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A B S T R A C T   

Objective: The aim of this study was to identify the most important features and assess their discriminative power 
in the classification of the subtypes of NSCLC. 
Methods: This study involved 354 pathologically proven NSCLC patients including 134 squamous cell carcinoma 
(SCC), 110 large cell carcinoma (LCC), 62 not other specified (NOS), and 48 adenocarcinoma (ADC). In total, 
1433 radiomics features were extracted from 3D volumes of interest drawn on the malignant lesion identified on 
CT images. Wrapper algorithm and multivariate adaptive regression splines were implemented to identify the 
most relevant/discriminative features. A multivariable multinomial logistic regression was employed with 1000 
bootstrapping samples based on the selected features to classify four main subtypes of NSCLC. 
Results: The results revealed that the texture features, specifically gray level size zone matrix features (GLSZM), 
were the significant indicators of NSCLC subtypes. The optimized classifier achieved an average precision, recall, 
F1-score, and accuracy of 0.710, 0.703, 0.706, and 0.865, respectively, based on the selected features by the 
wrapper algorithm. 
Conclusions: Our CT radiomics approach demonstrated impressive potential for the classification of the four main 
histological subtypes of NSCLC, It is anticipated that CT radiomics could be useful in treatment planning and 
precision medicine.   

1. Introduction 

Lung cancer is the most frequently diagnosed and first cause of death 
from cancer in the world [1]. According to global cancer statistics, it is 
the most common cancer type among men and women with incidence, 
mortality, and five-year survival rate of 11.6%,18.4%, and 15%, 
respectively [1–3]. Lung cancer is clinically categorized into two main 
groups, including small cell lung cancer (SCLC) and non-small cell lung 
cancer (NSCLC). NSCLC is more prevalent, accounting for almost 85% of 
all lung cancer cases [4]. It has three main histological subtypes: 
Adenocarcinoma (ADC, 40%), squamous cell carcinoma (SCC, 25%– 

30%), and large cell carcinoma (LCC, 10%–15%). Another subtype is 
“not otherwise specified”, denoted as NOS, which has none of the spe-
cific characteristics of the aforementioned subtypes [5,6]. 

In precision medicine, therapeutic decisions including surgery, 
chemotherapy, immunotherapy, or radiotherapy, are taken based on the 
cancer stage, histologic and genetic characteristics of the patient’s tumor 
[6]. For example, the recommended treatments for patients with 
advanced epidermal growth factor receptor (EGFR) mutated adenocar-
cinoma include erlotinib, gefitinib, and afatinib [7]. Conversely, for 
squamous cell lung cancer cases, therapeutic options include platinum 
doublet chemotherapy and immune-checkpoint inhibitors (ICIs) [6,7]. 
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Moreover, prognosis and reoccurrence rates are significantly different 
between ADC and SCC groups wherein the reoccurrence risk is 
dramatically higher in non-SCC groups [8]. In this light, the determi-
nation of the histopathology of NSCLC before treatment is of crucial 
importance. 

Currently, pathological analysis by means of biopsy or preparation of 
tissue sections after surgery is the first-line reference to the identifica-
tion of NSCLC subtypes [9]. However, these methods have some 
inherent limitations and challenges [9]. First of all, they involve invasive 
procedures and the preparation of the pathological tissue section is 
costly and time-consuming. Moreover, the biopsy is a snap-shot of a 
small part of the whole tumor and given the heterogeneous nature of 
lung tumors, especially ADC type, this will not reflect the entire char-
acteristics of the tumor. Moreover, these methods are not recommended 
for patients at advanced inoperable stages [9]. 

In routine clinical practice, Computed tomography (CT) is commonly 
used for lung cancer diagnosis due to its high sensitivity for the detection 
of small nodules [10]. Subtypes of NSCLC have different phenotypic 
characteristics on CT images. For instance, cavitation and speculation 
are more associated with SCC, whereas ground-glass opacification and 
air-bronchogram are significant CT imaging signatures of ADC [11,12]. 
In this regard, sometimes these phenotypic signs may become hidden or 
mixed/confused with the underlying structures in CT images. Hence, the 
visual discrimination of NSCLC subtypes is a real challenge for radiol-
ogists as it is highly dependent on their knowledge, experience, and 
analytical skills. In this light, an alternative accurate and noninvasive 
approach for the histological classification of NSCLC would be crucial in 
clinical practice. 

Recent studies have demonstrated the promising potential of radio-
mics in the histological classification of cancerous lesions [13–16]. 
Radiomics refers to the extraction of high throughput features from 
medical images that bear information related to tumor pathobiology and 
the creation of a minable high dimensional database [17–19]. A radio-
mics pipeline was employed to develop descriptive and diagnostic 
models to associate/relate image phenotypes to gene expression [17, 
20–23]. Previous studies focused mainly on the differentiation between 
ADC and SCC based on the extracted features from CT images [14,15,24] 
and all of them confirmed the capability of radiomics analysis in NSCLC 
subtypes classification. Wu et al. [14] implemented several classifiers for 
the classification of ADC and SCC using CT radiomics features. Junior 
et al. [24] extracted 2277 radiomics features from 68 CT images with 
proven malignant lung lesions and investigated the performance of 
classifiers on oversampled, undersampled, and original unbalanced data 
with radiomics features, clinical features, and a combination of both. 
Zue et al. [15] investigated the performance of five selected radiomics 
features in the classification of NSCLC histological subtypes. Han et al. 
[25] used PET/CT images of 867 patients presenting with ADC and 552 
patients with SCC and investigated the optimal classification model 
among radiomics-based, machine learning, and deep learning algo-
rithms. The authors reported that the best performing machine learning 
model (support vector machine) achieved area under the receiver 
operating characteristics (AUROC) curve of 0.863 and accuracy of 
0.792. 

Overall, all of these studies demonstrated the potential of radiomics 
in the classification of NSCLC subtypes. These studies considered only 
two subtypes of NSCLC, wherein the multi-subtype classification of 
NSCLC is of crucial importance since patients with other subtypes, 
including LCC and NOS require different treatment strategies. To the 
best of our knowledge, only two studies performed multi-subtypes 
classification of NSCLC. Patil et al. [13] investigated the performance 
of support vector machines with two groups of features, including 
non-texture features (volume and first-order) and texture features. Ac-
cording to their results, texture features had higher potential for 
multi-subtype classification of NSCLC in comparison with non-texture 
features. Lui et al. [26] developed a hybrid technique to classify the 
four main subtypes of NSCLC. The proposed model, referred to as SLS, 

combined three algorithms, namely synthetic minority oversampling 
method, L2,1-norm minimization and, support vector machine into a 
single model. 

In this study we aimed to identify the most significant features and 
evaluate their discriminative power in the classification of the subtypes 
of NSCLC patients. To deal with the minimal-optimal problem, which 
refers to identifying minimal set of the most relevant and informative 
features, we used multivariate adaptive regression splines (MARS) a 
powerful algorithm which is also appropriate for high-dimensional data 
modeling [27] and wrapper algorithm as a novel feature selection al-
gorithm for finding all relevant variables [28]. 

2. Materials and methods 

The different steps of the methodology followed in the current study 
are summarized in Fig. 1. 

2.1. Data preparation and image segmentation 

The clinical studies used in this work were obtained from the pub-
licly available NSCLC radiomics-genomics dataset on the cancer imaging 
archive (TCIA) [29]. The dataset included 422 patients with NSCLC. 
During the data curing procedure, the dataset was reduced to 354 pa-
tients owing to the absence of histopathological information and/or 
poor image quality. The final dataset included 134 SCC, 110 LC, 62 NOS, 
and 48 ADC cases. The 3D volumes of primary gross tumor volumes 
(GTV) were manually delineated by a radiation oncologist. 

2.2. Image preprocessing and feature extraction 

In this work, 1433 radiomics features were extracted from each 
tumor volume. The features were extracted using the PyRadiomics 
package, an open-source Python package for the extraction of radiomics 
features from medical images in which the feature definition is 
compliant with the image biomarker standardization initiative (IBSI) 
[30,31]. The quantitative features were divided into three subgroups, 
namely (i) morphological features, (ii) first-order statistical features, 
and (iii) texture features. The value of radiomic features depends highly 
on the number of gray levels and voxel size [32,33]. Therefore, we used 
voxel size resampling and gray level discretization to harmonize voxel 
sizes, reduce noise and variability of radiomic features. Images were 
resampled into 1 × 1 × 1  m3 isotropic voxel size and discretized into 64 
bins prior to feature extraction. 

Prior to feature extraction, the original images were decomposed 
into 8 wavelet decomposition (HHH, HHL, HLH, LHH, LLL, LHL, HLL, 
LLH). Moreover, Laplacian of Gaussian filters (LOG) with different sigma 
values (0.5–5 with step 0.5) were applied to the original images. Since 
morphological/shape feature extraction does not require any pre-
processing, we extracted these features directly from the original im-
ages. Texture features play a pivotal role in medical image analysis. 
These features are calculated by considering the relationship between 
the intensity at each voxel and those at the neighboring voxels in various 
directions [34]. Since these features represent intensity distribution 
within the tumor region, they could be affected by various imaging 
parameters. Hence, it is crucial to apply mathematical transformations 
to the image before extracting these features since transformation and 
filtering methods, such as the wavelet transformation and LOG filters 
can reduce noise and enhance edge detection, thus improving the rep-
resentation of specific structures on images. Several studies have indi-
cated that the calculated texture features based on wavelet decomposed 
images have significant diagnostic or prognostic values [14,35]. 
Therefore, we applied different filters and transformations on the images 
prior to feature extraction. Sixty texture features and 19 first-order 
statistical features were calculated for each wavelet decomposition 
and LOG filtered images. Fig. 2 illustrates schematically the feature 
extraction process. Details of the extracted features are provided in 
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supplementary Table 1. 

2.3. Feature selection 

Two novel classifiers were employed to remove irrelevant and 
redundant features which do not contribute to the accuracy of a pre-
diction model, namely the wrapper random forest feature selection al-
gorithm for finding all relevant features by “Boruta” R package and 
multivariate adaptive regression splines method by “earth” R package. 
In this ensemble (bagging method) wrapper algorithm, feature impor-
tance index was calculated for all features, then the significant features 
were selected consistently [36]. In addition, MARS, a piece-wise linear 
and non-linear segments regression modeling of high-dimensional data 
[27], has exhibited superior performance over the traditional classifi-
cation and regression algorithms in finding optimal variable trans-
formations and interactions in high-dimensional complex data structure 

[37]. This algorithm employs a bootstrap procedure that estimates the 
performance of classification. This algorithm assess the importance 
value of each feature/variable/predictor by removing the variable and 
evaluating the decrease in calculated generalized cross-validation 
criteria. Regarding the previous examination on both real and simu-
lated studies, MARS not only has higher classification accuracy 
compared to support vector machine, random forest, and elastic-net 
methods [38] but also cause lower Type II errors and its associated 
risks [37]. 

2.4. Multinomial classification 

After feature refinement, the selection of the most important CT 
features using a multinomial logistic regression model as a dimension 
reduction algorithm, was used to assess the predictive probability of the 
selected features. To this end, the stepwise variable selection procedure 

Fig. 1. The Radiomics pipeline employed in this study. GLCM: Gray Level Co-Occurrence Matrix; GLRLM: Gray Level Run Length Matrix; GLSZM: Gray Level Size 
Zone Matrix. 

Fig. 2. Schematic illustration for the feature extraction process. Eleven morphological features were extracted from the original image. Sixty texture and 19 first- 
order statistical features were extracted from each wavelet decomposition and LOG filtered images. 
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was employed using a 2-tailed alpha with a value of 5% for insertion and 
deletion criteria. In addition, 1000 bootstrapping samples were taken to 
reduce the variance of the classification power indices. The multinomial 
logistic regression model via bootstrapping was applied by “nnet” R 
package [39]. P-values were adjusted by Benjamini and Hochberg 
method and a p-value < 0.05 was considered as statistically significant 
threshold. In this study, the whole dataset was fed into feature selection 
algorithms to select the most relevant features. Due to lack of external 
validation set and small sample size, classification was performed and 
validated on selected features using 5-fold cross-validation with boot-
strap resampling that was repeated 1000 times. 

3. Results 

3.1. Feature selection 

From 1433 extracted features, 14 features were consistently selected 
based on their overall importance value. Fig. 3 presents the top 9 
selected features by the wrapper algorithm and the top 11 selected 
features by multivariate adaptive regression splines. According to 
Figs. 3, 6 out of 14 consistently selected features were common between 
the two algorithms where 3D GLSZM-gray level non-uniformity 
normalized of log sigma2, wavelet-HLH-GLSZM-small feature area 
emphasis, and wavelet-LHL-GLSZM-zone entropy had the highest 
importance value (40%, 38%, and 36%, respectively). Regarding Fig. 3, 
most of the selected features belong to the GLSZM category whereas only 
two features fall under the first-order category. 

3.2. Classification 

Both groups of selected features were used for subtypes classification 
by multivariable multinational logistic regression with 1000 boot-
strapping samples. In Fig. 4, the confusion matrix shown in (Fig. 4a) 
represents the classification results based on the wrapper algorithm 
feature selection whereas the confusion matrix (Fig. 4b) represents re-
sults based on multivariate adaptive regression splines. We used 4 
classification metrics to evaluate the classifier’s performance, which 
could be calculated based on the confusion matrix. These metrics 
include precision, recall, F1-score, and accuracy. For each class, preci-
sion is the true predicted positive divided by total predicted positive, 
whereas the sensitivity (or recall) is the ratio of true predicted positive of 
a class to the actual positive cases of the same class. Accuracy equals the 
ratio of correctly predicted cases to the total predictions, whereas F1- 
score is defined as the weighted average of precision and sensitivity 
(recall). 

The classification performance of our models is shown in Table 1, 
wherein for the features selected by the wrapper algorithm, the model 
performance reached the average accuracy, F1-score, precision, recall, 
and AUC of 0.865, 0.706, 0.710, 0.703, and 0.747 respectively. The 
same metrics for the second model are 0.862, 0.697, 0.699, 0.679, and 
0.723 respectively. According to these results, the performance of the 
classifiers for both sets of features is approximately similar. The classi-
fier worked poorly on ADC classification and was mainly due to the 
limited number of ADC cases in comparison with the other 3 subtypes 
(Table 1). The ROC curves of different classes are also provided in Fig. 5 
(the ADC class was considered as the reference class). 

Based on the coefficients and adjusted P-values of multinomial lo-
gistic regression models in Table 2, log sigma5, Kurtosis from first-order 
in wavelet (HHL), wavelet-HHL_glszm_ZoneEntropy and wavelet- 
HLH_glszm_SmallAreaEmphasis have the most significant effects on 
the prediction of the subtypes of NSCLC patients in the wrapper algo-
rithm with the model’s goodness of fit index of pseudo R2 = 0.159. 
Moreover, log sigma2 and the mentioned features have the most sig-
nificant effects on the prediction of subtypes of NSCLC patients in the 
MARS model with a model’s goodness of fit index of pseudo R2 = 0.173. 

4. Discussion 

Even though using the underlying and fundamental medical image 
features, e.g. tumor volume or diameter are common for cancer staging 
[40], medical images contain a lot more valuable information beyond 
what could be seen visually. Recent advances in pattern recognition 
algorithms and availability of the accurately categorized datasets have 
facilitated the process of medical image task-oriented feature identifi-
cation. In this context, radiomics utilizes automated algorithms to 
transform medical images into high-dimensional minable sets of quan-
titative features and analyzes the phenotypic characteristics to assist 
clinical decisions. 

In this work, we extracted a large number of radiomics features from 
three sets of CT images, including original images, wavelet de-
compositions and LOG filtered images, followed by applying two 
different advanced methods for an effective feature selection. MARS, as 
an adaptive nonparametric regression, is a piecewise linear and 
nonlinear segments flexible regression modeling for high-dimensional 
data (e.g. radiomics). MARS is capable of fitting complex and 
nonlinear relationships between the dependent variable and predictors 
and performing traditional classification and regression algorithms, 
such as logistic regression, neural networks, and support vector machine 
to find/detect the optimal variable transformations and interactions in 
high-dimensional and complex data structures [37,41,42]. In addition, 
Boruta or Random Forest with the wrapper method, as a bagging 
ensemble machine learning method, has emerged as an efficient and 
robust algorithm that can handle feature selection problems in 
high-dimensional data [36]. One of the main advantages of this wrapper 

Fig. 3. Bar plot of feature importance for the selected features using the 
Wrapper algorithm and multivariate adaptive regression splines. 
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algorithm is its computation time which is shorter in comparison with 
other algorithms such as regularized Random Forest and recursive 
feature elimination algorithms for high dimensional dataset such as gene 
selection in the genomics [43]. Based on previous studies using large and 
multicenter dataset, Boruta was the most accurate model compared with 
Lasso, Elastic Net regularized regression, gradient boosted feature se-
lection, and regularized Random Forest [44]. Lastly, a multivariable 
multinominal logistic regression model was implemented to classify four 
main subtypes of NSCLC. The results showed that our models were able 
to predict NSCLC histological subtypes and proved the potential of 
radiomics to quantify and extract phenotypic characteristics and predict 
the histological nature of the lesions. 

In this work, we used multinomial logistic regression as a classifier. 
However, a number of studies implemented modern approaches, 
including those using deep learning techniques [25,45]. The motivation 
behind not using this approach was the small sample size. For complex 
problems, e.g multiclass classification, a larger dataset is required to 
train and define the weights of a deep learning architecture. Previous 
deep learning-based radiomic studies focusing on the classification of 
NSCLC subtypes [25,45], included more than 800 patients, which is 
significantly higher than the size of our dataset. It should also be stated 

that using simple models with fewer parameters has the advantage of 
generalizability keeping in mind that the best model is the simplest 
model with fewer assumptions [46]. 

The number and quality of selected features play a pivotal role in 
radiomics analysis and could have a huge impact on the overall per-
formance of a classifier. One way to increase the number of features is 
via applying different filters on the images. In this work, we used the 
wavelet decomposition and LOG filtered images, wherein a total number 
of 1433 features were extracted, which is significantly higher in com-
parison with the total extracted features in previous studies [15,26,47, 
48]. Moreover, recent studies have emphasized the benefits of features 
extracted from filtered images, specifically LOG filtered images, for the 
task of tumor subtypes differentiation [49–51]. In our study, 12 out of 14 
selected features belonged to the category of texture features which 
correspond to the heterogeneity of tumor volume, thus reflecting the 
importance of these types of imaging biomarkers. The feature with the 
highest importance value (40%) was Gray Level Non-Uniformity 
Normalized from 3D GLSZM in LOG sigma 2 mm. This feature is the 
normalized distribution of zone counts over gray values. Its lower values 
indicate equally distributed zone counts [30]. Due to the high impor-
tance value of this feature, as demonstrated in this study, it could be 

Fig. 4. Results of classification for the different subtypes of NSCLC showing: (a) Confusion matrix obtained from the wrapper algorithm and (b) Confusion matrix 
obtained from the multivariate adaptive regression splines. 

Table 1 
The classification power indices (SD) by multivariable multinomial logistic regression with 1000 bootstrapping samples based on the methods of feature selection.  

Method Subtype Precision Recall/ 
Sensitivity 

F1-score Accuracy Specificity AUC (95%CI) 

Wrapper algorithm Adenocarcinoma 0.568 
(0.022) 

0.604 (0.016) 0.585 
(0.018) 

0.884 
(0.066) 

0.928 
(0.061) 

Ref. 

Large cell 0.733 
(0.051) 

0.727 (0.050) 0.730 
(0.076) 

0.833 
(0.077) 

0.881 
(0.053) 

0.67 
(0.58–0.76) 

NOS 0.763(0.068) 0.677 (0.032) 0.717 
(0.048) 

0.906 
(0.109) 

0.955 
(0.077) 

0.69 
(0.59–0.79) 

Squamous cell 
carcinoma 

0.776 (0.10) 0.805 (0.111) 0.791 
(0.125) 

0.838 
(0.131) 

0.859 
(0.071) 

0.88 
(0.81–0.96) 

Average/total 0.710 0.703 0.706 0.865 0.906 0.747 
Multivariate Adaptive Regression 

Splines 
Adenocarcinoma 0.538 

(0.032) 
0.583 (0.033) 0.560 (0.06) 0.875 

(0.072) 
0.921 
(0.062) 

Ref. 

Large cell 0.725 
(0.049) 

0.745 (0.065) 0.735 
(0.053) 

0.833 
(0.066) 

0.873 
(0.055) 

0.65 
(0.56–0.74) 

NOS 0.736 
(0.082) 

0.677 (0.052) 0.705 
(0.063) 

0.901 
(0.123) 

0.948 
(0.075) 

0.65 
(0.55–0.75) 

Squamous cell 
carcinoma 

0.795 
(0.093) 

0.783 (0.112) 0.789 
(0.131) 

0.841 
(0.129) 

0.877 
(0.076) 

0.87 
(0.79–0.94) 

Average/total 0.699 0.697 0.697 0.862 0.905 0.723  
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used as an indicator for NSCLC subtypes classification. 
Previous studies mainly focused on the classification of two main 

subtypes of NSCLC i.e. ADC and SCC. Wu et al. [14] investigated 24 
feature selection methods and 3 classification methods on their dataset 
containing 198 pathologically proven NSCLC cases in the training cohort 
and 152 cases in the test cohort. In their study, the Naive Baye’s clas-
sifier achieved the highest performance in terms of AUC (0.72) with 5 
selected features. Three out of five selected features belong to first-order 
statistical features, while two other features belong to GLRLM and 
GLCM. In a study by Zhu et al. [15] a radiomic signature consisted of five 
radiomic features was constructed in order to differentiate between ADC 
and SCC. Radiomic features were selected using LASSO logistic regres-
sion model. According to their results, the radiomic signature achieved 
an AUC of 0.893, a sensitivity of 0.828, and a specificity of 0.9 which is a 
fairly good result. 

These studies demonstrated the strong potential of radiomics in the 
differentiation between ADC and SCC [14,15,25,47,52]. However, in 
real life problems, these models are not practical since two other 

subtypes of NSCLC have been overlooked in those studies and their 
models would fail to properly differentiate between the different his-
topathological subtypes, which is crucial for the optimization of treat-
ment strategies. In this light, this study has the merits of 
comprehensiveness and generalizability considering all subtypes of 
NSCLC which is a more complex and challenging problem. Only two 
studies reported on the classification of four subtypes of NSCLC using the 
SMOTE technique to balance their dataset [13,26]. The first study re-
ported the results of ten-fold cross-validation and did not test their 
model on a validation dataset [13]. Their model reached an accuracy of 
0.88 on the validation set using ten-fold cross-validation. In addition, 
their validation set of 10-fold cross-validation contained data generated 
using the SMOTE method. Therefore, the performance of their model 
should be examined using an external dataset for an objective compar-
ison. In the second study, 20% of the dataset was set aside for model 
validation [26]. They trained their model with and without oversampled 
data and reported the results of classification on the test set for both 
trained models. The average accuracy, F1-score, recall, and precision of 

Fig. 5. ROC curves of the classifier performance for the selected features by (A) MARS algorithm and (B) Wrapper algorithm.  

Table 2 
Multivariable multinomial logistic regression for the selected features by “mnlogit” R package and the model’s goodness of fit index, P-value of Wald Chi-square test, 
Adj. P-value: P-value adjusted by Benjamini and Hochberg method. SE= Standard of Error.  

Method Selected Variables Adj. P-Value Coefficient (SE) Pseudo R2  

Image preprocessing Parent feature Feature 

Wrapper Algorithm Log-sigma 0.5 mm 3D-GLSZM Small Area Low Gray Level Emphasis 0.009 − 8.05 (3.09) 0.159 
Wavelet-HHL First order Kurtosis 0.001 0.29 (0.018) 
Wavelet-HHL GLSZM Zone Entropy 0.007 − 0.95 (0.351) 
Wavelet-HLH GLSZM Small Area Emphasis 0.001 2.36 (0.187) 
Wavelet-HHH GLCM Cluster Prominence 0.199 − 3.96 (3.087) 
Wavelet-LHL GLSZM Zone Entropy 0.049 − 0.495 (0.30) 
Log-sigma 0.5 mm 3D-GLSZM Low Gray Level Zone Emphasis 0.021 0.042 (0.018) 
Log-sigma 0.5 mm 3D-GLSZM Size Zone Non-Uniformity 0.068 0.003 (0.002) 
Log-sigma 5 mm 3D First order Entropy 0.039 − 0.79 (0.45) 

Multivariate Adaptive Regression Splines Log-sigma 0.5 mm 3D-GLSZM Zone Entropy 0.002 1.79 (0.571) 0.173 
Wavelet-HHL First order Kurtosis 0.001 0.27 (0.022) 
Wavelet-HHL GLSZM Zone Entropy 0.008 − 0.94 (0.353) 
Wavelet-HLH GLSZM Small Area Emphasis 0.001 2.05 (0.188) 
Wavelet-HHH GLCM Cluster Prominence 0.328 − 2.66 (2.72) 
Wavelet-LHL GLSZM Zone Entropy 0.774 − 0.10 (0.36) 
Log-sigma 5 mm 3D First order Entropy 0.046 − 1.66 (0.98) 
Log-sigma 2 mm 3D-GLSZM Gray Level Non-Uniformity Normalized 0.003 1.99 (0.682) 
Log-sigma 0.5 mm 3D GLSZM High Gray Level Zone Emphasis 0.006 − 15.58 (5.64) 
Log-sigma 5 mm 3D GLCM Sum Variance 2 0.027 1.77 (0.921) 
Log-sigma 0.5 mm 3D GLSZM Gray Level Non-Uniformity 0.132 0.003 (0.002)  
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their model on the test set, without using SMOTE for the train data were 
0.67, 0.67, 0.67, and 0.68, respectively. Synthetic Minority Over-
sampling Technique (SMOTE) is a data augmentation method in which 
the minority class is oversampled by synthesizing new examples from 
the existing examples [53]. However, our model without using the 
oversampling technique reached a higher average value for those met-
rics (0.865, 0.706, 0.703, and 0.71, respectively). Using the SMOTE 
method, their model achieved good results for both train and test set. 
However, for the test set, they selected a balanced dataset and the 
number of each class was almost equal: 17 ADC and NOS cases, and 18 
LCC and SCC cases. Nevertheless, in real life clinical scenario, the data 
are not balanced and it is crucial to test the model on an imbalanced 
dataset as well. Moreover, oversampling techniques, like SMOTE, have 
some drawbacks, with overfitting being the most common one [54]. Due 
to the lack of an external validation set and the small sample size, spe-
cifically for ADC class, we used bootstrap resampling for model evalu-
ation. During this procedure, the model was trained on a sample set and 
evaluated on a sample not included in the training set. The whole pro-
cedure was repeated 1000 times. Hence, the results are robust and 
comparable to those reported in previous studies. In our study, the 
model based on selected features by the Wrapper algorithm achieved an 
average accuracy, F1 score, recall, and precision of 0.865, 0.706, 0.703, 
and 0.71 respectively. 

The major obstacle in our study was that our training dataset was 
imbalanced with a limited number of samples for certain types of 
NSCLC. As such, the discriminative features associated with certain 
subtypes of NSCLC (such as ADC) may be overlooked/overshadowed by 
the dominant features from other subtypes with a larger number of 
samples. A limited number of samples in a dataset introduces bias and 
variance in the performance of a classifier [55]. Since most conventional 
classification algorithms are designed for datasets with a balanced dis-
tribution, imbalanced data distribution imposes challenges for both 
feature selection and model training. In these problems, the classifiers 
are biased toward major classes (with a larger number of subjects) and 
classes with a smaller number of samples (in our study, the ADC class) 
are likely to be misclassified or regarded as noise or outlier [56]. Various 
approaches were devised to address the problem of training with an 
imbalanced dataset, including conventional resampling methods, such 
as SMOTE or cost-sensitive classifiers. However, having a balanced data 
distribution does not necessarily lead to optimal model performance and 
other factors, such as training sample size and class complexity (class 
overlapping) also affect the performance of a classifier [57]. 

Decoding the underlying and discriminative feature from a non- 
uniform dataset is highly challenging, particularly for classes with 
smaller sample sizes. According to a study conducted by Japkowicz et al. 
[58], increasing the training sample size would decrease the error rate of 
imbalanced class classification. Another problem considered in our 
study is class overlapping or class complexity. Separating the minority 
class from the majority classes is one of the major obstacles, which 
complicates model training as well as feature selection. When class 
overlapping is present in feature space, features would not properly 
represent a specific class and may exhibit low levels of specificity [56]. 
The aforementioned issues were the root cause of sub-optimal perfor-
mance of the proposed model for the classification of the ADC subtype. 
However, a number of approaches including features selection methods 
were devised to address specifically these issues for imbalanced datasets. 
The Wrapper method is one of the powerful feature selection methods 
for these sort of problems [59]. This approach explores the feature 
subsets space using a learning algorithm to estimate the classification 
accuracy based on which each feature could be included or eliminated 
from the feature subsets [56]. This idea was implemented in this work 
through resampling/bootstrap processing and the results reported in 
Table3 demonstrated that the selected features improved the overall 
performance of the classifier. 

Our study suffer from some other limitations. First of all, we only 
used radiomics features of CT images. However, other imaging 

modalities, such as PET and MRI may boost the performance of machine 
learning models for histological subtype classifications [25]. Although 
MRI is not routinely used in the clinic for lung cancer diagnosis and 
characterization owing to challenges associated with visual assessment, 
a recent study confirmed the potential of multimodal MRI-based 
radiomics for discrimination of NSCLC subtypes [60]. The model ach-
ieved an AUC of 0.82 for the validation set, which is comparable to CT or 
PET-based radiomic model for the classification of NSCLC subtypes. 
Besides, some studies demonstrated that using semantic features e.g 
nodule location, cavitation speculations, and clinical features, such as 
age, smoking history, and body mass index can help the differentiation 
between NSCLC subtypes [48,61]. Another shortcoming of our study, 
like most radiomics studies, is that our study was retrospective, which 
bears inherent challenges. Factors, such as image reconstruction tech-
niques, scanning parameters, and tumor delineation methods can 
strongly affect radiomics features [62–67]. These factors cannot be 
controlled in retrospective studies and may decrease model 
performance. 

5. Conclusion 

Our model accuracy for multi-class and unbalanced classification of 
NSCLC was reasonable compared to previous studies reported in the 
literature. However, other classification metrics e.g. precision and recall 
were not good enough for ADC subtype evaluation. This is one of the 
limitations of our study owing to insufficient data for this class. A larger 
dataset could potentially increase the classification accuracy of the 
proposed models for this subtype. Moreover, the approaches developed 
for binary classification of the imbalance dataset are not optimal for 
multi-class classification. Further research and development efforts 
should be carried out to develop new frameworks for multi-class 
discrimination of malignant diseases. 
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