materials and Methods;
Figure 2A). The potentials are log odds, with high posi-
tive numbers indicating a relationship (e.g. residue–residue,
residue–DNA, residue–chemical) that is seen more often
than expected from the abundance of amino acids at inter-
faces and high negative numbers indicating the opposite. We
used these values to define IEchange (Materials and Methods)
that measures the effect of changing an amino acid at an
interaction interface by computing the difference between
these log odds scores for the original residue and those for
the mutation or modification.

In general, the parameters for residue pairs (Figure 2A,
top) agree broadly with those computed previously for
protein–protein interfaces (55) though to our knowledge
no set has to date included the modified amino acids. As
expected, phosphorylated Ser/Thr (Sp/Tp) are similar to
negatively charged amino acids in their preferences, with
tyrosine phosphate (Yp) varying between negative and aro-
matic residues. Interestingly, acetylated Lysine (Ka), though
generally an outlier from all amino acids, appears to prefer
hydrophobic/aromatic environments, in contrast to being
akin to Glutamine as is often considered to be the best nat-
ural substituent (e.g. (56,57)). Interestingly, this agrees with
recent observations that Methionine mutations can mimick
Ka in cancers (58). Parameters for DNA/RNA contacts are
also as expected (Figure 2A, bottom), with positive residues
favoured, and negative or most hydrophobic residues dis-
favoured, with aromatic or polar residues being close to
neutral. Contacts to metals differ, also as expected, for in-
stance with the classic tetrahedral coordinating Cys/His
favouring Zn+, Asp (but not Glu) favouring Ca++ and

Figure 2. (A) Log-odds scores for amino acid side-chains interacting with
other side-chains (top) and DNA/RNA and chemicals for which appro-
priate parameters are available (bottom). Values are multiplied by 10 and
stripped of decimals for clarity, and are coloured red if unfavourable and
green if favourable, with darker colours indicating stronger values. Mod-
ified amino acids are given as: Ka, acetyllysine; Sp/Tp/Yp, phospho-
serine/threonine/tyrosine. Note that this is not a mutation or substi-
tution matrix, but a measure of residue–residue interactions. The den-
drograms show means clustered groups using distances between amino
acids/molecules calculated by summing the absolute differences between
matrix values. (B) ROC curves showing how accurate the direction of in-
teraction effect is predicted based on a data set human mutations with an-
notated in Uniprot for disabling/enabling effects on protein, chemical or
DNA/RNA interactions. ‘All data’ denotes the data set, with various shuf-
fled data sets also shown: Pos denotes different positions in the same pro-
tein, Prot/pos denotes different proteins and positions and Surf denotes
where accessibility values are maintained between the original data set and
the shuffle.

small polar residues (Ser/Thr) favouring Mg++/Mn++ (59),
though there are certain differences that inspection suggests
are likely to do with our oversimplistic model that does not
consider ionic charge or coordination shells, which would
not necessarily be accurately modelled at low sequence iden-
tities to structures.

We tested the effectiveness of these values by investigating
5127 human site-directed mutations and 805 disease vari-
ants within Uniprot that were annotated to have an effect
on interaction, binding or affinity with other molecules. Af-
ter manual editing, 4070 site-directed (mutagen) and 508
disease variants could be mapped to particular proteins,
559/164 to specific chemicals and 498/133 to DNA or RNA
interactions. As expected, the data are heavily biased to-
wards disabling rather than enabling or neutral effects on
interactions: 79.0% (4051 mutagen and 634 disease vari-
ants) are disabling, 3.2% (143 and 39) enabling and 17.8%
(926 and 132) are neutral. Many mutations are annotated
as affecting multiple molecules, making a final set of 12 527
mutation/molecule pairs (with some redundancy owing to
molecule descriptions such as ‘actin’ or ‘RNA polymerase
II’), of which about 10% (1257) could be matched to a pro-
tein structure for which there were known/predicted struc-
tures related to the interaction observed (1038 mutagen and
219 variants).
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ROC curves (Figure 2B) show that these scores are able to
assess the impact in terms of direction with moderate sensi-
tivity and specificity in contrast to randomly shuffled data
where either the position of the mutation or both the posi-
tion and the protein were selected at random. We did not
see any appreciable improvements when exploring differ-
ent ranges of sequence identity, though when doing so data
become sparse (i.e. too few examples remain in the bench-
mark). Note, in addition, that for protein–chemical inter-
actions we had only five negatives which accounts for the
rather abrupt appearance at the bottom plot in Figure 2B.

To score and rank changes we defined an overall
Mechismo score for individual sites as the sum of highest
absolute IEchange values for protein, chemical and nucleic
acid effects (considering only the highest values for each
type of interaction when multiple molecules contacted any
single site), and an overall score for proteins/genes as the
sum of these values for all changes in each protein. This al-
lows the most functionally impacted sites and proteins from
large data sets to be identified.

Searching for edgetic effects in cancer mutations

The values above provide the means both to identify ed-
getic effects (60) that impact a single edge in a network,
and to judge whether mutations might be affecting net-
works by shifting the balance of affinities for different part-
ners, rather than completely destroying a particular inter-
action. For example, in a data set for Burkitt’s Lymphoma
(61) we identified a series of mutations in the RhoA (62)
GTPase that were predicted by detailed modelling efforts
to shift the affinities for various effector proteins (GAPs,
GEFs, etc.). The method very rapidly reproduces the origi-
nal findings (Figure 3) showing a diversity of effects for the
three mutations on different RhoA regulators, including the
observation that L69R could potentially enable an interac-
tion with ARHGAP20 while disabling the others. The struc-
tures show that this residue normally resides in a hydropho-
bic pocket in all partners apart from ARHGAP20 where
it sits next to E529, N530 and T533. The changed residue
Arginine could possibly form a favourable salt-bridge with
a glutamate and make additional favourably polar con-
tacts with the others (Figure 3B). We tested the 12 RhoA
mutation/interaction pairs highlighted in Figure 3A using
the two-hybrid system for whether or not they had the pre-
dicted effect on particular interactions (Supplementary Ta-
ble S3; Supplementary Figure S2). We found that 9/12 had
the predicted effect on the interface. Specifically, for these
we found the mutations to have a weaker signal in the as-
say when predicted to be disabling when compared to the
wild-type; enabling mutations did not show a clear increase
in interaction (as might be expected given the coarseness of
the assay), though growth similar to wild-type was taken to
be a success.

Application to HTS data sets

To demonstrate the use of this approach on HTS data
we considered two cancer data sets. The first is a set of
641 non-synonymous mutations in 569 proteins identified
in Medulloblastoma tumors by a combination of exome

Figure 3. (A) Network of RhoA and interaction partners showing the pre-
dicted effect of each mutation on a selection of interaction partners with
structures sharing very high sequence identities with the human protein.
Green lines show interactions where RhoA mutations are predicted to en-
hance the interaction; red lines where they diminish. Proteins linked with
thin lines are those that interact with RhoA via an interface of known
structure that does not involve the mutation. Tick/cross marks denote
whether the proposed effect was observed in the two-hybrid tests. (B) Struc-
tures of RhoA mutation L69R in contact with three interactors. Proteins
are shown as C-alpha trace with residue side-chains shown as wireframe
(carbon = grey; oxygen = red; nitrogen = blue). Red labels show the loca-
tion of the mutated RhoA residue; black those with which it is interacting
on the other protein. Red circles indicate a disabling prediction, green an
enabling one.

and whole genome sequencing (43). After integrating 2368
structures and 17 871 interactions, the method identifies 92
sites with predicted functional consequences. The second
includes 2850 mutations in 1712 proteins identified in pan-
creatic cancers by exome sequencing (44), where the method
identifies 212 functionally relevant sites. These two data sets
are similar in that they both show enrichment for protein–
chemical interactions when compared to shuffled data sets
(significant at P < 0.05 or P < 0.01 for all apart from
surface/positions-only; Supplementary Table S4). Both are
also enriched in mutations at protein and nucleic acid bind-
ing sites relative to shuffled sets, but the differences are not
significant.

As known from the original analyses of the gene sets,
the two samples differ substantially in the proteins that
are mutated, but Mechismo also highlights differences in
how proteins common to both sets are affected. For ex-
ample, both cancers have roughly the same proportion of
variants in the tumor suppressor TP53 (6/690 or 0.85%
in Medulloblastoma; 18/2805 or 0.64% in Pancreatic can-
cer). However, whereas none of those in Medulloblastoma
are predicted to have strong functional consequences (Fig-
ure 4A), in Pancreatic cancer, 4/18 are predicted to affect
protein interactions, two to affect interactions with DNA
and three to affect metal/zinc binding (Figure 4B and D).
Naturally, the mutations in Medulloblastoma could affect
overall protein structure, but the fact that none of them lie
directly at functional interfaces suggests an overall differ-
ence in the role of TP53 in these cancers. TP53 is also the
most functionally compromised protein in Pancreatic can-
cer followed by KRAS and SMAD4. In Medulloblastoma,
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Figure 4. Variants in HTS cancer data sets. (A) Portions of the wider net-
work of interactions involving proteins (red if mutated, grey if not), chem-
icals (magenta) and DNA/RNA (blue) affected by mutations identified
after sequencing Medulloblastoma tumors (43) and Pancreatic cancer (B).
The size of the red protein nodes is proportional to the number of vari-
ants contained within them, the size of chemical and DNA/RNA nodes is
proportional to the number of sites predicted to interact with them, and
the width of edges is proportional to the number of sites affecting them.
Red edges are those where the effect of the mutations is predicted to di-
minish the interaction, green to enhance and orange where different mu-
tations have opposite effects. (C) Structures of DDX3X showing Medul-
loblastoma mutations affecting DNA or ATP-binding, and (D) mutations
in Pancreatic cancer affecting functional interactions of TP53 with DNA
and TP53BP2. Networks and protein structures are displayed as described
in Figure 3.

the only strongly affected protein in terms of function is
DDX3X for which 4/10 variants affect DNA-binding (all
disabling) and 5/10 affect ATP-binding (Figure 4C); this
protein is believed to be a prominent player in many patients
with Medulloblastoma (43).

Application to phosphoproteomics data sets

Proteomics-identified PTMs can also illuminate molecu-
lar function and disease and, like mutations, many are
known to target biomolecular interfaces (e.g. (2)). Apply-
ing Mechismo to a data set of phosphorylation sites in E.
coli (45) predicts 21 sites to enhance/diminish protein in-
teractions and a significant proportion of sites to be in con-
tact with small molecules, predominantly metabolites and
their analogues (Supplementary Figure S3A; P < 0.001
for 24.8% compared to 9.6–16.1% in shuffled data; Supple-
mentary Table S4). Some are known to regulate enzymatic
function, such as Ser-113 in isocitrate dehydrogenase, and
Ser-102 in phosphoglucosamine mutase (45), the latter pre-
dicted here using a structure at low (35%) sequence iden-
tity. For most proteins, no regulatory phosphorylation is
known even though the sites are clearly at the active site
(Supplementary Figure S3B). Note that 21/26 of these sites
are in enzymes and are in contact with phosphate groups
(either alone or as part of another molecule), raising possi-
bilities that phosphorylated residues were not modelled in
the structures or are reaction intermediates.

Figure 5. Mechismo as an aid to deleterious mutation predictions. (A) Dis-
tribution of Mechismo mutation scores for deleterious (red) and neutral
(green) sites within a benchmark data set for deleterious site prediction.
(B) ROC curve showing the effect of combining Mechismo and Polyphen2
scores to the same data set.

Deleterious and neutral mutations

Many methods attempt to distinguish deleterious from neu-
tral mutations using information about residue conserva-
tion and individual known/predicted structures (e.g. (16–
18)), though few of these consider biomolecular interac-
tions explicitly. The data used to assess these methods (large
sets of disease-causing or neutral mutations) are also a use-
ful means to validate our approach. Many deleterious mu-
tations abolish protein function by disrupting overall struc-
ture rather than directly affecting molecular recognition
events. However, the high proportion of disease mutations
at interfaces that we observed above suggested that this in-
formation can help identify functional deleterious muta-
tions.

When running the method on a combined data set
of 14 837 deleterious and 16 068 neutral mutations (53)
there is a significant enrichment in protein, chemical and
DNA/RNA interactions in deleterious mutations relative
to neutral (P << 0.001) and this improves as a function of
the Mechismo score (Figure 5A). This data set also shows
a higher portion of disabling than enabling in both deleteri-
ous and neutral mutations, though there are a greater pro-
portion of both enabling and disabling mutations in delete-
rious relative to neutral (Supplementary Figure S4). We ex-
pect both disabling and enabling to be generally deleterious
to an organism as both ultimately affect a protein function
such that it deviates from wild type.

It is important to emphasize that residues at functional
sites make up only a small fraction of the total (13%).
Mechismo by itself is thus a relatively poor overall predic-
tor of deleteriousness (Figure 5B, Supplementary Figure
S5) though the enrichment suggests that such specific func-
tional information could potentially aid efforts to identify
deleterious mutations in combination with other methods.
When combining Mechismo scores (as normalized averages
as done previously (20)) with those from PolyPhen2 (Fig-
ure 5B) and SIFTS (but not MutationAssessor or Condel)
shows a very slight increase in AUC (Figure 5B, Supplemen-
tary Figure S5) and highlights a subset of mutations with a
low FPR. We did not see any significant change in the results
when only considering sites at interfaces (for all methods),
which is likely to do with the fact that simply lying at an in-
terface is a major determinant of whether a mutation will
be deleterious or not.
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There are also 435 known deleterious sites in the bench-
mark set that are at functional sites (Mechismo score ≥1;
74 have a score ≥2; 16 have ≥3) but which are not predicted
to be deleterious by any of the methods, mostly owing to
poor conservation, including several sites in TP53 (Supple-
mentary Figure S6). A more detailed investigation into the
possibility of combining this information with deleterious
predictors will be published elsewhere.

CONCLUSION

Despite many technical advances, it will take decades un-
til structures of most interactions are available. This makes
methods to extrapolate information from known structures
to homologous proteins important for understanding bio-
logical mechanism. The mechanistic basis of why particu-
lar changes in proteins have the effect that they do is one of
the next great challenges in biology and utterly requires a
deeper integration of HTS and proteomics techniques with
information related to protein 3D structures. When doing
so, however, it is critical to exploit even weakly homolo-
gous structures, since this greatly increases the coverage of
functional sites. This is particularly true for chemical or
DNA/RNA sites as homologous proteins very often use a
similar location to bind their ligands (63), and it is increas-
ingly rare for a protein domain family to be entirely lacking
in bound ligands. Protein interaction interfaces are less well
covered by homologous structures, though a recent analysis
suggested up to a third of known interactions have homolo-
gous structures (4) and that this proportion grows with each
new complex structure solved.

Mechismo provides a rapid structural and mechanistic
view of this mesmerizing volume of data, and will be useful
for prioritizing modifications/variants, improving methods
to predict deleterious mutations and understanding the bi-
ological or disease mechanisms of large sequencing or pro-
teomics data sets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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