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1 Introduction

String theory is traditionally defined perturbatively as an asymptotic series expansion over

world-sheets of different genera embedded into a target space. In general, this series has

to be supplemented by non-perturbative contributions in order to render it well defined at

finite coupling. The discovery of D-branes, dualities and M-theory in the 90’s were hints

on how string theories can be completed non-perturbatively. Even better, the AdS/CFT

correspondence offered an exact non-perturbative definition of string theory (at least in

certain backgrounds). Since we understand field theories much better than string theory,

and indeed some are completely well defined, we should be able to say the same about the

dual string theories.

The partition function of type IIA string theory on AdS4 × CP3 and M-theory on

AdS4× S7/Zk is one of the simplest quantities that can be calculated using holography. It

is given by the partition function of ABJM theory [1] on S3, analytically continued to strong

coupling. This is a non-trivial interacting conformal field theory, yet this specific quantity
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(as well as certain Wilson loops) can be calculated exactly by localization [2]. Through

this procedure, the full three dimensional path integral gets reduced to a finite dimensional

integral closely related to the matrix model describing topological Chern-Simons on the

lens space S3/Z2 [3, 4], as it was pointed out in [5, 6].

This matrix model was solved in [4, 7, 8] and its solution was applied to calculating

the Wilson loops of ABJM theory in [5]. These results were extended in [9] in several

directions including the calculation of the free energy, which at the planar level scales like

N3/2, where N is the rank of each of the gauge groups. The non-planar corrections to the

Wilson loops and free energy were also calculated. Indeed, for the free energy, techniques

developed in topological string theory allow for the automated recursive calculation of

higher genus contributions which we carried out up to genus 28. At every genus the result

is a quasi-modular form, which can be expressed in terms of three basic ones, as outlined

in the next section. The lowest order ones were written explicitly there, writing the higher

ones would fill several books.

Within these horrendous expressions lies a lot of information, some of which we will

present and analyze here. As a first result, we extract from the genus expansion explicit

expressions for the large radius expansion of M-theory on AdS4×S7/Zk. This expansion can

be computed, order by order in the radius expansion, for any value of k, and it contains

both classical and quantum supergravity corrections. Then we look at the large order

behavior of this genus expansion in order to deduce the structure of its asymptotics and

extract information about the spacetime instantons of the theory. A similar study was

performed in the context of non-critical strings in [10]. The instanton effects found in

this way were instrumental in the discovery of D-branes [11] and were later identified as

D-branes in non-critical string theory [12, 13]. In our case, by defining the string theory in

terms of the gauge theory, which can be in turn reduced to a matrix model, we are able to

recast the search for non-perturbative effects in string theory in terms of non-perturbative

effects in matrix models, similar to what happened in non-critical string theories. These

effects arise from tunneling of eigenvalues between different saddle points, and their action

is proportional to different period integrals of the spectral curve encoding the planar limit

of the theory. We verify numerically that these period integrals indeed govern the large

order behavior of the genus expansion in ABJM theory. One interesting result of this

investigation is that, in this theory, the genus expansion seems to be Borel summable,

since the instantons have complex action [14]. However, Borel summability arises as an

α′-correction, and the instanton action is real in the supergravity limit.

The matrix model instantons obtained in this way should correspond to non-perturba-

tive objects in the AdS dual. As we shall show, the action in the matrix model which

governs the growth of the higher genus corrections at strong coupling matches the action

of a D2-brane wrapping an RP3 ⊂ CP3. Recall that the expressions in [9] included non-

perturbative contributions associated to world-sheet instantons wrapping CP1 ⊂ CP3. In

M-theory both these configurations are M2-brane world-volume instantons, with different

orientation with respect to the orbifolded cycle in S7. It is therefore not surprising that

such D2-branes show up as a non-perturbative effect in the genus expansion.
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The organization and highlights of the rest of this manuscript are as follows. In the

next section we quote some of the needed results from [9]. We present the leading large

coupling behavior of the free energy up to genus 5, which are all polynomials in certain

powers of the string length (or Planck length in M-theory). A curious fact is that by a

simple redefinition of the eleven-dimensional Newton constant these polynomials reduce to

monomials, such that the full all-genus expansion is in integer powers of the (modified)

Newton constant.

In section 3 we extend previous results on instantons in matrix models and related

systems [15–17]. We propose that, when the planar theory is governed by special geometry,

the instanton actions are just given by linear combinations of periods. We then focus on

the matrix model of ABJM theory. As discussed in detail in [9], the moduli space of the

’t Hooft coupling of this theory is governed by special geometry and it has three special

points (weak coupling, strong coupling, and conifold point). Correspondingly, we find

three different instantons whose actions depend on the ’t Hooft coupling. The leading

non-perturbative effect at a given point in moduli space is the instanton with the minimal

action there, and each of the three instantons we find dominates in each of the three

different regions. We test numerically that these actions indeed control the large genus

behavior of the free energies, confirming in this way our general prescription in the case of

ABJM theory. In section 4 we concentrate on the strong coupling regime and show that the

dominant instanton there matches the D2-brane mentioned above. We discuss our results

in section 5. In the two appendices we list useful results about metrics and Killing spinors

in the superstring/M-theory AdS background.

2 The all genus free energy

2.1 Genus expansion in the matrix model

In this section we present and extend the results for the all genus free energy of ABJM

theory obtained in [9], and we give an M-theory/string theory interpretation for them. We

refer to [9] for details on this computation.

We recall that the ABJM theory [1] is a quiver Chern-Simons-matter theory in three

dimensions with gauge group U(N)k × U(N)−k and N = 6 supersymmetry. The Chern-

Simons actions have couplings k and −k, respectively, and the theory contains four bosonic

fields CI , I = 1, · · · , 4, in the bifundamental representation of the gauge group. The

partition function of the (Euclidean) ABJM theory on S3 can be computed by a matrix

model [2] which turns out to be exactly solvable by using techniques of matrix model theory

and topological string theory. In particular, its free energy has a 1/N expansion of the form

F (λ, gs) =

∞∑
g=0

g2g−2
s Fg(λ). (2.1)

In this equation

gs =
2πi

k
, λ =

N

k
(2.2)

are respectively the coupling constant and the ’t Hooft coupling of the ABJM model.
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In order to write explicit expressions for the genus g free energies, it is useful to

introduce a parameter κ ∈ C (the meaning of this parameter is explained in [5, 9]). The ’t

Hooft coupling is related to κ by

λ(κ) =
κ

8π
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
, (2.3)

and the genus zero free energy is given by

∂λF0 =
κ

4
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, −1
2

∣∣∣∣−κ2

16

)
+
π2iκ

2
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
, (2.4)

wheere G2,3
3,3 is a Meijer function. For g ≥ 1, the free energies can be written in terms of

quasi-modular forms of the modular parameter

τ = i
K ′
(

iκ
4

)
K
(

iκ
4

) . (2.5)

For g = 1, one simply has

F1 = − log η(τ), (2.6)

where η is the usual Dedekind eta function. For g ≥ 2, the Fg can be written in terms of

the quasi-modular forms E2 (the standard Eisenstein series), b and d, where

b = ϑ4
2(τ), d = ϑ4

4(τ), (2.7)

are standard Jacobi theta functions. More precisely, we have the general structure

Fg(λ) =
1

(bd2)g−1

3g−3∑
k=0

Ek2 (τ)p
(g)
k (b, d), g ≥ 2, (2.8)

where p
(g)
k (b, d) are polynomials in b, d of modular weight 6g − 6− 2k. In [9] we described

a recursive procedure which gives all the genus g free energies unambiguously.

The genus g free energies Fg(λ) obtained in this way are exact interpolating functions

of the ’t Hooft parameter, and they can be studied in various regimes. When λ→ 0 they

reproduce the perturbation theory of the matrix model around the Gaussian point, and

they behave as

Fg(λ) = − B2g

g(2g − 2)
(2πiλ)2−2g +O(λ). (2.9)

They can be also studied in the strong coupling regime λ→∞, or equivalently, at κ→∞.

In this regime it is more convenient to use the shifted variable

λ̂ = λ− 1

24
=

log2 κ

2π2
+O(κ−2), κ� 1. (2.10)

One finds the following structure. For F0 and F1 one has, at strong coupling,

F0 =
4π3
√

2

3
λ̂3/2 +O

(
e−2π
√

2λ̂

)
,

F1 =
1

6
log κ− 1

2
log

[
2 log κ

π

]
+O

(
1

κ2

)
,

(2.11)
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while for g ≥ 2 one has

Fg = fg

(
1

log κ

)
+O

(
1

κ2

)
, (2.12)

where

fg(x) =

g∑
j=0

c
(g)
j x2g−3+j (2.13)

is a polynomial. One finds, for the very first genera,

f2(x) =
15x3 − 6x2 + x

144
,

f3(x) =
405x6 − 135x5 + 18x4 − x3

5184
,

f4(x) =
9945x9 − 3240x8 + 450x7 − 32x6 + x5

82944
,

f5(x) =
274590x12 − 89505x11 + 12960x10 − 1050x9 + 48x8 − x7

995328
,

(2.14)

and the leading, strong coupling behavior is given by

Fg(λ) ∼ λ 3
2
−g, λ→∞, g ≥ 0. (2.15)

2.2 Expansion in the type IIA and M-theory duals

It is possible to translate the all-genus expansion of the matrix model into expansions

in the type IIA and the M-theory duals. In the type IIA dual, the genus expansion of

the matrix model becomes the genus expansion of superstring theory. In M-theory, the

genus expansion becomes an expansion in the Planck length (or, equivalently, in Newton’s

constant). In order to translate the matrix model results in a string/M-theory result

we need a precise dictionary relating gauge theory quantities to gravity quantities. In

particular, one has to take into account the anomalous shifts relating the rank of the gauge

group N to the Maxwell charge Q, which in turn determines the compactification radius

L [18, 19]. The relation is

Q = N − 1

24

(
k − 1

k

)
. (2.16)

The charge Q determines the compactification radius in M-theory according to(
L

`p

)6

= 32π2Qk. (2.17)

This means that the shifted variable λ̂ introduced in (2.10) is given, in M-theory

variables, by

λ̂ =
1

32π2k2

(
L

`p

)6
(

1− 4π2

3

(
`p
L

)6
)
. (2.18)
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When considering the type IIA expansion, we have to trade k for the string coupling

constant gst, and the Planck length by the string lenght `s. In the end we find

k2 = g−2
st

(
L

`s

)2

,

λ̂ =
1

32π2

(
L

`s

)4
(

1− 4π2g2
st

3

(
`s
L

)6
)
.

(2.19)

The exponentially small corrections (2.12) should correspond, in the type IIA superstring,

to worldsheet instantons wrapping the CP1 inside CP3, and in M-theory to membrane in-

stantons [20] wrapping the S3 ⊂ S7. In the following we will drop these nonperturbative

corrections, although they can be of course computed to any given order in the exponen-

tiated worldsheet instanton/membrane action.

Let us first write down the type IIA superstring expansion. Using the dictionary (2.19)

we find

F = − g−2
st

384π2

(
L

`s

)8

+
3

64

(
L

`s

)2

+
1

2
log

[
2π

(
`s
L

)2
]

+

∞∑
g=2

rg

((
`s
L

)2
)
g2g−2

st (2.20)

where

rg(x) =

4(g−1)∑
k=3g−4

rg,kx
k, g ≥ 2, (2.21)

is a polynomial. One finds, for the very first genera,

r2(x) =− 1

192
π2x4

(
5120x4 − 576x2 + 27

)
,

r3(x) =
1

32
π4x10

(
163840x6 − 15360x4 + 576x2 − 9

)
,

r4(x) =− 1

576
π6x16

(
1158676480x8 − 106168320x6 + 4147200x4 − 82944x2 + 729

)
,

r5(x) =
1

32
π8x22

(
37916508160x10 − 3476029440x8 + 141557760x6

− 3225600x4 + 41472x2 − 243
)
.

(2.22)

Notice that [21] predicts, for general Sasaki-Einstein manifolds in M-theory, a correction

for F1 scaling as λ1/2, like the second term in (2.20). It would be interesting to see if the

precise numerical coefficient also agrees with theirs.

We can now work out the M-theory expansion. If we use again the dictionary (2.18),

we see that the M-theory free energy on AdS4 × S7/Zk has the structure

F = − 1

384π2k

(
L

`p

)9

+
3

64k

(
L

`p

)3

+
1

2
log

[
2πk

(
`p
L

)3
]

+
1

k

∞∑
n=1

pn(k)

(
`p
L

)3n

, (2.23)

where pn(k) is a polynomial in k of degree at most [(n + 3)/3]. At each order n only a

finite number of terms in the original genus expansion contribute, and the maximal genus

contributing is

g =

[
n+ 3

2

]
. (2.24)
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The polynomials pn(k) are given, for the first few orders, by

p1(k) = −9π2

64
,

p2(k) = 3π2,

p3(k) = −80π2

3
k2 − 9π4

32
.

(2.25)

Since each coefficient in the series (2.23) is a polynomial in k, one can compute from

the genus expansion in the matrix model the free energy of M-theory in the large radius

expansion, at a given order in (`p/L)3, and for any value of k.

It turns out that the expansion (2.23) has a remarkable hidden structure. As we see,

the natural parameter in the power series is(
`p
L

)3

(2.26)

as expected in a generic M-theory expansion. However, if we introduce the following

“renormalized” parameter ̂̀
p

L
=

`p/L[
1− 12π2 (`p/L)6

]1/6
, (2.27)

it turns out that the expansion can be resummed in the following way,

F = − 1

384π2k

(
L̂̀
p

)9

+
1

6
log

8π3k3

(̂̀
p

L

)9
 +

∞∑
n=1

dn+1π
2nkn

(̂̀
p

L

)9n

, (2.28)

where the coefficients dn are just rational numbers:

d2 = −80

3
, d3 = 5120, d4 = −18104320

9
, d5 = 1184890880, · · · (2.29)

This resummation is based on a highly non-trivial property of the polynomials (2.14) which

is not at all manifest from their matrix model origin, and is begging for an interpretation in

the context of M-theory/string theory. A similar simplification can be obtained in the type

IIA expansion by introducing a “renormalized” parameter `s/L, which depends also on gst.

What is the interpretation of the M-theory expansion (2.23) and its resumma-

tion (2.28)? In other M-theory expansions (like the two-graviton potential in M(atrix)

theory), the terms which go like (`p/L)9 are interpreted like classical supergravity in-

teractions, since they correspond to integral powers of the eleven-dimensional Newton’s

coupling constant. The other terms, with powers which are not multiples of 9, are usu-

ally interpreted as “quantum gravity” corrections (see for example the discussion in [22],

IV.A.5). The resummation (2.28) suggest that in this case these quantum gravity correc-

tions can be rewritten in terms of a classical expansion, but involving the “renormalized”

coupling (2.27).

– 7 –
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Figure 1. An `-instanton can be obtained by tunneling ` eigenvalues from one critical point to

another one.

3 Instantons and the genus expansion

3.1 Instantons in matrix models

In this subsection we review some results on instantons in matrix models, following the

work of [15–17], which contains much more details and references.

The study of instantons in matrix models has been pursued in many works, starting

with the pioneering papers of David [23, 24]. An important insight, first developed in

relation to matrix models of two-dimensional gravity, is that instantons are obtained by

eigenvalue tunneling. In order to make the discussion simpler, let us consider the cubic ma-

trix model, where the effective potential has two critical points. In the one-cut phase of this

model, all eigenvalues are located in the neighborhood of one critical point. The `-instanton

configuration in this phase is simply obtained by removing ` eigenvalues from this cut and

tunneling them to the other critical point, as shown in figure 1. The instanton action for

the one-cut phase admits a beautiful geometric interpretation in terms of the spectral curve

y(x) describing the planar limit of the matrix model, and it is given by the integral

AB =

∫ x0

a
y(x)dx, (3.1)

where a is the endpoint of the filled cut, and x0 is the location of the critical point which

corresponds to an empty cut (x0 is actually a singular point where the spectral curve has a

nodal singularity). More geometrically, we can write this as a period integral of the natural

meromorphic form y(x)dx, corresponding to a B cycle which goes from the filled cut to

the pinched point [25, 26]:

AB =
1

2

∮
B
y(x)dx. (3.2)

In figure 3.1 (left) we show the pinched curve, where the A1 cycle corresponds to the filled

cut, and the B cycle goes from A1 to the pinched cycle. This picture extends to one-cut

matrix models with generic polynomial potentials: instantons are given by eigenvalue tun-

neling, and their actions are B-type period, going from the filled cut to other critical points.

Based on the connection between instantons and the large order behavior of per-

turbation theory [27], we should expect these instantons to control the behavior of the

genus g amplitudes Fg of one-cut matrix models at large g. Indeed, one can verify in

examples [15] that

Fg(t) ∼ (2g)!(A(t))−2g, g � 1, (3.3)

– 8 –
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A1

B

A1 A2

B

Figure 2. The left hand side shows the spectral curve in the one-cut phase of the cubic matrix

model. The instanton action relevant in the double-scaling limit is obtained by calculating the B-

period of the one-form y(x)dx, which goes from the filled cut A1 to the pinched point. The two-cut

phase, in which the pinched point becomes a filled interval, is shown on the right hand side. The

instanton action is still given by the B-period integral.

where A(t) is a period of y(x)dx. Notice that (3.3) is just the leading behavior of the full

asymptotics at large g, which involves a series of corrections in 1/g (see for example [15]

for more details). The relevant period A(t) appearing in the leading asymptotics (3.3)

depends on the value of t. For small t, the behavior of the free energy is dominated by its

Gaussian part,

Fg(t) ≈
B2g

2g(2g − 2)t2g
, t→ 0, (3.4)

and the action A(t) in (3.3) is in fact the A1-period going around the filled cut, which is

just proportional to the ’t Hooft parameter:

AA1(t) = 2πit =
1

2

∮
A1

y(x)dx. (3.5)

Notice that this period vanishes at the origin t = 0. In other regions of the t-plane, the

large genus behavior will be controlled by B-periods AB(t) of the form (3.1). In general,

the action controlling the large order behavior at a given point t is the smallest period (in

absolute value). Notice that the B-type periods AB(t) vanish at critical values of the ’t

Hooft parameter and the other couplings, so in both cases the instanton action is given by

a vanishing cycle in moduli space. An equivalent way of formulating the rôle of instantons

is that their actions give the location of the singularities for the Borel transform of the

asymptotic series (2.1).

This result can be generalized to the two-cut phase of the cubic matrix model, where

the pinched point is now resolved into a second cut A2. The instanton action is still

given by the B-cycle integral, now going from the first cycle A1 to the second cycle A2,

and it controls the large order behavior of Fg(t1, t2) in the appropriate regions of moduli

space [17]. The above analysis of instanton configurations seems to apply to matrix models

with generic polynomial potentials. However, there are important matrix models, like the

Chern-Simons matrix model [3], which display a more subtle structure. It was found in [28],

for example, that due to the multivaluedness of the effective potential, the instanton actions

in the Chern-Simons matrix model are given by

2πi (t+ 2πin) , n ∈ Z. (3.6)

– 9 –
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For n = 0 one recovers the action governing the Gaussian behavior. The instantons with

n = ±1 can be detected through the large order behavior of the genus g free energies, once

the Gaussian part is subtracted.

It is then natural to ask if there is a common structure describing the instantons of

general matrix models. All the models we have in mind are characterized by the fact that

their planar limit is described by special geometry on a local Calabi-Yau manifold, and

it is then desirable to describe their instantons in that language as well. This is precisely

what we will do now.

3.2 Instantons and special geometry

We will suppose that we are given a local Calabi-Yau manifold, whose geometry is encoded

in a spectral curve y(x). This curve can be an algebraic curve in C × C, like the curves

arising in polynomial matrix models, or a curve in C∗×C∗, like the ones arising in Chern-

Simons matrix models and in the mirrors of toric Calabi-Yau threefolds. We will denote by

M the moduli space associated to the geometry described by y(x). In order to write down

the genus g amplitudes Fg, one has to choose first a symplectic frame. In order to make this

choice manifest we will write F
(f)
g , where f specifies the choice of frame. The different F

(f)
g

are related by symplectic transformations and they transform as quasi-modular forms [29].

Usually,M has special points corresponding to physical singularities, and near each of

these points there are preferred frames. A famous example is Seiberg-Witten theory [30],

whereM is the moduli space of the Seiberg-Witten elliptic curve and there are three special

points corresponding to the semiclassical regime, the monopole point and the dyon point.

The corresponding frames are usually called electric, magnetic and dyonic, respectively. In

the most relevant example for this paper, the ABJM matrix model, the moduli space M
has three critical points usually called large radius, orbifold and conifold points (see [9] for

a detailed explanation), so there will be three preferred frames.

Our main proposal, based on the results reviewed above, is that instanton actions are

always given by complex linear combinations of the periods of special geometry. More

precisely, we propose

A(f) (ti; ai, bi, c) =

s∑
i=1

(
ait

(f)
i + bi

∂F
(f)
0

∂ti

)
+ c, (3.7)

where s = dim(M) and ai, bi, c are complex numbers. The first term is the sum gives the

contribution of the A-cyles, while the second term gives the contribution of the B-cycles.

Notice that this is also the structure of central charges in special geometry. In particular,

we propose that the large genus behavior of the F
(f)
g at generic points of the moduli space

is governed by an instanton action of this form. A particular rôle is played by the instanton

actions which govern the large order behavior of the F
(f)
g near the singular points of moduli

space. We will denote these actions by

A(f)
p (ti) (3.8)

where p labels the singular points inM. According to our proposal, these actions are given

by (3.7), for a specific choice of the constants ai, bi, c which depends on the point p.
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Figure 3. The moduli space of the ABJM theory has three special points.

Of course, the main problem is to determine the values of the constants ai, bi, c which

describe the possible instantons in the problem at hand. Unfortunately we don’t have a

general principle to do this. However, when the singular point p is in the interior of M
(i.e. for singular points of the conifold or orbifold type), we expect the A

(f)
g to be given

by vanishing periods. One way to motivate this is to notice that, near the singular points,

the F
(f)
g (ti) diverge for all g. The instanton action controlling their large order behavior

should then vanish at those points. The identification of vanishing periods makes it possible

to fix the constants ai, bi and c in many situations and leads to a determination of the

large genus behavior near orbifold and conifold points. At generic points there will be a

competition between the different instanton actions, and the dominant contribution to the

large order behavior will be given by the instanton action which is smaller in absolute value

(or, equivalently, by the instanton action which is closest to the origin in the Borel plane).

Of course, the proposal above recovers and generalizes the known description of in-

stantons in matrix models, where the instanton actions are given by A or B periods, as

we have already discussed. In the remaining of this section we will analyze in detail the

ABJM matrix model following these general principles, and we will present ample evidence

that in this model the relevant instanton actions describing the large genus behavior are

indeed of the form (3.7).

3.3 Instantons in the ABJM model

The moduli space M of the ABJM matrix model was studied in detail in [9], and it is

shown schematically in figure 3.3. It can be parametrized by λ (which is a period), or

equivalently by the global modulus κ. Notice that, although in the original ABJM theory

λ is a rational number, in the planar solution it is naturally promoted to a complex variable,

andM will be regarded here as a complex one-dimensional space. There are three singular

points in this moduli space: the orbifold, large radius and conifold points. As explained

in [9], the first two points correspond respectively to the weak coupling limit and the

strong coupling limits of the ABJM theory. The conifold point, which occurs for κ = −4i,

or equivalently, at

λc = −2iK

π2
, (3.9)
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where K is Catalan’s constant, has no obvious interpretation in the gauge theory (although

we will comment on this later on).

The frame in which the genus g free energies Fg give the 1/N expansion of the matrix

model is the orbifold or weak coupling frame, as first discovered in [4]. We will study

this frame first, and we will determine the relevant instanton actions near the singular

points. In this frame, which we will denote by w, the appropriate period coordinate is λ,

and the orbifold singularity occurs at λ = 0. Near this singularity the relevant instanton

action is simply

A(w)
w (κ) = −4π2 λ(κ). (3.10)

Since the ’t Hooft coupling in the matrix model is t = 2πiλ, this action is the standard

one (3.5) controlling the Gaussian point. It vanishes of course at λ = 0. On the other

hand, it is easy to find the vanishing period at the conifold point, and this leads to the

instanton action

A(w)
c (κ) =

i

π

∂F
(w)
0

∂λ
+ 4π2λ− π2 =

iκ

4π
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, −1
2

∣∣∣∣∣− κ2

16

)
− π2. (3.11)

Finally, we have to consider the large radius, or strong coupling, point. The relevant action

turns out to be

A(w)
s (κ) =

i

π

∂F
(w)
0

∂λ
− π2

=
iκ

4π
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, −1
2

∣∣∣∣∣− κ2

16

)
− πκ

2
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
− π2.

(3.12)

For this action, the coefficients appearing in (3.7) cannot be determined by requiring it to

be a vanishing period, but it has a simple structure, since it is just given by

A(w)
s (κ) = A(w)

w (κ) +A(w)
c (κ). (3.13)

One can verify numerically that it is the right action in the sense that it controls the large

order behavior of F
(w)
g in the region where it dominates the asymptotics, as we will show

in the next subsection. It is tempting to conjecture that all instanton actions appearing

in the theory are just integer linear combinations of A
(w)
w (κ) and A

(w)
c (κ). This is in fact

what we would expect if these instantons could be identified with Euclidean D-branes of

the string dual, as we will argue later.

The actions (3.10), (3.11) and (3.12) can be written as period integrals on the spectral

curve of the ABJM matrix model. In terms of the variables

Y = ey, X = ex (3.14)

the spectral curve is given by the equation [4, 5, 7, 9]

Y +
X2

Y
−X2 + iκX − 1 = 0 . (3.15)
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Figure 4. The topology of the contours Cw, Cc, Cs for a vicinity of the orbifold point in the moduli

space.

The Riemann surface of (3.15) can be represented by two X-planes glued along the cuts

[1/a, a] and [−b,−1/b]. The position of the endpoints can be determined from

a+
1

a
+ b+

1

b
= 4, a+

1

a
− b− 1

b
= 2iκ . (3.16)

Let us note that a, b→ 1 at the orbifold (weak coupling) point, and that y has a logarithmic

singularity at the origin (and at infinity) on one of the two X-sheets. The actions describing

the large g behavior can be represented as

Ap =
1

2

∮
Cp
y(x)dx (3.17)

where the contours Cp are depicted in figure 4.

As a last remark, notice that these actions appear in pairs A
(w)
p , −A(w)

p , and this is

reflected in the fact that the genus expansion that they govern involves only even powers

of the string coupling constant. Equivalently, there are singularities in the Borel plane of

the gs coupling constant at the points ±A(w)
p . This is also the case in simpler cases related

to noncritical string theory, like the Painlevé I equation (see for example [31]).

As explained above, at each point in moduli space we expect the large order behavior

to be dominated by the smallest action in absolute value. In figure 5 we show the absolute

value of the instanton actions in the weakly coupled frame, and along two different direc-

tions in the complex moduli space parametrized by κ: the real axis (left) and the imaginary

axis (right). For real κ� 1 (which corresponds to the strong coupling regime λ� 1), the

smallest instanton action is A
(w)
s , while near the origin the smallest action is A

(w)
w . For

λ imaginary and near the conifold point λc, the smallest instanton action is clearly A
(w)
c .

For generic points in the moduli space there is a competition between the different actions.

For example, for imaginary κ, there is a point κ∗ where∣∣∣A(w)
c (κ∗)

∣∣∣ =
∣∣∣A(w)

w (κ∗)
∣∣∣ . (3.18)
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Figure 5. In this figure we depict the absolute value of the three instanton actions in the orbifold

or weakly coupled frame. On the left side, the horizontal axis represents the positive real axis

of the κ variable. The curve in green, which vanishes at the origin, is |A(w)
w (κ)|, while the blue

and red lines represent |A(w)
c (κ)| and |A(w)

s (κ)|, respectively. Notice that, when κ is large (i.e. the

strong coupling region), the smallest action in absolute value is A
(w)
s (κ). On the right side, the

horizontal axis represents the imaginary axis of the κ variable. The conifold action A
(w)
c (κ) vanishes

at κc = −4i, and therefore dominates the large order behavior near that point.

This is the point where the two lines cross in the graphic on the right side of figure 5. For

|κ| > |κ∗| we should expect the large order behavior to be controlled by the conifold action

A
(w)
c , while for |κ| < |κ∗| it should be controlled by the weak coupling action A

(w)
w . We will

present explicit checks of these expectations in a moment.

So far we have made the analysis in the weakly coupled frame, but we can do the anal-

ysis in the other preferred frames. It turns out that the relevant instanton actions near the

singular points are just given by the analytic continuations of the instanton actions in other

frames. This is not surprising, since for example vanishing periods near a singular point are

uniquely defined, independently of the frame. This in particular means that the large genus

behavior of the F
(f)
g in different frames will be governed by the same instanton action.

Let us consider for example the conifold frame. An appropriate flat coordinate in this

frame is given by [8, 9]

λ(c) =
1

4π

∞∑
n=0

an
(n+ 1) 24n

yn+1, (3.19)

where

y = 1 +
κ2

16
, an =

1(
2n
n

) n∑
k=0

(
2k

k

)(
4k

2k

)(
2n− 2k

n− k

)(
4n− 4k

2n− 2k

)
. (3.20)

This coordinate vanishes at the conifold point y = 0. The conifold free energies near this

point behave as [8]

F (c)
g ∼ B2g

2g(2g − 2)

(
2πiλ(c)

)2−2g
, g ≥ 2, (3.21)

and we would expect the appropriate instanton action in this frame to be

A(c)
c (κ) = −4π2λ(c). (3.22)
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Indeed, one can verify that this is just the analytic continuation of (3.11) to κ = −4i.

Similar considerations apply to the other instanton actions in the conifold and strong

coupling frame.

3.4 Large order behavior

We now provide some numerical evidence that the actions we have found control indeed

the large order behavior of the genus expansion. We will only consider the behavior in

the weak coupling frame, but similar considerations and tests can be made for the other

frames. For simplicity of notation, in this subsection we will remove the superscript (w) in

our expressions. Our numerical analysis is done for the original sequence Fg coming from

the matrix model. It can be easily shown that the redefinition of the Fgs which occurs

when we use the type IIA parameters, as explained in (2.19), does not change the leading

asymptotics (3.3), and it only affects the subleading 1/g corrections.

Generically, the instanton actions we have found are complex, and we will write them as

Ap(λ) = |Ap(λ)| eiθp(λ). (3.23)

If the genus g amplitudes are real (as it happens for example for λ and k real), complex

instantons governing the large order behavior must appear in complex conjugate pairs (this

was pointed out already in [14], in ordinary quantum mechanics). This means that, for

real λ, the large order behavior of Fg(λ) must be given by

Fg(λ) ∼ Γ(2g − 1)
{
Cp(λ) (Ap(λ))−2g + Cp(λ)

(
Ap(λ)

)−2g
}

∼ Γ(2g − 1) |Ap(λ)|−2g cos (2gθp(λ) + δp(λ)) , g � 1.
(3.24)

In this equation, Cp(λ) is the next correction to the asymptotics, which in some simple

matrix models can be obtained by a one-loop calculation in the background of an instan-

ton [15, 23, 24], and

δp(λ) = arg (Cp(λ)) . (3.25)

The choice of instanton action here depends on the value of λ, as explained above. If both

(Ap(λ))2 and the Fg(λ) are real, the large genus behavior is given simply by

Fg(λ) ∼ Γ(2g − 1) (Ap(λ))−2g , g � 1. (3.26)

This is what happens for example for λ imaginary and negative, near the conifold point λc.

When the instanton action is complex, the asymptotics is much harder to study nu-

merically, since the standard techniques of acceleration of convergence (like Richardson

extrapolation) do not apply to the oscillatory behavior (3.24), and in addition the phase

δp(λ) is not known. In these cases the sequence

Rpg = (−1)g+1 πFg

Γ(2g − 1) |Ap(λ)|−2g+1 (3.27)

should behave as

Rpg ∼ cos (2gθp(λ) + gπ + δp(λ)) , (3.28)
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Figure 6. In these figures, the dots represent the sequence (3.27) for values of λ in the strong

coupling region: λ ≈ 1.2838 (left) and λ ≈ 4.6687 (right). The action is then As(λ), given in (3.12).

The continuous line represents the oscillatory behavior in the r.h.s. of (3.28), where the angle is the

one associated to the strong coupling action θs(λ).
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Figure 7. In these figures, the dots represent the fifth Richardson transform of the sequence (3.29)

for values of λ along the negative imaginary axis λ ≈ −0.1386 i (left) and λ ≈ −0.0620 i (right), and

for the conifold and the weak coupling action, respectively. They converge quite rapidly to unity,

verifying in this way that the proposed instanton actions control the large order behavior of the

genus g free energies.

i.e. it should lead to an oscillatory behavior in g, with (unknown) constant amplitude but

with a known frequency given by θp(λ). The factor (−1)g+1 in (3.27) has been introduced

for convenience, in view of the forthcoming discussion on Borel summability, and it leads

to the shift by gπ in (3.28).

When the action is real, we can actually extract the value of the instanton action from

the sequence

Qpg =
4g2Fg(λ)

Fg+1(λ) (Ap(λ))2 (3.29)

which as g → ∞ should asymptote 1. Standard acceleration methods like Richardson

extrapolation can be used to test this behavior to high precision, as in [15].

We now present two tests of the large order behavior of the genus g free energies Fg,

as predicted by the instanton analysis of the previous subsection.

For λ real and large, we expect the large order behavior to be controlled by the ac-

tion (3.12). This action is complex, and should lead to an oscillatory behavior in Fg. We
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Figure 8. Singularities in the first quadrant of the Borel plane, for λ ∼ 1.

can then compare the sequence Rsg, for g = 2, · · · , 28, as computed numerically in (3.27),

to the expected behavior (3.28). This is done in figure 6 for two values of λ in the strong

coupling region. The agreement is rather good. In order to plot the continuous line in

these figures, we have taken δs(λ) = −2θs(λ), which leads to a good matching.

When λ (or κ) is on the negative imaginary axis, the relevant instanton actions are

the conifold and the weak coupling actions, as shown in the figure on the right in figure 5.

These are real and pure imaginary, respectively. Therefore, we can use the sequence (3.29)

and its Richardson transforms to test the expected large order behavior. In this region

there is a competition between the conifold and weak coupling instanton actions, and

we should pass from a regime dominated by the weak coupling action near λ = 0, to a

regime dominated by the conifold action near λ = λc. This is precisely what the numerical

analysis shows. As an example, we show in figure 7 the fifth Richardson transform of the

sequence (3.29) for two different values of λ and two different instanton actions: on the

left, we consider λ ≈ −0.1386 i and the conifold action, while on the right we consider

λ ≈ −0.0620 i and the weak coupling action. As we see, the expected asymptotic value

(unity) is reached quite accurately.

3.5 Borel summability

In the physical ABJM theory, λ is real and gs is purely imaginary. The expansion (2.1)

should be written in terms of the real coupling constant 2π/k, i.e. as

F (λ, k) =

∞∑
g=0

(
2π

k

)g−2

(−1)g−1Fg(λ). (3.30)

We get an extra (−1)g−1 sign at each genus, and this is what motivated the introduction

of this sign in (3.27). Equivalently, this leads to an extra −i factor in the instanton

actions computed above. We can now ask whether this factorially divergent series is Borel

summable or not. At strong coupling, the behavior of the genus g free energy (−1)g−1Fg(λ)
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is oscillatory for generic λ. This is because the strong coupling action (3.12), which controls

the asymptotics in this regime, is complex:

Im (−iAs(λ)) = π2. (3.31)

In fact, for large λ we have,

− iAs(λ) = 2π2
√

2λ+ π2i +O
(

e−2π
√

2λ
)
, λ� 1. (3.32)

This suggests that the 1/N expansion is Borel summable for generic values of λ in the

strong coupling region, as it happens in simple quantum-mechanical examples [14]. More

precisely, Borel summability requires that there are no instantons with positive real action,

i.e. that there are no singularities along the positive real axis in the Borel plane of the

coupling constant 2π/k. For λ > 1/4 none of the actions Ap(λ) lies on the positive real

axis. This is illustrated in figure 8, which shows the singularities in the first quadrant of the

Borel plane for λ ∼ 1. They are associated to the instanton actions −iAs(λ), −iAw(λ), and

to the conjugate action (−iAc(λ))∗. Notice that there are other singularities in the other

quadrants, related to the ones shown in figure 8 by flipping the sign and by conjugation.

Since

Im (−iAc(κ)) = π2 (1− 4λ(κ)) , (3.33)

the conifold action is real for λ = 1/4, and we have in principle an obstruction to Borel

summability. It might happen that there are other instantons in the theory which we have

not identified and lead to singularities in the real axis, even at strong coupling. However,

if all the instantons are integer linear combinations of (3.10) and (3.11), as we conjectured

before, there will be only a countable set of values of λ for which this happens.

Notice that, at large λ, the imaginary part of the dominant instanton action is sublead-

ing, and the action is approximately real. This peculiar behavior, in which Borel summabil-

ity is lost in some limit of the parameter space of the model, has been found before in much

more conventional models. Indeed, as shown in [32], the classical O(N) one-dimensional

spin chain has a Borel summable 1/N expansion, where each term in the expansion is itself

a function of the temperature. However, in the low temperature limit the imaginary part

of the instanton action is subleading. Correspondingly, when each term in the 1/N series

is truncated to its low-temperature limit, the resulting expansion is not Borel summable

anymore. Nevertheless, it should be kept in mind that in general the asymptotics does not

commute with taking limits in parameter space. In the case of ABJM, for example, the

asymptotics of the strongly coupled Fg (where we neglect worldsheet instanton corrections)

is not governed by the strong coupling limit of the instanton action (3.32).

We conclude that for generic, real values of λ in the strong coupling region, the genus

expansion is very likely Borel summable. This means that all the information about the

partition function of the dual superstring theory can be retrieved from the perturbative

genus expansion, by Borel resummation. This is in contrast with the genus expansion of

unitary models coupled to gravity, which is not Borel summable [33]. Of course, the lack of

Borel summability is not a problem if we have an unambiguous non-perturbative definition,

as it is the case here. It just means that we have to add explicit non-perturbative effects in
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the theory in a careful way, as illustrated for example in [34]. But it is interesting that type

IIA superstring on this AdS4 background leads to a Borel resummable string expansion,

since this means that it represents a stable background with respect to quantum-mechanical

tunnelling effects in the string coupling constant.

Let us now consider the analytic continuation of the ABJM theory to an imaginary

value of the Chern-Simons level,

k = iγ, γ ∈ R, (3.34)

so that λ is also imaginary. In this case gs is real, and the action controlling large order

behavior near λ = λc is the conifold action, which is also real. The free energies Fg have

all the same sign now and the expansion in 1/γ is not Borel summable.

3.6 Double scaling limit near the conifold point

One interesting aspect of the ABJM free energy is the existence of the critical point (3.9)

for an imaginary value of the coupling, which corresponds in the Calabi-Yau language to

a conifold point. The genus g free energies Fg(λ) are singular at this point, and their

behavior near λ = λc is given by

Fg ∼ Cg
(

2π2i (λ− λc)
log(λ− λc)

)2−2g

, g ≥ 2, (3.35)

where

Cg =
B2g

2g(2g − 2)
. (3.36)

This is of course the critical behavior associated to the c = 1 string at the self-dual radius

(see for example [35]). The scaling variable is

µ ∼ λ− λc
log(λ− λc)

. (3.37)

This c = 1 behavior is expected from the Calabi-Yau point of view [36], but it is more

surprising from the point of view of ABJM theory and its string dual.

The scenario one finds for ABJM theory near λc (i.e. a non-trivial critical point at imag-

inary ’t Hooft coupling, a non-trivial double-scaling limit, and the lack of Borel summability

which signals an instability) has been advocated in [37, 38] in order to analytically continue

AdS theories to de Sitter space. It would be interesting to understand this better.

4 Instanton at strong coupling

Based on the AdS/CFT correspondence, we would expect that the instanton configura-

tions that we have found in the matrix model/gauge theory context should correspond to

instanton configurations in the string theory dual. A natural source for such instanton

effects are Euclidean D-branes wrapped around submanifolds in the target AdS4×CP3. In

this section, we want to interpret the strong coupling instanton As (which is the dominant

configuration in the strongly coupled region) as a D-brane configuration, and we will find a
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D2-brane whose action coincides with the action As at large λ. Notice that, after including

the coupling constant, the action (3.32) becomes, at strong coupling,

k

2πi
As(λ) ≈ kπ

√
2λ+

πik

2
. (4.1)

In terms of the string coupling constant this can be also written as Ast/gst, where

Ast ≈
1

4

(
L

`s

)3(
1 + 2πi

`2s
L2

)
. (4.2)

The leading part of this action has the appropriate form for a extended object in three

dimensions, and it is natural to identify it with an Euclidean D2 brane. In fact, it can be

written as

TD2vol(RP3) (4.3)

and seems to correspond to an Euclidean D2 brane wrapping a RP3 inside CP3. We will

now make this more precise by an explicit calculation. Note from (4.2) that the imaginary

part of the instanton action, which makes the 1/N expansion Borel summable, is in fact

an α′ correction. This means that Borel summability is in this case a stringy effect, and it

is invisible in the supergravity limit.

4.1 D2-brane instantons

We work in the coordinate system for CP3 given in appendix A. The metric has the

form (A.7). We consider a D2-brane wrapping the submanifold of fixed α with ϑ1 = ϑ2 = ϑ

and ϕ1 = −ϕ2 = ϕ. The metric is that of a warped RP3 (note that the period of χ is 2π)

ds2 =
L3

4k

[
dϑ2 + sin2 ϑ dϕ2 + sin2 α (dχ+ cosϑ dϕ)2

]
, (4.4)

and in addition in the world-volume we include a field strength Fϑϕ = E sinϑ.

The classical action including the Dirac-Born-Infeld (DBI) and Chern-Simons (CS)

terms is

SD2 = TD2

∫
e−Φ

√
det(g + 2πα′F ) + TD2

∫
πiα′P [C1] ∧ F , (4.5)

where P [C1] is the pullback to the world-volume of the one-form (A.9), which in our

subspace is

C1 =
k

2

[
cosα(dχ+ cosϑ dϕ)− dχ− dϕ

]
. (4.6)

The extra dχ and dϕ terms, which are exact, make the expression regular at α = ϑ = 0.

Similar terms with opposite signs will be regular at α, ϑ = π.

Plugging our ansatz in we find

SD2 =
TD2L

3

8

∫
dχdϑ dϕ sinϑ

[
sinα

√
1 + β2E2 + iβE(cosα− 1)

]
, (4.7)

with β = 8πk/L3 =
√

2/λ (setting α′ = 1). Note that we are using conventions where the

D2-brane tension is TD2 = 1/4π2.
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The equation of motion for α gives the relation

βE = −i cosα . (4.8)

Then the electric flux density is the conserved momentum dual to the electric field

p = i
δL
δE

= β sinϑ . (4.9)

The classical action should be expressed in terms of p, rather than E, and the Legendre

transform gives

Sclassical
D2 =

TD2L
3

8

∫
dχdϑ dϕ ipE + SD2 =

L3

4
= πk

√
2λ , (4.10)

In precise agreement with the leading, real part of the action of the matrix model instan-

ton (4.1). This is the same as the action of k/2 string instantons.

Above we wrote the DBI action suppressing fluctuations in the three orthogonal di-

rections in CP3. It is easy to include them and one finds that this D2-brane is a classical

solution which is unstable to fluctuations in these three directions.

4.2 Supersymmetry

The D-brane we have found should be a BPS state since RP3 is a generalized Lagrangian

submanifold in CP3 (this has been established in a related context in [39]). We will now

confirm this by direct calculation, see [40–42] for similar considerations.

Our choice of frame and the corresponding expression for the Killing spinors are given

in appendix B. For our ansatz (with all the other fields set to zero) they are

ε = e
α
4

(γ̂γ4−γ7\)e
ϑ
4

(γ̂γ5−γ8\+γ79+γ46)e−
ξ1
2

(γ̂γ\−γ47)− ξ2
2

(γ58−γ69)ε0 =Mε0 , (4.11)

ε0 is a constant 32-component spinor and the Dirac matrices satisfy γ0123456789\ = 1.

The angles ξi are the phases from (A.4)

ξ1 =
χ+ ϕ

2
, ξ2 =

χ− ϕ
2

. (4.12)

The supersymmetries preserved by a D2-brane are determined by solving the following

equation on the D2-brane solution

Γ ε = ε , (4.13)

where Γ for our D2-brane solution is given by (see e.g. [41])

Γ =
i

LDBI

(
Γ(3) + 2πα′Fϑϕ Γ(1)γ\

)
. (4.14)

Here

Γ(3) = Γµ1µ2µ3
∂xµ1

∂σ1

∂xµ2

∂σ2

∂xµ3

∂σ3
, Γ(1) = Γχ , (4.15)
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are the pullback of the curved space-time Dirac matrices in the world-volume directions

(with and without the directions of the field strength Fϑϕ). Plugging in our choice of

coordinates and the details of the solution we find

Γ(3) =
1

8
sinα sinϑ γ758 e

α
2

(γ56−γ89) ,

2πα′FϑϕΓ(1) = − i

8
cosα sinα sinϑ γ7 ,

LDBI =
1

8
sin2 α sinϑ .

(4.16)

And we therefore find that (4.13) reads(
i γ758 e

α
2

(γ56−γ89) + cosαγ7\

)
ε = sinα ε . (4.17)

Simple manipulations allow to write this equation as

− i γ58\ e
α
2

(2γ7\+γ56−γ89) ε = ε . (4.18)

Next we need to commute this operator through M in (4.11). As it turns out, only

the α dependent term in M does not commute through and we find the equation

− iM−1γ58\ e
α
2

(2γ7\+γ56−γ89) ε = −i γ58\ e
α
2

(γ̂γ4+γ7\+γ56−γ89) ε0 = ε0 . (4.19)

It is easy to see that the operator appearing in this equation squares to unity, and half its

eigenvalues are +1 and half −1. Since it does not commute with the Si operators in (B.6),

the D2-brane is 1/2 BPS.

Note in particular that for α = 0 we find the equation i γ58\ε0 = ε0, which is the

projector equation for a fundamental string wrapping the ϑ1, ϕ1 sphere. In this limit

the D2-brane instanton indeed degenerates to k/2 regular string instantons. While the

supercharges at different values of α are not the same, it is possible to choose the orientation

of the D2-branes in CP3 such that their supersymmetry is compatible with the supercharge

used for localization and with world-sheet instantons (of certain orientation). Therefore,

these D2-branes have the right structure to be responsible for the non-perturbative effects

we have found in the matrix model.

5 Conclusions and open problems

In this paper we have built on the recent progress in calculating the superstring theory

partition function of ABJM theory at all genera [9] in order to study nonperturbative

effects in the string coupling constant. Conceptually, our approach is similar to what had

been pursued in the case of noncritical strings [10–13]: first, we extract spacetime instanton

actions from the large genus behavior, and then we try to identify some of these instantons

with Euclidean D-brane configurations. Of course, our setting is more complex since all

relevant quantities are non-trivial functions of the ’t Hooft parameter. In the calculation of

the superstring free energies we have used the large N dual description of ABJM theory in
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terms of a matrix model [2], and we have formulated a general strategy to extract spacetime

instantons from matrix models which generalizes previous results in, for example, [15, 17].

Our work raises many questions and can be pursued in various ways. First of all, since

our description of matrix model instantons is made in the language of special geometry, it

should determine the large order behavior of the genus g amplitudes in general topological

string models, not necessarily encoded in matrix integrals. It would be interesting to study

simple models with a spectral curve description, like topological string theory on local

P2, in order to test the method and learn about possible non-perturbative structures in

topological strings. The general picture we have developed might shed further light in

related contexts, like the models studied in [47].

It would be very interesting as well to obtain a deeper understanding of the ABJM

matrix model instantons. One should study in more detail the D2-brane interpretation of

the instanton that dominates at strong coupling. In particular, it would be interesting to

identify the source of the imaginary, α′-correction to the instanton action in (4.2). Another

interesting issue is the interpretation of the process of eigenvalue tunneling. As pointed

in [5, 6], the ABJM matrix model is closely related to that of Chern-Simons theory on

S3/Z2. The non-perturbative partition function of Chern-Simons requires summing over all

partitions (N1, N2) of the total numbers of eigenvalues N between the two cuts [34, 48]. For

ABJM one performs an analytical continuation such that the total number of eigenvalues

is zero, i.e. one considers the sector with eigenvalues (N,−N). Then one has regular

“particle” eigenvalues in one of the cuts while the other cut has “hole” eigenvalues. Moving

eigenvalues between the cuts, which in Chern-Simons on S3/Z2 implements the sum over

partitions, changes in ABJM theory the total rank of both gauge groups, since it leads to

the process

(N,−N)→ (N ± 1,−N ∓ 1). (5.1)

One interesting question is whether this process, which is ultimately responsible for the

appearance of the strong coupling instanton, has an interpretation directly in the gauge

theory or in the superstring dual. Finally, it would be important to identify the weakly

coupled instanton (3.10) as a D-brane configuration. It is easy to see that in string units

this action scales like L4, so it seems to correspond to an Euclidean D4-brane, but since its

action is purely imaginary in ABJM theory it is not obvious what is its geometric meaning.
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A Metric

In this appendix we follow the notations in [43] (with the replacement χ→ 2χ). The metric

on AdS4 × CP3 is

ds2 =
L3

4k

(
ds2

AdS4
+ 4ds2

CP3

)
. (A.1)

For the AdS4 part we may use the global Lorentzian metric

ds2
AdS4

= − cosh2 ρdt2 + dρ2 + sinh2 ρ
(
dθ2 + sin2 θ dψ2

)
. (A.2)

The metric on CP3 can be written in terms of four complex projective coordinates zi as

ds2
CP3 =

1

ρ2

4∑
i=1

dzi dz̄i −
1

ρ4

∣∣∣∣ 4∑
i=1

zi dz̄i

∣∣∣∣2 , ρ2 =

4∑
i=1

|zi|2 . (A.3)

In the following we choose a specific representations in terms of angular coordinates

(used also in [44, 45]). We start by parametrizing S7 ⊂ C4 as

z1 = cos
α

2
cos

ϑ1

2
ei(2ϕ1+2χ+ζ)/4 , z3 = sin

α

2
cos

ϑ2

2
ei(2ϕ2−2χ+ζ)/4 ,

z2 = cos
α

2
sin

ϑ1

2
ei(−2ϕ1+2χ+ζ)/4 , z4 = sin

α

2
sin

ϑ2

2
ei(−2ϕ2−2χ+ζ)/4.

(A.4)

The metric on S7 is then given by

ds2
S7 =

1

4

[
dα2 + cos2 α

2
(dϑ2

1 + sin2 ϑ1 dϕ2
1) + sin2 α

2
(dϑ2

2 + sin2 ϑ2 dϕ2
2)

+ sin2 α

2
cos2 α

2
(2dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)2 +

1

4
(dζ + 2A)2

]
, (A.5)

A = cosα dχ+ cos2 α

2
cosϑ1 dϕ1 + sin2 α

2
cosϑ2 dϕ2 . (A.6)

The angle ζ appears only in the last term and if we drop it we end up with the metric on CP3

ds2
CP3 =

1

4

[
dα2 + cos2 α

2
(dϑ2

1 + sin2 ϑ1 dϕ2
1) + sin2 α

2
(dϑ2

2 + sin2 ϑ2 dϕ2
2)

+ sin2 α

2
cos2 α

2
(2dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)2

]
.

(A.7)

The ranges of the angles are 0 ≤ α, ϑ1, ϑ2 ≤ π and 0 ≤ ϕ1, ϕ2, χ ≤ 2π.

In addition to the metric, the supergravity background has the dilaton, and the 2-form

and 4-form field strengths from the Ramond-Ramond (RR) sector

e2Φ =
L3

k3
, F4 =

3

8
L3 dΩAdS4 , F2 =

k

2
dA . (A.8)

Here dΩAdS4 is the volume form on AdS4 and F2 is proportional to the Kähler form on CP3.
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To write down the general D-brane action in this background one also needs the po-

tentials for these forms. The one-form potential is, up to gauge transformations

C1 =
k

2
A , (A.9)

with A defined in (A.6). It is easy to write down C3, the three-form potential for F4 and

C5, its magnetic dual, but they are not required for our calculation in section 4.1.

The relation between the parameters of the string background and of the field theory

are (for α′ = 1 and in the supergravity and tree-level limit)

L3

4k
= π

√
2N

k
= π
√

2λ . (A.10)

B Killing spinors

To write down the Killing spinors it is useful to start in 11-dimensions with the AdS4

metric in (A.2) and the S7 metric in (A.5).

We take the elfbeine (ignoring the factor of L3/k)

e0 =
1

2
cosh ρdt , e1 =

1

2
dρ , e2 =

1

2
sinh ρdθ , e3 =

1

2
sinh ρ sin θ dψ ,

e4 =
1

2
dα, e5 =

1

2
cos

α

2
dϑ1, e6 =

1

2
sin

α

2
dϑ2,

e7 =
1

2
cos

α

2
sin

α

2

(
cosϑ1 dϕ1 − cosϑ2 dϕ2 + 2dχ

)
,

e8 =
1

2
cos

α

2
sinϑ1 dϕ1, e9 =

1

2
sin

α

2
sinϑ2 dϕ2 ,

e\ = −1

4

(
dζ + 2 cos2 α

2
cosϑ1 dϕ1 + 2 sin2 α

2
cosϑ2 dϕ2 + 2 cosα dχ

)
.

(B.1)

Killing spinor equation for this background comes from the supersymmetry transfor-

mation of the gravitino

δΨµ = Dµε−
1

288

(
Γ νλρσ
µ − 8δνµΓλρσ

)
Fνλρσε , Dµε = ∂µε+

1

4
ωabµ γabε . (B.2)

The 4-form corresponding to the AdS4 × S7 solution is Fνλρσ = 6 ενλρσ, where the epsilon

symbol is the volume form on AdS4 (so the indices take the values 0, 1, 2, 3). Plugging this

into the variation above one finds the Killing spinor equation

Dµε = γ̂Γµε , µ = 0, 1, 2, 3

Dµε =
1

2
γ̂Γµε , µ = 4, 5, · · · , 9, 10

(B.3)

where µ runs over all 11 coordinates, and γ̂ = γ0123. Note that small γ have tangent-space

indices while capital Γ carry curved-space indices.

The general solution to these equations is

e
α
4

(γ̂γ4−γ7\)e
ϑ1
4

(γ̂γ5−γ8\)e
ϑ2
4

(γ79+γ46)e−
ξ1
2
γ̂γ\e−

ξ2
2
γ58e−

ξ3
2
γ47e−

ξ4
2
γ69e

ρ
2
γ̂γ1e

t
2
γ̂γ0e

θ
2
γ12e

ψ
2
γ23ε0

=Mε0 , (B.4)
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where the ξi are given by

ξ1 =
2ϕ1+2χ+ζ

4
, ξ2 =

−2ϕ1+2χ+ζ

4
, ξ3 =

2ϕ2−2χ+ζ

4
, ξ4 =

−2ϕ2−2χ+ζ

4
.

(B.5)

In (B.4) ε0 is a constant 32-component spinor and the Dirac matrices were chosen such that

γ0123456789\ = 1. A similar calculation in a different coordinate system was done in [46].

To see which Killing spinors survive the orbifolding from M-theory to type IIA, we

write the spinor ε0 in a basis which diagonalizes

iγ̂γ\ε0 = s1ε0 , iγ58ε0 = s2ε0 , iγ47ε0 = s3ε0 , iγ69ε0 = s4ε0 . (B.6)

All the si take values ±1 and by our conventions on the product of all the Dirac matrices,

the number of negative eigenvalues is even. Now consider a shift along the ζ circle, which

changes all the angles by ξi → ξi + δ/4, the Killing spinors transform as

Mε0 →Mei δ
8

(s1+s2+s3+s4)ε0 . (B.7)

This transformation is a symmetry of the Killing spinor when two of the si eigenvalues are

positive and two negative and not when they all have the same sign (unless δ is an integer

multiple of 4π). Note that on S7 the radius of the ζ circle is 8π, so the Zk orbifold of S7 is

given by taking δ = 8π/k. The allowed values of the si are therefore

(s1, s2, s3, s4) ∈
{

(+,+,−,−), (+,−,+,−), (+,−,−,+),

(−,+,+,−), (−,+,−,+), (−,−,+,+)

}
(B.8)

Each configuration represents four supercharges, so the orbifolding breaks 1/4 of the su-

percharges (except for k = 1, 2) and leaves 24 unbroken supersymmetries.
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[32] S. Hikami and E. Brézin, Large order behavior of the 1/n expansion in zero-dimensions and

one-dimensions, J. Phys. A 12 (1979) 759 [INSPIRE].

[33] B. Eynard and J. Zinn-Justin, Large order behavior of 2-D gravity coupled to D < 1 matter,

Phys. Lett. B 302 (1993) 396 [hep-th/9301004] [INSPIRE].

[34] M. Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and

topological strings, JHEP 12 (2008) 114 [arXiv:0805.3033] [INSPIRE].

[35] I.R. Klebanov, String theory in two-dimensions, hep-th/9108019 [INSPIRE].

[36] D. Ghoshal and C. Vafa, C = 1 string as the topological theory of the conifold, Nucl. Phys. B

453 (1995) 121 [hep-th/9506122] [INSPIRE].

[37] A. Polyakov, de Sitter space and eternity, Nucl. Phys. B 797 (2008) 199 [arXiv:0709.2899]

[INSPIRE].

[38] A. Polyakov, Global warming of De Sitter space, talk presented at Strings, (2008).

[39] S. Hohenegger and I. Kirsch, A note on the holography of Chern-Simons matter theories with

flavour, JHEP 04 (2009) 129 [arXiv:0903.1730] [INSPIRE].

[40] Y. Hikida, W. Li and T. Takayanagi, ABJM with flavors and FQHE, JHEP 07 (2009) 065

[arXiv:0903.2194] [INSPIRE].

[41] P. Koerber and L. Martucci, From ten to four and back again: how to generalize the

geometry, JHEP 08 (2007) 059 [arXiv:0707.1038] [INSPIRE].

[42] P. Koerber, Lectures on generalized complex geometry for physicists, Fortsch. Phys. 59

(2011) 169 [arXiv:1006.1536] [INSPIRE].

[43] N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric

Chern-Simons theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787]

[INSPIRE].
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