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Abstract

We consider a nonparametric method to estimate copulas, i.e. functions linking joint
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1 Introduction

Knowledge of the dependence structure between ..nancial assets or claims is crucial to
achieve performant risk management in ..nance and insurance. Measuring dependence by
standard correlation is adequate in the context of multivariate normally distributed risks
or for assessing linear dependence. Contemporary ..nancial risk management however
calls for other tools due to the presence of an increasing proportion of nonlinear risks
(derivative assets) in trading books and the nonnormal behaviour of most ..nancial time
series (skewness and leptokurticity). Using estimates of risk dependence via conventional
correlation coe€cients neglects nonlinearities and leads in most cases to underestimation
of the global risk of a portfolio. Furthermore it is now well admitted that the choice of
the dependence structure, or similarly of the copula, is also often a key issue for numerous
pricing models in ..nance and insurance. This is especially true concerning the pricing and
hedging of credit sensitive instruments such as collateralised debt obligations (CDO) or

basket credit derivatives 2.

The copula of a multivariate distribution can be considered as the part describing its
dependence structure as opposed to the behaviour of each of its margins. One attractive
property of the copula is its invariance under strictly increasing transformation of the
margins 3. In fact, the use of copulas allows solving a di¢cult problem, namely ..nding
the whole multivariate distribution, by performing two easier tasks. The ..rst step starts
by modeling each marginal distribution. The second step consists of estimating a copula,
which summarizes all the dependence structure. However this second task is still in its
infancy for most of multivariate ..nancial series partly because of the presence of temporal
dependencies (serial autocorrelation, time varying heteroskedasticity,...) in returns of stock

indices, credit spreads between obligors, interest rates of various maturities...

2see e.g. Frey and McNeil (2001), Li (2000).
®Note also that scale invariant measures of dependence such as Kendall’s tau and Spearman’s rho can

be expressed by means of copulas. These quantities are often more informative and less misleading than

the usual coe¢cient of correlation. See Embrechts et al. (2002) for a discussion.



Estimation of copulas has essentially been developped in the context of i.i.d. samples.
If the true copula is assumed to belong to a parametric family C = {Cy, 6 € O}, consistent
and asymptotically normally distributed estimates of the parameter of interest can be
obtained through maximum likelihood methods. There are mainly two ways to achieve
this : a fully parametric method and a semiparametric method. The ..rst method relies
on the assumption of parametric marginal distributions. Each parametric margin is then
plugged in the full likelihood and this full likelihood is maximized with respects to 6.
Alternatively and without parametric assumptions for margins, the marginal empirical
cumulative distribution functions can be plugged in the likelihood. These two commonly
used methods are detailed in Genest et al. (1993) and Shi and Louis (1995) “.

Beside these two methods, it is also possible to estimate a copula by some nonparamet-
ric methods based on empirical distributions following Deheuvels (1978), (1981a,b) °.
The so-called empirical copulas resemble usual multivariate empirical cumulative distrib-
ution functions. They are highly discontinuous (constant on some data-dependent pave-
ments) and cannot be exploited as graphical device. In fact they are useless to help ..nding
a convenient parametric family of copulas by simple visual comparison on available data

sets.

To our best knowledge, nonparametric estimation of copulas in the context of time
dependence has not yet been studied theoretically in the literature. Clearly, this is an
important omission since most ..nancial series exhibit temporal dependence and copulas

are becoming more and more popular among practitioners °.

“see Cebrian, Denuit and Scaillet (2002) for inference under misspeci..ed copulas.
Ssee some asymptotic properties and extensions in Fermanian et al. (2002).
®see Bouyé et al. (2000) for a survey of ..nancial applications, Frees and VValdez (1998) for use in ac-

tuarial practice, and Patton (2001a,b), Rockinger and Jondeau (2001) for use in modelling conditional

dependencies.



In this paper we propose a nonparametric estimation method for copulas for time se-
ries, and use a kernel based approach. Such an approach has the advantage to provide a
smooth (dizerentiable) reconstitution of the copula function without putting any partic-
ular parametric a priori on the dependence structure between margins and without losing
the usual parametric rate of convergence. The approach is developped in the context of
multivariate stationary processes satisfying strong mixing conditions 7. Once estimates of
copulas and their derivatives are available (need of dicerentiability explains our choice of
a kernel approach), concepts such as positive quadrant dependence and left tail decreasing
behaviour may be empirically analysed. These estimates are also useful to draw simulated
data satisfying the dependence structure infered from observations 8. They are further
needed to build asymptotic con..dence intervals for our copula estimators. Nonparametric
estimators of copulas may also lead to statistics aimed to assess independence between
margins. These statistics are in the same spirit as kernel based tools used to test for serial

dependence for a univariate stationary time series °.

The paper is organized as follows. In Section 2 we outline our framework and re-
call the de..nition of copulas and some of their properties. In Section 3 we present the
kernel estimators of copulas and their derivatives, and characterize their asymptotic be-
haviour. Their use in estimation of measures of dependence between margins is also briety
described. Section 4 contains some Monte Carlo results for a stationary vector autoregres-
sive process of order one with Gaussian innovations. Anempirical illustration on European
and US stock index returns is provided in Section 5. Section 6 concludes. All proofs are

gathered in an appendix.

"Intuitively a process is strong mixing or a-mixing when observations at dicerent dates tend to behave
more and more independently when the time interval between dates gets larger and larger. See Doukhan

(1994) for relevant de..nitions and examples in ARMA and GARCH modelling with Gaussian errors.
8see Embrechts et al. (2002) for the description of an algorithm.
%see the survey of Tjostheim (1996).



2 Framework

We consider a strictly stationary process {Y;,t € Z} taking values in R" and assume
that our data consist in a realization of {Yy,t =1, ..., T}. These data may correspond to
observed returns of n ..nancial assets, say stock indices, at several dates. They may also
correspond to simulated values drawn from a parametric model (VARMA, multivariate
GARCH or dizusion processes), possibly ..tted on another set of data. Simulations are
often required when the structure of ..nancial assets is too complex, as for some derivative
products. This, in turn, implies that the sample length 7" can sometimes be controlled,
and asked to be succiently large to get satisfying estimation results.

We denote by f(y), F(y), the p.d.f. and c.df. of Y; = (Yi, ..., Y;) at point y =
(y1,---,yn)’. The joint distribution F provides complete information concerning the be-
haviour of Y;. The idea behind copulas is to separate dependence and marginal behaviour
of the elements constituting Y;. The marginal p.d.f. and c.d.f. of each element Yj; at point
v, j =1,...,n, will be written f;(y;), and Fj(y;), respectively. A copula describes how
the joint distribution F is "coupled™ to its univariate margins Fj, hence its name. Before
de..ning formally a copula and reviewing various useful dependence concepts, we would

like to refer the reader to Nelsen (1999) and Joe (1997) for more extensive treatments.

De..nition. (Copula)

A n-dimensional copula is a function C with the following properties:
1. domC = [0, 1]™.

2. C'is grounded, i.e. for every u in [0, 1]*, C'(u) = 0 if at least one coordinate u; = 0,

j=1..,n.

3. C'is n-increasing, i.e. for every a and b in [0,1]™ such that a < b, the C-volume
Ve ([a, b)) of the box [a, b] is positive.

4. If all coordinates of u are 1 except for some u;, j =1,...,n, then C(u) = u;.



The reason why a copula is useful in revealing the link between the joint distribution

and its margins transpires from the following theorem.

Theorem 1. (Sklar’'s Theorem)
Let F' be an n-dimensional distribution function with margins Fi, ..., F,,. Then there exists

an n-copula C' such that for all y in R",

F(y) = C(Fi(y1), .-, Fu(yn))- @)

If Fi,...,F, are all continuous, then C' is uniquely de..ned. Otherwise, C' is uniquely
determined on range F1 x ... x range F,,. Conversely, if C is an n-copula and Fi, ..., F,, are
distribution functions, then the function F' de..ned by (1) is an n-dimensional distribution

function with margins F, ..., Fi,.
As an immediate corollary of Sklar's Theorem, we have
C(ug, ..., up) = F(Ffl(ul),...,Fgl(un)), )
where Ffl,...,Fn—1 are quasi inverses of F, ..., F,,, namely

F () = inf{y| By (y) = uj}.

Note that, if F} is strictly increasing, the quasi inverse is the ordinary inverse. Copulas
are thus multivariate uniform distributions which describe the dependence structure of
random variables. Besides as already mentioned, strictly increasing transformations of the
underlying random variables result in the transformed variables having the same copula.

From expression (2), we may observe that the dependence structure embodied by the
copula can be recovered from the knowledge of the joint distribution F' and its margins
F;. These are the distributional objects that we propose to estimate nonparametrically
by a kernel approach in the next section. Before turning our attention to this problem,
let us review some relevant uses of copulas.

First copulas characterize independence and comonotonicity between random variables.
Indeed, n random variables are independent if and only if C'(u) = H;Ll uj, for all u, and

each random variable is almost surely a strictly increasing function of any of the others



(comonotonicity) if and only if C'(u) = min(uz, ...,uy), for all u. In fact copulas are
intimately related to standard measures of dependence between two real valued random
variables Y7; and Ya;, whose copula is C'. Indeed, the population versions of Kendall’s tau,

Spearman’s rho, Gini’s gamma and Blomqgvist’s beta can be expressed as:

1 1
myy = 1o [ Ewl ), g, @)
0 0 u2
1 1
Py, = 12/ / C(uq,ug)duy dug — 3, 4
e = A 1O 1 =)+ Clon, )l — ©)
ﬁthQ = 4C' 1/2 1/2)—1 (6)

Second copulas can be used to analyse how two random variables behave together
when they are simultaneously small (or large). This will be useful in examining the joint
behaviour of small returns, especially the large negative ones (big losses), which are of
particular interest in risk management. This type of behaviour is best described by the
concept known as positive quadrant dependence after Lehmann (1966). Two random
variables Y1; and Yy are said to be positively quadrant dependent (PQD) if, for all (y1,y2)
inIR2,

P[Ylt <y, Yo < 3/2] > P[Ylt < yl]P[Y% < y2]- )

This states that two random variables are PQD if the probability that they are simultane-
ously small is at least as great as it would be if they were independent. Inequality (7) can
be rewritten in terms of the copula C of the two random variables, since (7) is equivalent
to the condition C'(u1,u2) > ujug, for all (ui,us) in [0,1]2.

Finally inequality (7) can be rewritten P[Y1: < y1|Ya: < 2] > P[Y1: < 11] by applica-
tion of Bayes’ rule. The PQD condition may be strengthened by requiring the conditional
probability being a non increasing function of y2. This implies that the probability that
the return Y73, takes a small value does not increase as the value taken by the other return
increases. It corresponds to particular monotonicities in the tails. We say that a random

variable Y;; is left tail decreasing in Yy, denoted LT D(Y1|Y5), if P[Y1; < y1|Yo: <ol isa



non increasing function of y» for all ;. This in turn is equivalent to the condition that,
for all u; in [0, 1], C(uq, ug)/uy is NON increasing in uy, or OC(uy, ug)/Oug < C(uy,usz)/us
for almost all us.

In short, concepts such as independence, PQD or LTD, may be characterized in terms
of copulas, and thus may be checked (see for example the testing procedures developped in
Denuit and Scail let (2002) and Cebrian, Denuit and Scail let (2002)), once copulas

are empirically known. In the next section we develop estimation tools for that purpose.

3 Kernel estimators

We start with the de..nition of kernel estimators before moving to their asymptotic distri-

butions.

3.1 De..nitions

For given u; € (0,1), j =1,...,n, we assume that the c.d.f. Fj of Y}, is such that the
equation Fj(y) = u; admits a unique solution denoted (;(u;), or more compactly ¢; (if
there is no ambiguity).

To build our estimators we need to introduce kernels, i.e. real bounded symmetric 10

functions k;jon R such that

/k'j(:ﬁ)d:ﬁzl, j=1,...,n.

Let the n-dimensional kernel

k) = ] ks (e),

J=1
and its primitive function

K(x) = f[l/_ookj - f{lKj(a:j).

10The symmetry of the kernel may induce the so-called boundary bias for data with ..nite support.

Boundary bias is due to weight allocation by the ..xed symmetric kernel outside the density support when
smoothing is carried out near the boundary. This may happen, for example, when considering smoothing

of insurance loss data near the zero boundary.



For the sake of simplicity, we choose to work here with products of univariate kernels. We

could however extend easily our results to more general & and K. Let us denote further
n T n T
B — I B — N
k(x;h) jl_ll k; <hj> , K(x;h) jl_ll K; (hj) ,

where the bandwidth £ is a diagonal matrix with elements (%;)7_; and determinant |h]
(for a scalar z, |z| will denote its absolute value), while the individual bandwidths &; are
positive functions of 7" such that 7; — 0 when T — oo. Moreover, we denote by h. the
largest bandwidth among k1, ..., h,. The p.d.f. of Y}, at y;, i.e. f;(y;), will be estimated
as usually by

F (o) — -1 (Y=Y

fj(yj) = (Thj) Z k’] [y )

t=1 J

while the p.d.f. of Y; at y = (y1,...,un)’, i.6. f(y), will be estimated by

T

Fly) = (TR Y k(y = Yi ).

t=1
Hence, an estimator of the cumulative distribution of Yj; at some point y; is obtained

as
Bly) = [ fia)de, ®

while an estimator of the cumulative distribution of Y; at y is obtained as

PN

Fly) = /_yoo /_y;f(x) dx. ©)

If a single Gaussian kernel k;(z) = ¢(x) is adopted, we get

T

Fi(y)) =TV @ (5 — Yje) /1)
t=1

and

R T n

Fly)=TY 1] @ ((y; — Yje) /hy)

t=1 j=1

where ¢ and ® denote the p.d.f. and c.d.f. of a standard Gaussian variable, respectively.



In order to estimate the copula at some point u, we use a simple plug-in method, and

exploits directly expression (2):
C(u) = F(C), (10)

where ¢ = (C1, ...,Cn)" and ¢ = infer{y : Fj(y) > u;}. In fact {; corresponds to a kernel

estimate of the quantile of Y;; with probability level u; 1.

3.2 Asymptotic distributions

The asymptotic normality of kernel estimators for copulas can be established under suit-
able conditions on the kernel, the asymptotic behaviour of the bandwidth, the regularity

of the densities, and some mixing properties of the process.

Assumption 1. (kernel and bandwidth)
(a) Bandwidths satisfy Th2 — 0, or
(a’) Bandwidths satisfy Th? — 0 and the kernel k is even,

(b) The kernel k£ has a compact support.

Assumption 1 (b) could in fact be weakened, by controlling the tails of &, for instance
by assuming sup; |k;(x)| < (1+|x[)~* for every z and some a > 0, as in Robinson (1983).

This type of assumption is satis..ed by most kernels, in particular by the Gaussian kernel.

Assumption 2. (process)

(a) The process (Y:) is strong mixing with coe®cients «; such that ar = o(T'~%) for some
a>1,asT — oco.

(b) The marginal c.d.f. F;, 7 = 1,...,n are continuously dicerentiable on the intervals
[F{l(a) —¢, Fjl(b) +¢| for every 0 < a < b< 1 and some ¢ > 0, with positive derivatives

f;. Moreover, the ..rst partial derivatives of F' exist and are Lipschitz continuous on the

product of these intervals.

Msee e.g. Gouriéroux et al. (2000) and Scail let (2000) for use of this type of smooth quantile esti-
mates in risk management and portfolio selection as well as Azzalini (1981) for the asymptotic properties

in the i.i.d. case.

10



The asymptotic behaviour of C' is related to the limit in distribution of TY/2(F — F),
the smoothed empirical process associated with the sequence of R™-valued vectors (Y );>;.
We ..rst state the limiting behaviour of this smoothed empirical process before giving the

limiting behaviour of the smoothed copula process.

Theorem 2. (Smoothed empirical process)

Under Assumptions 1 and 2, the smoothed empirical process T1/2(F — F) tends weakly
to a centered Gaussian process G in [*°(R™) (the space of a.s. bounded functions on R™),
endowed with the sup-norm. The covariance function of G is

Cov(G(x),G(y)) =Y Cov(1{Yo < x},1{Y; < y}). (11)
teZ

Moreover, T/2sup, |(F — F)(x)| = op(1).

Theorem 3. (Smoothed copula process)
Under Assumptions 1 and 2, the process T/2(C —C') tends weakly to a centered Gaussian
process ¢'(G) in 1°°([0,1]™) endowed with the sup-norm, where the limiting process is given

by

& (G)(u1,. .. un) = Gy (u1), ..., E Huy))

A direct consequence of Theorem 3 is the following asymptotic normality result.

Corollary 1. (Joint normality of copula estimators)
Under Assumptions 1 and 2, for any (v1,...,vq) in ]0,1]"¢, the d-dimensional random
vector

S=T2((C-C)v1),....(C= O)(va))

tends weakly to a centered Gaussian vector.

Itis possible to derive an explicit form of the asymptotic covariance matrix of the vector

S after some tedious computations (see Equation (16) at the end of the appendix). This

11



covariance matrix will be used in the empirical section of this paper to build con..dence
intervals around copula estimates.

In the bivariate case Y; = (Y1, Y2;)', we have seen that positive quadrant depen-
dence is characterized by C(u1,u2) — ujuz > 0, while left tail decreasing behaviour of
Y1+ (resp. Ya:) in Ya; (resp. Yi:) is characterized by C(uy, u2)/uz — 0C(u1,u2)/0uz > 0
(resp. C(ui,u2)/ur — 0C(u1, uz)/0ur > 0). We have just developed a kernel estimator
for C. It is thus natural to suggest an estimator for 9,C(u) = 0C(u)/0u, based on the

dicerentiation of C(u) W.r.t.

with

and

A 1 & Cp— YVt G — Yie
o) 73 (2 [ (252,
P Thy ; ko hp zlgp i
The estimators C(u) and 9,C (u) will help to detect positive quadrant dependence and
left tail decreasing behaviour through the empirical counterparts of the aforementioned

inequalities.

Assumption 3. (kernel and bandwidth)
(a) Bandwidths satisfy Th, — +oo, Th? — 0 and k is even,
(b) Each kernel k; has a compact support A;, j = 1,...,n, and the kernel &, is twice

continuously dicerentiable.

Assumption 4. (process)

(a) The process (Y;) is strong mixing with coeccients oy such that ar = O(T~2), as
T — oo.

(b) The ..rst derivative 0,F and the marginal density f, are Lipschitz continuous.

(c) Let f;  be the density function of (Y, Y;) with respect to the Lebesgue measure. There

exists an integrable function ) : R2»~2 — R such that, for every vectors u, v in R”, and

12



for some open subset O of R? containing 4, x A,, we have
sup  sup  frr(u,v) < y(u_p,v_p).
t#t/ (“’Pavp) 60

Then we get:

Theorem 4. (Joint normality of derivative estimators)

Under Assumptions 3 and 4, for any uy, ..., uy €]0,1[*¢, the random vector
(Thy) 2 ((3C = BpC)(wr), ..., (BpC — 8,C)(wa) )
tends weakly to a centered Gaussian vector.

Again the asymptotic covariance matrix ¥* = [o7;]1<,j<a Of this random vector admits
a rather complex explicit form (see Equation (14) in the appendix).

Note that the extension of the previous propositions to higher derivatives
O*C(u) /(Ou1duy...0uy), k < n, is straightforward. Such estimates are for example re-
quired for the implementation of an empirical counterpart of the simulation algorithm
described in Embrechts et al. (2002).

As clear from Theorem 4, a random vector of derivatives of T'/2(C — C') at some
points uy, ...,ug does not in general tend weakly to a vector of independent Gaussian
variables. This is however the case when the components corresponding to the indices
of the derivatives are all dicerent. A similar result is also true for successive derivatives.

Indeed, under some technical assumptions, the random vector
(ThT™. ... B Y2 (O . o (€= C)(w),. .., ... 3 (C = C) (ua))
tends weakly to a centered Gaussian vector whose covariance matrix is diagonal if
1. my>1foreveryl=1,...,n,o0r
2. for the indices [ such that m; # 0, w; # w; for every pair (i, 7).

We end up this section with the description of how to build the sample analogues of

the dependence measures (3)-(6). First we may substitute a kernel estimator C for the

13



unknown C'in (4)-(6) to estimate py; y;, V1, v2, and By, y,. According to Theorem 3, these
estimators are consistent and asymptotically normally distributed. Second we may replace
the unkown derivatives by 8@’(u1,u2)/8u1 and 8O(u1,u2)/8u2 in order to estimate 7y, y;.

This estimator will be consistent by Theorem 4.

4 Monte Carlo experiments

In this section we wish to investigate the ..nite sample properties of our kernel estimators.

The experiments are based on a stationary vector autoregressive process of order one:
Y = A+ BY;,1 +u,

where v, ~ N(0,%) and all the eigenvalues of B are less than one in absolute value. The
marginal distribution of the process Y is Gaussian with mean p = (Id — B)"'A and
covariance matrix Q satisfying vecQ) = (Id — B® B) 'vecX (vec M is the stack of the
columns of the matrix M).

We start with a bivariate example where the components Y3; and Y>; are independent,
and thus C(uy,u2) = wuge. The parameters are A = (1,1), vec B = (0.25,0,0,0.75)" and
vec Y = (.75,0,0,1.25)". The parameters of the Gaussian stationary distribution are then
w = (1.33,4)" and vec2 = (0.8,0,0,2.86)". The number of Monte Carlo replications is
5,000, while the data length is T'= 45 = 1024 (roughly four trading years of quotes).

The nonparametric estimators make use of the product of two Gaussian kernels. Band-
width values are based on the rule of thumb h; = &,71/%, which uses the empirical
standard deviation of each series. Table 1 gives bias and mean squared error (MSE) 12
of the kernel estimates C(uy,uz) for several pairs (u,uz) in the tails and center of the
distribution.

12Recall that the bias is de..ned as EC' — C and the MSE as E[(C — C)?].

14



Table 1: Bias and MSE of kernel estimates of copulas

Bias and MSE have been computed on 5000 random samples of length 1024 from a
bivariate autoregressive process of order one with independent components.
All ..gures (true value of the Gaussian copula, bias and MSE) are expressed as percents of

percents (107%).

x10~4 | C(.01,.01) C(.05,.05) C(.25,25) C(5,.5) C(.75,.75) C(.95,.95) C(.99,.99)

True 1.00 25.00 625.00 2500.00 5625.00 9025.00 9801.00
Bias -0.09 -0.08 0.40 112 -0.90 -0.04 4.66
MSE 0.00 0.01 0.25 0.48 0.25 0.01 0.05

We may observe that the results are satisfactory both in terms of bias and MSE.
The pairs located in the tails of the distribution are well estimated. The pairs C(.01,.01),
C'(.05,.05), in the left tail are of particular interest in risk management since they measure
the dependence of joint extreme losses.

We continue with a bivariate example where the components Y;; and Y»; are dependent.
The parameters are A = (1, 1Y, vec B = (0.25,0.2,0.2,0.75)" and vec ¥ = (.75, .5,.5,1.25)".
The parameters of the Gaussian stationary distribution are then p = (3.05,6.44)" and
vec ) = (1.13,1.49,1.49,3.98)’ (correlation of 0.70). Since Yi: and Y2 are positively de-
pendent, we get C'(ui,u2) > ujuz. Results are reported in Table 2. Bias and MSE
are higher when compared with the previous independent case. They are however still

satisfactory.
Table 2: Bias and MSE of kernel estimates of copulas

Bias and MSE have been computed on 5000 random samples of length 1024 from a
bivariate autoregressive process of order one with dependent components.
All ..gures (true value of the Gaussian copula, bias and MSE) are expressed as percents of

percents (10%).

15



x10~4 | C(.01,.01) C(.05,.05) C(.25,25) C(5,.5) C(.75,.75) C(.95,.95) C(.99,.99)

True 27.08 197.95 1511.74 3747.68 6511.74 9197.95 9827.08
Bias -7.47 -34.88 -130.32 -172.28 -130.53 -35.25 -7.65
MSE 0.01 0.18 1.98 3.36 1.99 0.18 0.01

5 Empirical illustrations

This section illustrates the implementation of the estimation procedure described in Sec-
tion 3. We analyse return data on two pairs of major stock indices: CAC40-DAX35, and
S&P500-DJI. The dataare one day returns recorded daily from 03/01/1994 to 07/07/2000,
i.e. 1700 observations. We also report results for returns computed on a daily basis (rolling
returns) with a holding period of ten days instead of one day. This holding period is
favoured by the Basle Committee on Banking Supervision when quantifying trading risks.
Note that our asymptotic results derived in a dependent data framework cover the high
degree of autocorrelation that such a computation induces. We have selected bandwidth
values according to the usual rule of thumb (empirical standard deviation over the sample
length at the power one ..fth), and used a Gaussian kernel 3.

We start with the pair of European indices CAC40-DAX35. The linear correlation
coeCcient between the two indices is 67.03%. Figure 1 reports plots of observed returns
and rank statistics divided by the number of observations. The left column corresponds
to one day returns while the right column corresponds to ten day returns. These plots
show that the dependence is more pronounced for the ten day returns. Indeed we have
more points situated on the diagonal for the ten day returns and their associated rank

statistics.

13 0ther choices of kernels have not been found, as usually in nonparametric estimation, to a=ect the

empirical results substantially.

16



— Please insert Figure 1 —

Figure 1 : Returns and rank statistics for CAC40-DAX35

One day and ten day returns of the pair CAC40-DAX35 hetween 03/01/1994 and
07/07/2000 are plotted on the ..rst line. The second line shows the associated rank statis-

tics divided by the number of observations.

Figure 2 gives 3D and contour plots of estimated copulas. The contour plot for the
ten day returns is closer to the shape given by the comonotonic copula, namely successive
straight lines at right angles on the diagonal, which also indicates higher dependence for

the ten day returns.

— Please insert Figure 2 —
Figure 2 : Copula estimates and contour plots for CAC40-DAX35

Estimated copulas of one day and ten day returns of the pair CAC40-DAX35 between
03/01/1994 and 07/07/2000 are plotted on the ..rst line. The second line shows the asso-

ciated contour plots.

In Figure 3 we use estimates of the copulas to analyse positive quadrant dependence
(PQD). The ..rst line of graphs shows that C(u;,u2) — ujug is greater than zero, which
means that one day and ten day returns exhibit PQD. The dizerence is larger in the
center of the distribution and decreases when we move to the extremes. Just below we ..nd
comparison w.r.t. the comonotonic copula, i.e. min(uy, ug) — C(u1,u2), and the Gaussian
copula, i.e. C(uy,us) — Caaul(ur, ug; p*). The estimate p* of the parameter p* of the
Gaussian copula is obtained using the equation p* = 2sin(rp/6) linking p* with the rank

4

correlation p . The hat of the ten day returns is lower than the hat of the one day

14 Estimates obtained from the empirical rank correlation or its smoothed counterpart lead to virtually

identical results.
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returns for comotonicity. This again indicates a higher dependence for the former than
for the latter. Interestingly the last line illustrates how smoothed copula estimates can be
used as graphical device to detect adequacy of parametric copula models. Indeed we may
observe that the Gaussian copula exhibits too low levels for small u;, uz and large ui, us.

In the center of the distribution this is the reverse.

— Please insert Figure 3 —
Figure 3 : Comparison with independent, comonotonic and Gaussian copulas
for CAC40-DAX35

The graphs successively compare nonparametric copula estimates with the independent
copula, the comonotonic copula and the Gaussian copula for the one day and ten day re-
turns of the pair CAC40-DAX35 between 03/01/1994 and 07/07/2000.

In Figure 4 copula derivatives are computed to study left tail decreasing behaviour
(LTD). The two lines carry graphs of C(uy,uz)/ugs — 0C(u1,uz)/Ous, and C(ui, uz)/ui —
0C(u1,u2)/0uy, respectively. Again we get positiveness, and LTD is thus present for both
stock indices and both holding periods. Besides, LTD is heavier for the ten day holding

period.

— Please insert Figure 4 —
Figure 4 : Left tail decreasing behaviour for CAC40-DAX35

The graphs show the left tail decreasing behaviour of the one day and ten day returns
of the pair CAC40-DAX35 hetween 03/01/1994 and 07/07/2000.

For the pair of US indices S&P500-DJI, we get Figures 5-8. The linear correlation
coeCcient is equal to 93.25%. Comments made for European indices carry over. However

the dependence is higher for US indices. Indeed we get further clustering around the
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diagonal in Figure 5, even closer contour plots to the comonotonic plot in Figure 6, and

higher hats for positive quadrant dependence and comonotonicity in Figure 7.

— Please insert Figure 5 -

Figure 5 : Returns and rank statistics for S&P500-DJlI

One day and ten day returns of the pair S&P500-DJI between 03/01/1994 and 07/07/2000
are plotted on the ..rst line. The second line shows the associated order statistics divided

by the number of observations.

— Please insert Figure 6 —

Figure 6 : Copula estimates and contour plots for S&P500-DJI

Estimated copulas of one day and ten day returns of the pair S&P500-DJI between 03/01/1994
and 07/07/2000 are plotted on the ..rst line. The second line shows the associated contour

plots.

— Please insert Figure 7 —
Figure 7 : Comparison with independent, comonotonic and Gaussian copulas
for S&P500-DJlI

The graphs successively compare nonparametric copula estimates with the independent
copula, the comonotonic copula and the Gaussian copula for the one day and ten day
returns of the pair S&P500-DJI between 03/01/1994 and 07/07/2000.

19



— Please insert Figure 8 —

Figure 8 : Left tail decreasing behaviour for S&P500-DJI

The graphs show the left tail decreasing behaviour of the one day and ten day returns
of the pair S&P500-DJI between 03/01/1994 and 07/07/2000.

As already mentioned in the comments of Figures 3 and 7 the Gaussian copula tends
to underestimate risk dependencies. One may then wonder what could be the impact of
using a Gaussian copula in computing a risk measure like the Value at Risk (VaR). Recall

that VaR for a two asset portfolio is implicitly de..ned through the equation:
P[—a1Y1t — a2Yay > VaR(a1, az;p)] = p, (12)

where (a1, a,) is the portfolio allocation in percentage and p is a small probability level, say
1%. An empirical counterpart of Equation (12) under the assumption of a Gaussian copula
and margins estimated by the corresponding individual empirical cumulative distribution
functions is simply:

T T

> H—aYiy) — agYaw) > VaR(a1,a2; p) }AHGau (Y1), Yaw); 57) = p,
t=2t'=2

where Y] (), Y5,y denote order statistics and

" tto, t—1¢
AHgau1(1), Yo@)i P7) = Ceaul 3 87) = Cau (T 71 67)
t -1, t—1¢ -1
OGau(Ta T ) + Ciau T T )

Tables 3 and 4 compare empirical VaR, i.e. empirical quantiles 1° of the distribution
of the portfolio losses —a; Y1 — a2Y2:, and VaR obtained under a Gaussian copula spec-
i..cation. We have considered an equally weighted portfolio, i.e. a; = ay = 50%, and
p = 1%. Clearly the underestimation of risk dependencies by the Gaussian copula yields

an underestimation of the VaR portfolio.

15 since smoothed quantiles are close to empirical ones we prefer to use here the empirical quantiles for

our point estimates. They are easier to implement and faster to compute.
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Table 3: Comparison of VaR estimates for CAC40-DAX35

VaR are computed for an equally weighted portfolio and a 99% loss probability level.
VaR estimates correspond to empirical VaR and VaR obtained under a Gaussian copula
speci..cation. They are computed for the one day and ten day returns of the pair CAC40-
DAX35 between 03/01/1994 and 07/07/2000.

Emp (1 day) Gau (1 day) Emp (10 day) Gau (10 day)
VaR 3.10% 2.75% 9.39% 8.53%

Table 4: Comparison of VVaR estimates for S&P500-DJI

VaR are computed for an equally weighted portfolio and a 99% loss probability level.
VaR estimates correspond to empirical VaR and VaR obtained under a Gaussian copula
speci..cation. They are computed for the one day and ten day returns of the pair S&P500-
DJI between 03/01/1994 and 07/07/2000.

Emp (1 day) Gau (1 day) Emp (10 day) Gau (10 day)
VaR 2.53% 2.42% 7.04% 6.94%

Finally the two following tables deliver 90% con..dence intervals based on the asymp-
totic normality result of Corollary 1 for copula estimators. Since the asymptotic variance
involves an in..nite number of lags (see Equation (16)) it is necessary to truncate after
some point. We have chosen to keep 36 positive and 36 negative lags after having checked
stability of variance estimates. Copula derivatives appearing in the asymptotic variance
have been estimated with the estimators of Theorem 4, and covariances between indicator

functions with their empirical average counterparts.
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Table 5: Con..dence intervals of copula estimates for CAC40-DAX35

Con..dence intervals are based on a 90% level. All ..gures (copula estimate, upper bound
and lower bound) are expressed as percents of percents (10~%) and are given for the one
day and ten day returns of the pair CAC40-DAX35 between 03/01/1994 and 07/07/2000.

x1074 C(.01,01) C(.05.05) C(.25,.25) C(5,5) C(.75,.75) C(.95,.95) C(.99,.99)
¢ (1 day) 25.71 202.51 132146 342740 645562  9248.57  9856.22
up (1 day) 40.45 259.78 142207 355642  6569.22  9310.66  9874.62
low (1 day) 10.97 145.23 122085 3298.38 634201  9186.48  9837.81
¢ (10 day) 43.99 186.88 159576 384369  6609.97  9338.08  9937.30
up (10 day) 70.28 247.10 173037  3992.00  6783.05  9425.27  9942.20

low (10 day) | 17.71 126.66 1461.14 369537 643690  9250.90  9932.40

Table 6: Con..dence intervals of copula estimates for S&P500-DJI

Con..dence intervals are based on a 90% level. All..gures (copula estimate, upper bound
and lower bound) are expressed as percents of percents (10~%) and are given for the one
day and ten day returns of the pair S&P500-DJI between 03/01/1994 and 07/07/2000.

x1074 C(.01,01) C(.05.05) C(.25.25) C(5,5) C(.75,.75) C(.95,.95) C(.99,.99)
¢ (1 day) 55.47 341.86 1859.67 402627  6839.94  9364.49  9879.73
up (1 day) 72.73 372.15 1046.85  4109.70 690453  9399.24  9893.02
low (1 day) 38.19 311.57 177249 394285 677535  9329.74  9866.45
¢ (10 day) 70.22 292.26 178133 416394 691056  9405.54  9952.28
up (10 day) | 104.58 334.56 1894.72 427741 701444  9454.77  9958.42

low (10 day) |  35.87 249.96 1667.95 405048  6806.68  9356.31  9946.13

6 Concluding remarks

In this paper we have proposed simple nonparametric estimation methods of copulas and
their derivatives. The procedure relies on a kernel approach in the context of general
stationary strong mixing multivariate processes, which provides smooth dicerentiable es-

timators. These estimators have proven to be empirically relevant to the analysis of
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dependencies among stock index returns. In particular they reveal the dicerent types of
dependence structures present in these data. Hence they complement ideally the existing
battery of nonparametric tools by providing speci..c instruments dedicated to dependence
measurement and joint risk analysis. They should also help to design goodness-of-...t tests

for copulas. This is under current research.
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APPENDIX

Proof of Theorem 2

Let us denote by Fr the empirical c.d.f. associated with (Y):>1, say

Fr(y)=T" ET:1 HY: <y}
=
We have for every y in R”
P(y) = [ K(y = vih) Fp(dv) = [ Foly =h-v)k(v)dv,
by a n-dimensional integration by parts. The “dot” in h - v denotes the componentwise
product, i.e. y — h - v corresponds to the vector (y1 — hjvi, ..., Yn — hnvn). Moreover,
TV(F —~ F)(y) - TV2(Fr = F)(y) = T [ [(Fr = F)y = h-)
— (Fr —B)(y)] k(v)dv + T1/2/ [F(y — h-v) —F(y)] k(v)dv = A + As.
First, the equicontinuity of the process T'/2(Fr — F) is a consequence of its weak conver-
gence (see Rio (2000)) :

Theorem 5. Let (Y;):>; a stationary sequence in R". If each marginal c.d.f. F;, j =
1,...,n is continuous, if the process is a-mixing and a7 = O(T~%) for some a > 1, then
there exists a Gaussian process G, whose trajectories are uniformly continuous a.e. on R™

endowed with the pseudo-metric

d(x,y) = sup |Fi(zi) = Fi(yi)l;

i=1,...,n
and such that the empirical process TV2(Fr — F) tends weakly to G in [°(R"). The

covariance structure of the limiting process is given by Equation (11).

Thus, under such assumptions, and since k has a compact support, sup,, [A;| = op(1).
Second, since F' is Lipschitz continuous, the second term Ay is O(T'/2h,), or further
O(T'?h2) if k is even. Thus, we have proved that

sup [TV2(F = F)(y) = T"*(Fr — F)(y)| = op(1), (13)
yekn
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hence the stated result. Note that we have proved Theorem 2 using the fact that F' is

Lipschitz continuous which is weaker than Assumption 2. O
Proof of Theorem 3

By the functional Delta-Method, we deduce the weak convergence of 7*/2(C' — () in
[°°([a, b]™), for every a,b, 0 < a < b < 1, exactly as in Van der Vaart and Wellner
(1996, p. 389), and we obtain the convergence of the ..nite dimensional distributions.
Note that 7Y/2(C' — C')(u) is zero when one component of u is zero. Moreover, when one
component of u is 1, say the j-th component, then 7/2(C' — C)(u) tends to a Gaussian
random variable that would be obtained if we had forgotten all the j-th components (in
other words, as if the observed random variables had been (Y};);;). Letus ..nally remark
that the weak convergence of 7''/2(C' — () can be proved in [°°([0,1]™). This can be done
by exploiting the proximity between F and Fr provided by Theorem 2, and by mimicking

the proof of Theorem 10 in Fermanian et al. (2002). O
Proof of Theorem 4

Letus remark that the Delta-Method provides us the limiting behaviour of the smoothed

empirical quantiles.

Theorem 6. Under Assumptions 1 and 2, for every u; €]0,1[ and every j € {1,...,n},

(; is a consistent estimator of ¢; = Fj‘1 (uj). Moreover,
: I
TV (GG =) = N(0,0%(uy)),

where

02(u;) = AL Cov(1{¥jo 2§ 1{3'}, 1{Yj < uy})
fj (CJ)

In particular, each é‘j tends to ¢; at the parametric rate T-1/2. Note that Assumptions
3 and 4 imply Assumptions 1 and 2. We prove in the next theorem that the quantities

d,F and f, converge at the slower rate (Th,)~'/2. Thus, it will be convenient to replace
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each random quantity ¢; by its limit ¢; in 9,F(¢) and f,((,). The proof of the following

asymptotic result will be given later in the appendix.
Theorem 7. Under Assumptions 3 and 4, the random vector

(Tho) 2 (OpF = 0 F)(31), -, (OpF = 0pF)(ya), (fo = o) W)+ (fo = ) (Wpa))

tends weakly to a centered Gaussian vector whose covariance matrix X = (0; ;) 1< j<2d, IS

characterized by

0ij = 0ji = OpF (yi Ny;) /k’f; L Ypi = Yy
2 -
Oitd,j+d = Oj+di+d = fp (ypi) / kp’ if Ypi = Ypj»
Oij+d = Ojtdi = FpF(yi) / ky, L Ypi = Upjs
Oij = Oitdj = Oijt+d = Oitd,j+d =0, otherwise,

for every ¢,j in {1,...,d}.

We have denoted y; A y; the minimum of y; and y; componentwise, say
(min(y14, Y1), - - -, Min(Yni, ynj)). Let us now turn to the initial problem, namely the limit
in law of

(Thp)"2 (€ = %O (w), -, (BC = FpC)(wa))
where (uy, ..., uy) is some point in ]0, 1[*¢. Since every {‘j tends to (; = ijl(uj) at the
rate 7-1/2, and since f,({,) tends to f,(¢,) at the slower rate (Th,)~"/2, the asymptotic
behaviour of £,(¢,) will be the same as the one of f,(¢,). We however still need a continuity

argument. If k, is twice continuously dizerentiable, &, being bounded,

~

o " *_Y
fo(Gp) = f(Cp)"‘f(Cp) (C Cp) + 2Th3 Zk ( hp )

(G —&)*
= fp(Cp) + fp(Cp) (C Cp) + _éLTh:;LO( )

where |(; — (| < Gy — Cpl. It can be proved easily that f];(cjp) is Op(1) (for instance by

use of an exponential inequality, or even the Markov inequality). Thus,

(Thp) > (fo(Cp) = 1,(Gp) = (Thy) (= £,)(G) + Op((Thy) /> T 7112
+ Op((Thy) T~ 0y, %) = (Thy) ' (f, = £,)(Cp) + Oplhy?) + Op(T~Y/2h,5/2).
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This quantity tends to zero when Th]5J tends to zero. Exactly in the same way, we get

under the same assumptions:

(Thyp)"2(0pF' () — 8pF(C)) = (Thy) *(0pF — 8,F)(C) + op(1).

Therefore, for any numbers (\;);=1,.. 4, we get

’ : 4 (F() apF@j)}
j 1OC()) = pC(ws) g =D Aj =7 —
2 M %0w) = 90(w)} =32 {fp@pj) o)

d N o |

j:I fP(CPJ)fP(CPJ) fp(gpj)
— ’ C ) 3 ) 8PF(C7) _apF(Cj) —1/2 }
- Z)‘ { 2(Cpj) [Fp(Cpi) — Fo(Gpy)] + o(Gog) +op((Thy) %) ¢

Then we may apply Theorem 7 which delivers asymptotic normality. The asymptotic

covariance matrix is also easily deduced from the covariance expressions of Theorem 7:

. .3 ()13 N
W (o) FolGoi) T F2(Goa) f2(Gy) T
0pF (¢;) 8,F(¢,) )

TRGIAGN T G G

Proof of Theorem 7

It is su€cient to prove that

d d
(Thp)1/2 Z /\i(app - apF)(Yi) + (Thp)l/2 Z Mi(fp - fp)(ypi)

=1 =1
tends weakly to a centered Gaussian random variable whose variance takes the form

>ij /\iuj?f?,j, for any real numbers \;, u;, ¢,5 = 1,...,d. Let us ..rst deal with the bias
term. Consider (Th,)"/? X% 1 N (E[0,F] — 8,F)(y:). As usually,

BIO,F(v)] = 0,F(y:) = b, [ 0,0 (y; = wi ) F(du) = 5, F(y:)

= h, /F ; —h )k (uy) (Hklul dul) du, — 0,F (y;)

I#p
- /aF w)k(u) du — 9,F(y;)

= hy),
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since g, F' is Lipschitz continuous. Then, this bias term is negligible under our assumptions.
Similarly, (Th,)Y2 % wi(E[f,] — £)(ypi) is o(1) under the same assumptions.
Second, to obtain the asymptotic normality, the simplest way to proceed is to apply

Lemma 7.1 in Robinson (1983) 1°. In his notations, set p = 2d, a; = h,, as well as
Vier = Mi{(G,K) (vi — Y h) — E[(0,K) (yi — YR}
and
Vier = i {kp (Ypi — Ypt; hp) — E'[kp (Ypi — Ypi; hp)]}-

We now verify the conditions of validity of Lemma 7.1 in Robinson (1983).

Note that, by successive integration by parts, we get

EVi] = % {/ (@K (s = ush) Fldw) = ( (0,5 (3 = ush) F(d“)>2}

2
- A%! s~ -2 690y ap) TL K ) — | | Pl Wu\l
L/y CTY \/y Hitoin) |

= hp/\f{ / OpF(yi— h-w)2" k2 (up) [] (kK)i(w) du
\ l#p

2
~ ok ( / 0pF(yi — h- whp(up) [[ kl(ul)du) }

F#p

= 2 N, F(yi) [ K2 p) [T (Ei() du+ O2) = Mhyorl + O(2).
I#p

Moreover, by similar computations, if i # j,
EVirVir] = Xi)\; {/(apK) (yi —u;h) (0,K) (y; — u; h) F(du)
= ([@r) i wh) Faw). ([@8) (v, - wh) Flaw) |

— 30y { [ P ) [k ) (0 = 30) o+ ) o) (35— ) P )]

LT o) Ko Qg — wa) /a4 w) + K (wg) k(g — i) /e + )] du+ O(hf)-}
l#p
16see e.g. Bierens (1985) or Bosq (1998) for some alternative sets of assumptions
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1 yip 7 jps then ky ((Ypi—yps) /hp+up) @nd k3, ((Ypi —ypj) /hp+up) is zerofor every u, € Ap,
for h, succiently small. We get that E[V;,pV},r] = 0 in this case, for 7" suCciently large.
Thus, let us assume y,; = yp;. For any index [ # p, notice that K;((yi; — yu)/M + wi)
is zero if y; < y; and is one if y; > y;, for T suCciently large. In the ..rst case,
set the change of variable y; — h.w; = yi;; — hi.vi. The [-th factor in brackets becomes
k(o) K ((yi — yi5)/ e + i), which is & (v;) for T' su@ciently large. In the second case, the
latter factor is k;(u;). Thus, E[ViirVjer]) is nonzero only if y,; = y,; and, for T su€ciently
large,

E[VitTVjtT] = /\i>‘j {/ F(Yi A y; — h- u)Qk;(up)kp(up) ’ H kl(ul) du + O(hz)¥ (15)
( l#p )

By an integration by parts with respect to u, (similarly as for E[VZ%T]), we get easily

E[VirVier] = MAjhyop; + o(hy).

Similar computations yield

BlVirViir] = byt Sy i) | K3+ op(hy),
if ypi = ypi, and B[V Viyr| = op(hy) otherwise. Moreover,

EViirVier] = ik [ by (%L“@) (0p) (y; — w ) Fdu) + Op(h?)

= ,uz‘)‘j/F(yj’ _h'u)Hkl(ul){kp(up)kzl) (g;%ym +up>
I#p

+ K (up)ky (ﬂ%yﬂl +up>} du+Op(h2).

If ypi # ypj, the latter quantity is zero for 7" su€ciently large. Otherwise, it is equivalent
to piXihpOp F(y;) [ K.
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Thus, condition A.7.3 of Robinson (1983) is satis..ed. It remains to verify condition

A7.4. Foreveryi#jandt #t,

BVarVierll =2 [ @) 5 = wih) = ( [ @,0)
(©,5) (v = vih) = ( [ (0,0 (v; = vih) Pl

v)
wfe(252)] ) (e

fe,r (Uep, Ypi — hptip, v_p, Ypj — hpvp) dudyv.

Fo

< osthn [ (

yi —u;h) F(du)) ‘

Y., Y,) (du, dV)

DL (252) 1)

Under our assumptions, the latter quantity if O(h2). Using similar boundings the same

property is satis..ed for E[|VirVir|] and E[|Vip Vil

The other conditions of Lemma 7.1 in Robinson (1983) are clearly satis..ed. Note

that our condition 4 (&) implies Robinson’s one on the mixing coeCcients, i.e. >, 1% oy =

O(T~1). Hence we have indeed proved the stated result. O
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Asymptotic covariance matrix in Corollary 1

The limiting distribution of S is a centered Gaussian vector whose covariance matrix
has the following (i, j)-th term:
E[¢'(G)(vi)¢'(G)(v))] = E[G(¢,)G(C;)] — ; HC(v) E[G(+00, ..., G- -, +00)G(( )]
- é@kC(vj)E[G(—koo, ey Gy - - F00)G(C;)]
+ i C(v;)O,C(v;)E[G(+00, ..., Ckis-- -, +00)G(+00, .. ., (j, - - ., +00)]

ki=1

As previously, for every i =1,...,d, we have denoted by ¢, the n-dimensional vector

(Ctiy -5 Cni) = (Fy H(v1d),- -, By (vna).

Recalling Equation (11), we get

E[¢'(G)(vi)¢ (G)(vj)] =D Cov(1{¥0o < {;},1{Y: < ;1)

tez
— > xC(vi) Y Cov(1{Yyy, < G}, {Y: <¢j})
k=1 tez

- Zn: HwC(vj) Y Cov(1{Yo < ¢}, 1{Vi < (is})
k=1

= teZ

£ Y aCE)ACE) Y Co(1{Yar < G} 1{Ya < Gj}). (16)

kl=1 teZ
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Figures 1-8

Figure 1 : Returns and rank statistics for CAC40-DAX35

Figure 2 : Copula estimates and contour plots for CAC40-DAX35

Figure 3 : Comparison with independent, comonotonic and Gaussian copu-
las for CAC40-DAX35

Figure 4 : Left tail decreasing behaviour for CAC40-DAX35

Figure 5 : Returns and rank statistics for S&P500-DJI

Figure 6 : Copula estimates and contour plots for S&P500-DJI

Figure 7 : Comparison with independent, comonotonic and Gaussian copu-
las for S&P500-DJI

Figure 8 : Left tail decreasing behaviour for S&P500-DJI
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