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Abstract
Background: Notwithstanding the encouraging results of previous studies
reporting on the efficiency of deep learning (DL) in COVID-19 prognostica-
tion, clinical adoption of the developed methodology still needs to be improved.
To overcome this limitation, we set out to predict the prognosis of a large
multi-institutional cohort of patients with COVID-19 using a DL-based model.
Purpose: This study aimed to evaluate the performance of deep privacy-
preserving federated learning (DPFL) in predicting COVID-19 outcomes using
chest CT images.
Methods: After applying inclusion and exclusion criteria, 3055 patients from 19
centers, including 1599 alive and 1456 deceased, were enrolled in this study.
Data from all centers were split (randomly with stratification respective to each
center and class) into a training/validation set (70%/10%) and a hold-out test
set (20%).For the DL model, feature extraction was performed on 2D slices,and
averaging was performed at the final layer to construct a 3D model for each scan.
The DensNet model was used for feature extraction. The model was developed
using centralized and FL approaches. For FL, we employed DPFL approaches.
Membership inference attack was also evaluated in the FL strategy. For model
evaluation, different metrics were reported in the hold-out test sets. In addition,
models trained in two scenarios, centralized and FL, were compared using the
DeLong test for statistical differences.
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2 AI FOR COVID-19 PROGNOSTIC MODELING

Results: The centralized model achieved an accuracy of 0.76, while the DPFL
model had an accuracy of 0.75.Both the centralized and DPFL models achieved
a specificity of 0.77. The centralized model achieved a sensitivity of 0.74, while
the DPFL model had a sensitivity of 0.73. A mean AUC of 0.82 and 0.81
with 95% confidence intervals of (95% CI: 0.79–0.85) and (95% CI: 0.77–0.84)
were achieved by the centralized model and the DPFL model, respectively. The
DeLong test did not prove statistically significant differences between the two
models (p-value = 0.98). The AUC values for the inference attacks fluctuate
between 0.49 and 0.51, with an average of 0.50 ± 0.003 and 95% CI for the
mean AUC of 0.500 to 0.501.
Conclusion: The performance of the proposed model was comparable to cen-
tralized models while operating on large and heterogeneous multi-institutional
datasets. In addition, the model was resistant to inference attacks, ensuring the
privacy of shared data during the training process.

KEYWORDS
COVID-19, CT, deep learning, federated learning, privacy, prognosis

1 INTRODUCTION

The staggering number of fatalities due to the COVID-
19 pandemic and its unceasing surges highlights the
necessity of developing more effective techniques for
predicting the prognosis of patients.1,2 This helps iden-
tifying patients requiring more advanced treatment and
longer hospital stays.3 Furthermore, elucidating the
full picture of disease severity in COVID-19 patients
could lead to non-discrimination and fair distribution of
medical resources based on their condition’s gravity.4

Numerous strategies1,2 have been suggested to more
accurately prognosticate COVID-19 patients, including
chest computed tomography (CT) images.5 Contrary to
the gold-standard diagnostic method, RT-PCR, chest
CT can provide physicians with more detailed and
efficient information.6,7 In addition, it can be used to
help healthcare workers grasp the full extent and mag-
nitude of disease severity.8 However, despite all the
advantages that a CT scan offers in the context of
COVID-19 infection, interpreting it is still mostly sub-
jective and may differ based on the physician or
radiologist’s opinion and level of expertise.6,9 Conse-
quently, the need to design new methods that objectively
report CT findings is emphasized.6,10 Several scoring
systems have also been proposed in the literature,6,11

including but not limited to two studies conducted by
Carbonell et al.12 and Li et al.13 evaluated the predictive
power of quantitative chest CT assessments along with
some clinical biomarkers for patient prognosis. How-
ever, notwithstanding the great promise of such models,
they offer limited prognostic value and lack sufficient
inter-observer unanimity.9

Furthermore, artificial intelligence (AI) algorithms,
such as machine learning (ML) and deep learning (DL),
seem promising for determining COVID-19 patients’
diagnosis and prognosis, as they can decode data and

comprehend information in images that are not readily
visible to the naked eye.10,14,15 In this regard, previ-
ous studies have already demonstrated that ML-based
algorithms can be readily applied to medical images
and provide prognostic and diagnostic models.14,16,17 In
addition, several articles have researched the intersec-
tion of DL models and COVID-19 prognosis prediction,
for instance, Gong et al.18 gathered a multi-centered
cohort and evaluated the predictive power of a DL-
based model, which also utilized some of the patient’s
clinical data. Moreover, Wang et al.19 reported a prog-
nostic analysis using a fully automatic DL system that
successfully stratified patients into two groups, namely
high- and low-risk groups, with significantly different
hospital stay durations.

Medical imaging, like any other medical data, con-
tains sensitive and private information, and mis-
use or unauthorized access can have serious con-
sequences. Therefore, protecting this information is
paramount.20–23 Multiple strategies can be implemented
to protect patients’ privacy effectively when using med-
ical imaging.20,21,24,25 Different guidelines and poli-
cies were initially implemented to manage access to
patient’s information and images, such as passwords
and multi-factor authentication methods.26 This could be
followed by anonymization techniques, such as mask-
ing,pseudonymization,perturbation,or synthesis to eras
and/or obfuscating the personal identifying information
to ensure that even with access to the images, individual
personal information remains protected.27 Encryption is
another strategy that turns data into a secure, safe, and
unreadable format accessible only to individuals with
the correct decryption keys, thereby safeguarding the
data during transmission and storage.28 In addition to
these strategies, differential privacy (DP) and federated
learning (FL), are a complement to traditional privacy
protection strategies by ensuring the confidentiality of
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AI FOR COVID-19 PROGNOSTIC MODELING 3

patient data.20,21,25 These methods preserve privacy
while enabling us to use patient data to build ML and
DL algorihms.20,21,29–31

FL allows the development of ML/DL algorithms
across multiple centers without exchanging sensitive
data.20,21,32–38 However,different attacks,such as mem-
bership or adversarial attacks, could be performed
during FL algorithms development,20,21,24 which risks
patients’ privacy or prevents the model from converging
during training.20,21,33 FL has recently been used in the
context of COVID-19 infection to achieve more general-
izable findings regarding diagnosis, treatment planning,
and outcome prediction.39 Despite the promising results
of previous studies, further research on larger numbers
of patients is required to illuminate the true potential and
feasibility of utilizing DL as a convenient tool in COVID-
19 prognostication. Thus, we performed this study to
predict the prognosis of a huge multi-center cohort of
patients with COVID-19 using a DL-based model. We
developed a decentralized DP-preserving deep feder-
ated algorithm for COVID-19 prognostication,potentially
addressing the privacy issue during DL model develop-
ment in a multi-center scenario and compared it with a
centralized model.

2 MATERIALS AND METHODS

2.1 Data acquisition and
inclusion/exclusion criteria

In the first place,a total of 5940 patients from 19 centers
were included in this study.14,40 Subjects were RT-PCR
test confirmed as COVID-19. Figure 1 depicts the inclu-
sion and exclusion criteria. The obtained data from the
aforementioned centers included the following items: (i)
Patients’ chest CT images, (ii) RT-PCR results, and (iii)
the results of a 4-month follow-up for outpatient cen-
ters or at-discharge follow-up for inpatient ones based
on which the subjects were sub-grouped into “alive”
and “deceased”.14 The exclusion criteria in the present
study were as follows: (i) Patients not followed up or
transferred to another hospital (n = 1316), (ii) Cases
with a confirmed diagnosis of lung cancer at any stage
(n = 200), (iii) Subjects whose CT images sustained
motion artifacts (n = 215) or incomplete lung presen-
tation (n = 98) or low quality (n = 178), (iv) Patients who
had negative RT-PCR (n= 860),and (v) Cases with only
contrast-enhanced CT images (n = 18).14 After exclud-
ing the 2885 cases, 3055 patients remained, including
1599 alive and 1456 deceased. One of the 19 cen-
ters was outpatient, while the remaining were inpatients.
Regarding the single center which offered outpatient
care,patients were medically treated based on the stan-
dard COVID-19 regimen provided by Iran’s national
guidelines [corona.behdasht.gov.ir].14 In the inpatient
centers,patients were discharged provided they had sta-

ble blood pressure (systolic blood pressure over 90),
were not tachycardic, had an O2 saturation level of
94% or above, and did not have a fever for at least two
consecutive days before discharge.14

2.2 CT image acquisition

CT image acquisition was consistent with the national
guidelines on high-resolution techniques.14,41 Patients
were instructed to hold their breath when scanning to
avert any motion artifact.14 Some inconsistencies were
noted within the centers’ acquisition parameters and
techniques, including radiation dose,slice thickness,and
tube current.14 CT Dose Index (CTDIvol) was presented
as the inter/intra-centric variation parameter.14 Table 1
summarizes the mentioned CT acquisition parameters
for each center, along with the number of CT images,
alive and deceased cases, and percentage of male and
female. In all centers,each CT image was interpreted by
two experienced radiologists, and the image report was
submitted unanimously based on the COVID-19 report-
ing and data system (CO-RADS) guideline.6,14 In case
of disagreement between the reports of the first two
radiologists, a third experienced radiologist was asked
to read the images and prepare the final report.14

2.3 Image segmentation,
preprocessing, and data splitting

An automatic DL-based “COLI-Net” model was utilized
to segment the lungs.42 The images were cropped
based on the lung mask and resized to 296 × 296
for the model to perform efficacious computations. This
segmentation was not used for further model training.
Data from all centers was split (randomly with strat-
ification respective to each center and class) into a
training/validation set (70%/10%) and a hold-out test
set (20%). All evaluations and metrics reported were
performed on the hold-out test set.

2.4 Deep learning model

As the different centers use dissimilar image acquisition
protocols, and the slice thickness was highly variable
across the different scans, we employed a combined
2D-3D model for the DL model core. Therefore, feature
extraction was performed in 2D slices, and averaging
was performed at the final layer during training to con-
struct a 3D model for each scan. The DensNet43 model
was used for 2D feature extraction.The training was per-
formed using the Adam optimizer. An initial learning rate
of 10−5 and a decay of 0.05 for 300 iterations were used.
A summary of the network architecture is presented in
Figure 2.
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4 AI FOR COVID-19 PROGNOSTIC MODELING

F IGURE 1 Inclusion and exclusion criteria were used in this study for data gathering. Initially, 5940 patients from 19 centers tested RT-PCR
positive for COVID-19 and were considered. Inclusion criteria included chest CT images, RT-PCR results, and follow-up outcomes. Exclusions
were made for patients lacking follow-up (1316), diagnosed with lung cancer (200), with CT artifacts (215), incomplete lung presentation (98),
low-quality images (178), negative RT-PCR results (860), or contrast-only CTs (18). The final cohort comprised 3055 patients, of which 1599
were alive, and 1456 were deceased at follow-up.

2.5 Training strategies

The selection of a training strategy (center-based,
centralized, and FL) is affected by several variables,
including the availability of a central location, data
size, computational power, the necessity of moving
data, and the requirement to preserve privacy.20,21

Center-based and centralized training approaches are
appropriate when a central location with a large data
set and computational power is available. In contrast,
FL methods are appropriate when data movement is
not feasible.44,45 We implemented centralized and FL
strategies in the current study and compared their per-
formance (Figure 2). In a centralized strategy, data are
collected at multiple centers and pooled in a central loca-
tion for training.46,47 Data should move from centers in
this scenario, and patients’ privacy is hardly preserved,
limiting the potential of acquiring data sets from mul-

tiple centers.46,47 In FL, data are collected at various
centers, and a model is trained by distributing the train-
ing process across multiple centers without the need
for data movement.46 The FL approach allows for dis-
tributed training without needing data movement or a
central location.44,45

2.6 Introduction to aggregation
approach

The FL model aggregates updates from multiple
data sources to produce a global model.20,21,33,35

However, the arithmetic means which is widely
used for aggregation, can be vulnerable to data
corruption.20,21,33,35,38 One approach to increase
robustness to such corruption is to use an approxi-
mate geometric median.20,21,33,35,38,48 Other possible
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AI FOR COVID-19 PROGNOSTIC MODELING 5

TABLE 1 Patient demographics and CT acquisition parameters in the different centers. This table details the number of patients, survival
status (alive, dead), gender distribution (female and male percentages), and CT acquisition parameters (Tube current in mAs, CTDIvol, and slice
thickness in mm) for each center.

Centers Number Alive Dead
Female
(%)

Male
(%)

Tube current
(mAs) CTDIvol

Slice thickness
(mm)

Center 01 16 11 5 25.0 75.0 113.6 ± 100.6 7.06 ± 3.97 1.56 ± 0.99

Center 02 21 15 6 28.6 71.4 232 ± 32.8 8.21 ± 0.13 1.49 ± 0.50

Center 03 25 16 9 54.0 46.0 113.4 ± 44.9 8.15 ± 3.16 2.48 ± 2.08

Center 04 33 19 14 42.4 57.6 228.2 ± 112.7 7.61 ± 5.24 2.31 ± 1.18

Center 05 39 22 17 44.0 56.0 452.7 ± 128 10.41 ± 2.67 2.00 ± 0.00

Center 06 40 21 19 50.0 50.0 152.9 ± 41.2 6.92 ± 2.57 2.46 ± 0.24

Center 07 150 77 73 43.3 56.7 127 ± 4.8 6.31 ± 0.81 7.29 ± 1.74

Center 08 176 92 84 47.1 52.9 186.6 ± 63 13.4 ± 0.00 3.02 ± 1.23

Center 09 181 94 87 54.7 45.3 218.8 ± 38 9.06 ± 5.19 6.54 ± 1.22

Center 10 187 97 90 51.7 48.3 124.2 ± 10.4 6.07 ± 1.25 2.00 ± 0.16

Center 11 192 105 87 23.9 76.1 143.6 ± 39.7 5.19 ± 1.96 2.33 ± 0.24

Center 12 197 99 98 43.7 56.3 81.1 ± 42.3 4.56 ± 2.77 4.65 ± 1.17

Center 13 200 92 108 61.0 39.0 149.1 ± 43.9 6.24 ± 4.14 4.92 ± 0.48

Center 14 203 104 99 63.9 36.1 174.4 ± 55.9 6.69 ± 2.60 4.97 ± 0.35

Center 15 214 111 103 53.2 46.8 210.4 ± 49.1 6.27 ± 1.69 1.79 ± 1.28

Center 16 218 115 103 44.7 55.3 84.2 ± 44.7 4.82 ± 3.37 4.99 ± 0.42

Center 17 294 147 147 36.1 63.9 166.3 ± 39.3 6.10 ± 2.92 6.58 ± 1.38

Center 18 318 178 140 59.0 41.0 153.4 ± 48.5 6.51 ± 3.29 5.17 ± 0.65

Center 19 351 184 167 49.0 51.0 173.7 ± 37.9 6.21 ± 1.38 7.64 ± 1.08

approaches are zeroing and clipping techniques.33

Zeroing involves replacing model updates that exceed
a predetermined threshold with zeros, while clipping
involves bounding the L2 norm of updates by projecting
them onto an L2 ball of a certain radius.33,49 The hyper-
parameter determines this radius and setting it too high
can add too much noise, while putting it too low can
cause a high bias in gradient estimation.33

2.7 Mathematics of Gaussian
differentially private federated averaging
with adaptive quantile clipping
(GDP-AQuCl) approach

DP protects the privacy of training data in ML by adding
noise to model parameters, ensuring that the output
distributions of a randomized algorithm are close for
any neighboring inputs that differ by only one data
point.29,33,35,38 The privacy budget ϵ and the probabil-
ity of information leakage δ can be adjusted to control
the level of privacy protection.33,35,38,50 In the current
study, we implement the Gaussian differentially pri-
vate federated weighted averaging with an adaptive
quantile clipping (GDP-AQuCl) approach that com-
bines DP with the adaptive quantile clipping method
to provide strong privacy and performance guarantees
for FL.33,35,38,51 In this approach, Gaussian noise is

added to model updates, and the updates are aver-
aged using the adaptive quantile clipping method,which
excludes outlier models and ensures that the global
model is not overly influenced by a small number of
poorly performing models.33,35,38,52 This combination
of techniques helps protecting individual data sources’
privacy while still producing a high-quality global
model.33,35,38,53

In the GDP-AQuCl approach, the global model param-
eters at iteration t + 1 are updated using the adaptive
quantile clipping function and the DP function.33,35,53

The global model parameters are updated by taking the
sum of the model updates from all decentralized data
and applying the adaptive quantile clipping function to
each update to ensure that the L2 norm of the updates
is bounded, and then adding noise uses the DP function
to protect the privacy of the data used to compute the
updates.33,35,53 The updated global model parameters
are then given by:

𝜃t+1 = 𝜃t +
1
n

n∑
i = 1

Clip (DP (𝜃t − 𝜃i) , Ct)

where 𝜃t and 𝜃t+1 are the global model parameters
at iterations t and t + 1, respectively, n is the number
of decentralized data sources, Clip(., Ct) is the adap-
tive quantile clipping function and DP(.) is the DP
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6 AI FOR COVID-19 PROGNOSTIC MODELING

F IGURE 2 Centralized, federated learning and deep neural network schema were implemented in this study. In a centralized strategy, data
are collected at multiple centers and pooled in a central location for training. In FL, data are collected at various centers, and a model is trained
by distributing the training process across multiple centers without the need for data movement. We employed a combined 2D/3D model for the
DL model core. Therefore, feature extraction was performed on 2D slices, and averaging was performed at the final layer during training to
construct a 3D model for each scan. The DensNet model was used for 2D feature extraction.

function.33,35 The adaptive quantile clipping function is
defined as:

Clip (𝜃, Ct) = 𝜃∕max
(

1,
‖𝜃‖2

Ct

)
where 𝜃 is the model update from a decentralized data
and Ct is the radius of the L2 ball at iteration t.33,35 This
function bounds the L2 norm of the model updates by
projecting updates with a larger L2 norm onto the L2 ball
of radius Ct.33,35 The DP function adds Gaussian noise
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AI FOR COVID-19 PROGNOSTIC MODELING 7

to the model updates and is defined as:

DP (𝜃) = 𝜃 +

(
0,

C2
t

𝜖
I

)

where 𝜃 is the model update from a decentralized data,

 (0,
C2

t

𝜖
I) is a Gaussian noise vector with mean 0 and

covariance matrix
C2

t

𝜖
I, Ct is the radius of the L2 ball at

iteration t, and 𝜖 is the privacy budget.33,35

In this approach, the global model updated by taking
the sum of the clipped and differentially private model
updates from all decentralized data sources and dividing
them by the number of data sources.33,35 The clipping
function ensures that the L2 norm of the model updates
is bounded, while the DP function adds noise to pro-
tect the privacy of the data used to compute the model
updates.33,35 The hyperparameter Ct determines the
radius of the L2 ball and must be carefully chosen to
balance the trade-off between model performance and
robustness to update corruption.33,35 The privacy bud-
get 𝜖 determines the amount of noise added by the DP
function and must be chosen such that the privacy of
the data is adequately protected.33,35

2.8 Overview of attacks and privacy
analysis

In our study, we conducted a membership inference
attack to assess the privacy risks associated with
using the DL model.20,21,54 In this scenario, the attacker
attempts to determine whether specific cases of patient
images were used for training the DL model.20,21 In a
membership inference attack, a binary classifier that
predicts the given CT images was included in the train-
ing set for the target model.20,21,54 Individual privacy is
potentially compromised if the attacker models learn
sufficient information regarding images.20,21 We used
the membership inference attack at intervals of every
epoch to evaluate the privacy risks of DL models on
medical images and identify potential measures for
mitigating these risks.

2.9 Model evaluation and statistical
analysis

For model evaluation, metrics including precision, sensi-
tivity, specificity, F1, accuracy, balanced accuracy, false
negative rate (FNR), false positive rate (FPR), false
discovery rate (FDR), negative predictive value (NPV),
positive predictive value (PPV), and area under the
receiver operating characteristic curve (AUC) were
reported for the hold-out test sets (20% of each cen-
ter data). In addition, models trained in two scenarios,

TABLE 2 Summary of quantitative metrics across centralized
and federated learning (rounded to two decimals). Metrics include
precision, sensitivity (also known as recall or true positive rate),
specificity, F1 score, accuracy, balanced accuracy, false negative rate
(FNR), false discovery rate (FDR), false positive rate (FPR), negative
predictive value (NPV), true positive rate (TPR), positive predictive
value (PPV), and area under the curve (AUC) with mean and 95%
confidence interval (95% CI). These metrics provide a
comprehensive assessment of the model’s predictive capabilities.

Centralized DPFL

Precision 0.74 0.73

Sensitivity 0.74 0.73

Specificity 0.77 0.77

F1 0.74 0.73

Accuracy 0.76 0.75

Balanced Accuracy 0.76 0.75

FNR 0.26 0.27

FDR 0.26 0.27

FPR 0.23 0.23

NPV 0.78 0.76

PPV 0.74 0.73

AUC (95% CI) 0.82 (0.79, 0.85) 0.81 (0.77, 0.84)

including centralized and FL, were compared using the
DeLong test for statistically significant differences. The
significance level was considered at a level of 0.05.

3 RESULTS

Table 2 summarizes the statistics of the trained model
in two different scenarios (rounded to two decimals).
The centralized model had an accuracy of 0.76, while
the DPFL model had 0.75. In terms of precision,
the centralized model had a precision of 0.74, while
the DPFL model had a precision of 0.73. Both the
centralized and DPFL models had a specificity of
0.77. Finally, the centralized model had a sensitivity
of 0.74, while the DPFL model had a sensitivity of
0.73.

The false positive rate was 0.23 for both the central-
ized and DPFL models, while the false discovery rate
and false negative rate were 0.26 for the centralized
model and 0.27 for the DPFL model. The negative pre-
dictive value was 0.78 for the centralized model and 0.76
for the DPFL model. A mean AUC of 0.82 and 0.81 was
achieved with 95% confidence intervals (CI) of (0.79–
0.85) for the centralized model and (0.77–0.84) for the
DPFL model, respectively.The DeLong test did not prove
statistically significant differences between the two mod-
els (p-value = 0.98). Figure 3 represents the AUC ROC
curves for both models with 10000 bootstrapping and
combined for comparing two different models.

In Figure 4, the performance of the DPFL model
in relation to membership inference attacks during
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8 AI FOR COVID-19 PROGNOSTIC MODELING

F IGURE 3 ROC curves of two different models, including centralized and differential privacy federated learning (DPFL), using 10000
bootstrapping and combined to compare two different models.

F IGURE 4 Line graph of different area under the curve (AUC) scores across different epochs for evaluating the resilience of the differential
privacy federated learning (DPFL) model against membership inference attacks.

training is illustrated using the AUC metric. The AUC
values for the membership inference attacks fluctu-
ate between 0.49 and 0.518, with an average of
0.50 ± 0.003 and a 95% CI of 0.500 to 0.501.
These results suggest that the membership inference

attack was unable to successfully extract sensitive
information regarding the patients during the training
process. The DPFL model effectively protected patients’
privacy with respect to membership inference of
attack.
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AI FOR COVID-19 PROGNOSTIC MODELING 9

4 DISCUSSION

FL has remained a decent solution to sensitive data
transfer issues as it gives us the capacity to share the
knowledge of the data without explicitly sharing the
data itself.20,21,55 Therefore, unlike centralized training,
FL provides more comfortable options, such as access
to multi-institutional data and computational infrastruc-
ture to build a generalizable DL model.20,21 As a type of
FL, DP-FL encompasses the advantage of keeping the
data safe via the DP algorithm.29 In the current study,
we performed DPFL-based DL modeling for COVID-19
prognostication, which preserves patients’ privacy and
allows the use of multi-center model developments.

FL models face several threats (security and
privacy)20,21; firstly, poisoning attack (model and data),
in which an adversary attempts to manipulate the local
updates of the model (e.g., by adding intentional errors
or adversarial examples in the training set) and affects
its overall performance in a negative way.20,21,33,35,56

Secondly, models are prone to stealing attacks, which
means that a copy of the global model along with
its parameters is stolen as a whole, for example, by
accessing the server.20,21,57 Last but not least are
membership inference attacks, in which the adversary
sends queries to the model aiming to predict specific
data points used during the training by the responses
it receives.20,21,58 Several methods were suggested
to address the threats and attacks.20,21 For instance,
secure aggregation, in which model parameters are
encrypted and then sent to the server, and computa-
tion (i.e., model aggregation) could be performed in
encrypted or decrypted domains.20,21,59 DP is another
approach that adds some noise to the model updates
or data.20,21,60 Finally, there is the adversarial training
method, which boosts the power of the FL model to
defeat possible adversarial examples.20,21,61

Different studies have investigated the applicability of
FL as a COVID-19 diagnostic and prognostic tool. For
instance, Feki et al.62 presented a deep FL for COVID-
19 (COVID-19 and non-COVID-19) detection from 216
chest x-ray images. They evaluated the performance
of their model, arguing it has comparative results to
models trained by sharing patients’ data.62 Such results
could encourage medical institutions to adopt collabo-
rative processes with patient privacy preservation via
FL approaches.62 Another study was conducted by Liu
et al.,63 in which they started by raising concerns regard-
ing the lack of sufficient data due to the fact that
leakage and sharing of patients’ health information are
not allowed without permission,63 and then proposed
FL as a possible solution to the matter,63 and com-
pared the diagnostic accuracy of four popular models
(MobileNet-v2, ResNet18, ResNet18, and COVID-Net)
with and without FL frameworks.63 They used the
COVIDx dataset to train and evaluate a model for image
classification.63 Their dataset included 15 282 images,

of which 13 703 and 1579 were allocated to training and
testing, respectively.63 They reported ResNet18 as the
best-performing model with an accuracy of more than
0.90 in both FL and centralized scenarios.

Li et al.64 designed a FedFocus for COVID-19 detec-
tion using 16 689 images, outperforming the baselines
in model training, efficiency, accuracy, and stability. They
used 8851, 6069, and 1769 normal, pneumonia, and
COVID-19 samples, respectively, to build a model for a
FL-powered detection tool.64 Liang et al.65 designed a
FL framework utilizing 1 552 988 CT slices belonging
to 4804 patients from 6 different centers, which out-
performed the radiologist’s assessment by diagnosing
COVID-19 based on CT images alone with an AUC
of 0.98. The electronic medical records (EMRs) and
chest x-ray (EXAM) FL framework were presented for
the clinical diagnosis of COVID-19 infection.66 Using a
total of 20 institutes from across the globe, it predicts
the future oxygen requirements, mechanical ventilation,
and death of symptomatic patients with COVID-19,
using chest x-rays and clinical data.66 With an average
AUC greater than 0.92, EXAM successfully predicts
outcomes at 24 and 72 h after patients initially present
to the emergency room.66

Chowdhury et al.67 developed DL models (Xcep-
tion, ResNet50, DenseNet121, and InceptionV3) using
1823 images consisting of COVID-19 pneumonia,
non-COVID-19 pneumonia, and healthy controls. They
implemented FL through a pre-trained transfer learn-
ing model.67 The performance metrics of the Xception
model outperformed that of the rest with an accuracy of
0.9959.67 However, the Inception V3 and DenseNet121
models resulted in metrics close to the Xception model
with accuracies of 0.9917 and 0.9751, respectively.67

Similarly, pre-trained DL models were utilized in a study
by Florescue et al.68 using 2230 axial chest CT images.
The images were classified into three groups, includ-
ing (i) COVID-19 cases, (ii) non-COVID-19 pathologies,
for example, neoplastic diseases or non-COVID-19 viral
pneumonia, and (iii) normal CT images.68 The central-
ized and FL techniques were developed and achieved
an accuracy of 0.79 and 0.7932 during the validation
step, respectively.

Given the high variability of image acquisition param-
eters, particularly slice thickness across different cen-
ters, we opted for 2D feature extraction followed by
an averaging method to construct a pseudo-3D model.
This enabled to avoid the potential loss or distor-
tion of information inherent in resizing for 3D pro-
cessing and reduces computational load compared
to zero padding to the largest dataset size (based
on lung mask). In the current study, we implemented
GDP-AQuCl, which theoretically addresses privacy and
attack concerns.20,21,33,35 We evaluated the model in
a membership inference attack, which failed to pro-
vide sensitive information.69,70 Nevertheless, there are
some challenges to applying the DP mechanism as
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10 AI FOR COVID-19 PROGNOSTIC MODELING

well.71–73 A major challenge is precisely determining a
function’s sensitivity, which is necessary to determine
how much noise should be added.71–73 Furthermore,
adding noise to clean data can render statistical anal-
ysis less accurate, especially when a high magnitude
of noise is required, that is, when the privacy budget
is high.71–73 The DPFL model, despite incorporating DP
mechanisms,demonstrates performance on par with the
centralized model. This result is achieved through care-
ful calibration of DPFL parameters, ensuring an optimal
balance between data privacy and model accuracy.

The current study suffers from some limitations,
including the fact that the study was performed on one
server using multiple GPUs.33,35–37,74 Future studies
should address the communication issues between dif-
ferent centers.20,21,24,33,50 However, our study proved
that model development is feasible for COVID-19 prog-
nostication using chest CT images without sharing
the data between centers while building global mod-
els, which achieved centralized model performances. In
addition, more DL models and aggregation methods
should be implemented for comprehensive evaluation.
While our study evaluated the performance of the DL
model on a hold-out test set,we recognize that validating
the model on external datasets from different centers is
essential to truly assess its generalizability and robust-
ness. Future research should include such external
validations to ensure the model’s generalizability and
robustness across different centers.

5 CONCLUSION

This study evaluated the performance of deep FL, a
privacy-preserving method, in predicting COVID-19 out-
comes using chest CT images. Our results showed that
the proposed model outperformed centralized models
while operating on large and heterogeneous multi-
institutional datasets. In addition, the model was resis-
tant to inference attacks, ensuring the privacy of shared
data during the training process.Overall,our results sug-
gest that deep FL is a promising approach for predicting
COVID-19 outcomes in a privacy-conscious manner. FL
facilitates rapid and accurate data science and big-data
collaboration between centers from across the globe,
thus avoiding the need for sensitive data sharing.
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