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�-Cell Mitochondria and Insulin Secretion
Messenger Role of Nucleotides and Metabolites
Claes B. Wollheim and Pierre Maechler

The �-cell mitochondria are known to generate meta-
bolic coupling factors, or messengers, that mediate
plasma membrane depolarization and the increase in
cytosolic Ca2�, the triggering event in glucose-stimu-
lated insulin secretion. Accordingly, ATP closes nucle-
otide-sensitive K� channels necessary for the opening
of voltage-gated Ca2� channels. ATP also exerts a per-
missive action on insulin exocytosis. In contrast, GTP
directly stimulates the exocytotic process. cAMP is
considered to have a dual function: on the one hand, it
renders the �-cell more responsive to glucose; on the
other, it mediates the effect of glucagon and other
hormones that potentiate insulin secretion. Mitochon-
drial shuttles contribute to the formation of pyridine
nucleotides, which may also participate in insulin exo-
cytosis. Among the metabolic factors generated by glu-
cose, citrate-derived malonyl-CoA has been endorsed,
but recent results have questioned its role. We have
proposed that glutamate, which is also formed by mito-
chondrial metabolism, stimulates insulin exocytosis in
conditions of permissive, clamped cytosolic Ca2� con-
centrations. The evidence for the implication of these
and other putative messengers in metabolism-secretion
coupling is discussed in this review. Diabetes 51 (Suppl.
1):S37–S42, 2002

B
lood glucose control depends on the normal
regulation of insulin secretion from the pancre-
atic �-cells and on insulin action on its target
tissues. Most forms of type 2 diabetes display

dysregulation of insulin secretion combined with insulin
resistance. The central role of �-cell dysfunction in the
development of type 2 diabetes is illustrated, on the one
hand, by the various forms of maturity-onset diabetes of
the young (MODY) (1), and, on the other, by a recently
developed transgenic mouse model. In these mice, the
�-cell–targeted overexpression of the flux-determining en-
zyme of the hexosamine pathway results in hypersecretion
of insulin, followed by insulin resistance and diabetes (2).

These observations should encourage further dissection

of the mechanism of metabolism–secretion coupling in the
�-cell (3).
Glucose recognition by the �-cell. The rate of insulin
secretion is adapted to the changes in blood glucose
concentration by the �-cells. Glucose equilibrates across
the plasma membrane and is phosphorylated by glucoki-
nase, which determines the rate of glycolysis and the
generation of pyruvate (4,5). High rates of glycolysis are
maintained through the activity of mitochondrial shuttles,
mainly the glycerophosphate and malate/aspartate shut-
tles (6,7), which allow the reoxidation of cytosolic NADH.
The importance of additional shuttles generating cytosolic
NADPH has also been emphasized (8,9). A particular
feature of the �-cell is not only the tight link between
glycolysis and mitochondrial oxidative metabolism, but
also the extremely high proportion of glucose-derived
carbons oxidized in the mitochondria (10). The very low
expression of monocarboxylate transporters in the plasma
membrane and the low activity of lactate dehydrogenase
act conjointly to drive pyruvate into the mitochondria
(11–14). In the mitochondria, pyruvate is a substrate for
both pyruvate dehydrogenase and pyruvate carboxylase.
The latter enzyme forms oxaloacetate, providing anaple-
rotic input to the tricarboxylic acid (TCA) cycle (9,10).
Reducing equivalents generated by the TCA cycle activate
the electron transport chain resulting in hyperpolarization
of the mitochondrial membrane (��m) and formation of
ATP (Fig. 1). Pyruvate dehydrogenase and two TCA cycle
dehydrogenases are activated by Ca2� (reviewed in refer-
ence 15), which may reinforce the production of metabolic
coupling factors during glucose-stimulated insulin secre-
tion (16). Mitochondrial metabolism increases the ATP/
ADP ratio (17). The increase in cytosolic ATP (18,19)
and/or the decrease in free ADP (5,20) promotes the
closure of ATP-sensitive K� channels (KATP channels) and
depolarization of the plasma membrane (21). As a conse-
quence, cytosolic Ca2� ([Ca2�]c) is raised by the opening
of voltage-sensitive Ca2� channels (21,22). The increase in
[Ca2�]c is the main trigger for exocytosis, the process by
which the insulin-containing secretory granules fuse with
the plasma membrane (22–24). When measured simulta-
neously, glucose causes biphasic increases in both [Ca2�]c
and insulin secretion (25,26). Insulin secretion is stimu-
lated not only by glucose, but also by leucine and other
amino acids (3). Nutrient-induced secretion is potentiated
by the neurotransmitters acetylcholine and pituitary ade-
nylate cyclase–activating polypeptide (PACAP), as well as
by the gastrointestinal hormones glucagon-like peptide 1
(GLP-1) and gastric inhibitory polypeptide (GIP) (27,28).
Conversely, knockout of the GIP receptor in mice leads to
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glucose intolerance (29). Insulin secretion is also sub-
jected to paracrine regulation by glucagon release from
the islet �-cells (30,31). In addition, insulin exocytosis is
under the direct negative control of norepinephrine, soma-
tostatin, and circulating epinephrine (23,27,32,33). The
reader is referred to the cited reviews for the detailed
descriptions of the actions of hormones and neurotrans-
mitters.
KATP-independent effect of glucose. The Ca2� signal in
the cytosol is necessary, but not sufficient, for the full
development of biphasic insulin secretion. It was first
proposed in 1988 by using sulfonylureas that glucose
evokes KATP-independent stimulation of insulin secretion
(34). This KATP-independent pathway was further charac-
terized in 1992, when it was demonstrated that glucose
elicits secretion under conditions of clamped, elevated
[Ca2�]c (35–37). More recently, knockout mouse models
lacking either of the two functional subunits of the KATP
channel show marked reduction (albeit not elimination) of
glucose-stimulated insulin secretion (38,39). It is notewor-
thy that these �-cells show a partial secretory response to
glucose without changes in [Ca2�]c, which is already
elevated at low glucose concentration. Taken together, all
these studies suggest the existence of metabolic coupling
factors generated by glucose.

Nucleotides as mediators of the glucose effect. It is
well established that intracellular ATP is required for
insulin exocytosis (40–42). A higher ATP/ADP ratio is
needed for the closure of KATP channels compared with
the requirement of the exocytotic process itself (41).
However, at nonstimulatory Ca2� concentrations, ATP
does not cause insulin secretion in permeabilized cells
(40). In the presence of stimulatory Ca2�, ATP enhances
the process (40,42,43). Conversely, glucose-induced ATP
elevation does not promote insulin release in the absence
of extracellular Ca2� (44). There was, however, a correla-
tion between the generation of ATP and the KATP-indepen-
dent insulin secretion evoked by glucose or by the
combination of glutamine plus leucine. In the same report,
glutamine alone also enhanced KATP-independent insulin
release, but no measurements of ATP were shown (44).
Therefore, ATP produced from nutrient metabolism could
be involved in the KATP-independent secretion.

Glucose also increases the GTP/GDP ratio in islets both
under control conditions and under conditions of the
KATP-independent secretion (17 and references therein). In
contrast to ATP, GTP is capable of initiating insulin
exocytosis in a Ca2�-independent manner both in native
(45,46) and in clonal �-cells (24,40,45). Thus, GTP is
generated by glucose and also modulates exocytosis di-

FIG. 1. Model for coupling of glucose metabolism to insulin secretion in the �-cell. Glucose is phosphorylated by glucokinase (GK) and converted
to pyruvate (Pyr) by glycolysis. Pyr preferentially enters the mitochondrion and feeds the tricarboxylic acid (TCA) cycle resulting in the transfer
of reducing equivalents (red.equ.) to the electron (e–) transport chain, leading to hyperpolarization of the mitochondrial membrane (��m) and
generation of ATP. Subsequently, closure of the KATP channels depolarizes the cytosolic membrane (��c), which opens voltage-gated Ca2�

channels, raising [Ca2�]c and triggering insulin exocytosis. Several putative messengers proposed to participate in the metabolism–secretion
coupling are listed here. ApnA, diadenosine polyphosphate.
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rectly, which qualifies it as a messenger molecule (47).
Whether heterotrimeric G-proteins or the monomeric G-
protein Rab3 is the target for GTP remains to be estab-
lished (24,48).

It has been known for more that three decades that
cAMP potentiates glucose-stimulated insulin secretion.
GLP-1, GIP, PACAP, and glucagon increase cAMP levels in
�-cells (27,28). Glucagon has been shown to render �-cells
glucose-responsive through the generation of cAMP (30).
This paracrine effect of glucagon was also recently dem-
onstrated in human islets (31). cAMP exerts at least three
actions that may render the �-cell glucose-competent and
enhance insulin secretion: 1) the Ca2� current through
L-type Ca2� channels is increased (49); 2) �-cells refrac-
tory to glucose depolarization become responsive, show-
ing KATP-channel closure (50); and 3) the secretory
machinery is sensitized to Ca2� (40,49,51,52). All these
actions are mediated by cAMP-dependent protein kinase
A. A direct protein kinase A–independent enhancement of
insulin exocytosis involving the cAMP-GEFII protein
(GEF, guanosine nucleotide exchange factor) has recently
been described (53). Although glucose has been found to
increase cAMP levels in a minority of studies, such an
effect is not observed in purified �-cells (30). Therefore,
the role of cAMP in glucose-stimulated insulin release is
that of a potentiator rather than a mediator.

Among other putative nucleotide messengers, NADH
and NADPH are generated by glucose metabolism (for a
review, see reference 54). Single �-cell measurements of
NAD(P)H fluorescence have demonstrated that the rise in
pyridine nucleotides precedes the rise in [Ca2�]c (55) and
that the elevation in the cytosol is reached more rapidly
than in the mitochondria (56). Cytosolic NADPH is gener-
ated by glucose metabolism via the pentose phosphate
shunt (57) and by mitochondrial shuttles (9). An action of
NADPH on insulin secretory granules has been proposed
from experiments on toadfish islets (58). Another nucleo-
tide, diadenosine polyphosphate, which is produced dur-
ing glucose stimulation, closes KATP channels and may
play a role in stiumulus-secretion coupling (59).

This enumeration of possible nucleotide messengers is
not exhaustive and, for all of them, their role in insulin
exocytosis needs to be substantiated.
Metabolites as putative messengers. Malonyl-CoA has
been proposed as a metabolic coupling factor in insulin
secretion (60) and as a messenger derived from citrate
generated in the mitochondria (9). However, disruption of
malonyl-CoA accumulation during glucose stimulation did
not affect the secretory response (61), even under condi-
tions in which only the KATP-independent pathway is
operative (62). In view of the inhibition of metabolism-
secretion coupling in lipid-depleted �-cells (63,64), a per-
missive role of long-chain acyl-CoAs in insulin release
cannot be excluded.

To study the link between mitochondrial activation and
insulin exocytosis, we have established a Staphylococcus

aureus �-toxin permeabilized �-cell model permitting the
clamping of [Ca2�]c and nucleotides such as ATP. As
shown in Fig. 2, the TCA cycle intermediate succinate (1
mmol/l) enhances insulin secretion at the permissive con-
centration of 500 nmol/l Ca2� and at 10 mmol/l ATP in
such permeabilized INS-1 cells (65). The magnitude of the

response is similar to a rise in free Ca2� from 500 nmol/l to
1.3 �mol/l. Other TCA cycle intermediates, �-ketogluta-
rate, malate (Fig. 2), or citrate (65) are inefficient. The
provision of carbons to the TCA cycle is not sufficient for
insulin exocytosis. Indeed, the effect of succinate also
requires an increase in intramitochondrial Ca2� occurring
at permissive cytosolic Ca2� secondary to hyperpolariza-
tion of the mitochondrial membrane (65,66). Exposure of
isolated INS-1 cell mitochondria to succinate results in a
pronounced production of glutamate (67). Glutamate can
be generated through several biochemical pathways in-
cluding transamination reactions (68). In mitochondria,
glutamate dehydrogenase forms glutamate from the TCA
cycle intermediate �-ketoglutarate (69). In permeabilized
INS-1 cells, glutamate (1 mmol/l) stimulates insulin secre-
tion, reproducing the effect of succinate, both at 10 mmol/l
ATP (Fig. 2) and at 1 mmol/l ATP (66). In contrast to
succinate, the secretory response to glutamate does not
require activation of mitochondrial metabolism (66). As
the effect of glutamate is similar at low and high ATP
concentrations, it is most unlikely that ATP mediates the
glutamate-evoked exocytosis. The precise site of gluta-
mate action downstream of mitochondria remains to be
defined.

Glucose increased cellular glutamate content in INS-1
cells and human islets (66). In rat islets, glutamate was the
only amino acid out of 12 whose content increased during
glucose stimulation, whereas the content of aspartate, a
possible NH2 donor, decreased (70). In other reports,
glucose did not change glutamate levels in islets isolated
from rats (71) or mice (72). However, measurements of
total glutamate contents do not reflect fluctuations in the
cytosolic compartment of the putative cofactor of insulin
exocytosis (16).

Exposure of islets to extracellular glutamine causes a
marked increase in their glutamate levels without any
increase in insulin secretion (73,74). Glutamine enhances
the ion NH4

� in cells, which has been shown to inhibit
insulin release in both mouse and rat islets secondary to
intracellular alkalinization (44,75). Under certain condi-

FIG. 2. Insulin secretion from permeabilized INS-1 cells. Cells were
permeabilized with Staphylococcus aureus �-toxin and preincubated
for 30 min in an intracellular buffer containing 500 nmol/l free Ca2� and
10 mmol/l ATP. The cells were then treated for 10 min as described
previously (see reference 65) with the same buffer only (Co) or
supplemented with various mitochondrial intermediates incubated at 1
mmol/l: succinate (Suc), �-ketoglutarate (KG), glutamate (Glut), and
malate (Mal). Another group was treated with high (1.3 �mol/l) free
Ca2� concentration (Ca1.3). The results are expressed as means � SE
of three independent experiments. *P < 0.05, **P < 0.005 versus Co.
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tions, e.g., in the presence of leucine or by counteracidifi-
cation, glutamine is capable of eliciting secretion
(44,74,76). Therefore, glutamine exhibits dual effects of
enhancing and inhibiting insulin release. The insulino-
tropic action of the membrane-permeant dimethyl ester of
glutamate is also restricted to permissive conditions, e.g.,
at intermediate glucose levels or in the presence of a
sulfonylurea (77). Taken together, these results demon-
strate that intracellular glutamate itself is not sufficient to
elicit insulin secretion. This is in agreement with our
observation that glutamate stimulates insulin exocytosis at
permissive but not at basal Ca2� in permeabilized cells
(66). Mitochondrial metabolism of glutamine/glutamate
and ATP production is only weak in nonstimulated islets
(73,77). This is explained by the sluggish conversion of
glutamate to �-ketoglutarate by glutamate dehydrogenase
(73). Activation of the enzyme by leucine or its nonme-
tabolizable analog 2-aminobicyclo (2,2,1)heptane-2-car-
boxylic acid (BCH) increases glutamine oxidation and
insulin secretion (78,79). Conversely, in the presence of
glucose, glutamine oxidation stimulated by the presence
of BCH is inhibited (79). This preferred directional flux has
also been observed in mouse islets in which the incorpo-
ration of glucose carbons into glutamate was augmented
by glucose stimulation, even without changing cellular
glutamate content (80). As glutamine does not generate
ATP, it is capable of neither depolarizing the plasma
membrane nor raising cytosolic Ca2� in native �-cells. In
rat insulinoma RINm5F cells, in which nutrient metabo-
lism predominantly generates acidic intermediates (11),
glutamine elevates cytosolic Ca2� and consequently stim-
ulates insulin secretion (81). In mouse islets, glutamine
moderately enhances insulin release in KATP pathway–
independent conditions, i.e., when cytosolic Ca2� is main-
tained at permissive levels by diazoxide and high K�,
although this stimulatory effect might be blunted because
of the inhibitory action of the generated NH4

� (44). Unlike
glutamine, glucose—the main nutrient secretagogue—in-
creases not only ATP and cytosolic Ca2�, but also gluta-
mate to promote optimal signaling for insulin exocytosis.

CONCLUSIONS

Numerous nucleotides and metabolites have been pro-
posed to couple glucose metabolism to insulin secretion.
Of these, GTP can be considered as a bona fide messenger
molecule, whereas the role of ATP requires further inves-
tigation. According to current knowledge, glutamate could
well be a cofactor acting in concert with Ca2� and other
putative molecules. The principal role for glutamate could
be the augmentation of the sustained, second phase of
glucose-stimulated insulin secretion (82).
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