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Abstract. Numerical methods able to model high Rayleigh (Ra) and high Prandtl
(Pr) number thermal convection are important to study large-scale geophysical
phenomena occuring in very viscous fluids such as magma chamber dynamics
(104<Pr< 107 and 107<Ra< 1011). The important variable to quantify the
thermal state of a convective fluid is a generalized dimensionless heat transfer
coefficient (the Nusselt number) whose measure indicates the relative efficiency
of the thermal convection. In this paper we test the ability of Multi-distribution
Function approach (MDF) Thermal Lattice Boltzmann method to study the well-
established scaling result for the Nusselt number (Nu∝Ra1/3) in Rayleigh Bénard
convection for 104≤Ra≤ 109 and 101≤Pr≤ 104. We explore its main drawbacks
in the range of Pr and Ra number under investigation: (1) high computational
time Nc required for the algorithm to converge and (2) high spatial accuracy
needed to resolve the thickness of thermal plumes and both thermal and velocity
boundary layer. We try to decrease the computational demands of the method
using a multiscale approach based on the implicit dependence of the Pr number
on the relaxation time, the spatial and temporal resolution characteristic of the
MDF thermal model.

1 Introduction

Over the last two decades the Lattice Boltzmann method (LB), has demonstrated its versatility
for modeling the behavior of flows in complex geometries [12], involving phase transitions [6]
and multiple fluids [7]. The simplicity and locality of LB methods offers a powerful alternative
to standard CFD methods to model complex geophysical flows.
The Lattice Boltzmann method has been already applied to Rayleigh Benard Convection

(RBC), however, to our knowledge, RBC at high Pr and Ra, has been scarcely investigated
with LB models [1,8]. Owing to the limited range over which the relaxation times for each
distributions are stable and accurate, the Pr is often limited to 10−1 to 101.
In this paper we study RBC for an isoviscous fluid using the Multi Distribution Function LB

approach (MDF) [8,9]. We test the model over a large range of Prandtl and Rayleigh number
(101 ≤ Pr ≤ 104, 104 ≤ Ra ≤ 109) finding an increasing demand of computational requirements
with increasing Pr and Ra. We try to decrease the computational requirements making use of
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two multiscale strategies. These methods arise from the definition of Pr which is based on the
set of free parameters that the MDF model offers to tune the transport coefficients (viscosity
ν and thermal diffusivity κ). We investigate the advantages and drawbacks of this approach.

2 Rayleigh-Benard convection

Rayleigh Benard convection, an example of natural convection, occurs when buoyancy forces due
to thermal expansion of an isoviscous fluid exceeds viscous forces [14]. The set of dimensionless
equations describing RBC for a Boussinesq fluid can be written as:

∇ · u∗ = 0, (1)

∂u∗

∂t
+ u∗ · (∇ · u∗) = −∇p

∗

ρ∗0
+

√
Pr

Ra
∇2u∗ − T ∗z, (2)

∂T ∗

∂t
+ u∗ · ∇T∗ =

√
1

PrRa
∇2T ∗. (3)

In the above equations the scaling for temperature T ∗=(T − T0)/(Th − Tc), velocity
u∗=(t0/H)u and dynamic pressure p∗/ρ∗0= pt20/ρl20 are used (upper-index ∗ indicates dimen-
sionless units), where Th and Tc are the top and bottom temperature, t0=

√
H/g0β(Th − Tc)

and H are the characteristic time and length of the system, ρ∗0 is the dimensionless density at
the reference temperature T0=(Th + Tc)/2 and z the direction of gravity g0. The Prandtl
and the Rayleigh numbers are defined respectively as Pr= ν/κ and Ra= g0β(Th−Tc)H3/(κν)
where β is the thermal expansion, ν is the viscosity of the fluid, κ is its thermal diffusivity. From
linear stability analysis we expect a power-law relationship between Nusselt (Nu), defined as
convective divided by conductive heat transfer, and Ra numbers [14]. In this work we use, as a
benchmark for our code, the well established relation [5]

Nu = 1.46(Ra/Racr)
0.281. (4)

It is of fundamental importance for our work to underline that from experiments and boundary
layer theory [15], we know that the characteristic size of both thermal plumes, velocity and
thermal boundary layers decrease for increasing Pr and Ra number. For more details on the
different regimes of convection observed over these range of Ra and Pr, we refer the reader
to [2,4].

3 The multi distribution function approach

In the MDF LB approach [8,9] applied to thermal problems, the fluid and the temperature field
are respectively described by two different particle distribution functions

fi = fi(x, t), i = 0, . . . ,M, gi = gi(x, t), i = 0, . . . ,K (5)

where x is the position on the lattice at the time t and i the index of the discrete set of velocity
directions connecting the lattice node x with its neighbors.
Density ρ+, momentum ρ+u+ and temperature T+ of the fluid (the upperscript+ indicates

LB units) can be calculated at each lattice node:

ρ+ =

M∑
i=0

fi, ρ
+u+ =

M∑
i=1

fi ei, T
+ =

K∑
i=0

gi, (6)

where ei is the local particle velocity for the fi lattice. It is important to underline that in the
MDF approach the only exchange of information between the particle distribution functions is
through the macroscopic quantities, therefore M and K can assume different values. In other
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words we could think of the MDF method as two different numerical schemes, used for the
evaluation of fi and gi respectively, which are eventually coupled. This statement helps us to
understand that not only different velocity directions can be used in the two numerical schemes,
but also different size grids δx and time steps δt.
For modeling two dimensional RBC we use the D2Q9 (M =8) lattice [12] for fi and the

D2Q5 (K =4) lattice [10] for gi. Corresponding lattice velocities (ei,vi) and weights(w
F
i , w

T
i )

for the two topologies are:

– D2Q9: e0 = (0, 0), e1 = (1, 0), e2 = (0, 1), e3 = (1, 0), e4 = (0, 1), e5 = (1, 1), e6 = (1, 1),
e7 = (1, 1) and e8 = (1, 1) with weights w

F
0 = 4/9, w

F
1 = w

F
2 = w

F
3 = w

F
4 = 1/9 and

wF5 = w
F
6 = w

F
7 = w

F
8 = 1/36;

– D2Q5: v0=(0, 0), v1=(1, 0), v2=(0, 1), v3=(1, 0), v4=(0, 1) with weights w
T
0 = 1/3,

wT1 = w
T
2 = w

T
3 = w

T
4 = 1/6.

In this work we use a LBGK approximation [12,13] to calculate the evolution of fi and gi:

fi(x+ ei, t+ 1) = fi(x, t)− 1
τF
(fi(x, t)− feqi (x, t)) + ei · Fz; (7)

gi(x+ vi, t+ 1) = gi(x, t)− 1
τT
(gi(x, t)− geqi (x, t)); (8)

where:

Fz = ρ
+
0 w

F
i

(T+ − T+0 )
T+h − T+c

δt2F
δxF
z. (9)

The force term Fz describes the buoyancy force, due to thermal expansion of the fluid, respon-
sible of driving the flow.
In eqs. 7, τF and τT are the relaxation time. The equilibrium distributions for the D2Q9

and the D2Q5 lattices are given by

feqi = ρ
+wFi

[
1 + 3(ei · u+) + 9

2
(ei · u+)2 − 3

2
u+ · u+

]
, (10)

geqi = T
+wTi

[
1 +
1

3
(vi · u+)

]
. (11)

Through a Chapman-Enskog procedure, we can recover the system of eqs. 1, 2 and 3. We define
the time and spatial scales of the problem by

δtF =
N∗

NF
, δtT =

N∗

NT
, δxF =

H∗

HF − 1 , δxT =
H∗

HT − 1 , (12)

where the indices F and T refer respectively to the fluid and temperature lattice discretizations;
HF and HT are the number of lattice nodes used to discretize a reference length H

∗ for the
two grids, while NF and NT are the number of iterations used for the simulation of a reference
laps of time N∗ (we choose to set H∗=N∗=1). We can relate the transport coefficients of
the model in lattice units (ν+ and κ+) to Pr and Ra by

ν+ =
1

3
(τF − 0.5) =

√
Pr

Ra

δtF

δx2F
, κ+ =

1

3
(τT − 0.5) =

√
1

PrRa

δtT

δx2T
. (13)

For stability consistency τF and τT have to be larger than 0.5. Using eqs. 13 we can derive
an expression for Pr in terms of relaxation times, grid spacing and timesteps for the two
distributions:

Pr =
τF − 0.5
τT − 0.5

δx2F
δx2T

δtT

δtF
. (14)

When different time and spatial scales for fi and gi are used, the macroscopic velocity calculated
for the fi distribution has to be rescaled in the system of units of the thermal scheme by

u+T =
δtT

δtF

δxF

δxT
u+F . (15)
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For each run, we set Pr, Ra, the size of the grids (Hk where k = F, T ), the relaxation time τF
and, through eq. 13, we find δtF . Once the ratio between δtF and δtT is chosen, we derive τT
from eq. 14.

4 Three different ways to set the Pr number, the full coupling and the
decoupling methods

In the MDF thermal approach, velocity and temperature evolution can be thought as two inde-
pendent LB schemes which are coupled after collision and streaming steps using the macroscopic
temperature T+ and velocity u+F . From our point of view, to play with different time and spa-
tial scales for the two schemes means to reduce the coupling. One of the goal of this paper is
to investigate how much the decoupling can be stressed and how it can help to decrease the
time of computation required for the solution to converge. We tune the decoupling of the two
schemes using the definition of Pr given in eq. 14. This eq. shows that we have three degrees
of freedom for setting the Pr number. These degrees of freedom are given by the ratios of the
six free parameters of the model τF , τT , δxF , δxT , δtF and δtT . In this section, we discuss how
to make use of the different free parameters to set the Pr number of our simulations and what
the different methods imply in terms of coupling.

1. Relaxation times, full coupling. Assuming δxF = δxT and δtF = δtT , we recover the
classical MDF approach to set Pr with the ratio of the relaxation times of the two distributions.
This method doesn’t imply any decoupling process because time and spatial scale are equal for
the two numerical schemes. For accuracy reasons we fix τF = 1; as a consequence we use τT as
a free parameter to increase Pr. In order to reach Pr � 1, we need to set τT close to its lower
theoretical bound (0.5).

2. Different timestep duration for the two distributions, time decoupling. The second
way to increase Pr is to choose δtT >δtF . We investigate this method using δxF = δxT and
fixing the values of both τF and τT . From the computational point of view, this means that the
evolution of the temperature distribution gi has to be computed once every δtT /δtF iterations
of the scheme for fi and thus we decrease the time of computation. However, this is done at the
expense of stability of the model. In this case, the Pr number can be thought as the product
of two terms Pr = PrτR, where Prτ = (τF − 0.5)/(τT − 0.5) and R = δtT /δtF . We call R the
decoupling time parameter.

3. Different grid spacing for the two distributions, spatial decoupling. Lastly, Pr can
be increased by choosing δxF >δxT (i.e. NF < NT ). In other words, a coarser grid for the
velocity scheme, would help us to increase the Pr number decreasing the time of computation.
Because u+ and T+ have to be known at each node of the two lattices, an interpolation step
is required. However, if the two grids are properly overlaped, only u+F needs to be interpolated.
In our scheme we use an inverse weighting interpolation method [11], where the interpolated
quantity of interest is averaged on the neighborhood. For each lattice node belonging to the
bulk of the gi grid, the interpolated and rescaled velocity u

+
T is calculated as

u+T =

⎛
⎜⎜⎜⎝
∑X
i

u+F
di,j∑X

i

1

di,j

⎞
⎟⎟⎟⎠
(
δxF

δxT

)
, (16)

where X is the number of lattice nodes belonging to the fi grid that are involved in the
calculation of u+T and di,j is the distance between the node j of gi grid and the node i of the fi
grid. We call δxF /δxT the decoupling space parameter.
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5 Discussion: Limits of the methods

In this section we test the stability and efficiency of the three methods and we focus our
attention on the well-studied relation Nu = 1.46(Ra/Racr)

0.281. As Ra increases, the transition
from steady to unsteady state occurs and the Nu number becomes time-dependent. However,
it has been showed numerically and experimentally [3,4] that averaging the Nu over a large
enough period of time, leads to a good agreement with eq. 4.

Fig. 1a shows the results for the first method (τF �= τT , δxF = δxT , δtF = δtF ). We tested
the scaling relationship for Nu(Ra) for a wide variety of Ra and Pr=10, 100, 1000. In these
calculations, in order to reach high Ra and Pr, the relaxation time τT has to be set to values
close to 0.5 (τT =0.505 and 0.5005 for Pr=100 and 1000 respectively) but it does not seem to
introduce any numerical instability. The results clearly show that Nu is independent of Pr as
expected from the scaling law. However, we observe a change in the power-law exponent for
Ra/Rac≥ 102 that we attribute to a too small resolution of the thermal δT and velocity δF
boundary layers. In order to verify this hypothesis in a more quantitative way, we made three
numerical experiments with Ra = 3 ∗ 106, Pr = 100 and NF equal to 100,200,400; the found
Nu numbers are equal to 10.8, 11.3 and 11.6, where the expected vale is equal to 11.9. Of course
better numerical accuracy is reached at the expense of higher computational requirements.
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Fig. 1. In fig. a, b, c, we report respectively the ratio Ra/Racr on x axes and the Nu number on the
y axes. We compare the expected Na-Ra relation 4 (solid line) with the numerical results obtained with
the different methods: (a) full coupling , (b) time decoupling and (c) spatial decoupling respectively. In
all the graphs, runs for Pr = 10, 100, 1000 are reported. In graph b, R = 1, 10, 100 for Pr = 10, 100, 100.
In graph c, δxF = 4δxT for Ra/Racr < 1000 and δxF = 2δxT for Ra/Racr < 1000. X is equal to 4. In
fig. d, we report stable (square) and unstable (circle) simulations where the value of Pr is determined
using the decoupling method. On the x axes we report δxF /δtF . The graph is divided into three regions:
umax/R>δxF /δtF (unstable region), umax/R < δxF /4δtF (stable region) and the unpredictable region
confined between δxF /4δtF < umax/R < δxF /δtF .
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Fig. 1b shows the comparison between the results and the scaling law for fixed relaxation
times (τF =1, τT = 0.55 and different time scales for fi and gi. The experiments are conducted
for Pr=10, 100, 1000 with R=1, 10, 100 respectively (R= δtT /δtF ). The bigger the R, the
higher the decoupling between the two numerical schemes. In the investigated range of Pr
and Ra, the stability of the method allows us to reach (Ra/Racr)= 300 (Nu is already time-
dependent). The impossibility to use further the time decoupling method shows that the higher
the Ra number, the stronger the coupling between the two numerical schemes. This fact is not
surprising; looking at eq. 1, we can notice that to increase Pr and Ra means to push the heat
transport to become velocity controlled and prevent the decoupling of the two schemes. From
a numerical point of view we have to avoid a too big temporal variation of the temperature
on a given lattice node. Hence R must decrease. On the other hand, for the working region
of the method, the accuracy is comparable to the first one. For a more quantitative idea of
the stability of time decoupling method, we look for a Courant type stability condition. We
impose that the characteristic maximum velocity of the fluid flow (umax) has to be such that
umaxδtT ≤ δxF . Using the relation Re=umaxH/ν ∼ Pr−1Ra2/3, the stability condition can
be rewritten as

c
ν+

HF
Pr−1τ Ra

2/3 ≤ δxF
δtF

(17)

where the definition of Pr = PrτR has been used and c is a constant that has to be determined.
From linear stability analysis (at Ra close to Rac) the constant in equation 17 is expected to
be c = 0.27. However, we are interested in a range of Ra far from Rac and then we expect a
smaller value of c. Fig. 1d shows stable (squares) and unstable (circle) simulations in terms of
the stability criterion of eq. 17. The numerical experiments are conducted in a wide range of Ra
and Pr(Ra ≤ 109, 101 ≤ Pr ≤ 104). We call stable region, the shaded part of the graph below
the straight line with slope equal to 1/4, our chosen value of c. The time decoupling method
improves a lot the efficiency of the algorithm when it can be used. For example when R = 100
the temperature scheme is almost negligible.
Finally, for the third method, using different grids size for fi and gi seems to be an efficient

way to increase the Pr number as Pr∼ (δxF /δxT )2. On the other hand, this method has to
be used carefully for the following reasons: at high Ra and Pr (1) high ratios δxF /δxT require
higher order of interpolation (computationally more demanding), (2) the thickness of the bound-
ary layers and the plumes (δ) is narrow compared to the size of the system (δ/H ∼Ra−1/3).
Thus, in order to resolve the flow, we need δxF <δ; however, large Pr numbers requireNT >NF .
This requirement leads to large computational costs and confine the efficiency of the spatial
decoupling method only at relative small Ra and high Pr numbers. In this last case, the use of
a coarse grid for the fi scheme can help us to double or quadruple the δt of the simulation and,
consequently, to speed it up. Fig. 1c shows the scaling law and the numerical results obtained
using two different grid spacing for the two distributions for Pr = 10, 100, 1000. For experi-
ments with Ra/Racr < 1000, δxF = 4δxT and X = 4 neighbors for the interpolation (eq. 16).
For Ra/Racr > 1000, a ratio of δxF = 2δxT has been used. We can notice that for a well chosen
decoupling space parameter, the accuracy of the results does not change significantly.

6 Conclusions

The Multi Distribution Function approach is a valid and versatile technique for modeling ther-
mal fluids flows over a wide range of Ra and Pr. In this work we explored a wide region of
Pr and Ra numbers (101 ≤ Pr ≤ 104, 104 ≤ Ra ≤ 109) for the Rayleigh Benard convection
problem. Unfortunately, the classical MDF method, which uses the same grid for both gi and
fi schemes, is computationally demanding at high Pr and Ra numbers. Therefore we propose
different multiscale strategies (decoupling methods) to model high Ra and Pr convection in
order to try to decrease the time of computation. These methods consist of (1) to play with
a separation of timescales between the thermal (gi) and fluid (fi) distribution functions by
updating gi every R iterations of fi (R> 1 for Pr> 1). This method proves to be very effi-
cient computationally, however it is limited by a Courant-type condition to an upper bound
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of Ra∼ 300Rac. The second method (2) is based on to use two different spatial resolutions
for the two distributions. In order to increase Pr, the grid spacing of gi needs to be smaller
than the grid spacing for fi. This method is the most stable, however it is limited by the need
to resolve the boundary layer thickness δ. The different methods can be used together (see
eq. 14) for more efficiency. However both decoupling methods shows that for high Pr and Ra
numbers, when the heat transport becomes velocity controlled, the possibility to decouple the
two schemes is reduced.

We would like to thank Michael Manga for helpful comments and Orestis Malaspinas for the stimulating
discussions. This work was mainly supported by the FNRS and partially supported by École Doctorale
Suisse Romande the Minéralogie (EDSM).
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