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Abstract

Pseudo-telepathy is the most recent form of rejection of locality. Many of its prop-
erties have already been discovered: for instance, the minimal entanglement, as well
as the minimal cardinality of the output sets, have been characterized. This paper
contains two main results. First, we prove that no bipartite pseudo-telepathy game
exists, in which one of the partners receives only two questions; as a corollary, we
show that the minimal “input cardinality”, that is, the minimal number of questions
required in a bipartite pseudo-telepathy game, is 3 x 3. Second, we study the Bell-type
inequality derived from the pseudo-telepathy game known as the Magic Square game:
we demonstrate that it is a tight inequality for 3 inputs and 4 outputs on each side
and discuss its weak resistance to noise.

1 Introduction

Implicitly present in the works of Heywood and Redhead [I] and of Greenberger, Horne,
Zeilinger and Mermin [2, 3], the notion of pseudo-telepathy was first explicitly introduced by
Brassard, Cleve and Tapp []. In this work, the authors used a game which was possible
to win classically only if the players exchanged information, while quantum players sharing
entanglement could dispense with communication altogether. They used their result to show
a lower bound on the number of bits of communication classical players need to exchange
in order to simulate quantum measurements on many maximally entangled pairs of qubits.
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Since no communication whatsoever is required in the quantum strategy to the game, we
can see that their game is actually a proof against locality in the same sense as the result of
Bell [B]. Furthermore, it was shown recently that pseudo-telepathy is a stronger rejection of
the locality assumption than the traditional Bell theorems, or even the Hardy [6] theorem [7,
8. We will give a complete definition of pseudo-telepathy in Section [ for a survey of known
results see [9].

Much work has been done in order to characterize pseudo-telepathy. A question of interest
is “What kind of correlations are required in order to give rise to a pseudo-telepathy game?”
The minimal entanglement necessary in order to have a pseudo-telepathy game was resolved
in [7] where the authors have shown that either a pair of entangled qutrits or three entangled
qubits are needed. In [I0], the minimal cardinality of the outputs sets was uncovered: in
the bipartite scenario, at least one player must have more than two possible outputs, while
in the multipartite scenario two outputs per player are enough. In Section Bl we provide the
answer to the last question along these lines that has remained open: how many possible
questions must one incorporate in a game for it to be a pseudo-telepathy game.

In Section Bl we consider pseudo-telepathy in the context of the characterization of non-
local correlations. In the last years, the understanding of non-locality has been significantly
improved using a geometric view of probability distributions: local distributions form a
closed convex set with a finite number of extremal points (a “polytope”), whose facets define
tight Bell-type inequalities [T, [[2]. It is interesting to ask whether pseudo-telepathy games
are associated to tight Bell inequalities: while a general proof or a counter-example are
still missing, the answer is positive for the three-partite Mermin-GHZ game [3] as proved
in [I3] and for the bipartite Magic Square game [I4] as we prove here. We show also that
the inequality derived from the Magic Square game is less resistant to noise than another
inequality, which is not associated to a pseudo-telepathy game: this is not surprising, since
pseudo-telepathy is stronger a refutation of locality.

2 Definitions and mathematical tools

In this Section, we present formal definitions and the mathematical tools that are required
to demonstrate the results of Sections Bl and Hl.

2.1 Pseudo-telepathy

In this paper, we choose the following notations:
Alice’s input: x € X = {0,1,...,m4 — 1};
Alice’s output: a € A ={0,1,....,n4 — 1};



Bob’s input: y € ¥ ={0,1,...,mp — 1};
Bob’s output: b € B={0,1,....np — 1}.

Definition 1 (Bipartite Game). A bipartite game G = (Z,O,W) is a set of inputs
=X xDY, asetof outputs O = A x B and a relation W C T x O that inputs and outputs
should satisfy.

Definition 2 (Winning Strategy). A winning strategy for a bipartite game G = (Z,O, W)
s a strateqy according to which for every x € X and y € Y, Alice and Bob output a and b
respectively such that (z,y,a,b) € W.

Definition 3 (Pseudo-telepathy). We say that a bipartite game G exhibits pseudo-
telepathy if bipartite measurements of an entangled quantum state can yield a winning strat-
eqy, whereas no classical strategy that does not involve communication s a winning strategy.

The extension to the multipartite case is trivial, but we consider only bipartite scenarios
in this paper. The generalization of Definition Bl can be translated into a set of multipartite
measurements on an entangled state where any local classical model which is to attempt to
only produce outputs that are not forbidden by quantum mechanics will fail.

2.2 Polytope and facets inequalities

For the purposes of SectionH], let’s recall the geometric formalism for probability distributions
[TT, M2]. As mentioned, we consider the situation in which Alice receives the input = €
{0,1,...,m4 — 1} and has to output a € {0, 1,...,n4 — 1}; similarly, Bob receives the input
y €{0,1,...,mp — 1} and has to output b € {0,1,...,np — 1}. Any probability distribution
can be represented by a vector of dimension m4 mp n4 ng whose entries are just the numbers
Prla,blz,y]. In the space of probability distributions, we focus on the set of local strategies
Qs mpnang (Written ,,,, when m4 = mp and ny = ng). This set is a polytope, that is, a
convex set with a finite number of extremal points. The extremal points are deterministic
local strategies, that is, points of the form

Prla,blz,y] = Prlalz] Prbly] = bua@) b (1)

for all possible functions z — a(z), y — b(y), and where ¢, ; is the Kronecker delta. There
are clearly n'{* n;? deterministic strategies. Note that the local polytope Q,, mpnang 18
embedded in a subspace of the probability space, because local strategies automatically
satisfy the so-called no-signalling condition. It can be shown that the dimension of the space
of no-signalling probability distributions is d = mamp(na — 1)(ng — 1) + ma(na — 1) +
mpg (n B — 1)

A polytope embedded in a d-dimensional space is completely described by giving the list
of its extremal points (vertices) or equivalently, of the (d— 1)-dimensional hypersurfaces that
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bound it (facets). On the one hand, as we have just seen, it is very easy to list the vertices.
On the other hand, the characterization in terms of facets is more useful, because it allows
to decide whether a probability point is inside the polytope, and is therefore local; or outside
it, and is then non-local; in other words, each facet represents a tight Bell-type inequality.
The task of finding the facets given the list of vertices is computationally hard. In Section
B, we show how a particular pseudo-telepathy game provides a natural inequality that is in
fact a facet for the corresponding local polytope.

3 Input Cardinality

In this Section, we want to prove the following

Theorem 1. In pseudo-telepathy, the set of possible question X X Y cannot be of cardinality
2 X n.

Proof. For definiteness, we suppose that it is Alice who receives only two questions, i.e.
X = {0,1}. We prove the statement by reductio ad absurdum. Consider deterministic
strategies: the values a(®) and a(!) that Alice is going to output upon receiving = 0 or
r = 1 are fixed. Suppose now that for a given pair (a(?),a(")) it so happens, that for all
y € Y there exist a b® such that (0,y,a®,b®) € W and (1,y,a™,b®) € W: then there
is clearly a classical winning strategy, and the game cannot be a pseudo-telepathy game.
The rest of the proof consist in proving that exactly this situation is generated by the most
general bipartite quantum strategy with two inputs on Alice side.

In a quantum strategy, Alice and Bob share a quantum state and obtain the outcomes
by performing measurements on the state. Since we are not going to fix the dimension
of the Hilbert space of Alice and Bob, we can assume without loss of generality that the
measurements are projective — in other words: a strategy using positive-operator-valued
measurements on states of dimension d can always be written as a strategy using projective
measurement on states of suitable dimension d’ > d. Let’s suppose at first that Alice and Bob
share a pure state |¥) 5. Upon receiving input x, Alice performs the measurement defined
by the projectors {Pa(x)}; similarly, upon receiving input y, Bob performs the measurement
defined by the projectors {Pb(y)}. We suppose that this is a winning quantum strategy.
Now: if 2 = 0 and Alice obtains the outcome a(?) = a, she prepares on Bob’s side the state
|a® ) B P9 g 1|W) 45; if 2 = 1 and Alice obtains the outcome a") = a’, she prepares on
Bob’s side the state |¢,1))p =~ Pa(,1 ) ® 1|W) 4p. Since each projective measurement is a reso-
lution of the identity, there must exist (a?),a(!)) such that (p o |@,m) # 0. In turn, given

these (a(?,aV)), for each y there must be at least an element Plfg/)) in each of Bob’s measure-
ments such that both (¢, |Pb(fi)) |pq) and (@0 |Pb((yy)) lp,m) are not zero. Therefore a subset

of the outcomes of the quantum strategy defines the deterministic strategy {a®,a™);b®}.
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But if the quantum strategy is winning, any subset of outcomes must be winning as well:
therefore, the assumption of a winning quantum strategy implies the existence of a winning
classical strategy as well, contradicting the definition of pseudo-telepathy game.

Finally, the assumption, that Alice and Bob share a pure state, can be easily dispensed
with: if a strategy based on a mixed state is winning, then it is winning on all the pure
states onto which the mixture can be decomposed; thus we are brought back to the previous
case, and the proof is now complete.

O

We want to stress that this Theorem does not exclude either (i) the existence of a pseudo-
telepathy game with input cardinality 2 x (np, X np,); nor (ii) the possibility that, in a game
that cannot be won with probability 1 (and is therefore not a pseudo-telepathy game), the
success probability may be larger using quantum than using classical strategies. For (i): if
“Bob” is actually Bob; and Bobs, the outcomes must also of the form b = bgy) + bgy): it
is this additional requirement is what makes the pseudo-telepathy possible, as in the GHZ-
Mermin game [2,8]. If this requirement would be removed (that is, if Bob; and Bobs would be
allowed to communicate), the quantum strategy still exists of course, but or theorem proves
that a classical strategy would become possible as well (again, a well-known statement for
the example of the GHZ-Mermin game). For (ii), the CHSH Bell inequality provides such an
example (see [I5] and references therein): classical strategies succeed with p = %, quantum
strategies with probability p = 2%\/5, but the game can be won with probability one only
allowing the “PR-box” [16] as a resource.

Since games with input cardinality of 3 x 3 [I4] and 2 x 2 x 2 [3] are know to exist,
Theorem [ entails immediately the following

Corollary 2. The minimal cardinality of the set of possible questions in pseudo-telepathy is
3 x 3 in the bipartite scenario and 2 X 2 X 2 in the multipartite.

To extend our result to multipartite pseudo-telepathy, one could reformulate the state-
ment of Theorem [ as:

For a pseudo-telepathy game to exists, every player must perceive the number
of possible combination of questions asked to the other player(s) to be greater
than two.



x\y 0 1 2
0 Coo Co1 Co2 = Coo D Co1
1 C10 C11 C12 = C19 D 11
2 Coo=CooDcro®1l co1=conDc1 @1 co2 ="

Table 1: Example of a classical table for the Magic Square game. In the table, one reads the
outputs ¢,y € {0,1}. Upon receiving input x, Alice outputs the three bits in the correspond-
ing row; upon receiving input y, Bob outputs the three bits in the corresponding column.
The value of ¢y cannot be chosen such as to fulfill all three requirements (2)- ().

4 A Bell-type inequality from the Magic Square game

4.1 Definition of the game

We present here the pseudo-telepathy game generally known as the Magic Square game [14].
The participants, namely Alice and Bob, are each presented with a question: a random trit
z € {0,1,2} and y € {0, 1,2} respectively. They must produce three bits each, (a'”, a{”), a{™)

and (b, 61, b)) respectively. In order for them to win, three requirements must be fulfilled:

Ria @ a”@d” @d” =0; (2)
Rip : b @b @by = 1; (3)
Rap agf) = b§;f>. (4)

Note that the first two requirements are “local”, only the third one introduces a correlation
between Alice and Bob.

Without resorting to quantum mechanics or communicating, Alice and Bob cannot win
this game with probability one. In fact, for requirement (H) to be always fulfilled, Alice and
Bob must draw their outcomes from a common 3 x 3 table of Os and 1s with entries cgy,.
But the other two requirements () and (Bl) say that the sum of the elements in each row
must be even and the sum of the elements in each column must be odd: a simple parity
argument shows that this is impossible. For instance, suppose Alice and Bob share a table
of the form of Table [ Then they succeed for eight possible inputs, but fail for the case
a = b = 2: in fact, requirement Ry, 4 forces af) = coo D c10 D co1 D 11, requirement Ry p

o

forces 652) = + 1, and requirement R 4p forces a§2) = 652).

On the other hand, if Alice and Bob are allowed to share entanglement, they exists an
explicit successful strategy [I4]. Success takes advantage of “contextuality”, i.e. the fact that
“unmeasured quantities are not determined” in quantum physics: Alice and Bob perform
only the measurements they are asked to perform, and each pair of measurements produces
outcomes with the required relation, although the results cannot derive from an underlying
classical table of pre-determined outcomes.



4.2 Study of the derived Bell-type inequality
4.2.1 The inequality

The classical bound for the Magic Square game can be re-written in the form of a Bell-
type inequality. Any classical strategy is the convex mixture of extremal points which are
deterministic strategies, that is, shared tables c,,. From the example above in Table [}, it
is clear that the game cannot be won for all inputs, but can be won for eight inputs out of
nine; therefore the inequality

Z Pr [RL,AaRL,BaRAB|x7y] S 8 ; (5)

z,y=0,1,2

holds for classical strategies. In this language, the existence of a winning quantum strategy
means that quantum physics violates this inequality up to the maximal algebraic value of
9. This violation can be obtained the tensor product of two maximally entangled states of
two qubits [14], which is equivalent to the maximally entangled state of two 4-dimensional
systems; therefore, this inequality does not exhibit the “anomaly” reviewed in [I7]. We set
out to study whether this inequality is tight, that is, a facet of a polytope. The answer to
this question requires a careful definition of the probability space.

Let’s first count how many deterministic strategies saturate the inequality. First, Alice
and Bob agree on the pair of inputs (x7, y7) for which they fail the game (the position of the
“?” sign); there are 9 possibilities. Once this position fixed, 4 bits can be freely chosen and
the others are determined by the local requirements. Note that Alice’s and Bob’s outputs
at the position of “?” are fixed: in fact, for z = x» Alice must output the bit that fulfills
R a; otherwise, she will fail as soon as z = x+, independently of Bob’s input, and such a
strategy does not saturate the inequality. A similar argument holds for Bob. In conclusion,
the number of deterministic strategies that saturate the inequality is 9 x 2¢ = 144.

In full generality, we are studying a class of problems in which both Alice and Bob
have 3 inputs and 8 outcomes (all the possible three-bit lists). In this general sense, the
local polytope is therefore §235. This polytope lives in a probability space of dimension 483;
therefore, a hypersurface containing only 144 extremal points has too small dimensionality
to be a facet. However, this general view puts all the requirements of the Magic Square game
on the same footing: in particular, it supposes that Alice and Bob may also fail to fulfill
their own local requirements Ry 4 and R g, which is a rather uninteresting and inefficient
way of losing the game, since it would guarantee a failure probability of at least 1/3. It is
more natural to assume that both Alice and Bob promise to fulfill their own local requirement,
and that the only requirement that can sometimes fail is R 45, which involves correlations.
In this restricted sense, for each input, Alice and Bob have only 4 possible outcomes each,
since as soon as they choose two bits, the value of the third one is fixed. The local polytope
becomes then ()34, that lives in a probability space of dimension 99. The inequality reads
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now

Z Pr [a?(f):bgny)‘xvyaRL,AaRL,B} < 8. (6)

z,y=0,1,2
Now we can state the following

Proposition 3. Inequality [@) is tight, i.e. it defines a facet of Qsy.

Proof. We must prove that the 144 extremal points that saturate inequality (B) define a
hypersurface of dimension 98. Each of the points is written as a 99-component vector,
following e.g. the parametrization introduced in [I2] (where the vectors are written as square
tables, but this ordering is just for convenience). The 144 vectors are then arranged in a
matrix; the Proposition follows if this matrix has full rank, because 99 linearly independent
vectors are needed to define a hyperplane of dimension 98. This verification was made with
a computer by two of us independently and without any approximation. O

A remark: it is known that any facet of a polytope can always be “lifted” in a natural way
and give a facet of a polytope with more parties and/or more inputs and/or more outcomes
[T8]. This is not a contradiction with the fact that the Magic Square game defines a facet of
Q34 and not of Qsg: the lifted version of inequality (@) to eight outcomes on each side is not

inequality (H).

4.2.2 Abstract version of the inequality

Inequality (@) defines a facet of €34 which had not been listed before to our knowledge;
remember that quantum physics violates it up to the algebraic maximum. It is instructive
to rewrite the inequality by removing any reference to the Magic Square game: after all, this
inequality is a facet of {234, it must then be possible to write it as a formula involving only
the ternary inputs and quaternary outputs.

Alice receives input x € {0, 1,2} and produces the output a® € {0,1,2,3}. We can

(z

decide conventionally that the bits ao) and agx) of the Magic Square game are defined

through a@ = 2a{” + a{”, and then a%” = a{” @ a{” (but any other convention would be

valid, and would simply define an equivalent facet). Therefore a(()x) = (M) mod2,
a§””) = amod2 and ag”) = (M) mod2. We make a similar definition for Bob; note

that bgy) = (W + 1) mod2. Thus, denoting equality modulo 2 by the symbol é,



the inequality reads as follows:

o a©® — 4®mod2 2 b(© — () m0d2 P a® — aMmod2 2 b(o)mon_
5 5 2 _
2 2 0 0 : :
+ Pr a® — a®mod2 % b0 + b%mod2 +1] +Pr [aPmod2 é b — bmod2
2 2 ’ .
b £ pMmod2
+Pr [a(l)mon 2 b(l)mon} + Pr {a(Q)mon = i 5 !
Pr a® 4 a®mod2 2 b — b mod? + Pr a® + amod2 2 b(2)mod2-
5 5 2 _
@ 4 a@mod2 2 @ + pPDmod2
+Pr{a +a2 mods 2 +2m0 +1] <8. (7)

This is how the inequality looks like (up to symmetries) if the outputs of Alice and Bob

appear explicitly as quaternary values: the expression is less elegant than Eq. (), and the
origin is completely hidden.

4.3 Error tolerance

For ny = np = 4, unstructured noise is the probability distribution P(a, b|z,y) = 7= (random
uncorrelated outputs for any input). The amount p, of unstructured noise that one needs
to add to the quantum correlations in order to make them local is a measure of non-locality
called “resistance to noise” [19, I7]. Denoting I, Iy and Ihese the values that an
inequality achieves with QM, local variables and unstructured noise respectively, p,, is defined

by the linear relation (1 — p,)Igam + Pnlnoise = Irv that is

Iovy — 1
po = sl (5)
QM — Lnoise

For our new inequality (@)-(@), we know Iy = 9 and Iy = 8, and it is easy to compute

that [yeie = %: in fact, since bits computed from random a and b are random bits, all the

nine terms of the inequality become just the probability that two random bits are equal. All
2

in all, we obtain p, = § = 0.2.

This value can be compared to the value obtained for other inequalities with the same
number of outcomes. The best known one is lag44 [I2]. For this inequality, one has Iy =0,

Tooise = —% and Igy ~ 0.3648 — this last value comes from the value Ié M = 2.9727 given
in Table I of [20] for the equivalent inequality I’ defined by I = 3=¢(I" — 2). Therefore

pn =~ 0.3272. We see that an inequality, which is not related to any pseudo-telepathy game
(because of Theorem [M in this paper, has a stronger resistance to noise than the one based



on the Magic Square game. Another inequality that can be checked is I3344; we have done it
numerically and found a smaller p, than for our new inequality.

In summary, no clear-cut picture can be derived from the comparison of inequalities based
on the resistance to noise (see also the discussion in [20]); but to our present knowledge,
pseudo-telepathy does not provide the best possible resistance to noise.

5 Conclusion

With the first part of this study (Section B), we now have a complete picture of the
minimal requirements for pseudo-telepathy:

e Bipartite scenario.

— Minimal entanglement: 3 x 3 [1].
— Minimal output cardinality: 3 x 2 [I0].

— Minimal input cardinality: 3 x 3.
e Multipartite scenario.

— Minimal entanglement: 2 x 2 x 2.
— Minimal output cardinality: 2 x 2 x 2.

— Minimal input cardinality: 2 x 2 x 2.

It is somewhat peculiar that there is so much symmetry in the minimal requirements, up
to the 2 in the minimal output cardinality. It would thus be interesting to know why we
can “save” only in output cardinality. To further understand pseudo-telepathy, we would
need to characterize the potential role of POVMs in this framework. While they have been
taken into account for the studies of the minimal requirements discussed here, it is not clear
whether the use of POVMs could lower the maximal probability of a classical strategy to win
an instance of a pseudo-telepathy game for certain fixed dimensions. Another open question
of interest is whether we can find a bipartite pseudo-telepathy game which only uses the
minimal requirements or if there some kind of trade-off between these properties.

The second part of this work is a contribution to the study of pseudo-telepathy games
in the broader context of non-local probability distributions. We have shown that a tight
inequality is associated to the bipartite Magic Square game, but the question remains open,
whether all pseudo-telepathy games define tight Bell-type inequalities. The resistance to
noise of this new inequality is not the highest known to date for four-dimensional outputs.

10



Acknowledgements

We are grateful to Cyril Branciard, Nicolas Brunner and Alain Tapp for stimulating dis-
cussions. This work has been supported by the European Commission under the Integrated
Project Qubit Applications (QAP) funded by the IST directorate as Contract Number 015848
and the Swiss NCCR Quantum Photonics.

References

1]

2]

[11]

P. Heywood et M. L. G. Redhead, “Nonlocality and the Kochen-Specker paradox”,
Foundations of Physics 13: 481-499, 1983.

D. M. Greenberger, M. A. Horne and A. Zeilinger, “Going beyond Bell’s theorem”,
in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M.
Kafatos (Kluwer Academic, Dordrecht), pages 69-72, 1989.

N. D. Mermin, “Quantum mysteries revisited”, American Journal of Physics 58: 731—
743, 1990.

G. Brassard, R. Cleve and A. Tapp, “Cost of exactly simulating quantum entanglement
with classical communication”, Physical Review Letters 83: 1874-1877, 1999.

J.S. Bell, “On the Einstein-Podolsky-Rosen paradox”, Physics 1: 195-200, 1964.

L. Hardy, “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic
theories”, Physical Review Letters 68: 2981-2984, 1992.

G. Brassard, A. A. Méthot and A. Tapp, “Minimal bipartite state dimension required
for pseudo-telepathy”, Quantum Information and Computation 5: 275284, 2005.

A. A. Méthot, “On local-hidden-variable no-go theorems”, Canadian Journal of Physics,
to appear, preprint available at http://arxiv.org/quant-ph/0507149.

G. Brassard, A. Broadbent and A. Tapp, “Quantum pseudo-telepathy”, Foundations of
Physics 35: 1877-1907, 2005.

R. Cleve, P. Hgyer, B. Toner and J. Watrous, “Consequences and limits of nonlocal
strategies”, Proceedings of 19th IEEE Conference on Computational Complexity: 236—
249, 2004.

I. Pitowski, Quantum Probability, Quantum Logic, Lecture Notes in Physics 321
(Springer Verlag, Heidelberg, 1989)

11


http://arxiv.org/quant-ph/0507149

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

D. Collins, N. Gisin, “A relevant two qubit Bell inequality inequivalent to the CHSH
inequality”, Journal of Physics A: Mathematical and General 37: 1775-1787, 2004.

R. F. Werner and M. M. Wolf, “All-multipartite Bell-correlation inequalities for two
dichotomic observables per site”, Physical Review A 64: 032112, 2001.

P. K. Aravind, “Bell’s theorem without inequalities and only two distant observers”,
Foundations of Physics Letters 15: 397-405, 2001.

N. Gisin, “Can relativity be considered complete? JFrom Newtonian
nonlocality to quantum nonlocality and beyond”, preprint available at
http://arxiv.org/quant-ph/0512168.

S. Popescu and D. Rohrlich, “Quantum Nonlocality as an Axiom”, Found. Phys. 24:
379-385 (1994).

A. A. Méthot and V. Scarani, “An anomaly of non-locality”, preprint available at
http://arxiv.org/quant-ph/0601210.

S. Pironio, “Lifting Bell Inequalities”, Journal of Mathematical Physics 46: 062112,
2005.

R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a
hidden-variable model”, Physical Review A 40: 4277-4281, 1989.

A. Acin, T. Durt, N. Gisin and J. I. Latorre, “Quantum nonlocality in two three-level
systems”, Physical Review A 65: 052325, 2002.

12


http://arxiv.org/quant-ph/0512168
http://arxiv.org/quant-ph/0601210

	Introduction
	Definitions and mathematical tools
	Pseudo-telepathy
	Polytope and facets inequalities

	Input Cardinality
	A Bell-type inequality from the Magic Square game
	Definition of the game
	Study of the derived Bell-type inequality
	The inequality
	Abstract version of the inequality

	Error tolerance

	Conclusion

