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ABSTRACT 
People-centric sensing using people’s smartphones offers 
new research opportunities for large case studies. It presents 
many challenges, e.g., efficient capture of person’s mobility, 
understanding of context changes and preservation of user 
privacy. We propose an accurate and energy-efficient method 
able to capture user’s mobility, thus the context changes, 
while preserving his/her privacy. Our solution can be applied 
to systems that aim to efficiently sense context on 
smartphones to study large scale phenomena or perform 
location management. 

Author Keywords  Smartphones, Mobility, Battery, 
Context, Sensing, Efficiency, Performance. 

ACM Classification Keywords   C.3 [Special-Purpose 
and Application-Based Systems]: Real-time and 
embedded systems; C.2.4 [Distributed Systems]: 
Distributed Applications. 

General Terms   Algorithms, Design, Experimentation, 
Performance. 

INTRODUCTION 
A growing number of market reports shows that 
smartphones are becoming pervasive technology, affordable 
for masses [1]. Each smartphone is equipped with a 
multitude of sensors, thus possibly enabling a new large-
scale research and data collections in the urban 
environments [2]. The phone owners become sensor 
custodians [3], that use the smartphones in their daily life, 
and additionally are able to collect significant and 
meaningful context data for, e.g., the environment they are 
in. This rise of co-called people-centric sensing [3] brings 
to our attention critical success factors related to:  
(1) knowledge of the context in which the phones are 
sensing, (2) respect for the phone’s variable availability of 
limited resources (e.g., device battery, network 
connectivity), (3) knowledge that phone owners are 
moving, (implying a need for adaptive sensing mechanisms 
to efficiently capture the phenomena of interest), while (4) 
ensuring the privacy of the phone owner. In this paper we 
focus on these challenges, hence we aim to infer if the 
phone owner, i.e., sensor custodian is moving (i.e., 
changing locations in time) using as few phone resources as 

possible - avoiding “power-hungry” sensors (GPS, 
accelerometer, etc.) and preserving the person’s privacy. 
Our goal is to ubiquitously, accurately and in energy-
efficient manner infer mobile-fixed context of the human 
custodian, and to enable dynamic changes of the sensors’ 
duty-cycle length, while ensuring a continuous sensing of a 
phenomenon that is influenced by the mobility of the sensor 
custodian (e.g., as in the ad-hoc sensing by Lane et al. [6]). 
When the person is moving, the observed phenomena may 
mutate faster requiring a different sampling rate, not to lose 
important data, but when the user is fixed, the rate may be 
reduced to preserve the phone battery lifetime. 

In CenceMe [4] the authors presented how the choice of the 
sensors’ sleeping time and the length of the duty-cycle is 
crucial for the trade-off between the quality of the data 
sensed and the phone’s battery lifetime. From set of 
experiments, they have derived a set of (pre-defined) 
parameterizations for the application. Wang et al. [5] 
present a framework to efficiently recognize the user state 
(e.g., activity). They proposed to use only power efficient 
sensors to identify the change of the state and only at that 
moment enable the “power-hungry” ones to identify the 
details of the new state. They stated that the designer of a 
context-aware system must carefully select the right duty-
cycle to avoid draining the battery, even with less energy-
consuming sensors. Also in this case, the best settings were 
pre-defined via experimentations. 

An other field of interest for our approach relate to location 
management, like for example one by Papandrea [7], that 
may provide location updates only when needed. Authors 
of [7] use different features derived from accelerometer, 
and classify the fixed/mobile state towards constructing a 
mobility model based on points of interest. With our 
algorithm, we contribute to this matter without the use of 
the accelerometer, which, as we show in this paper, 
influences considerably the battery lifetime. 

The next section of this paper explains our approach and 
motivates algorithm design, followed by the description of 
conducted experiments and some preliminary results, which 
are discussed and concluded in the last sections of this 
paper. 

MOVING OR FIXED? STUDY APPROACH 
With our ubiquitous approach we aim to infer in real-time if 
a smartphone user is in a fixed location or is moving. We 
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base our prediction on data already collected in the life 
cycle of the operational phone’s OS. We assume no 
knowledge of the user’s past moving/fixed states, i.e., no 
knowledge upon the history of user’s mobility. We employ 
the algorithm that: (1) retrieves the current network cells’ 
information from the smartphone OS, (2) derives main 
mobility features and (3) uses them to classify the user’s 
state using a pre-trained classifier. These steps are repeated 
at a fixed frequency. The algorithm is currently 
implemented on the Android OS platform.  

Before explaining details of each step of the algorithm it is 
important to note, that the candidate algorithm, as well as 
its parameters (e.g., time window, features, and an array 
length) cited in the following subsections were inspired by 
the literature study and then derived experimentally. 
Experimentations were based on a long trace of raw 
mobility data gathered along a travel of multiple hours, and 
containing data from different urban and suburban locations 
and in different mobility mode, using e.g., train, tram, bus, 
car and walking. This trace was used in initial 
experimentation, to simulate the algorithm with different 
parameters. Only the parameters leading to the most 
accurate, energy-efficient algorithm were chosen, as 
presented. We do not provide details of the initial 
experimentation due to the space limitations of this paper. 

Collection of Network Cells Raw Data 
The raw data used by the algorithm is as follows. We 
retrieve the phone’s cellular network (i.e., 2G or 3G) scan 
data, i.e., cell ids (CellID) and signal strength 
(RSSI) of the current network’s cell and the visible 
neighbors cells every 2 seconds, in 7 (consecutive) scans 
(the frequency chosen experimentally to capture variation 
of cell’s RSSI, as derived from assumptions on WIFI RSSI 
[8]). We retrieve the CellID’s RSSIs data from phone’s OS 
and start constructing a table mapping each CellID to an 
array of its 7 (undefined at first) RSSI values. Each scan 
operation results in filling out a corresponding RSSI index 
in the array for a given CellID. We observed that a CellID 
may be not always present on all the 7 scans. The 7 scans 
constitute a measurement, based on which mobility features 
are derived. The consecutive windows of 7 scans are not 
overlapping, i.e., we derive new features each 
measurement, and a new one is launched every 20 seconds 
(experimental value). 

For each CellID, in addition to the array of its RSSI, we 
keep its co-called generation counter and its consecutive 
generations counter. The first time a CellID provides a 
value of RSSI in a measurement; its generation counter is 
updated to the value of a global counter and its consecutive 
generations counter increases by one. The global counter 
keeps the global number of conducted measurements since 
the application start. In this way we are able to track which 
are the CellIDs that contributed at least once in the current 
measurement. 

From Raw Data to Classifier Features 
After the collection of the raw data we attempt to obtain the 
features that are going to be used to label user fixed/moving 
state. For each measurement separately, we derive the 
following three features using the CellID RSSIs’ array and 
its generation counter, as described in detail in the 
following sections. At this point, it is important to notice 
that we tested our system with three variations of each of 
the features - we have run experiments using the average, 
the median and the variance of the derived features and for 
each of them we have selected the one leading to the best 
accuracy and energy-efficiency algorithm. 

1st Feature: Median Overall Live Time of Cells (MOL) 
This feature relates to the “visibility” time of the CellID and 
it is the outcome of a) own experiments related to 
quantification of the time each CellID is visible when 
moving and b) from the work of Mun et al. [9]. When 
moving, the time a CellID is visible is shorter than when in 
a fixed position. Hence, we derive MOL from the median of 
all CellIDs’ consecutive generations counters. CellIDs that 
have disappeared since 5 measurements become obsolete 
and are omitted. The low values of MOL are observed 
when moving, and high MOLs, when in a fixed location. 

2nd Feature: Average Euclidean Distance of Signals (EUC) 
We defined this feature inspired by the work of Sohn et al. 
[10] using Euclidean Distance (ED) of signals to recognize 
offline mobility modes (i.e., walking, biking, driving). We 
first take the pair of first two RSSI for each CellIDs and 
using the formula from [10] we obtain the first ED for RSSI 
over all the CellIDs for first 2 scans. We repeat the same 
procedure five times by moving across the CellIDs’ RSSI 
arrays, deriving ED for the RSSIs for each two consecutive 
scans. Finally we take the average of the six ED derived 
from the table and we acquire EUC for the current 
measurement. The EUC decreases when the user is fixed. 

3rd Feature: Average Fast Wavelet Transform Distance of 
Signals (WAV) 
This feature is inspired by the general algorithm of 
Muthukrishnan et al. [8] - originally designed for sensing 
offline the motion using WLAN RSSI. To obtain this 
feature, each measurements’ CellIDs RSSI array is 
transformed using the Discrete Wavelet Transform. For a 
given scan within a measurement, transformed RSSIs of 
CellIDs are compared - we retrieve the minimum and 
maximum values of RSSI and we compute the range 
between the two. Then we average all the ranges within a 
measurement, to derive the WAV feature value. From the 
preliminary experiments and from [8] we confirmed that the 
average of the ranges increases when the person is mobile. 

Moving or Fixed? Inferring the User State 
The final step of our algorithm consists on the inferring of 
the person state class using the derived features. The 
classifier has been build using the Weka1 package and its 
                                                             
1 http://www.cs.waikato.ac.nz/ml/weka/ 



 

model was built offline using the raw, pre-labeled hours of 
mobility data collected for the simulation of the algorithm. 
We chose a tree-based classifier model that is deployed on 
the mobile phone and at the OS runtime it is used to derive 
inferences upon the current user state being either mobile 
or fixed. We are also investigating other classifiers 
evaluating their speed, accuracy and algorithm complexity. 
Since the inference of the state is done on the mobile phone 
(i.e., no data is shared/send to a server) the privacy of the 
owner is respected. 

EXPERIMENTATION 
In this section we present first experiments with our 
algorithm called “MobilitySensor” deployed on an Android 
OS phone of real user being mobile in the real mobile 
environments. Our goal is to investigate its accuracy and 
battery consumption against the use of build-in phone 
sensors to infer users’ mobility state. 

Other Inference Approaches & Experimental Setup 
To perform the experiments we created four distinct 
approaches/applications for inferring the user state: (1) 
based on phone’ 3D accelerometer; (2) based on the 
network-based location; (3) our “MobilitySensor” inferring 
the state from the pre-trained model based on CellIDs’ 
RSSIs; and (4) based on the phone’s GPS.  

For (2) and (4) the mobile/fixed label is derived based on 
comparing the current location with the previously known 
location. The distance traversed is computed and the sensor 
accuracy for the previous and current location is noted. If 
the distance traversed is greater than the worst accuracy, the 
user state is mobile, otherwise fixed. If one of the two 
locations is not available the state is unknown. 

The mobile/fixed inference from 3D phone’s build-in 
accelerometer was derived as follows. The sensor’s 
sampling frequency was “normal” as provided by the OS 
(~40Hz). For each window of raw data collected, a mean 
acceleration vector was derived; if the value is below 0.5, 
the state is fixed, otherwise mobile. These bounds were 
derived experimentally by analyzing the data acquired 
when phone is in the pocked when the person is fixed, as 
confirmed in [11]. 

All the experiments ran using a HTC Sensation with 
Android OS v. 4.0.3 by one user (discontinuously) for 5 
days. To establish the ground truth we created a widget 
(along the Experience Sampling Method) that the user was 
instructed to use to timestamp changes in his mobility state. 
We collected the battery usage statistics per each 
application separately, as derived from the statistics 
provided by the phone’s OS detailed battery statistics. 
Every time the OS pushed information upon battery status 
change, given a twist on the official API, we managed to 
derive the current battery details; we have not actively 
pulled this information from the OS. 

Each application is activated once every one minute, to 
infer a user state; this frequency is adapted to the “slowest” 

GPS-based approach, requiring 40 sec of data collection, 
i.e., relying on the AGPS timeframe to obtain a stable 
location with high probability. Our algorithm in theory is 
able to provide an inference every ~20 seconds (given the 
measurement time of 14s, features derivation and state 
classification). For the purpose of this evaluation, our 
algorithm runs 3 times per a minute, but it provides the 
inferred state only once. The operation of approaches (1), 
(2) and (4) is divided in two parts: data collection (40s) and 
state inference (20s). Once all the algorithms infer the 
user’s state, their applications “sleep” until the next minute 
bound. We have collected 539 inferences (i.e., minutes) for 
all approaches, and 750 battery measurements. The user 
was 52% fixed (i.e., 48% mobile), which leads to a random 
guess (i.e., fixed state) at a 52% chance level. 

Results 
Figure 1 provides the results for battery efficiency for all 4 
approaches. The results show that GPS based approach is 
confirmed to be the most “power-hungry”. At the second 
place we find the accelerometer approach followed by the 
MobilitySensor and then the network one. In general for all 
approaches, the majority of battery status change events and 
corresponding energy usage steps are bounded in a short 
range, assuring a low jitter. Table 1 presents the results for 
approaches’ accuracy; assuming an algorithm could result 

in a correctly inferred state, or incorrectly inferred state or 
unknown state (as explained, applicable for GPS and 
network-based approaches only). The accelerometer 
approach is slightly more accurate (72.96%) than the 
MobilitySensor (71.24%), but comparing their energy 
efficiency (Figure 1), we conclude that MobilitySensor is of 
a higher performance. GPS and network-based approaches 
are performing poorly in terms of accuracy of correctly 
inferred user states (38.12%, and 26.43%), both placing 
themselves below a threshold of random guess (52% 
chance). In addition to the accuracy, Table 2 presents the 
Approach Correct Wrong Unknown 
accelerometer 72.96% 27.04% 0.00% 
network location 26.43% 11.65% 61.92% 
MobilitySensor 71.24% 28.76% 0.00% 
GPS 38.12% 6.82% 55.06% 

Figure 1. Approaches’ Battery Consumption 

Table 1. Approaches’ Accuracy Results 



 

confusion matrix for mobile-fixed states, i.e., percentage of 
cases when the fixed state is inferred as mobile (or 
inversely). Accelerometer and MobilitySensor perform 
similarly. GPS is more accurate when inferring the mobile 
state, while the network-based approach has a higher 
accuracy when inferring if fixed. 

Approach Fixed Mobile 
accelerometer 42.47% 57.53% 
network location 34.67% 65.33% 
MobilitySensor 46.45% 53.55% 
GPS 69.64% 30.36% 

Table 2. Approaches’ Confusion Matrix 

DISCUSSION 
In this section we discuss the limitations of each approach 
used in our study as well as the results presented. The least 
performing approaches in terms of accuracy are GPS and 
network-location based approaches. The GPS is 
underperforming when fixed which can be explained by 
the fact that when fixed, usually one is inside of a building 
where GPS signal is not available thus it is impossible to 
get the current user location. The network-based approach 
poor performance stems from the inaccuracy in the user 
location’s estimation when mobile. The change of position 
cannot be accurately evaluated, unless it is fast enough such 
that the radiuses of inaccuracies of separate positions are 
not overlapping. In the case of the accelerometer-based 
approach, the confusion stems from the situation when user 
is performing a physical effort activity while being in a 
fixed place. Also, when a user is mobile, e.g., sitting in a 
tram, there are not enough changes in the acceleration, 
which results in an inaccurate inference. As done in [7], or 
following the findings in [11], to increase the accuracy of 
this approach a more detailed analysis and classification is 
required to distinguish physical activities – implying 
possibly a shorter sampling window than the one used in 
our experiments, but possibly resulting in lower battery 
efficiency, comparing to the MobilitySensor. 

MobilitySensor approach is solely based on CellID and 
RSSI information already available in the OS. Despite its 
simplicity, the method exhibits high accuracy and low 
battery usage. We have also identified its shortcomings, for 
example lack of CellID and RSSI information, when the 
user is out of coverage of a network, as well as possible 
sources of errors in the raw data collection stemming from 
cellular network characteristics. When user is fixed, the 
method may be inaccurate because some cellIDs are 
performing what it is call ping/pong behavior [9] - they 
disappear at random influencing the values of features used 
for classification. We have already started to implement a 
solution to avoid this phenomenon. The inaccurate 
inference when mobile stems from the number of CellIDs 
captured. With less than 3 cells the RSSI variation is not 
large enough to reflect mobility in the EUC and WAV 
features. The MOL feature is also influenced in this case, 

but only when in a big open space (i.e., suburbs) where the 
coverage area of network cells is larger and there are few of 
them. This situation seems more difficult to solve 
experimentally so far. In our current research, we 
investigate the accuracy of the classifier model in these two 
above-mentioned special situations. We conclude that new 
features are required - capturing current network type used, 
GSM (2G) or UMTS (3G), and the number of CellIDs 
available. In the future we would like also to conduct larger 
scale experiments involving more users (currently we 
present result for one single user) and an improved version 
of the accelerometer approach (as described above). We 
aim to have more statistically significant data to show the 
performance of this approach.  

CONCLUSIVE REMARKS 
In this paper we propose a novel, real-time ubiquitous 
approach to infer mobile phone users’ mobility state solely 
from the cellular network data available in their operational 
phone’s OS. No data is shared to external services 
respecting the user’s privacy. We propose how it can be 
used in the context of people-centric sensing as well as a 
component of new energy-efficient location managers. We 
presented the main steps of the algorithm together with 
preliminary performance results, although involving only 
one user collecting data for 5 days, in terms of battery 
consumption and accuracy. Finally we discussed its 
limitations and stemming from that - future work areas. 
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