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Abstract

Over the past four decades, we have witnessed an increasing interest in developing and
using multivariate extreme value theory to deal with the growing concern for risk assess-
ment of rare phenomena, due to their large socio-economic impacts. The extreme value
community have realized the prominence of considering the multivariate nature of extreme
events to take into account the risk component emerging from the dependence between
these events, but have also recognized the additional complexity of this task compared to
the well-understood univariate extreme value theory. Moreover, the non-stationary extent
of most extreme events have focused the attention of many researchers over the past few
years, owing to the auxiliary information that a set of covariates might contain, thereby
allowing data pooling, improved inference, and a better understanding of the behaviour
of extreme events in different environments and settings.

In this thesis, we develop new models for covariate-varying tail dependence structures
based on asymptotically justified arguments, and propose novel techniques for fitting
these models to both block maxima and threshold exceedances data, under the assump-
tions of asymptotic dependence and asymptotic independence. Our proposals for the
flexible incorporation of covariate influence on the extremal dependence rely on the (vec-
tor) generalized additive modelling infrastructure, and are established in a parametric
setting where we extend the standard approach of modelling non-stationary univariate
extremes to the multivariate framework through spectral density modelling, as well as
a non-parametric setting where we develop projection techniques enabling the reduction
of the problem of characterizing joint tail dependences to the modelling of univariate
random variables. Inference is performed by penalized maximum likelihood estimation
combined, when applicable, with censored likelihood techniques. The performance of the
resulting estimators is assessed either through simulation studies or based on asymptotic
distributions, when the parametric approach to the extremal dependence modelling is
undertaken.

The developed methodologies are illustrated on environmental datasets where depen-
dence between large events is linked to a set of covariates describing time as well as
characteristics of the measurement sites.
Keywords: Angular density; Asymptotic dependence; Asymptotic independence; Covariate-
adjustment; Extreme value theory; Generalized additive models; Max-stable random vec-
tors; Multivariate extreme values; Penalized log-likelihood; Threshold exceedances; Vector
generalized additive models.





Résumé

Durant les quatre dernières décennies, on a observé un intérêt croissant pour l’utilisation et
le développement de la théorie des valeurs extrêmes multivariées dans le but de répondre
à la préoccupation, de plus en plus importante, pour l’évaluation des risques liés aux
phénomènes rares, du fait de leurs impacts socio-économiques considérables. La commu-
nauté des valeurs extrêmes a répondu à la nécessité de considérer la nature multivariée
des événements extrêmes afin de prendre en compte la composante du risque émanant
de la dépendance entre ces événements, mais a aussi reconnu la complexité additionnelle
de cette tâche, comparée à la théorie des valeurs extrêmes univariées qui est bien con-
nue. En outre, au cours des dernières années, le caractère non stationnaire de la plupart
des événements extrêmes a attiré l’attention de scientifiques portant un intérêt à la pra-
tique, dû à l’information auxiliaire qu’un ensemble de variables explicatives peut contenir
ainsi qu’à l’utilisation profitable de cette information, en vue de regrouper les données,
améliorer l’inférence, et mieux comprendre le comportement des événements extrêmes
dans différents environnements.

Dans cette thèse, nous développons de nouveaux modèles, justifiés par des argu-
ments asymptotiques, pour des structures de dépendance extrême qui varient en fonc-
tion de variables explicatives, et nous proposons des techniques novatrices pour ajuster
ces modèles à des maxima de blocs ainsi qu’à des excès de seuils élevés, et ceci dans
le cas de dépendance asymptotique comme dans le cas d’indépendance asymptotique.
Nos propositions d’incorporer, d’une manière flexible, l’influence de variables explicatives
sur la dépendance extrémale reposent sur l’infrastructure des modèles (vecteurs) addi-
tifs généralisés. Ces propositions sont établies dans un cadre paramétrique à travers une
extension de l’approche standard pour la modélisation d’extrêmes univariés non station-
naires, qui repose sur la modélisation de densités spectrales, ainsi que dans un cadre non
paramètrique via le développement de techniques de projection qui permettent de réduire
le problème de caractérisation de la dépendance dans les queues jointes à un problème
de modélisation d’une variable aléatoire univariée. L’inférence s’appuie sur l’estimation
par maximum de vraisemblance pénalisée combinée, dans le cas échéant, à des techniques
de vraisemblance censurée. La performance des estimateurs proposés est établie soit au
travers d’études de données simulées, soit en se basant sur leur distribution asymptotique,
ceci étant sous l’approche paramétrique pour la modélisation de la dépendance extrémale.

Les méthodologies développées sont illustrées au travers d’applications à des données
environnementales où la dépendance entre les événements extrêmes est décrite par un
ensemble de variables explicatives comprenant le temps ainsi que des caractéristiques des
stations de mesure.
Mots clés: Ajustement par variables explicatives; Densité angulaire; Dépendance asymp-
totique; Excès de seuil; Indépendance asymptotique; Log-vraisemblance pénalisée; Modèles
additifs généralisés; Modèles vecteurs additifs généralisés; Théorie des valeurs extrêmes;
Valeurs extrêmes multivariées; Vecteurs aléatoires max-stable.
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Introduction

Motivation
In recent years, there has been a great deal of interest in multivariate extreme value
modelling, driven by impetus for dependence structure modelling. This is especially due
to the inherent multivariate nature of most of the phenomena resulting in devastating
losses. Two major areas that have witnessed an upsurge of research on extreme value
modelling and risk assessment are the environmental sciences (climatology, hydrology,
oceanography) and finance. Examples of applications include the analysis of flood events
resulting from extreme discharges at different upstream flows and the modelling of extreme
price fluctuations of several stocks that can dramatically affect an institution’s asset.
In these settings, the motivation for extreme value modelling is the extrapolation of
probabilities of events beyond the range of observed data. Without certain knowledge of
the tail properties underlying the data, such extrapolations rely on asymptotic arguments
where a strong belief in the adequacy of the asymptotic models outside the range of the
observed data is required.

Fundamentally, the analysis of multivariate variables entails the analysis of two com-
ponents: the marginal distributions and the dependence structure. While the first com-
ponent, i.e., the margins, is dealt with using the univariate extreme value theory that goes
back to the late 1920s, the treatment of the second component is based on the characteri-
zation of multivariate extreme value distributions that goes back to the late 1970s. Since
this time, various efforts have been taken to model, in a flexible and parsimonious way,
the dependence structure that cannot be represented by a finite parametric family. While
some authors focus on parametric modelling of the limiting dependence structure, others
deal with issues related to the validity of the asymptotic models and propose solutions to
the modelling of the dependence either at penultimate levels or by considering different
kinds of sparsity in its structure.

Although there is a plethora of approaches to extremal dependence modelling under
numerous structural and limiting assumptions, little work is dedicated to incorporating
covariate information to capture features of the tail behaviour. In the flood example men-
tioned above, the dependence between extreme river discharges might, and probably does,
depend on the Euclidean or river distance between the locations of the flows. Although
spatio-temporal max-stable models offer an elegant way to incorporate space and time
effects on the extremal dependence, these models rely on isotropy and stationarity assump-
tions and more essentially, require a notion of distance between the observed components,
which might be intricate in some cases, e.g,. the above-mentioned financial example.
Furthermore, in many applications, covariates other than time are believed to affect the
strength of the extremal dependence: the type of stock sectors, the business line in which
losses occurred, the altitude or the type of station at which a process was observed, etc.
We illustrate below the effect of the type of sector and time on the extremal dependence



2

between pairs of stocks. Figure 1 shows joint occurrences of extreme losses for two major
players in the banking industry—Citibank and JP Morgan—during two different time
periods as well as the joint extreme losses for two key players in the healthcare industry—
Merk & Co and Patterson Companies. Care is needed when interpreting these plots as no
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Figure 1: Scatterplots of negative daily log-returns stock prices of Citibank (citi), JP
Morgan (jpm), Merck & Co (mrk), and Patterson Companies (pdco). Left: Time period
of 1999–2001; Right: Time period corresponding to the subprime crisis (from December
1st, 2007 to June 30th, 2009).

pre-processing was performed to remove marginal non-stationarity and heteroskedasticity
that may affect the tail dependence; see for instance Poon et al. [2003]. Nevertheless,
during the same time period, 1999-2001 say, the strength of the tail dependence between
pairs of stocks seems to differ between the two types of sectors with stronger dependence
in the financial industry compared to the healthcare industry. Additionally, there is a
noticeable change in the extremal dependence structure of the healthcare stocks, during
the subprime crisis where data seem to exhibit more dependence in the tails.

This thesis contributes to the extreme value theory and the generalized additive mod-
elling literature by developing new models for covariate-varying extremal dependence
structures, as well as novel inference methods for such structures. The following para-
graph delineates the content of the chapters and their contributions.

Outline and contributions of the thesis
In Chapter 1, classical extreme value theory is surveyed in the finite-dimensional case and
an overview of generalized additive models is given. We tie together these two fields, in
order to extend the available literature to the multivariate setting. This chapter serves as
a background to the work developed in this thesis.
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In Chapter 2, we discuss modelling of the extremal dependence in a parametric and
covariate-varying framework. The main new contributions are to develop families of mod-
els for non-stationary extremal dependence structures based on a parametric assumption
and the vector generalized additive modelling framework, and to devise a penalized maxi-
mum log-likelihood estimator for covariate-dependent angular densities. Consistency and
asymptotic normality of this estimator are derived under regularity conditions. We illus-
trate the methodology with an application to winter extreme air temperatures in Switzer-
land, where the extremal dependence is linked to time and the North Atlantic Oscillation
index. This chapter corresponds to the arXiv manuscript Mhalla et al. [2017b], that is
under review for the Journal of the Royal Statistical Society, Series B.
In Chapter 3, we propose a semi-parametric method for the estimation of covariate-
dependent multivariate Pickands’ dependence functions, based on a novel projection tech-
nique of max-stable random vectors. The effect of the covariates is accounted for through
the use of generalized additive models and the resulting Pickands’ dependence function is
regularized, in the bivariate case, using constrained median smoothing B-splines. An ap-
plication of this methodology to temperature data in the U.S. is conducted and the effects
of time and altitude on the extremal dependence are assessed. This chapter corresponds
to the work published in Mhalla et al. [2017a].
In Chapter 4, we construct a threshold-based estimator of tail dependence measures, in
a covariate-dependent framework. We extend the notion of projection of random vectors,
developed in Chapter 3, to allow for the estimation of covariate-varying extremal depen-
dence under asymptotic dependence and asymptotic independence settings. We also detail
how inference based on the full likelihood in the asymptotic independence case, and the
censored likelihood in the asymptotic dependence case, can be performed. The proposed
techniques are illustrated on a large dataset of French air pollution where the influence
of spatial distance, time, and type of station is determined. This chapter corresponds to
the arXiv manuscript Mhalla et al. [2018], that is under review for Extremes.





Chapter 1

Background and literature review

This chapter is an overview of the cornerstones of this thesis: extreme value theory in
the finite-dimensional case and generalized additive models. This chapter is intended to
provide the necessary background for the rest of the thesis and to give an overview of the
existing methods for modelling non-stationary extremes.

1.1 Extreme value theory

1.1.1 Univariate extreme value theory
1.1.1.1 Asymptotic distribution of normalized maxima

Let (Yi)i≥1 be a sequence of independent and identically distributed (IID) random vari-
ables with common distribution F . We are interested in the behaviour of the maxi-
mum of a sequence of n such random variables which we denote by Mn and define as
Mn = max{Y1, . . . , Yn}. Based on the IID hypothesis, we can derive the cumulative
distribution function of Mn:

Pr (Mn ≤ y) = Pr (Y1 ≤ y, . . . , Yn ≤ y) =
n∏
i=1

Pr (Yi ≤ y) = {F (y)}n ,

and show that it converges, as n → ∞, to a degenerate distribution function with a
point mass on the upper end-point of the distribution F . By analogy with the central
limit theorem, we can look for a suitable normalization of Mn that would lead to a non-
degenerate limiting distribution function. The following theorem, derived heuristically
by Fisher and Tippett [1928] and formalized by Gnedenko [1943], is the foundation of
extreme value theory (EVT).
Theorem 1.1.1. If there exist sequences of constants {an > 0} and {bn} such that the
normalized random variable Mn converges in distribution to a random variable with a
non–degenerate distribution function G, i.e.,

Pr{(Mn − bn)/an ≤ y} → G(y), n→∞,

then G belongs to the Generalized Extreme Value (GEV) family of distributions

G(µ,σ,ξ)(y) =
{

exp
[
−{1 + ξ(y − µ)/σ}−1/ξ

+

]
, ξ 6= 0,

exp [− exp{−(y − µ)/σ}] , ξ = 0,

defined on {y : 1 + ξ(y − µ)/σ > 0}, with −∞ < µ, ξ <∞, σ > 0, and x+ = max(x, 0).
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The parameters µ, σ, and ξ correspond to the location, scale, and shape parameters,
respectively. Depending on the value of the shape parameter, we distinguish three lim-
iting distributions: Fréchet distribution (ξ > 0) with a lower bounded support, reversed
Weibull distribution (ξ < 0) with an upper bounded support, and Gumbel distribution
(ξ = 0) with an unbounded support and an exponential decay in the upper tail. The
characterization of the GEV distribution is convenient for inference as no assumption on
the shape parameter should be made beforehand. We can therefore define the notion of
the maximum domain of attraction of the extreme value distribution G as the class of
underlying distributions F whose suitably normalized maxima converge in distribution to
G. Examples of such distributions include the Beta distribution that belongs to the max-
domain of attraction of the reversed Weibull, the Gamma distribution that belongs to the
max-domain of attraction of the Gumbel, and the Pareto distribution that belongs to the
max-domain of attraction of the Fréchet. Necessary and sufficient conditions for the exis-
tence of the max-domain of attraction along with a classification of numerous well-known
distributions according to their max-domain of attraction can be found in Embrechts
et al. [1997], Beirlant et al. [2004], de Haan and Ferreira [2006]. For instance, the follow-
ing Gnedenko–de Haan theorem [Gnedenko, 1943, de Haan, 1970] provides necessary and
sufficient conditions for a distribution F to belong to the max-domain of attraction of a
GEV distribution G(0,1,ξ), denoted F ∈ MDA(Gξ).
Theorem 1.1.2. Let F be a distribution function with upper end-point yF . Then

• F ∈ MDA(Gξ) with ξ > 0 if and only if yF =∞ and

lim
t→∞

1− F (ty)
1− F (t) = y−1/ξ, y > 0.

• F ∈ MDA(Gξ) with ξ < 0 if and only if yf <∞ and

lim
t→∞

1− F{yF − (ty)−1}
1− F (yF − t−1) = y1/ξ, y > 0.

• F ∈ MDA(G0) if and only if
∫ yf

t0 {1− F (y)}dy <∞ for some t0 < yF and

lim
y→yF

1− F{t+ yR(t)}
1− F (t) = exp(−y), y ∈ R,

where R(t) :=
∫ yF
t {1− F (y)}dy/{1− F (t)}, t < yF .

Needless to say that the existence of the normalizing sequences {an > 0} and {bn} in
Theorem 1.1.1 is not guaranteed and one can find distributions that do not belong to any
max-domain of attraction. Examples include the Poisson and the geometric distributions
[Embrechts et al., 1997, p.118].

The assumption of the independence and identical distribution of the sequence of
random variables (Yi)i≥1 is very likely to be violated in practice: the data may exhibit
temporal dependence as it is the case for daily wind speeds or hourly rainfall, for example.
Moreover, the limiting behaviour of the maxima may change over time as a consequence
of a seasonal pattern or financial crises, for example. An extensive work on the theory of
extreme values for strictly stationary time series with short-range dependence has been
developed and summarized in Leadbetter et al. [1983]. The issue of non-stationarity is
often handled by modelling the parameters of the GEV distribution using parametric and
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semi-parametric models (see Section 1.3 for details) or by filtering the data which should,
at least in theory, result in a stationary series of residuals on which “standard” EVT can
be applied [McNeil and Frey, 2000, Eastoe and Tawn, 2009].

The extremal types theorem (1.1.1) justifies the use of the limiting GEV distribution
as an approximate distribution for block maxima. The distribution G(µ,σ,ξ) is typically
fitted at sub-asymptotic levels, i.e, using finite-size blocks, based on likelihood methods.
The log-likelihood is easily obtained and can be maximized numerically using standard
optimization techniques. Care is needed when it comes to the classical asymptotic prop-
erties of the maximum likelihood estimates (MLE) as the end–points of the GEV are
functions of the parameter values. Smith [1985] discussed the regularity conditions for
likelihood estimation in EVT and showed that despite the standard regularity conditions
being violated, classical asymptotic properties of the MLE hold when ξ > −1/2. This is
the case for most of the environmental and financial applications. Alternatives to maxi-
mum likelihood estimators were proposed: Hosking et al. [1985], Hosking and Wallis [1987]
advocated the use of probability weighted moments estimators for their good properties
in small samples, although these estimators are defined only when ξ < 1 (finite mean
cases), Dupuis and Field [1998] proposed the use of optimal bias-robust estimators for
their bounded influence functions which limit the influence of outliers, and a Bayesian
approach based on hierarchical models was adopted by Sang and Gelfand [2009, 2010].
Finally, it should be mentioned that, even though the choice of the block length results in a
bias-variance trade-off, it is often chosen, in practice, according to the nature of the phys-
ical phenomenon underlying the data, e.g., seasonal or annual maxima in environmental
applications [Coles, 2001, p.54].

1.1.1.2 Threshold-based models

The extreme events being scarce by definition, the block maxima approach may be qual-
ified as wasteful since it discards extreme events that are not as extreme as the block
maximum but that should be informative about the behaviour in the tails. In what
follows, we modify the definition of rare events from the maximum over a block of obser-
vations to the observations exceeding a high fixed threshold, and focus on the asymptotic
distribution of threshold exceedances. Mainly, two approaches have been considered: The
Peaks Over Threshold (POT) method due to Balkema and de Haan [1974] and developed
by Davison and Smith [1990], and the point process method studied by Pickands [1971],
Smith [1989].

Let (Yi)i≥1 be a sequence of IID copies of a random variable Y with distribution
function F , and suppose that there exist normalizing sequences {an > 0} and {bn} such
that Theorem 1.1.1 holds, i.e., F is in the max-domain of attraction of a GEV(µ,σ,ξ). In the
POT approach, we consider a finite high threshold u and model the limiting distribution
of the exceedances Y − u|Y > u with a Generalized Pareto Distribution (GPD) G(σ̃u,ξ),
as follows:

Pr {(Yn − bn) /an > u+ y| (Yn − bn) /an > u} →
{

(1 + ξy/σ̃u)−1/ξ
+ , ξ 6= 0,

exp(−y/σ̃u), ξ = 0,

where σ̃u = σ+ξ(u−µ) and the shape parameter ξ is the same as that of the corresponding
GEV distribution. The distribution function G(σ̃u,ξ) is defined on {y : y > 0 and (1 +
ξy/σ̃u) > 0}, and the case of ξ = 0 is interpreted as the limit. Then, Pr(Y − u ≤ y) ≈
1− ζu(1 + ξy/σ̃u) for exceedances of u, with ζu = Pr(Y > u) and where we suppose that
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the normalizing constants are absorbed by the location and scale parameters of the GEV
distribution. Inference is performed using likelihood methods where we make use of the
assumption of independence of the threshold exceedances. Alternative techniques such as
the method of probability weighted moments or the elemental percentile method can be
used to derive the parameters estimates; see e.g. Section 5.3 in Beirlant et al. [2004].
The second approach, based on two-dimensional point processes, formulates in an elegant
way the limiting behaviour of observations exceeding a high threshold, while avoiding
a characterization depending on the fixed threshold, as it is the case with the GPD
modelling. We again suppose that Theorem 1.1.1 holds for the normalizing sequences
{an > 0} and {bn}, and define the set of points Pn as

Pn :=
{(

i

n+ 1 ,
Yi − bn
an

)
: i = 1, . . . , n

}
.

The sequence of points Pn defines a point process on (0, 1)×R. Then, provided F is in the
max-domain of attraction of a GEV(µ,σ,ξ), the sequence of point processes Pn converges on
sets of the form (0, 1)× [u,+∞), u ∈ R large enough, to a Poisson process with intensity
measure

Λ([t1, t2]× [y,∞)) = (t2 − t1)
(

1 + ξ
y − µ
σ

)−1/ξ

+
, y > u.

This result states that, for large n, non-extreme observations are absorbed towards the
lower end-point of the GEV(µ,σ,ξ) while observations belonging to the extremal set [u,∞)
are approximated by a Poisson process whose intensity measure depends on the parameters
of the underlying GEV. In addition to its nice mathematical derivation (see Embrechts
et al. [1997] for details), the point process approach allows us to perform a likelihood-
based inference where the parameters do not depend on the fixed threshold, as opposed
to the POT approach.

As with the block maxima approach, the point process approach can be extended to
stationary time series under a mixing condition imposing long-range independence [Hsing
et al., 1988]. Short-range dependence being allowed, exceedances at high levels tend to
occur in clusters and the limiting Poisson process for the exceedances is then modified to
take into account the distribution of the cluster size; see [Beirlant et al., 2004, Section
10.3] for details. Another limiting result obtained under stationarity, concerns the limiting
distribution of the cluster maxima that are shown to be asymptotically distributed as a
Poisson process with intensity measure depending on the mean cluster size. This result is
often used in practice to perform inference in presence of temporal dependence and where
declustering methods, i.e., identification of the clusters in the data, are used [Davison
and Smith, 1990, Smith and Weissman, 1994, Ferro and Segers, 2003]. The temporal
dependence can also be accounted for by explicit formulation based on Markov chains
[Fawcett and Walshaw, 2006].

An important caveat should be attached to the use of threshold methods and is related
to the choice of the threshold. The choice of the threshold translates to a bias-variance
trade-off as a low threshold, resulting in a higher number of exceedances, will minimize
the variance but increases the bias as the asymptotic approximation for the tail of the
distribution will be poor. Several graphical tools have been developed and rely on the
threshold stability property of the GPD, that is if the validity of the GPD holds for some
high threshold u, then it holds above any threshold ũ > u; see Coles [2001, Section 4.3].
Another solution that is more practical, in the sense that it is less subjective, is to set
the threshold at various high quantile levels, which might be pre-determined in some
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applications, e.g. Value-at-Risk computations, and to assess the stability of the GPD.
See Scarrott and MacDonald [2012] for an overview of the literature regarding threshold
selection.

1.1.2 Multivariate extreme value theory
We now extend the notions developed in Section 1.1.1 to the multivariate framework
where not only the extremes of multiple series of observations are of interest, but also the
dependence structure in their joint tails. This is of utmost importance for aggregate risk
quantification, for example, where the interest is in co-occurrences of extreme events.

1.1.2.1 Multivariate extreme value distributions

Let (Yi)i≥1 be a sequence of IID copies of a d-dimensional random vector Y = (Y1, . . . , Yd)
with marginal distributions Fj, j = 1, . . . , d, and joint distribution F . We denote by
Mn = (Mn,1, . . . ,Mn,d) the vector of componentwise maxima, where Mn,j = maxni=1 Yi,j
the sample maximum of the j-th component. Note that Mn is not necessarily observed
as the componentwise maxima may occur at different times. Similarly to the univariate
EVT, the vector Mn needs to be suitably normalized to avoid degeneracy of its limit law
as n → ∞. We suppose that there exist sequences {an} ⊂ Rd

+ and {bn} ⊂ Rd such
that the normalized vector (Mn − bn)/an converges in distribution to a random vector
Z = (Z1, . . . , Zd) with joint distribution G and non-degenerate margins Gj, j = 1, . . . , d.
Then, the limiting distribution G is called the multivariate extreme value distribution
(MEVD) [Resnick, 1987, Chapter 5.3] and the distribution function F is said to be in
the maximum domain of attraction of G. The class of MEVDs has the nice property
of coinciding with the class of max-stable distribution functions with non-degenerate
margins [Beirlant et al., 2004, Chapter 8.2.1], where a d-variate distribution G is said to
be max-stable if there exist vectors αk > 0 and βk such that

G(αkz + βk)k = G(z), z = (z1, . . . , zd) ∈ Rd,

for any integer k > 0. Two subsequent results follow on from this property. The margins
Gj must be max-stable, or equivalently GEV(µj ,σj ,ξj), which follows from the univariate
EVT of Section 1.1.1 and the construction of Mn, and the distribution function G is max-
infinitely divisible, that is, G1/k is a distribution function, for any integer k > 0 [Balkema
and Resnick, 1977]. In particular, there exists a measure µ∗ defined on [−∞,∞)d, such
that

G(z) = exp {−µ∗ (Az)} = exp {−V (z)} , (1.1)
where Az = Rd \ ([−∞, z1]× · · · × [−∞, zd]). The measure µ∗ is termed the exponent
measure and contains the information regarding the structure of the dependence between
the components of Z. Equivalently, the function V is named the exponent function.

It is common practice in multivariate extreme value analysis to transform the marginal
distributions Gj to a common scale and to study the dependence structure using max-
stable distributions. A particularly convenient choice for the marginal distributions is
the unit Fréchet distribution with distribution function Pr(Zi ≤ z) = exp(−1/z)1[0,∞)(z)
and for which the normalizing sequences required for the limiting theorem to hold, are
an = n and bn = 0. The marginal transformation is performed using probability integral
transforms where the transformation

tj(z) = −1/ log{Gj(z)} = {1 + ξj(z − µj)/σj}1/ξj

+ , z > 0,
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is applied to the j-th margin, and the dependence structure of the transformed random
vector is the same as the dependence structure of Z. Without loss of generality, we will
assume hereafter that Y has unit Fréchet margins and, consequently, that the exponent
measure µ∗ associated to G is concentrated on [0,∞)\{0}. Then, G is said to be a simple
max-stable distribution. The marginal assumption implies that V (∞, . . . , z, . . . ,∞) =
1/z, whereas the max-stability of G implies the homogeneity of order −1, of V and
µ∗, i.e., V (tz) = t−1V (z) and µ∗(tB) = t−1µ∗(B), for t > 0 and B a Borel subset of
[0,∞) \ {0}. In terms of its associated copula [Nelsen, 2006]

C(u) = exp [−V {−1/ log(u)}] , u ∈ [0, 1]d,

the max-stability of G implies that its copula C belongs to the large class of max-stable
copulas verifying

C(u) =
{
C
(
u

1/k
1 , . . . , u

1/k
d

)}k
, u = (u1, . . . , ud) ∈ [0, 1]d, k > 0.

Similarly to the univariate case (see Section 1.1.2), a point process characterization
of the limiting behaviour of the componentwise maxima can be formulated. Define the
point process Nn(B) = ∑n

i=1 1Pi∈B on Rd
+, where Pi = Yi/n. Then, Nn converges weakly

to a non-homogeneous Poisson process N on Rd
+ with mean measure µ∗ [Resnick, 1987,

Chapter 3.5]. Hence, by a computation of the void probability of the Poisson process N on
the set Az, we recover the result (1.1) on the characterization of the limiting distribution
G:

Pr (Mn/n ≤ z) = Pr {Nn(Az) = 0} → exp{−µ∗(Az)} = exp{−V (z)}, as n→∞.
(1.2)

This result means that, by counting the stabilized observations that fall into a critical set
where at least one component is large, one can estimate the dependence structure in the
limiting MEVD.

Now that we have defined the exponent measure, we will rely on its homogeneity prop-
erty to characterize, through a spectral decomposition, the class of multivariate extreme
values distributions. We define the d-dimensional unit simplex Sd by

Sd = {ω ∈ Rd
+|ω1 + · · ·+ ωd = 1},

and map [0,∞) \ {0} to (0,∞)× Sd through the transformation

t(z) = (r,ω) =
 d∑
j=1

zj, z/
d∑
j=1

zj

 , (1.3)

where r and ω are the radial and angular parts of z, respectively. With this parametriza-
tion, the intensity measure dµ∗ factorizes into a product measure given by

dµ∗(r,ω) = r−2drH(dω), (1.4)

where H is called the angular measure (or the spectral measure, for obvious reasons) and
describes the dependence structure in the limiting MEVD G. The spectral representation
(1.4) of the exponent measure µ∗ is due to de Haan and Resnick [1977] and implies that,
asymptotically, the radial part and the angular part of the rescaled observations Yi/n are
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independent. The link between the exponent function V defined in (1.1), and the angular
measure H is easily recovered as follows

µ∗(Az) =
∫
Sd

∫ ∞
min

j=1,...,d
(zj/ωj)

r−2drH(dω) =
∫
Sd

max
j=1,...,d

(ωj/zj)H(dω) = V (z). (1.5)

This result, along with the marginal assumption on G, implies the following mean con-
straint on H ∫

Sd

ωjH(dω) = 1, j = 1, . . . , d. (1.6)

In what follows, we compute the expected number of points in the extreme set Er0 =
{z ∈ (0,∞)d|∑d

j=1 zj/r0 > 1}, for some r0 > 0, which will turn out to be useful when
performing inference on multivariate extremes,

µ∗(Er0) =
∫
Sd

∫ ∞(∑d

j=1 ωj/r0

)−1 r−2drH(dω)

=
∫
Sd

 d∑
j=1

ωj/r0

H(dω) =
∫
Sd

r−1
0 H(dω) = r−1

0 . (1.7)

As opposed to the univariate case where a parametric family of distributions charac-
terizes all the possible limiting distributions of suitably normalized maxima, the class of
multivariate extreme value distributions yields an infinite number of possible parametric
representations. As a matter of fact, the validity of the MEVD G relies solely on its angu-
lar measure H satisfying the mean condition (1.6). Therefore, when it comes to extremal
dependence modelling, we can either rely on flexible classes of parametric models, where
the underlying features of the data at the extremal level (symmetry, pairwise dependence
equality, etc) can be used to guide model choice, or go the non-parametric way.

1.1.2.2 Parametric models

Parametric representations of the exponent function V need to be flexible enough to
capture the different features of the data, but parsimonious to endow the models with
interpretability and inference feasibility, as things get quickly complicated when the di-
mension d increases. Along with the mean constraint (1.6) on H, the exponent function
V (z) needs to lie between the boundaries max(1/z1, . . . , 1/zd) and 1/z1 + . . .+ 1/zd that
correspond to the cases of perfect dependence and independence, respectively. In terms
of the angular density, these boundaries imply that H places total mass 1 in the center
of the simplex Sd, i.e., (1/d, . . . , 1/d) (perfect dependence) and mass 1/d on the vertices
of Sd (independence). Coles and Tawn [1991] proposed a method to construct flexible
classes of parametric models for the angular density h of the angular measure H, when
the MEVD G is absolutely continuous, and Boldi and Davison [2007] constructed a semi-
parametric model for the angular density, based on mixtures of Dirichlet distributions. We
describe below some of the most popular models for the extremal dependence structure.
For an overview of the parametric models for MEVDs, refer to Kotz and Nadarajah [2000,
Chapter 3] and Beirlant et al. [2004, Section 9.2.2]. Model selection is performed using
likelihood-based model selection criteria such as the likelihood ratio test when the models
are nested and the Akaike information criterion (AIC) when the models are non-nested,
although these criteria do not measure the quality of the individual models.
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The logistic model

Due to Gumbel [1961], the logistic model is one of the most famous models owing to its
simplicity. The d-dimensional exponent function is

V (z) =
 d∑
j=1

z
−1/α
j

α , z > 0,

where α ∈ (0, 1]. This model is described by a unique dependence parameter with α = 1
corresponding to independence and α→ 0 corresponding to perfect extremal dependence.
The logistic angular density is given by

h(ω;α) =
d−1∏
j=1

(j/α− 1)
d∏
j=1

ω
(−1/α−1)
j

 d∑
j=1

ω
−1/α
j

α−d , ω ∈ Sd.

As a result of the model being described by a unique parameter, the symmetric dependence
structure at extremal levels lacks of flexibility and extensions were proposed.

Coles and Tawn [1991] proposed the asymmetric logistic model where asymmetry in the
extremal dependence structure can be captured through an additional set of parameters
as follows

V (z) =
∑
I∈Pd

∑
j∈I

(zj/βI,j)−1/αI


αI

, z > 0,

where Pd is the set of all non-empty subsets of {1, . . . , d}, αI ∈ (0, 1] for all I ∈ Pd and
βI,j ∈ [0, 1] with ∑

I∈Pd
βI,j = 1 for j = 1, . . . , d with the convention that βI,j = 0 if

j 6∈ I. Other extensions of the logistic model include the asymmetric negative logistic
model [Joe, 1990] and the bilogistic model [Smith, 1990].

The Dirichlet model

A second model allowing for asymmetric extremal dependence structures is the (tilted)
Dirichlet model proposed by Coles and Tawn [1991] and based on their general model
construction of valid angular densities. The d-dimensional angular density is

h(ω;α) = Γ(α.1 + 1)
(α.ω)(d+1)

d∏
j=1

αj
Γ(αj)

(
αjwj
α.ω

)αj−1
, ω ∈ Sd,

where α ∈ Rd
+ and 1 is the d-dimensional vector of ones. Symmetry is obtained when

α1 = · · · = αd, perfect dependence when αj → ∞, and independence when αj → 0, for
all j ∈ {1, . . . , d}. The exponent function V cannot, in this case, be computed in closed
form.

The pairwise beta model

Applying similar construction arguments as for the Dirichlet model, Cooley et al. [2010]
came up with the pairwise beta model with angular density

h(ω;α,β) = 2(d− 3)!Γ(dα + 1)
(d− 1)Γ(2α + 1)Γ{(d− 2)α}

∑
1≤i<j≤d

hi,j(ω;α, βi,j), ω ∈ Sd,
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where

hi,j(ω;α, βi,j) = (ωi+ωj)2α−1 {1− (ωi + ωj)}(d−2)α−d+2 Γ(2βi,j)
Γ2(βi,j)

(
ωi

ωi + ωj

)βi,j−1 (
ωj

ωi + ωj

)βi,j−1

.

The parameter α > 0 can be interpreted as a global dependence parameter, while each of
the

(
d
2

)
parameters, βi,j > 0 describes the level of dependence between the i-th and the

j-th components with larger values inducing stronger dependences. Again, the exponent
function cannot be computed analytically but numerical evaluation is feasible.

The Hüsler–Reiss model

Another symmetric model due to Hüsler and Reiss [1989] is the Hüsler–Reiss model.
This model corresponds to the limiting dependence structure of suitably normalized com-
ponentwise maxima of Gaussian variables with zero mean, unit variance, and pairwise
correlations ρi,j(n) increasing with the sample size n such that

log n{1− ρi,j(n)} −→
n→∞

λ2
i,j ∈ [0,∞), ∀i, j ∈ {1, . . . , d}, i 6= j.

The exponent function associated to the Hüsler–Reiss model is

V (z) =
d∑
j=1

1
zj

Φd−1

{λi,j + log(zi/zj)
2λi,j

}
i∈{1,...,d}

i 6=j

; Λ̃j

 , z > 0,

where Φd−1 is the (d − 1)-dimensional Gaussian distribution function with correlation
matrix Λ̃j whose elements are (λ2

k,j+λ2
i,j−λ2

k,i)/(2λk,jλi,j), for k, i 6= j. The parameters λi,j
control the strength of dependence between the i-th and j-th components with complete
dependence when λi,j = 0 and independence attained as λi,j → ∞. Engelke et al. [2015,
Proposition 3.5] derived the angular density of the Hüsler–Reiss model which is equal to

h(ω;λ) = φd−1

{λj,1 + log(ωj/ω1)
2λj,1

}
j∈{2,...,d}

; Λ̃1

ω2
1

d∏
j=2

2λj,1ωj

−1

, ω ∈ Sd,

where λ = (λi,j)i,j∈{1,...,d} and φd−1 is the (d − 1)-dimensional Gaussian density with
correlation Λ̃1.

Figure 1.1 displays examples, in the trivariate case, of the angular densities h(ω; .) in
the symmetric logistic case, the Dirichlet case, the pairwise beta case, and the Hüsler–Reiss
case. Different values of the dependence parameters are considered to reflect different
extremal dependence structures.

1.1.2.3 Inference

As discussed above, the characterization of the extremal dependence structure can be
performed either parametrically, based on the different classes of parametric models pre-
sented in Section 1.1.2.2, or non-parametrically, where non-parametric estimation of the
Pickands’ dependence function [Pickands, 1981] (see Section 1.1.2.4) is performed. We
describe in this section likelihood-based inference methods where multivariate extreme
values are either defined as componentwise block maxima or as threshold exceedances,
and we refer to Huser et al. [2016] for a comparison of the performances of these methods.
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Figure 1.1: Examples of trivariate angular densities with different dependence param-
eters (from left to right) of the logistic model with α = 0.1, 0.6, 0.95, the Dirich-
let model with α = (5, 5, 5), (1.5, 2, 3), (0.1, 0.1, 0.1), the pairwise beta model with
(α,β) = (6, 2, 2, 2), (2, 2, 3, 7), (0.5, 1, 1, 1), and the Hüsler–Reiss model with λ =
(0.3, 0.3, 0.3), (0.4, 0.74, 0.5), (2, 2, 2), from top to bottom.

The inference approaches rely on the validity of the asymptotic model (1.1) or the point
process approximation, at subasymptotic levels and should hence be dealt with carefully
as not only the rate of convergence of the univariate margins is of concern but also the
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rate of convergence of the dependence structure; see Omey and Rachev [1991], Falk and
Reiss [2002]. Let Y1, . . . ,Yn be n realizations of a random vector Y with unit Fréchet
margins and joint distribution F . We assume that F is in the max-domain of attraction
of an MEVD G that depends on a vector of parameters θ, that is θ characterizes the
dependence structure at extremal levels.

Block maxima approach

Assume that N componentwise block maxima, denoted zi = (zi,1, . . . , zi,d), are extracted
from the data at hand. For an adequate parametric model for G, or equivalently (under
the assumption of known margins) for V , the likelihood function is written as

L(θ) =
N∏
i=1

g(zi),

where g(z) = ∂dG(z)/∂z1 . . . ∂zd. For d = 2, g(z1, z2) = (V1V2 − V12) exp{−V (z1, z2)},
where Vi(z1, z2) = ∂V (z1, z2)/∂zi. When the dimension d increases, the likelihood function
becomes intractable as it involves the partial derivatives of V with respect to the elements
in all the sets included in the partition of {1, . . . , d}, and involves hence Bd terms, where
Bd is the Bell number. In order to overcome this issue, one possibility is to consider
composite likelihoods [Padoan et al., 2010, Davison and Gholamrezaee, 2011] instead of
the full likelihood. This solution results in a loss of efficiency [Varin et al., 2011] but has
the advantage of simplifying the likelihood function, especially when pairwise likelihood
is used, as only bivariate marginal densities are considered.

Threshold exceedances approach

We now describe three different threshold-based inference methods that rely on the Pois-
son point process approximation of observations belonging to an extremal set. Although
the choice of the threshold (marginal or radial) results in a trade-off between bias and
variance, it is often treated in practice as a fixed input with a small impact on the analysis
procedure. Figure 1.2 illustrates, in the bivariate case, the extremal sets considered in
these methods.
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Figure 1.2: Examples of extremal sets in R2
+ used for threshold exceedances modelling.

Red points correspond to the observations defined as extreme while grey points correspond
to the censored observations.
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• Exceedances of a marginal threshold
The joint distribution F being in the max-domain of attraction of an MEVD G,
the approximation by a Poisson point process with intensity measure dµ∗, of the
rescaled points Yi/n, holds in the extreme set Au, where u = (u1, . . . , ud) is a
vector of high marginal thresholds; see left panel of Figure 1.2. We denote by
Yk = (Y k

1 , . . . , Y
k
d ) the Nu exceedances of u. Inference for the exponent function V

can then be performed based on the likelihood of the limiting Poisson process, i.e.,

L(θ) = exp{−µ∗(Au/n)}
Nu∏
k=1

dµ∗(Yk/n),

= exp{−V (n−1u)}
Nu∏
k=1
{−V1:d(Yk/n)}

∝ exp{−nV (u)}
Nu∏
k=1
{−V1:d(Yk)},

∝ exp{−nV (u)}
Nu∏
k=1

h

Y k
1 /

d∑
j=1

Y k
j , . . . , Y

k
d /

d∑
j=1

Y k
j

 ,
where V1:d is the derivative of V with respect to all its arguments and h is the angular
density associated to V . The last proportionality sign is due to a result in Coles and
Tawn [1991, Theorem 1] relating V1:d to h. Using this approach, extreme observa-
tions are defined as the observations that are extreme in at least one component and
the convergence to the Poisson point process might be a strong assumption when
not all the components are simultaneously extreme. This led Wadsworth and Tawn
[2014] to consider a censoring scheme where, for each extreme observation (defined
as above), the values of the components not exceeding the marginal threshold are
replaced by the value of that threshold. Thus, these components contribute in the
likelihood by the information that they do not exceed their corresponding marginal
thresholds. This method can therefore suffer from a loss of efficiency as we consider
less extreme observations contributing fully to the likelihood, i.e., only observations
in the extreme set (u,∞) are used fully; see middle panel of Figure 1.2 where red
points contribute fully to the likelihood and grey points are censored and contribute
partially. More precisely, censoring an extreme observation Yk corresponds to re-
placing it by Ỹk = (Ỹ k

1 , . . . , Ỹ
k
d ), where Ỹ k

j = max(Y k
j , uj). The Poisson process

likelihood is now written as

L(θ) ∝ exp{−nV (u)}
Nu∏
k=1
{−VIk

(Ỹk)},

where Ik denotes the set of indices corresponding to the non-censored components
of Yk and VIi

is the partial derivative of the exponent function V with respect to
the elements in Ii.

• Exceedances of a diagonal threshold
As above, we rely on the Poisson point process approximation in extremal sets,
to perform a likelihood-based inference. The extremal set is now defined as the
observations Yi with a radial component exceeding a high threshold u, i.e., Eu =
{y ∈ (0,∞)d|∑d

j=1 yj > u}; see right panel of Figure 1.2. We denote by Yk,
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k = 1, . . . , Nu the extreme points in this region. The Poisson process likelihood over
Eu is

L(θ) = exp{−µ∗(Eu/n)}
Nu∏
k=1

dµ∗(Yk/n),

∝
Nu∏
k=1
{−V1:d(Yk)},

∝
Nu∏
k=1

h

Y k
1 /

d∑
j=1

Y k
j , . . . , Y

k
d /

d∑
j=1

Y k
j

 ,
where the first proportionality sign is due to the fact that the expected number of
exceedances in extreme regions of the form Eu does not depend on the exponent
function; see (1.7).

1.1.2.4 Measures of extremal dependence

The characterization of an MEVD relies on its marginal features, completely described
by the univariate EVT, and on the structure of its dependence, determined by the ex-
ponent function. Various alternative measures, related to the exponent function, have
been proposed in the literature, and we discuss in this section two of these measures. In
the sequel, we assume that Z = (Z1, . . . , Zd) is a simple max-stable random vector with
exponent function V .

Pickands’ dependence function

The Pickands’ dependence function [Pickands, 1981] A is the restriction of the exponent
function to the unit simplex Sd. In fact, the two functions are related through the relation

V (z) =
( 1
z1

+ . . .+ 1
zd

)
A
(

z1

z1 + . . .+ zd
, . . . ,

zd
z1 + . . .+ zd

)
, z ∈ Rd

+.

Thus, the function A measures the strength of extremal dependence along a direction
ω ∈ Sd. The Pickands’ dependence function A inherits of the boundary restrictions of
the exponent function V , that is max(ω1, . . . , ωd) ≤ A(ω) ≤ 1 where the lower bound
corresponds to the perfect extremal dependence case and the upper bound to the inde-
pendence case. Moreover, A is a continuous and convex function on Sd and satisfies the
border conditions A(0) = 1 and A(ej) = 1, for j = 1, . . . , d and where ej is the j-th
unit vector in Rd. These constraints are sufficient for the validity of A in the bivariate
case but necessary and not sufficient when d ≥ 3 (see Beirlant et al. [2004, p.257] for
a counterexample). Thus, most of the proposed estimators of the Pickands’ dependence
function were restricted to the bivariate case where correction techniques based on the
greatest convex minorant or constrained splines smoothing were considered [Deheuvels,
1991, Capéraà et al., 1997, Hall and Tajvidi, 2000a, Fils-Villetard et al., 2008, Zhang, 2008,
Genest and Segers, 2009, Cormier et al., 2014]. Exceptions include Gudendorf and Segers
[2012], Marcon et al. [2016] who considered the estimation of A for a general d ≥ 2 and
where corrections based on projection techniques and constrained Bernstein-polynomials
representations were considered.
The original non-corrected Pickands’ estimator of A in the bivariate case [Pickands, 1981],
denoted ÂP, relies on the random variable ξ(ω) = min{S/(1−ω), T/ω}, ω ∈ (0, 1), where
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S = − log{F1(Z1)}, T = − log{F2(Z2)}, and F1 and F2 are the marginal distributions1.
As the distribution of ξ(ω) is exponential2 with parameter A(ω), the estimator ÂP is
defined as

{ÂP(ω)}−1 = N−1
N∑
i=1

ξi(ω), ω ∈ [0, 1],

based on a sample {Zi = (Zi,1, Zi,2)}Ni=1, and where ξi(ω) = min{Si/(1− ω), Ti/ω}, with
Si = − log{F1(Zi,1)} and Ti = − log{F2(Zi,2)}, for i = 1, . . . , N . The subsequent esti-
mators of the Pickands’ dependence function mentioned above are characterized by im-
proved small-sample properties as well as asymptotic properties compared to the original
Pickands’ estimator.

Extremal coefficient

When the dimension d increases, visualization of the extremal dependence structure gets
more complicated and simpler dependence measures are needed. The extremal coefficient
[Smith, 1990, Coles, 1993] is a summary of the strength of extremal dependence and is
defined as

θ = V (1, . . . , 1) = dA(1/d, . . . , 1/d).
Loosely speaking, this coefficient represents the effective number of independent compo-
nents in Z as

Pr(Z ≤ z) = Pr(Z1 ≤ z, . . . , Zd ≤ z)
= exp{−V (z1)} = {exp(−1/z)}V (1,...,1)

= {exp(−1/z)}θ. (1.8)

Therefore, the extremal coefficient lies between 1 (perfect dependence) and d (indepen-
dence). The extremal coefficient can also be defined for a subset of the components, such
as pairs of components, giving rise to the pairwise extremal coefficient

θi,j = V (ei,j),

where ei,j is the d-dimensional vector with components equal to ∞, except the i-th and
j-th that are equal to 1. This coefficient is often used as a summary for spatial dependence
as well as a validation tool for parametric modelling of multivariate extremes; see Davison
et al. [2012] and the references therein. A self-consistency issue of the set of pairwise and
higher orders extremal coefficients arises as the boundary condition on each of the 2d − 1
elements of this set is not sufficient to ensure that the extremal coefficients correspond to
the same MEVD G. Schlather and Tawn [2002, 2003] discussed this issue and provided
necessary and sufficient conditions on a set of extremal coefficients to be self-consistent
along with two self-consistent extremal coefficient estimators.
Smith [1990], Coles and Dixon [1999] proposed a naive estimator of the extremal coefficient

1In our case where Z is a simple max-stable random vector, the marginal distributions are unit Fréchet.
2

Pr{ξ(ω) ≤ x} = 1− Pr{Z1 < x−1(1− ω)−1, Z2 < x−1ω−1}
= 1− exp[−V {x−1(1− ω)−1, x−1ω−1}]
= 1− exp[−xV {(1− ω)−1, ω)−1}] = 1− exp{−xA(ω)}.
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based on (1.8) and the fact that the inverse of a unit Fréchet random variable is unit
exponentially distributed. As a matter of fact, in our case where Z has unit Fréchet
margins, the relation (1.8) implies that {max(Z1, . . . , Zd)}−1 is exponentially distributed
with parameter θ. Therefore, given a sample {Zi = (Zi,1, . . . , Zi,d)}Ni=1, the estimator θ̂ is
defined as

θ̂ = N∑N
i=1{max(Zi,1, . . . , Zi,d)}−1 .

Another estimator of the extremal coefficient based on the concept of madograms was
proposed by Cooley et al. [2006], Naveau et al. [2009].

1.1.2.5 Asymptotic independence

In the previous sections, we discussed the main asymptotic results of multivariate ex-
treme value theory under the assumption that the random vector Y = (Y1, . . . , Yd) is
in the maximum domain of attraction of some MEVD G. We briefly mentioned the
case of asymptotic independence, i.e., the case where the limiting distribution function G
factorizes into the product of its marginal distributions and hence no information regard-
ing the extremal dependence structure, at a penultimate level, is left. The asymptotic
independence case implies the following equivalent statements

• V (z) = 1/z1 + . . .+ 1/zd, for z ∈ Rd
+,

• H places mass 1/d on the d vertices of the unit simplex Sd, and

• A(ω) = 1, ∀ω ∈ Sd.

When d = 2, this situation arises when the following condition, due to Sibuya [1960],
holds

χ = lim
u→1

Pr{F1(Y1) > u|F2(Y2) > u)} = 0, (1.9)

where Fi is the marginal distribution of the i-th component of Y. Loosely stated, this
criterion translates to the variables Y1 and Y2 having isolated extremes in the limit but
does not prevent these variables from being dependent at observable threshold levels.
Ledford and Tawn [1996, 1997] addressed this issue by characterizing the rate of decay of
the dependence (towards independence) in the joint tail of Y based on the concept of the
coefficient of tail dependence η ∈ (0, 1]. Given that Y1 and Y2 are unit Fréchet distributed,
Ledford and Tawn [1996] proposed to model the joint tail behaviour as

Pr(Y1 > y, Y2 > y) ∼ L(y)y−1/η, y →∞,

where L is a slowly varying function at infinity, that is L(ay)/L(y) → 1, as y → ∞ and
for all a > 0. This joint tail representation translates in terms of the survival copula C̄ of
the random vector (Y1, Y2) as

C̄(u, u) ∼ s(u)u1/η, u→ 0,

where s is a slowly varying function at 0, i.e., s(au)/s(u)→ 1, as u→ 0 and for all a > 0.
Under this modelling assumption,

Pr(Y1 > y|Y2 > y) ∼ L(y)y1−1/η, (1.10)
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which implies that both situations where η < 1 or η = 1 and L(y) → 0 result in asymp-
totic independence; see Heffernan [2000] for a classification of the different dependence
structures according to the value of η. However, when η = 1 and L(y) 9 0, the condi-
tional upper tail probability in (1.10) does no longer converge to 0 when we move further
into the joint tail and this situation corresponds to asymptotic dependence where the
slowly varying function L depends on the exponent function V of the limiting MEVD.
Ledford and Tawn [1996] proposed to estimate the tail dependence coefficient η based on
the structure variable T := min(Y1, Y2), which conditional on exceeding a large threshold
u, is approximately Generalized Pareto distributed3 with scale parameter uη and shape
parameter η. Therefore, given a sample {Yi = (Yi,1, Yi,2)}ni=1, one can fit a GPD to the
threshold exceedances of Tk = min(Yk,1, Yk,2), such that Tk > u, k = 1, . . . , Nu, and derive
the maximum likelihood estimate of η defined as

η̂ = N−1
u

Nu∑
k=1

log(Tk/u).

Resnick [2002], Maulik and Resnick [2004] extended the tail characterization by introduc-
ing the concept of hidden regular variation which is a property characterizing families
of distributions possessing both multivariate regular variation [Basrak et al., 2002, Hult
and Lindskog, 2002], a property equivalent to the convergence (1.2) of the componentwise
maxima, and asymptotic independence. Wadsworth and Tawn [2012] extended the con-
cept of the coefficient of tail dependence to the multivariate case by providing a flexible
characterization of the tail behaviour based on the so-called angular dependence function,
which can be seen as the analogue of the Pickands’ dependence function but for asymptot-
ically independent random vectors. Under this characterization, the authors introduced
the class of inverted max-stable processes which have a one-to-one correspondence with
the class of max-stable processes, as well as the class of max-mixture models that encom-
pass both asymptotic dependence and independence. This idea of bridging asymptotic
dependence and independence was extended by Huser et al. [2017], Huser and Wadsworth
[2018], Huser et al. [2018].

1.2 Generalized additive models
A generalized additive model (GAM) [Hastie and Tibshirani, 1986, 1990] is a generalized
linear model where the specification of the linear predictor, or equivalently a function of
the conditional expectation of a response variable Yi, involves smooth functions of subsets
of a given vector of covariates x = (x̃1, . . . , x̃p, x1, . . . , xq)>. For example,

g{E(Yi|X = xi)} = g(µi) = X̃iβ̃ + f1(x1i) + . . .+ fq(xqi), (1.11)

3

Pr(T > t+ u|T > u) = Pr(Y1 > t+ u, Y2 > t+ u)
Pr(Y1 > u, Y2 > u)

∼ L{(1 + t/u)u}u−1/η(1 + t/u)−1/η

L(u)u−1/η

∼ (1 + t/u)−1/η,

where we used the fact that L is slowly varying.
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where g is a monotone link function ensuring that µi has the right range of values (between
0 and 1 if it is a probability, strictly positive in the Poisson setting, etc), X̃>i ∈ Rp

corresponds to the i-th row of a model matrix for the parametric part of the model, and the
fj are smooth functions of the covariates. Here, smooth functions of multiple covariates
can be considered in the model (1.11) and will briefly be described in Section 1.2.1. Model
(1.11) allows for a considerable amount of flexibility, as opposed to parametric regressions.
This flexibility comes at a cost as one needs to specify how the smooth functions are
represented and how their smoothness is controlled.

1.2.1 Representation of the smooth functions
Suppose that Y1, . . . , Yn are independent observations of a response variable Y and that the
covariates x1,i, . . . , xq,i are observed for each individual i. In a model fitting perspective,
the smooth functions in (1.11) are represented as linear combinations of basis functions,
whether they are or can be closely approximated by elements of the basis [Wood, 2017,
Chapter 4]. Different smooth functions in the same model can be represented using
different bases: natural cubic splines, penalized regression splines, thin plate splines,
tensor product splines, etc. Once the basis is set, one needs to choose an appropriate set
of (known) basis functions Bj. so that fj can be represented as

fj(x) =
mj∑
k=1

βjkBjk(x), j = 1, . . . , q,

where βjk are the parameters to be estimated and mj is the number of used basis functions,
termed also the rank of the basis expansion. In a matrix notation, each smooth term
fj = (fj(xj1), . . . , fj(xjn))> can be written as

fj = Xjβj,

where βj = (βj1, . . . , βjmj
)> and Xj

i = (Bj1(xji), . . . , Bjmj
(xji))> is the i-th row of Xj.

The identifiability constraint 1>fj = 0 is imposed on the smooth terms fj so that they are
orthogonal to the intercept, implicitly included in the parametric part. The model (1.11)
can now be written in a matrix notation

g(µi) = Xiβ,

with Xi is the i-th row of X = (X̃,X1, . . . ,Xq) and β = (β̃>,β>1 , . . . ,β>q )> ∈ B. The
finite-basis representation of the smooth functions results in a linear representation of
the GAM simplifying hence the estimation of its parameters. Nonetheless, as mentioned
above, one needs to control the fidelity to the data of the smooth functions to avoid
overfitting. A wiggliness measure is then defined for each smooth function and is expressed
in terms of the integrated second derivative of the smooth. For the j-th smooth term,
the penalty is defined as β>Sjβ, where Sj is a positive definite matrix that depends on
the basis functions. The idea of the penalization approach is to allow the basis dimension
(rank) to be quite high but to control the smoothness of the model via a penalty term. A
low wiggliness penalty results in a very wiggly function fj and a high wiggliness penalty
in a rather smooth function fj.

One way to represent regression splines of different orders is by use of the B-spline
basis [de Boor, 1978]. The B-splines are appealing due to their smooth interpolation
properties and to their minimal support leading to an efficient and stable inference. To
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represent a spline of order Q+1 [Hastie et al., 2009] using an m parameter B-spline basis,
one needs to define m+Q+ 2 knots s1 < . . . < sm+Q+2, on which the B-spline functions
are evaluated and such that, due to their strictly local support, each B-spline function BQ

.

takes non-zero values only between Q+ 3 adjacent knots4. The spline is then represented
as

f(x) =
m∑
k=1

βkB
Q
k (x), (1.12)

where

BQ
k (x) = x− xk

xk+Q+1 − xk
BQ−1
k (x) + xk+Q+2 − x

xk+Q+2 − xk+1
BQ−1
k+1 (x), k = 1, . . . ,m,

B−1
k (x) = 1{sk≤x≤sk+1}.

Figure 1.3 illustrates the representation of a smooth curve by rank 10 B-spline bases of
different orders.
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Figure 1.3: B-spline basis functions of order 1 (left plot) and order 3 (right plot). The
thick curves show the smooth curves obtained by multiplication of the B-spline functions
by their associated coefficients. The internal knots are displayed by thick tick-marks.

As the smoothness of f needs to be controlled, the basis representation (1.12) is modified
and the B-splines are replaced by the P-splines [Eilers and Marx, 1996]. The P-splines
are low rank smoothers defined as in (1.12) but with equidistant knots and a first-order
difference penalty on adjacent coefficients. This results in a penalty matrix S that is band
diagonal and easily determined based on the derivatives of the B-splines.

When the smooth is a function of multiple covariates, tensor product bases [de Boor,
1978] are needed to represent such functions. In the simplest setting with two covariates
x1 and x2, the construction of the basis representation of fx1x2 starts by assuming that
low rank basis representations of the univariate smooth functions fx1 and fx2 exist. Then,
the coefficients of the basis representation of fx1 are assumed to be smooth functions
of x2 and hence replaced by the basis representation of fx2 . The construction is quite
straightforward and the result is independent of the order in which the covariates are
treated. The penalty term of such a construction is built in a similar fashion and has
different penalties associated to each (re-parametrized) marginal smooth. See Wood [2017,
Section 5.6] for technical details on tensor product constructions and penalties.

4Strictly speaking, the spline is evaluated on the interval [sQ+2, sm+1] which contains the internal
knots. The locations of the knots outside this interval are arbitrary.
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1.2.2 Model fitting
When GAM originated in Hastie and Tibshirani [1986], the authors proposed a backfitting
technique to fit the model. This technique estimates iteratively the smooth functions
by smoothing the partial residuals of the model defined as the difference between the
response and its expected value obtained by ignoring the contribution of the smooth to
be estimated. Although the backfitting algorithm is very flexible as it allows the use of
a wide variety of smoothers, and not only smoothers that can be represented using basis
functions with an associated penalty term, the algorithm does not allow for an automatic
smoothness selection as opposed to the penalized smoothing spline approach of Wood
[2000] that we describe in this section.

Once the penalties associated to the smooth functions in (1.11) are set, the vector of
parameters β is estimated by maximizing the penalized log-likelihood function [Green,
1987]

`p(β,γ) = `(β)− 1
2β
>S(γ)β,

where

S(γ) =
(

0 0
0 S̄(γ)

)
,

`(β) =
n∑
i=1

`(Yi;µi) =
n∑
i=1

`{Yi; g−1(Xiβ)}

is the log-likelihood of the model, and S̄(γ) = ∑q
j=1 γjSj is the total wiggliness penalty.

The first p-dimensional diagonal block in S(γ) corresponds to the zero-penalty related to
the parametric part of the model (1.11). The vector γ = (γ1, . . . , γq)> is the vector of
smoothing parameters controlling the trade-off between goodness-of-fit and smoothness
of the model. Given values for the smoothing parameters, β is estimated by a penalized
iteratively re-weighted least squares (PIRLS) algorithm [Green, 1984, Wood, 2017] based
on Fisher scoring or a full Newton–Raphson algorithm.

To avoid clutter in the notations, we suppose in what follows an identity link function.
In order to perform a Newton–Raphson step, we compute the derivatives of first and
second orders of the penalized log-likelihood with respect to the parameter of interest β

up(β) = ∂`p(β,γ)
∂β

= X>
∂`(β)
∂µ

− S(γ)β = X>u(β)− S(γ)β,

Wp(β) = −∂
2`p(β,γ)
∂ββ>

= −X>
∂2`(β)
∂µµ>

X + S(γ) = X>W(β)X + S(γ),

where µ = (µ1, . . . , µn)>. We denote by u(a) = u(β(a)) and W(a) = W(β(a)) the first
order and the (negative) second order derivatives of `(β) obtained at the a-th step of the
Newton–Raphson algorithm5, which now has the form

β(a) = β(a−1) +
{
X>W(a−1)X + S(γ)

}−1 {
X>u(a−1) − S(γ)β(a−1)

}
=

{
X>W(a−1)X + S(γ)

}−1
X>W(a−1)z(a−1), (1.13)

5This results in a full Newton algorithm and a thorough inspection of the positive definiteness of W(a),
at each step, needs to be conducted. One could work instead with the expected information matrix if the
latter is easily obtainable, resulting hence in a Fisher scoring algorithm.
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where z(a−1) = Xβ(a−1) + W(a−1)−1u(a−1) are the pseudo-responses. Hence, β(a) is the
minimizer of the penalized weighted least squares equation, i.e.,

β(a) = argmin
β∈B

{(
z(a−1) −Xβ

)>
W(a−1)

(
z(a−1) −Xβ

)
+ β>S(γ)β

}
.

The described PIRLS step is iterated until convergence which can be defined in terms of
the difference between the penalized likelihoods or the difference between the resulting
predictors.

We now focus on the selection of the smoothing parameters γ which were supposed
fixed in the PIRLS algorithm. There are two main approaches to the selection of the
smoothing parameters: the first one consists of minimizing prediction error criteria such
as the Akaike’s information criterion (AIC), cross validation or generalized cross valida-
tion (GCV) [Craven and Wahba, 1978, Hastie and Tibshirani, 1990], whereas the second
approach is based on maximum marginal likelihood [Anderssen and Bloomfield, 1974] or
restricted maximum likelihood methods [Wahba, 1985, Wood et al., 2016]. A comprehen-
sive overview of smoothness selection criteria is given in Wood [2017, Section 6.2]. We
now give details on the GCV criterion, used to select model smoothness throughout this
thesis and implemented in many statistical software.

The estimation of the smoothness parameters is based on minimizing the squared
prediction error but such that the objective function is invariant to orthogonal trans-
formation. This is a desired property as the PIRLS algorithm, performed given fixed
smoothing parameters, should result in identical estimates of β whether the data are ro-
tated or not. Golub et al. [1979] suggested the use of the GCV as a suitable variant of
the ordinary cross validation criterion, that satisfies the invariance property. Let A be
the influence matrix of the weighted penalized linear model, that is

A(γ) = X
{
X>W(β)X + S(γ)

}−1
X>W(β).

Then, the GCV score is defined as

GCV(γ) = n {z−A(γ)z}>W(β) {z−A(γ)z}
[n− tr {A(γ)}]2

, (1.14)

with z being the pseudo-responses defined in the PIRLS algorithm. Apart from the
choice of the smoothness selection criterion, we need to define a strategy to combine
the estimation of γ and β in an efficient and stable way. Two possible ways of tackling
this problem are available. The first method known as “performance-oriented iteration”
[Gu, 1992] consists of optimizing the GCV (1.14) by Newton’s method, at each step a
of the PIRLS algorithm, i.e., W(β) is replaced by W(a) and z by z(a) in (1.14). The
final smoothing parameter estimates γ̂ are obtained by minimizing (1.14) evaluated at
the model coefficient estimates β̂, obtained at convergence of the PIRLS algorithm. It is
argued in Wood [2017, Section 6.5] that the number of PIRLS steps is around the same as
would be needed with fixed smoothing parameters. The second method known as “outer-
iteration” requires the minimization of the GCV score in a step “outer” to the PIRLS
algorithm. This strategy can be described as a nested optimization procedure where at
each step of the GCV minimization algorithm (Newton or quasi Newton’s method), a
PIRLS algorithm is performed with the proposed smoothing parameters, and results in
the estimate β̂ that is used for the next step of the GCV minimization algorithm. The
alternation of steps is performed until convergence of the GCV minimization algorithm
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and results in the smoothing parameter estimates γ̂. This method requires however the
first and second order derivatives of the GCV and hence the model coefficient estimates,
with respect to the (logarithm of the) smoothing parameters. See Wood [2017, Section
6.6] for the technical details of this technique.

Finally, we define the effective degrees of freedom (EDF) of the GAM (1.11) as the
trace of the influence matrix A(γ) obtained at convergence, i.e.,

EDF = tr {A(γ̂)} .

The effective degrees of freedom of a particular smoother fj are obtained by summing the
diagonal terms of the matrix

{
X>W(β̂)X + S(γ̂)

}−1
X>W(β̂)X, corresponding to the

coefficients βj.
Before closing this section, the existence of shape constrained GAM [Pya and Wood,

2015] and vector GAM (VGAM) [Yee, 2015] should be highlighted. The first extension
allows the construction of shape constrained splines (monotonicity, convexity/concavity)
by formulating these constraints on the P-splines coefficients scale. The second extension
allows the generalized additive modelling of multiple predictors where the response vari-
able can be either univariate or multivariate. Moreover, VGAMs offer an infrastructure
where the effects of the covariates can be restricted on different predictors while tuned to
be the same for others (spicing up a bit the fitting algorithm).

1.3 Non-stationary extremes
As mentioned in Section 1.1.1, non-stationarity in univariate extremes can be handled in
various ways. Fully parametric modelling of the dependence of the location, scale, and
shape parameters on a set of covariates can be formulated and likelihood-based inference
performed [Smith, 1990, Katz et al., 2002, Northrop and Jonathan, 2011]. Such models are
straightforward to fit, provided that the number of parameters to estimate is reasonable.
However, unless a physical explanation and justification for the chosen parametric form
exists, these models might describe the data poorly. Non- or semi-parametric models do
not suffer from this limitation as they allow flexible forms of dependence on the covariates
while including the parametric form as a submodel. There are two main approaches to
non- or semi-parametric modelling of extremes: the local likelihood approach advocated
by Davison and Ramesh [2000], Hall and Tajvidi [2000b], Ramesh and Davison [2002] and
the penalized smoothing spline approach advocated by Pauli and Coles [2001], Chavez-
Demoulin and Davison [2005], Yee and Stephenson [2007]. The local likelihood approach
relies on a bandwidth parameter that confers to the model its smoothness, whereas the
penalized spline approach relies on the notion of penalized likelihood, as seen in the general
case of generalized additive modelling in Section 1.2.

While it is relatively straightforward to take into account non-stationarity at extremal
levels in the univariate framework, the difficulty of this task quickly escalates in the multi-
variate framework as the additional non-stationarity in the extremal dependence structure
needs to be properly modelled. Moreover, as discussed in Section 1.1.2.1, the class of ex-
tremal dependence structures cannot be fully parametrized and whether the angular mea-
sure or the Pickands’ function is to be modelled, shape or mean constraints such as (1.6)
need to be accounted for. Few attempts towards filling this gap in MEVT literature have
been proposed: de Carvalho and Davison [2014] proposed a semi-parametric approach
linking angular densities from different populations through exponential tilting, Jonathan
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et al. [2014a] extended the conditional dependence model of Heffernan and Tawn [2004]
to include the influence of covariates on both the marginal and the dependence parame-
ters, de Carvalho et al. [2018] constructed kernel-based estimators for bivariate angular
densities depending on a continuous covariate, and Huser and Genton [2016] developed
max-stable models with a non-stationary correlation function depending parametrically
on a set of covariates. Two limitations of these available techniques are worth highlight-
ing. The first is a computational limitation of the non-parametric methods that either
necessitate intensive constrained optimization techniques when multiple (continuous) co-
variates are included, or are restricted to the inclusion of the effect of one unique covariate
when the above mentioned constraints are embedded in the model. The second limitation
is a practical one and comes within the scope of the application of ultimate models at
penultimate levels and to settings where (full) asymptotic independence may arise. In
that sense, the existing literature on non-stationary multivariate extremes relies on the
assumption of asymptotic dependence to model limiting covariate-varying dependence
structures whereas in many applications where this assumption does not hold (rainfall
data for example), modelling non-stationarity in the decay rates towards independence is
more informative and essential for accurate extrapolation to unobserved extreme levels.



Chapter 2

Regression type models for extremal
dependence

The starting point for the work presented in this chapter is the extension of the work of
Chavez-Demoulin and Davison [2005] to the multivariate setting. While Chavez-Demoulin
and Davison [2005] adapt the framework of generalized additive modelling to the param-
eters of a peaks-over-threshold model to take into account the effect of covariates on
the tail behaviour, we adapt the framework of vector generalized additive modelling to
the parameters of a parametric model for the angular density to take into account the
effect of covariates on the dependence structure of the joint tails in multidimensional dis-
tributions; see Section 1.1.2.2. We rely on the Poisson point process approximation in
the extremal set described by the exceedances of a diagonal threshold (Section 1.1.2.3)
to formulate a likelihood for the angular density which we modify adequately when the
parameters are linked through splines to a set of predictors. We devise a maximum pe-
nalized log-likelihood estimator, discuss details of the estimation procedure, and derive
its consistency and asymptotic normality under mild regularity conditions. We perform a
simulation study suggesting that the proposed method performs well in a wealth of simu-
lation scenarios by accurately recovering the true covariate-adjusted angular density. An
empirical analysis is conducted and reveals relevant dynamics of the dependence between
extreme air temperatures in two alpine resorts during the winter season.

2.1 Introduction
In this chapter, we address an extension of the standard approach for modelling non-
stationary univariate extremes to the multivariate setting. In the univariate context, the
limiting distribution for the maximum of a sequence of independent and identically dis-
tributed random variables, derived by Fisher and Tippett [1928], is given by a generalized
extreme value distribution characterized by three parameters: µ (location), σ (scale), and
ξ (shape). To take into account the effect of a vector of covariates x, one can let these
parameters depend on x, and the resulting generalized extreme value distribution takes
the form

G(µx,σx,ξx)(y) = exp
[
−
{

1 + ξx

(
y − µx

σx

)}−1/ξx

+

]
, (2.1)

where (a)+ = max{0, a}; see Coles [2001, Chapter 6], Pauli and Coles [2001], Chavez-
Demoulin and Davison [2005], Yee and Stephenson [2007], Wang and Tsai [2009], Eastoe
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and Tawn [2009], and Chavez-Demoulin and Davison [2005] for related approaches.
In the multivariate context, consider Yi = (Y i

1 , . . . , Y
i
d )> independent and identi-

cally distributed random vectors with joint distribution F , and unit Fréchet marginal
distribution functions Fj(y) = exp(−1/y), for y > 0. Pickands’ representation theorem
[Coles, 2001, Theorem 8.1] states that the law of the standardized componentwise max-
ima, Mn = n−1 max{Y1, . . . ,Yn}, converges in distribution to a multivariate extreme
value distribution, GH(y) = exp {−VH(y)} , with

VH(y) =
∫
Sd

max
(
w1

y1
, . . . ,

wd
yd

)
dH(w). (2.2)

Here H is the so-called angular measure, that is, a positive finite measure on the unit
simplex Sd =

{
(w1, . . . , wd) ∈ [0,∞)d : w1 + · · ·+ wd = 1

}
that needs to obey∫

Sd

wj dH(w) = 1, j = 1, . . . , d. (2.3)

The function V (y) ≡ VH(y), is the so-called exponent measure and is continuous, convex,
and homogeneous of order −1, i.e., V (ty) = t−1V (y) for all t > 0.

The class of limiting distributions of multivariate extreme values yields an infinite
number of possible parametric representations [Coles, 2001, Chapter 8], as the validity of a
multivariate extreme value distribution is conditional on its angular measure H satisfying
the moment constraint (2.3). Therefore, most literature has focused on the estimation
of the extremal dependence structures described by spectral measures or equivalently
angular densities [Boldi and Davison, 2007, Einmahl et al., 2009, de Carvalho et al.,
2013, Sabourin and Naveau, 2014, Hanson et al., 2017]. Related quantities, such as the
Pickands’ dependence function [Pickands, 1981] and the stable tail dependence function
[Huang, 1992, Drees and Kaufmann, 1998], were investigated by many authors [Einmahl
et al., 2006, Gudendorf and Segers, 2012, Wadsworth and Tawn, 2013, Marcon et al.,
2016]. A wide variety of parametric models for the spectral density that allow flexible
dependence structures were proposed [Kotz and Nadarajah, 2000, Section 3.4].

However, few papers were able to satisfactorily address the challenging but incredibly
relevant setting of modelling nonstationarity at joint extreme levels. Some exceptions
include de Carvalho and Davison [2014], who proposed a nonparametric approach, where
a family of spectral densities is constructed using exponential tilting. Castro and de Car-
valho [2017] developed an extension of this approach based on covariate-varying spectral
densities. However, these approaches are limited to replicated one-way ANOVA types of
settings. de Carvalho [2016] advocated the use of covariate-adjusted angular densities, and
Escobar-Bach et al. [2016] discussed estimation—in the bivariate and covariate-dependent
framework—of the Pickands’ dependence function based on local estimation with a min-
imum density power divergence criterion. Finally, Mhalla et al. [2017a] constructed, in a
nonparametric framework, smooth models for predictor-dependent Pickands’ dependence
functions based on generalized additive models.

Our approach is based on a non-linear model for covariate-varying extremal depen-
dences. Specifically, we develop a vector generalized additive model that flexibly al-
lows the extremal dependence to change with a set of covariates, but—keeping in mind
that extreme values are scarce—it borrows strength from a parametric assumption. In
other words, the goal is to develop a regression model for the extremal dependence
through the parametric specification of an extremal dependence structure and then to
model the parameters of that structure through a vector generalized additive model
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(VGAM) [Yee and Wild, 1996, Yee, 2015]. One major advantage over existing meth-
ods is that our model may be used for handling an arbitrary number of dimensions and
covariates of different types, and it is straightforward to implement, as illustrated in the
R code [R Development Core Team, 2016] that can be found in the following repository
https://github.com/lindamhalla/Regression type models for extremal dependence .

The remainder of this chapter is organized as follows. In Section 2.2 we introduce the
proposed model for covariate-adjusted extremal dependences. In Section 2.3 we develop
our penalized likelihood approach and give details on the asymptotic properties of our
estimator. In Section 2.4 we assess the performance of the proposed methods. An appli-
cation to extreme temperatures in the Swiss Alps is given in Section 2.5. We close the
chapter in Section 2.6 with a discussion.

2.2 Flexible covariate-adjusted angular densities

2.2.1 Statistics of multivariate extremes: preparations and back-
ground

The functions H and V in (2.2) can be used to describe the structure of dependence
between the extremes, as in the case of independence between the extremes, where
V (y) = ∑d

j=1 1/yj, and in the case of perfect extremal dependence, where V (y) =
max{1/y1, . . . , 1/yd}. As a consequence, if H is differentiable with angular density de-
noted h, the more mass around the barycenter of Sd, (d−1, . . . , d−1), the higher the level
of extremal dependence. Further insight into these measures may be obtained by con-
sidering the point process Pn = {n−1Yi : i = 1, . . . , n}. Following de Haan and Resnick
[1977] and Resnick [1987, Section 5.3], as n → ∞, Pn converges to a non-homogeneous
Poisson point process P defined on [0,∞) \ {0} with a mean measure µ that verifies

µ(Ay) = V (y),

where Ay = Rd \ ([−∞, y1]× · · · × [−∞, yd]).
There are two representations of the intensity measure of the limiting Poisson point

process P that will be handy for our purposes. First, it holds that

µ(dy) = −V1:d(y) dy, (2.4)

with V1:d being the derivative of V with respect to all its arguments [Resnick, 1987,
Section 5.4]. Second, another useful factorization of the intensity measure µ(dy), called
the spectral decomposition, can be obtained using the following decomposition of the
random variable Y = (Y1, . . . , Yd)T into radial and angular coordinates,

(R,W) =
(
‖Y‖ , Y

‖Y‖

)
, (2.5)

where ‖·‖ denotes the L1-norm. It can be shown that [Beirlant et al., 2004, Section 8.2.3]
the limiting intensity measure factorizes across radial and angular components as follows:

µ(dy) = µ(dr × dw) = dr
r2 dH(w).

The spectral decomposition (2.5) allows the separation of the marginal and the dependence
parts in the multivariate extreme value distribution GH , with the margins being unit
Fréchet and the dependence structure being described by the angular measure H.

https://github.com/lindamhalla/Regression_type_models_for_extremal_dependence
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The inference approach that we build on in this work was developed by Coles and
Tawn [1991] and is based on threshold excesses; see Huser et al. [2016] for a detailed
review of likelihood estimators for multivariate extremes. The set of extreme events is
defined as the set of observations with radial components exceeding a high fixed threshold,
that is, the observations belonging to the extreme set,

Er =
{

(y1, . . . , yd) ∈ (0,∞)d :
d∑
j=1

yj
rj
> 1

}
,

with r = (r1, . . . , rd) being a large threshold vector. Since the points n−1Yi are mapped
to the origin for non-extreme observations, the threshold r needs to be sufficiently large
for the Poisson approximation to hold. Note that, Yi ∈ Er, if and only if,

Ri =
∥∥∥Yi

∥∥∥ >
 d∑
j=1

ωi,j
rj

−1

, where ωi,j =
Y i
j

Ri

.

Hence, the expected number of points of the Poisson process P located in the extreme
region Er is

µ(Er) =
∫
Sd

∫ ∞(∑d

j=1
wj
rj

)−1
dr
r2 dH(w)

=
∫
Sd

 d∑
j=1

wj
rj

 dH(w)

=
d∑
j=1

1
rj

∫
Sd

wj dH(w) =
d∑
j=1

1
rj
. (2.6)

Now, we can explicitly formulate the Poisson log-likelihood over the set Er,

`Er(θ) = −µ(Er) +
nr∑
i=1

log {µ(dRi × dwi)} , (2.7)

where wi = (ωi,1, . . . , ωi,d), θ represents the p-vector of parameters of the measure µ and
nr represents the number of reindexed observations in the extreme set Er. Using (2.6),
the first term in (2.7) can be omitted when maximizing the Poisson log-likelihood, which,
using (2.4), boils down to

`Er(θ) ≡
nr∑
i=1

log
{
−V1:d(Yi;θ)

}
. (2.8)

Thanks to the differentiability of the exponent measure V and the support of the angu-
lar measure H in the unit simplex Sd, we can use the result of Coles and Tawn [1991,
Theorem 1] that relates the angular density to the exponent measure via

V1:d(y;θ) = −‖y‖−(d+1)h

(
y1

‖y‖
, . . . ,

yd
‖y‖

;θ
)

and reformulate the log-likelihood (2.8) as follows

`Er(θ) ≡ −(d+ 1)
nr∑
i=1

log
∥∥∥Yi

∥∥∥+
nr∑
i=1

log
{
h

(
Y i

1
‖Yi‖

, . . . ,
Y i
d

‖Yi‖
;θ
)}

. (2.9)
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2.2.2 Vector generalized additive models for covariate-adjusted
angular densities

Our starting point for modelling is an extension of (2.1) to the multivariate setting.
Whereas the model in (2.1) is based on indexing the parameters of the univariate extreme
value distribution with a regressor, here we index the parameter (H) of a multivariate
extreme value distribution (GH) with a regressor x = (x1, . . . , xq)T ∈ X ⊂ Rq. Our target
object of interest is thus given by a family of covariate-adjusted angular measures Hx
obeying ∫

Sd

wjdHx(w) = 1, j = 1, . . . , d.

Of particular interest is the setting where Hx is differentiable, in which case the covariate-
adjusted angular density can be defined as hx(w) = dHx/dw. This yields a corresponding
family of covariate-indexed multivariate extreme value distributions

Gx(y) = exp
{
−
∫
Sd

max
(
w1

y1
, . . . ,

wd
yd

)
dHx(w)

}
.

Other natural objects depending on Gx can be readily defined, such as the covariate-
adjusted extremal coefficient, ϑx, which solves

Gx(y1d) = exp(−ϑx/y), y > 0, (2.10)

where 1d is a d-vector of ones. Here, ϑx ranges from 1 to d, and the closer ϑx is to one,
the closer we get to the case of complete dependence at that value of the covariate.
Some parametric models [Hüsler and Reiss, 1989, Tawn, 1990, Coles and Tawn, 1991,
Cooley et al., 2010] are used below to illustrate the concept of covariate-adjusted angular
densities and of covariate-adjusted extremal coefficients, and we focus on the bivariate
and trivariate settings for the sake of illustrating ideas. To develop insight and intuition
on these models, see Figures 2.1 and 2.2.
Example 1 (Logistic angular surface). Let

hx(w) = (1/αx − 1) {w(1− w)}−1−1/αx {w−1/αx + (1− w)−1/αx}αx−2, w ∈ (0, 1),

with α : X ⊂ Rq → (0, 1]. In Figure 2.1 (left) we represent the case αx = exp{η(x)}/[1 +
exp{η(x)}], with η(x) = x2− 0.5x− 1 and x ∈ X = [0.1, 2]. This setup corresponds to be
transitioning between a case of relatively high extremal dependence (lower values of x) to
a case where we approach asymptotic independence (higher values of x).
Example 2 (Dirichlet angular surface). Let

hx(w) = αxβxΓ(αx + βx + 1)(αxw)αx−1{βx(1− w)}βx−1

Γ(αx)Γ(βx){αxw + βx(1− w)}αx+βx+1 , w ∈ (0, 1),

with α : X ⊂ Rq → (0,∞) and β : X ⊂ Rq → (0,∞). In Figure 2.1 (middle) we
consider the case αx = exp(x) and βx = x2, with x ∈ [0.9, 3]. Note the different schemes
of extremal dependence induced by the different values of the covariate x as well as the
asymmetry of the angular surface underlying this model.
Example 3 (Hüsler–Reiss angular surface). Let

hx(w) = λx

w(1− w)2(2π)1/2 exp
{
− [2 + λ2

x log {w/(1− w)}]2

8λ2
x

}
, w ∈ (0, 1),
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where λ : X ⊂ Rq → (0,∞). In Figure 2.1 (right) we consider the case λx = exp(x),
with x ∈ [0.1, 2]. Under this specification, lower values of x correspond to lower levels of
extremal dependence, whereas higher values of x correspond to higher levels of extremal
dependence.

Covariate-adjusted angular densities

w

0.0
0.2

0.4
0.6

0.8

1.0

x
0.5

1.0
1.5

2.0

 

5

10

15

w

0.0
0.2

0.4
0.6

0.8

1.0

x

1.0

1.5
2.0

2.5
3.0

 

0

2

4

6

w

0.0
0.2

0.4
0.6

0.8

1.0

x
0.5

1.0
1.5

2.0

 

0

2

4

6

8

10

Covariate-adjusted extremal coefficients

0.5 1.0 1.5 2.0

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

x

ϑ x

1.0 1.5 2.0 2.5 3.0

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

x

 

0.5 1.0 1.5 2.0

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

x

 

Figure 2.1: Covariate-adjusted angular densities and extremal coefficients of logistic (left
panels), Dirichlet (middle panels), and Hüsler–Reiss (right panels) models, corresponding,
respectively, to the specifications in Examples 1, 2, and 3.

Example 4 (Pairwise beta angular surface). Let

hx(w) = Γ(3αx + 1)
Γ(2αx + 1)Γ(αx)

∑
1≤i<j≤3

hi,jx(w),

hi,jx(w) = (wi + wj)2αx−1 {1− (wi + wj)}αx−1

× Γ(2βi,jx)
Γ2(βi,jx)

(
wi

wi + wj

)βi,jx−1 (
wj

wi + wj

)βi,jx−1

,

where w = (w1, w2, w3) ∈ S3 and α, βi,j : X ⊂ Rq → (0,∞) for 1 ≤ i < j ≤ 3. In
Figure 2.2, we consider the case αx = exp{exp(x)}, β1,2x = exp(x), β1,3x = x + 1, and
β2,3x = x+2, with x ∈ [0.8, 3.3]. For the different considered values of x, different strengths
of global and pairwise dependences can be observed. The mass is concentrated mostly at
the center of the simplex due to a large global dependence parameter αx, compared to
the pairwise dependence parameters.

The previous parametric models provide some examples of covariate-adjusted angular
surfaces hx. But, how can we learn about hx from the data? Suppose we observe the
regression data {(xi,Yi)}ni=1, with (xi,Yi) ∈ X × Rd, and where we assume that Yi =
(Y i

1 , . . . , Y
i
d )> are independent random vectors with unit Fréchet marginal distributions
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Figure 2.2: Trivariate covariate-adjusted angular density of the pairwise beta model cor-
responding to the specifications in Example 4 with x = 1.5 (left), x = 2.46 (middle), and
x = 3.22 (right).

and a joint distribution in the maximum domain of attraction of a multivariate extreme
value distribution with angular density hxi

. Using a similar approach as in Section 2.2.1,
we convert the raw sample into a pseudo-sample of cardinality nr,

{(xi,Yi) : Yi ∈ Er},

and use the latter reindexed data to learn about hx through the set of angular observations
{wi}nr

i=1, where wi = Yi/‖Yi‖ for Yi ∈ Er.
Without loss of generality, we restrain ourselves to the bivariate extreme value framework
(d = 2), so that

hx

(
Y i

1
‖Yi‖

,
Y i

2
‖Yi‖

)
= hx (wi, 1− wi) ≡ hx(wi), for wi ∈ [0, 1], i = 1, . . . , nr,

that is, the dimension of the angular observations wi is M = d− 1 = 1. We model hx(·)
using h(·;θx), where the parameter underlying the dependence structure

θx = (θ1x1 , . . . , θ1xnr , . . . , θpx1 , . . . θpxnr )T ∈ Rpnr ,

x = (x1, . . . ,xnr)T ∈ X nr = (X1 × · · · × Xq)nr ⊆ Rqnr ,

is specified through a vector generalized additive model (VGAM) [Yee and Wild, 1996].
Specifically, we model hx(w) using a fixed family of parametric extremal dependence
structures h(w;θx) with a covariate-dependent set of parameters θx. To learn about θx
from the pseudo-sample, we use a vector generalized additive model, which takes the form

η(x) ≡ η = H0β[0] +
q∑

k=1
Hkfk(xk). (2.11)

Here,

• η = g (θx) = (g1(θ1x1), . . . , g1(θ1xnr ), . . . , gp(θpx1), . . . , gp(θpxnr ))> is the vector of
predictors and gl is a link function that ensures that θl· is well defined, for l =
1, . . . , p,

• β[0] is a pnr-vector of intercepts, with p distinct values each repeated nr times,

• xk = (x1
k, . . . , x

nr
k )> ∈ X nr

k , for k = 1, . . . , q,
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• fk = (fk,1, . . . , fk,p)>, where fk,l = (fk,l(x1
k), . . . , fk,l(xnr

k ))>, and fk,l : Xk → R are
smooth functions supported on Xk, for k = 1, . . . , q and l = 1, . . . , p, and

• Hk are pnr × pnr constraint matrices, for k = 0, . . . , q.

The constraint matrices Hk are important quantities in the VGAM (2.11) that allow the
tuning of the effects of the covariates on each of the pnr components of η. For example,
in Example 4, one might want to impose the same smooth effect of a covariate on each of
the

(
3
2

)
pairwise dependence parameters and at the same time restrict the effect of this

covariate to be zero on the global dependence parameter. To avoid clutter in the notation,
we assume from now on that Hk = Ipnr×pnr , for k = 0, . . . , q.

The smooth functions fk,l are written as linear combinations of B-spline basis functions

fk,l(xik) =
dk∑
s=1

β[kl]sBs,q̃(xik), k = 1, . . . , q, l = 1, . . . , p, i = 1, . . . , nr,

where Bs,q̃ is the sth B-spline of order q̃ and dk = q̃+mk, with mk the number of internal
equidistant knots for xk [Yee, 2015, Section 2.4.5]. To ease the notational burden, we
suppose without loss of generality that dk ≡ d̃, for k = 1, . . . , q, and define

β[k] =
(
β[k1]1 , . . . , β[k1]d̃ , . . . , β[kp]1 , . . . , β[kp]d̃

)>
∈ Rd̃p.

Therefore, the VGAM (2.11), with identity constraint matrices Hk, can be written as

η = β[0] +
q∑

k=1
X[k]β[k] = XVAMβ, (2.12)

where β =
(
β[0] β[1] · · · β[q]

)>
∈ B ⊂ Rp(1+qd̃),

XVAM =
(
1pnr×p X[1] · · · X[q]

)
∈ Rpnr×{p(1+qd̃)},

for some pnr×d̃p submatrices X[k], k = 1, . . . , q. The vector of parameters to be estimated
in the VGAM (2.12) is β.

The specification in (2.12) makes it possible to simultaneously fit ordinary generalized
additive models [Wood, 2017] in each component of the vector of parameters θx, hence
avoiding any non orthogonality-related issues that could arise if the p components were
to be treated separately [Chavez-Demoulin and Davison, 2005]. Finally, if the dimension
M of the response vector of angular observations wi is greater than one (d > 2), then the
vector of predictors η will instead be a Mpnr-vector and the dimensions of the related
quantities in (2.12) will change accordingly.

To give the unfamiliar reader insight on some of the quantities introduced above, we
identify these quantities in the examples mentioned previously:

• In Examples 1 and 3, d = 2, M = 1, p = 1, q = 1, and X = [0.1, 2]. The
difference between the VGAMs modeled in these two examples resides in the form
of dependence of η on x and the link function g. In Example 1, the parameter
θx ∈ (0, 1], η = x2 − 0.5x− 1, and the link function g is the logit function, whereas
in Example 3 the parameter θx ∈ (0,∞), η = x, and the link function g is the
logarithm function.
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• In Example 2, d = 2, M = 1, p = 2, q = 1, X = [0.9, 3], and η = (x, x)>. The vector
of parameters for the bivariate Dirichlet angular density θx ∈ (0,∞)2 and the link
functions g1 and g2 are the logarithm and the square root functions, respectively.

• In Example 4, d = 3, M = 2, p = 4, q = 1, X = [0.8, 3.3], and η = (exp(x), x, log(x+
1), log(x + 2))>. The vector of parameters for the pairwise beta angular density
θx ∈ (0,∞)4 and the link function gl is the logarithm function, for l = 1, . . . , 4.

2.3 Inference and asymptotic properties
The log-likelihood (2.9) with a covariate-dependent vector of parameters θx is now written
as

`(β) :=
nr∑
i=1

ci + log {h (wi;β)} ,

=
nr∑
i=1

ci + log
(
h
[
wi; g−1{η(xi)}

])
, (2.13)

where ci is a constant independent of β and g−1 is the componentwise inverse of g.
Incorporating a covariate-dependence in the extremal dependence model through a

non-linear smooth model adds considerable flexibility in the modelling of the dependence
parameter θx. The price to pay for this flexibility is reflected in the estimation procedure.
The estimation of θx, hence of β, is performed by maximizing the penalized log-likelihood

`(β,γ) = `(β)− 1
2J(γ), (2.14)

where the penalty term can be written as

J(γ) =
q∑

k=1
β>[k]

{
Pk ⊗ diag(γ(1)k, . . . , γ(p)k)

}
β[k] = β>P(γ)β,

with P(γ) a p(1 + qd̃)× p(1 + qd̃) block matrix with a first p× p block filled with zeros
and q blocks, each formed by a pd̃× pd̃ matrix Pk that depends only on the knots of the
B-spline functions for the covariate xk. The matrix P(γ) can be written as P(γ) = X̃>X̃
for some p(1 + qd̃)× p(1 + qd̃) real matrix X̃. The vectors β[k] are defined in (2.12), and
γ(l)k are termed the smoothing parameters.
The penalty term in (2.14) controls the wiggliness and the fidelity to the data of the
component functions in (2.11) through the vector γ of the smoothing parameters γ(l)k
for l = 1, . . . , p and k = 1, . . . , q. Larger values of γ(l)k lead to smoother effects of the
covariate xk on the lth component of η.

The maximization of the penalized log-likelihood (2.14) is based on a Newton–Raphson
(N–R) algorithm. At each step of the N–R algorithm, a set of smoothing parameters is pro-
posed by outer iteration [Wood, 2017], and a penalized iterative reweighted least squares
(PIRLS) algorithm is performed, in an inner iteration, to update the model coefficients
estimates. We detail the inner fitting procedure in the following section and the outer
iteration in Section 2.3.2.



36 Chapter 2. Regression type models for extremal dependence

2.3.1 Fitting algorithm
We suppose that the penalized log-likelihood (2.14) depends only on the p(1 + qd̃)-vector
β and that the vector of smoothing parameters γ is proposed (at each iteration of the
N–R algorithm) by outer iteration and is therefore fixed in what follows.

The penalized maximum log-likelihood estimator (PMLE) β̂ satisfies the following
score equation

∂`(β̂,γ)
∂β

= X>VAMu(β̂)−P(γ)β̂ = 0,

where u(β) = ∂`(β)/∂η ∈ Rpnr and XVAM is as defined in (2.12). To obtain β̂, we update
β(a−1), the (a− 1)th estimate of the true β0, by Newton–Raphson:

β(a) = β(a−1) + I
(
β(a−1)

)−1 {
X>VAMu(β(a−1))−P(γ)β(a−1)

}
, (2.15)

where 
I
(
β(a−1)

)
= −∂

2`(β,γ)
∂β∂β>

= X>VAMW(β(a−1))XVAM + P(γ),

W(β(a−1)) = − ∂
2`(β)

∂η∂η>
∈ Rpnr×pnr .

The matrix W(β(a−1)) is termed the working weight matrix. If the expectation
E{∂2`(β)/∂η∂η>} is obtainable, a Fisher scoring algorithm is then preferred, as it en-
sures the positive definiteness of W(β) over a larger region of the parameter space B
than in the N–R algorithm. When the working weight matrix is not positive definite,
which might happen when the parameter β(a−1) is far from the true β0, a Greenstadt
[Greenstadt, 1967] modification is applied, and the negative eigenvalues of W(β(a−1)) are
replaced by their absolute values. With the different families of angular densities consid-
ered in Examples 1, 2, and 4, the expected information matrix is not obtainable and is
hence replaced by the observed information matrix on which a Greenstadt modification is
applied whenever needed. See Yee [2015, Section 9.2] for other remedies and techniques
for deriving well-defined working weight matrices.

Let z(a−1) := XVAMβ
(a−1) + W(β(a−1))−1u(β(a−1)) be the pnr-vector of working re-

sponses. Then, (2.15) can be rewritten in a PIRLS form as

β(a) =
{
X>VAMW(β(a−1))XVAM + P(γ)

}−1
XT

VAMW(β(a−1))z(a−1)

=
{
X>PVAMW̃(a−1)XPVAM

}−1
X>PVAMW̃(a−1)y(a−1),

where XPVAM, y(a−1), and W̃(a−1) are augmented versions of XVAM, z(a−1) and W(β(a−1)),
respectively, and are defined as

XPVAM =
(
X>VAM X̃

)>
∈ Rp(1+nr+qd̃)×p(1+qd̃),

y(a−1) =
(
z(a−1) 0p(1+qd̃)

)>
∈ Rp(1+nr+qd̃),

W̃(a−1) = diag
(
W(β(a−1)), Ip(1+qd̃)×p(1+qd̃)

)
∈ Rp(1+nr+qd̃)×p(1+nr+qd̃).

The algorithm stops when the change in the coefficients β between two successive itera-
tions is sufficiently small. Convergence of the N–R algorithm is not guaranteed and might
not occur if the quadratic approximation of `(β,γ) around β̂ is poor. See Yee [2015,
2016] for more details.
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The plug-in penalized maximum log-likelihood estimator of the covariate-dependent
angular density is defined as

ĥx(w) ≡ h{w; g−1(XVAMβ̂)}. (2.16)

In the following section, we give details about the selection of the smoothing parame-
ters γ, which is outer to the PIRLS algorithm.

2.3.2 Selection of the smoothing parameters
To implement the PIRLS algorithm performed at each iteration of the N–R algorithm, a
smoothing parameter selection procedure is conducted by minimizing a prediction error
estimate given by the generalized cross validation (GCV) score.

Let A(a−1)(γ) be the influence matrix of the fitting problem at the ath iteration,
defined as

A(a−1)(γ) = XPVAM
{
X>PVAMW̃(a−1)XPVAM

}−1
X>PVAMW̃(a−1).

Then, by minimizing the GCV score

GCV(a−1) =
nr
{
y(a−1) −A(a−1)(γ)y(a−1)

}>
W̃(a−1)

{
y(a−1) −A(a−1)(γ)y(a−1)

}
[nr − trace {A(a−1)(γ)}]2

,

we aim at balancing between goodness of fit and complexity of the model, which is mea-
sured by the trace of the influence matrix and termed the effective degrees of freedom
(EDF). The EDF of the fitted VGAM (2.12) are defined as the EDF obtained at conver-
gence, that is, trace

{
A(c−1)(γ)

}
, where c is the iteration at which convergence occurs.

Both the fitting algorithm of Section 2.3.1 and the smoothing parameter selection are
implemented in the R package VGAM [Yee, 2017], with the latter being required from the R
package mgcv [Wood, 2017].

Model selection between different, not necessarily nested, fitted VGAMs is performed
based on the Akaike information criterion (AIC), where the number of parameters of the
model is replaced by its EDF to account for penalization. More details on the (conditional)
AIC for models with smoothers along with a corrected version of this criterion, which
takes into account the smoothing parameter uncertainty, can be found in Wood [2017,
Section 6.11].

2.3.3 Large sample properties
We now derive the consistency and asymptotic normality of the PMLE β̂ defined in
Section 2.3.1. Throughout this section, we assume that the set of angular observations
{wi}nr

i=1 defined in the log-likelihood (2.13), stems from a parametric family of angular
densities of multivariate extreme value distributions {h(·,β),β ∈ B}, with B a compact
subset of Rp(1+qd̃). The following large sample properties are derived for an increasing size
nr and under the assumption that the angular density h(·;β) has all its density in the
interior of the unit simplex Sd. Additionally, we assume that the dependence parameter
of the angular density is a linear combination of known spline functions where the number
and the location of the internal knots are fixed, that is, the dimension of the parameter
β is fixed. The bias resulting from this assumption is negligible compared to the bias due
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to the smoothing parameter uncertainty [Ruppert, 2002].
Based on the penalized log-likelihood (2.14), β̂ satisfies the following score equation

m(β)−P(γ)β = 0p(1+qd̃), (2.17)

where m(β) = ∂`(β)/∂β.
Let B0 be an open neighbourhood around the true parameter β0. Moreover, we define

m(w,β) = ∂ log{h(w;β)}/∂β.
Our asymptotic results hold under the following customary assumptions on the smoothing
parameters γ and the angular density h(·;β):

(A1) γ =
(
γ(1)1 · · · γ(p)1 · · · γ(1)q · · · γ(p)q

)>
= o(n1/2

r )1pq.

(A2) Regularity conditions:

• The angular density support {w ∈ Sd : h(w;β) > 0} does not depend on
β ∈ B0.
• If β 6= β0, then h(w;β) 6= h(w;β0), with β ∈ B0. Moreover, E[sup

β∈B
| log {h(w;β)} |] <

∞.
• For w ∈ Sd, h(w;β) ∈ C3(B) and h(w;β) > 0 on B0.
•
∫

sup
β∈B
‖m(w,β)‖ dw <∞ and

∫
sup
β∈B
‖∂m(w,β)/∂β>‖dw <∞.

• For β ∈ B0, i(β) := cov{m(W,β)} = X>VAMW(β)XVAM exists and is positive-
definite.
• For each triplet 1 ≤ q, r, s ≤ p(1 + qd̃), there exists a function Mqrs : Sd → R

such that, for w ∈ Sd and β ∈ B0, |∂3 log{h(w;β)}/∂βqrs| ≤ Mqrs(w), and
E {Mqrs(W)} <∞.

Assumption (A1) is needed to control the influence of the smoothing parameters as
nr →∞ such that the asymptotic unbiasedness of β̂ can be established. This assumption
is rather weak as it allows the smoothing parameters to grow as the size of the threshold
exceedances grows, at a rate smaller than n1/2

r , implying therefore that heavy oversmooth-
ing is avoided. As discussed by Marra and Wood [2012], heavy oversmoothing is likely to
happen under two situations. The first one corresponds to situations where two covariates
are highly correlated but the effect of one is very smooth and the effect of the other is very
wiggly, leading therefore to a possible inversion of the degrees of smoothness and to one of
the covariates being highly oversmoothed. The second situation corresponds to the setting
where the true effect of one of the covariates is close to a function in the null space of the
penalty associated to this covariate, i.e., a straight line, and might therefore be estimated
exactly as this function. Assumption (A2) consists of standard regularity assumptions
under which the classical asymptotic properties of MLEs hold. These assumptions are
expressed in terms of the angular density as the first term in the log-likelihood (2.9) does
not influence the maximization. Although difficult to verify, these assumptions are similar
to the ones considered in Bienvenüe and Robert [2017] and Padoan et al. [2010] where in
the latter, the assumptions are imposed on the components of the composite likelihood
along with additional assumptions on the composite score equation. Note that Dombry
et al. [2016] discussed the asymptotic properties of the maximum likelihood estimator of
max-stable distributions under the notion of differentiability in quadratic mean. Their
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regularity conditions on the exponent function and angular measure were proved to hold
for several popular parametric models.
The next theorem characterizes the large sample behaviour of our estimator β̂.
Theorem 2.3.1. Let {h(·,β),β ∈ B} be a parametric family of angular densities of
multivariate extreme value distributions, where B is a compact subset of Rp(1+qd̃). Let β0
be an interior point of B and B0 an open neighbourhood around β0. Under (A1) and
(A2), and for independent observations w1, . . . ,wnr with distribution h(·,β0), it follows
that, as nr →∞, the estimator β̂ maximizing the penalized log-likelihood (2.14) verifies:

1. ‖β̂ − β0‖ = Op(n−1/2
r ).

2. n1/2
r (β̂ − β0) d→ N(0, i(β0)−1).

These results are derived from a second-order Taylor expansion of the score equa-
tion (2.17) around the true parameter β0 along the same lines as in Vatter and Chavez-
Demoulin [2015] and Davison [2003, p. 147]. The proof of Theorem 2.3.1 is deferred to
the Supplementary Materials of Section 2.7. Similar results on the large sample behaviour
of the corresponding plug-in estimator (2.16) can be derived using the multivariate delta
method. These results are useful to derive and construct approximate confidence inter-
vals for conditional angular densities and to compare nested models based on likelihood
ratio tests. Our proviso is similar to that of de Carvalho and Davison [2014] in the sense
that asymptotic properties of the estimator β̂ are derived under the assumption of known
margins and we sample from the limiting object hx, whereas in practice only a sample of
(estimated) pseudo-angles, {ŵi}nr

i=1, would be available and the uncertainty arising from
the marginal fitting would not be accounted for. Asymptotic properties under misspeci-
fication of the parametric model set for hx could in principle be derived under additional
assumptions on β and m, along the same lines as in standard likelihood theory [Knight,
2000]. The resulting theory is outside the scope of this work and is deliberately not
studied here.

2.4 Simulation study

2.4.1 Data generating processes and preliminary experiments
We assess the performance of our methods using the bivariate extremal dependence struc-
tures presented in Section 2.2.2—and displayed in Figure 2.1—as well as the trivariate
pairwise beta dependence model from Example 4—depicted in Figure 2.2. Monte Carlo
evidence will be reported in Section 2.4.2. For now, we concentrate on illustrating the
methods over a single-run experiment on these scenarios. For each dependence model
from Examples 1–3, we draw a sample {(wi,1, wi,2)}nr

i=1 from the corresponding angular
density hx with sample size nr = 300 and where each angular observation (wi,1, wi,2) is
drawn from the chosen dependence model conditional on a fixed value xi of the covariate
x. To gain insight into the bias and variance of our covariate-adjusted spectral density
estimator, we compute its 95% asymptotic confidence bands based on Theorem 2.3.1 and
at different values of w in (0, 1). The only source of bias in our estimation procedure is due
to the penalization of the model likelihood causing a smoothing bias [Wood, 2017] if the
smoothing parameters do not vanish at a certain rate (see Section 2.3.3). The uncertainty
due to the choice of the parametric model is deliberately not taken into account, that is,
the simulations are performed in a well-specified framework.



40 Chapter 2. Regression type models for extremal dependence

Logistic

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

x = 0.79

w

h x
(w

)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

x = 1.3

w

 

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

x = 1.9

w

 

Dirichlet

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

x = 2.84

w

h x
(w

)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
x = 1.6

w

 

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

x = 0.97

w
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Figure 2.3: Estimates of the covariate-adjusted spectral densities in Examples 1, 2, and
3 conditional on different values of the covariate x (dashed lines) along with their 95%
(pointwise) asymptotic confidence bands (grey area). The true spectral densities are
displayed in solid lines.

Figure 2.3 displays the estimates of the covariate-adjusted spectral densities from Ex-
amples 1, 2, and 3 for various fixed values of the covariate x that induce different extremal
dependence strengths. All panels show that for the different extremal dependence schemes
(strength and asymmetry), the covariate-adjusted spectral densities are accurately esti-
mated and the true curves fall well within the 95% confidence bands. The estimates in
the Dirichlet case seem to be a bit more biased, and this might be explained by the fact
that both of the two non-orthogonal parameters of the model depend smoothly on the
covariate x.

We now consider the case of the trivariate pairwise beta dependence model from
Example 4. We draw a sample {(wi,1, wi,2, wi,3)}nr

i=1 with sample size nr = 300 where each
observation (wi,1, wi,2, wi,3) is drawn from the pairwise beta model conditional on a fixed
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value xi of the covariate x, as illustrated in Figure 2.2. Figure 2.4 displays the contour
plots of the estimates of the covariate-adjusted spectral density from Example 4 at three
fixed values of x. All panels in Figure 2.4 show that, for the different extremal dependence
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Figure 2.4: Contour plots of the covariate-adjusted pairwise beta spectral density estimate
(dashed lines) at x = 1.5 (left), x = 2.46 (middle), and x = 3.22 (right). The contour
plots of the true spectral density are displayed in solid lines.

schemes, i.e., for the different considered values of x, the contour plots of the estimates
are remarkably close to the actual contour plots. The estimates are slightly more biased
near the edges of the simplex than in the center, reflecting a better estimation of the
global dependence parameter compared to the pairwise dependence parameters.

2.4.2 Monte Carlo evidence
A Monte Carlo study was conducted by simulating 500 independent samples of sizes
nr = 300 and nr = 500 angular observations, respectively. In what follows we focus
on documenting how the level of accuracy increases when the number of observations
increases by assessing the mean integrated absolute error (MIAE)—which for the bivariate
case can be written as

MIAE = E
{∫
X

∫ 1

0
|ĥx(w)− hx(w)| dw dx

}
.

The results are reported in Table 2.1.

Table 2.1: Mean integrated absolute error (MIAE) estimates computed from 500 samples
for the covariate-adjusted spectral densities in Examples 1–3; nr denotes the number of
angular observations

nr Covariate-adjusted angular density MIAE

300
Logistic 0.2185
Dirichlet 0.3372

Hüsler–Reiss 0.2205

500
Logistic 0.1781
Dirichlet 0.2459

Hüsler–Reiss 0.1648

As expected, an increase in the number of angular observations leads to a reduction
of MIAE. To give a more granular level of detail than that of Table 2.1 on the behaviour
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of the estimator over specific values of the covariate and of the unit simplex, Figure 2.5
displays the Monte Carlo confidence intervals of the covariate-adjusted spectral densities
from Examples 1–3 for various fixed values of the covariate x, along with the Monte
Carlo means and Figure 2.6 displays the contour plots of the Monte Carlo mean of the
covariate-adjusted spectral density from Example 4 at three fixed values of x.
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Figure 2.5: The Monte Carlo 95% confidence intervals of the spectral densities in Exam-
ples 1, 2, and 3 conditional on different values of the covariate x (grey area) along with
their Monte Carlo means (dashed lines). The true spectral densities are displayed in solid
lines.

As can be seen from Figures 2.5 and 2.6, our method successfully recovers the cor-
responding target covariate-adjusted angular densities with a high level of precision over
the simulation study. Additionally, the variability in the Monte Carlo study in Figure 2.5
is comparable to the asymptotic variability displayed in Figure 2.3.
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Figure 2.6: Contour plots of the Monte Carlo mean estimate of the covariate-adjusted
pairwise beta spectral density (dashed lines) at x = 1.5 (left), x = 2.46 (middle), and
x = 3.22 (right). The contour plots of the true spectral density are displayed in solid
lines.

2.5 Extreme temperature analysis

2.5.1 Data description, motivation for the analysis, and prepro-
cessing

In this section, we describe an application to modelling the dependence between extreme
air winter (December–January–February) temperatures at two sites in the Swiss Alps:
Montana—at an elevation of 1427m—and Zermatt—at an elevation of 1638m. The sites
are approximatively 37km apart.
In the Alpine regions of Switzerland, there is an obvious motivation to focus on extreme
climatic events, as their impact on the local population and infrastructure can be very
costly. As stated by Beniston [2007], warm winter spells, that is, periods with strong
positive temperature exceedances in winter, can exert significant impacts on the natural
ecosystems, agriculture, and water supply:

“Temperatures persistently above 0◦C will result in early snow-melt and a shorter seasonal
snow cover, early water runoff into river basins, an early start of the vegetation cycle, reduced
income for alpine ski resorts and changes in hydro-power supply because of seasonal shifts
in the filling of dams [Beniston, 2004].”

In this analysis, we are interested in the dynamics of the dependence between extreme
air temperatures in Montana and Zermatt during the winter season. The dynamics of
both extreme high and extreme low winter temperatures in these two sites will be as-
sessed and linked to the following explanatory factors: time (in years) (t), day within
season (d), and the NAO (North Atlantic Oscillation) index (z); the latter is a normalized
pressure difference between Iceland and the Azores that is known to have a major direct
influence on the alpine region temperatures, especially during winter [Beniston, 2005].
The choice of the studied sites is of great importance in this analysis. Beniston and
Rebetez [1996] showed that both cold and warm winters exhibit temperature anomalies
that are altitude-dependent, with high-elevation resorts being more representative of free
atmospheric conditions and less likely to be contaminated by urban effects. Therefore,
to study the “pure” effect of the above-mentioned explanatory covariates on the winter
temperature extremal dependence, we choose the two high elevation sites Montana and
Zermatt.
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The data consist of daily winter temperature minima and maxima measured at 2m
above ground surface and were obtained from the MeteoSwiss website

www.meteoswiss.admin.ch

The data were available from 1981 to 2016, giving a total of 3190 winter observations per
site. Daily NAO index measurements were obtained from the NOAA (National Centers
for Environmental Information), at

www.ngdc.noaa.gov/ftp.html

We first transform the minimum temperature data by multiplication by −1 and then
fit at each site—and to both daily minimum and maximum temperatures—a generalized
Pareto Distribution (GPD) [Coles, 2001, ch. 4]

Gσ,ξ(y) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
, (2.18)

to model events above the 95% quantile u95 for each of the four temperature time series.
In (2.18), σ > 0 is the scale parameter that depends on u95, and −∞ < ξ < ∞ is the
shape parameter. As is common with temperature data analysis, we test the effect of
time t on the behaviour of the threshold exceedances by allowing the scale parameter of
the GPD (2.18) to smoothly vary with t [Chavez-Demoulin and Davison, 2005]. Based
on the likelihood ratio tests, a model with a non-stationary scale parameter is preferred
only in Zermatt for the threshold exceedances of the daily minimum temperatures (p-
value ≈ 0.022). Graphical goodness-of-fit tests for the four GPD models are conducted
by comparing the distribution of a test statistic S with the unit exponential distribution
(if Y ∼ Gσ,ξ, then S = − ln{1 − Gσ,ξ(Y )} is unit exponentially distributed). Figure 2.7
displays the resulting qq-plots and confirms the validity of these models. The fitted mod-
els are then used to transform the data to a common unit Fréchet scale by probability
integral transform and where the empirical distribution is used below u95. This results in
two datasets of bivariate observations (in Montana and Zermatt) with unit Fréchet mar-
gins: one for the daily maximum temperatures and the other one for the daily minimum
temperatures.

Following the theory developed in Section 2.2.1, we transform each of the two datasets
into pseudo-datasets of radial and angular components. By retaining the angular obser-
vations corresponding to a radial component exceeding its 95% quantile in each pseudo-
dataset, we end up with two pseudo-samples of 160 extreme bivariate (angular) observa-
tions in each pseudo-dataset.

2.5.2 Covariate-adjusted dependence of extreme temperatures

In the following analyses of the dynamics of the dependence between extreme temper-
atures in Montana and Zermatt—and in line with findings from previous analyses of
extreme temperatures in Switzerland [Davison and Gholamrezaee, 2011, Davison et al.,
2013, Dombry et al., 2013]—we assume asymptotic dependence in both extremely high
and extremely low winter temperatures.

www.meteoswiss.admin.ch
www.ngdc.noaa.gov/ftp.html
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Figure 2.7: Diagnostic plots of the GPD modelling of the threshold exceedances of the
daily maximum winter temperatures (left) and the daily minimum winter temperatures
(right) in Montana (top) and Zermatt (bottom).

Dependence of extreme high winter temperatures

The covariate-adjusted bivariate angular densities presented in Section 2.2.2 are now
fitted to the pseudo-sample of extreme high temperatures. The effects of the explanatory
covariates t, z, and d are tested in each of the three angular densities: the logistic model
(Example 1) with parameter α(t, z, d), the Dirichlet model (Example 2) with parameters
α(t, z, d) and β(t, z, d), and the Hüsler–Reiss model (Example 3) with parameter λ(t, z, d).
Within each family of covariate-adjusted angular densities, likelihood ratio tests (LRT) are
performed to select the most adequate VGAM for the dependence parameters. Table 2.2
shows the best models in each of the three families of angular densities. All the considered
covariates have a significant effect on the strength of dependence between extreme high
temperatures in Montana and Zermatt. For the covariate-dependent Dirichlet model,
the covariates affect the dependence parameters α and β differently. However, these
parameters lack interpretability, and Coles and Tawn [1994] mention the quantities (α +
β)/2 and (α−β)/2 that can be interpreted as the strength and asymmetry of the extremal
dependence, respectively. In this case, the best Dirichlet dependence model found in
Table 2.2 is such that both the intensity and the asymmetry of the dependence are affected
by time, NAO, and day in season.

The best models in the studied angular density families are then compared by means
of the AIC (see Section 2.3.2) displayed in Table 2.2. The Dirichlet model with α(z) and
β(t, d) parameters has the lowest AIC and is hence selected. This suggests the presence
of asymmetry in the dependence of extreme high temperatures between Montana and
Zermatt. Figure 2.8 shows the fitted smooth effects of the covariates on the extremal
coefficient—constructed via the covariate-adjusted extremal coefficient as in (2.10)—that
lies between 1 for perfect extremal dependence and 2 for perfect extremal independence.
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Table 2.2: Selected models in each family of angular densities along with their AICs. The
link functions g are the logit function for the logistic model and the logarithm function
for the Dirichlet and the Hüsler–Reiss models. The functions f̂ with subscripts t, z, and
d are fitted smooth functions of time, NAO, and day in season, respectively

Covariate-adjusted angular density VGAM AIC
Logistic α̂(t, z, d) = g−1{α̂0 + f̂t(t) + f̂z(z) + f̂d(d)} −280.15

Dirichlet α̂(z) = g−1{α̂0 + f̂z(z)} −290.05
β̂(t, d) = g−1{β̂0 + f̂t(t) + f̂d(d)}

Hüsler–Reiss λ̂(t, z, d) = g−1{λ̂0 + f̂t(t) + f̂z(z) + f̂d(d)} −275.64

1985 1995 2005 2015

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Time

C
ov

ar
ia

te
−a

dj
us

te
d 

ex
tre

m
al

 c
oe

ffi
ci

en
t

−200 −100 0 100 200 300

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

NAO
0 20 40 60 80

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Days

Figure 2.8: Fitted smooth effects for the extremal coefficient under the Dirichlet model
of Table 2.2 along with their associated 95% (pointwise) asymptotic confidence bands.

A decrease in the extremal coefficient, or equivalently an increase in the extremal
dependence between high winter temperatures in Montana and Zermatt, is observed from
1988 until 2006. This change might be explained first by a warm phase of very pronounced
and persistent warm anomalies during the winter season, which occured countrywide from
1988 to 1999 [Jungo and Beniston, 2001], and then by an exceptionally warm 2006/2007
winter that took place in Europe [Luterbacher et al., 2007]. Regarding the NAO effect,
as expected, we observe an increase in the extremal dependence during the positive phase
of NAO that has a geographically global influence on the Alps and results in warmer
and milder winters, as depicted by Beniston [1997]. In terms of the very negative NAO
values (less than −100), there is an important uncertainty due to the corresponding small
amount of joint extreme high temperatures (8%). The right panel of Figure 2.8 suggests
an increase in the extremal dependence around mid-December. This evidence also seems
compatible with the countrywide findings by Beniston [1997], who claims that

“The anomalously warm winters have resulted from the presence of very persistent high
pressure episodes which have occurred essentially during periods from late Fall to early
Spring.”

The sensitivity of the dependence modelling to the choice of the radial threshold is assessed
by fitting the Dirichlet model of Table 2.2 to the angular observations corresponding to
a radial component exceeding its 90%, 93%, and 97% quantile. The fitted smooth effects
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Table 2.3: Selected models in each family of angular densities along with their AICs. The
link functions g are the logit function for the logistic model and the logarithm function
for the Dirichlet and the Hüsler–Reiss models. The functions f̂ with subscripts t and d
are fitted smooth functions of time and day in season, respectively

Covariate-adjusted angular density VGAM AIC
Logistic α̂(d) = g−1{α̂0 + f̂d(d)} −402.76

Dirichlet α̂ ≡ g−1(α̂0) −404.95
β̂(t, d) = g−1{β̂0 + f̂t(t) + f̂d(d)}

Hüsler–Reiss λ̂(t, d) = g−1{λ̂0 + f̂t(t) + f̂d(d)} −402.98

of the covariates on the extremal coefficient are reported in Figure 2.11 of Section 2.7.2
and are found to be essentially unaffected by the choice of the radial threshold.

Dependence of extreme low winter temperatures

The effects of the covariates time, NAO, and day in season on the dependence between
extreme cold winters in Montana and Zermatt are now tested by fitting the bivariate
angular densities of Section 2.2.2. Within each of the logistic, Dirichlet, and Hüsler–Reiss
families, LRTs are performed, and the selected models are displayed in Table 2.3.

The explanatory covariates have different effects on the extremal dependence, depend-
ing on the family of angular densities. The AICs for the fitted models are quite close, and
the asymmetric Dirichlet model has the lowest AIC and is hence the retained model. As
opposed to the extremal dependence between warm winters in the two mountain sites, the
NAO has a non-significant effect on the extremal dependence between cold winters. This
might be explained by the fact that high values of the NAO index will affect the frequency
of extreme low winter temperatures (less extremes) and hence the marginal behaviour of
the extremes at both sites, but not necessarily the dependence of the extremes between
these sites [Beniston, 2004, sec. 7.3.2].
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Figure 2.9: Fitted smooth effects for the extremal coefficient under the Dirichlet model
of Table 2.3 along with their associated 95% (pointwise) asymptotic confidence bands.

Figure 2.9 shows the fitted smooth effects of time and day in season. A sensitivity
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analysis of these effects to the radial threshold choice is conducted in Section 2.7.2 and
Figure 2.12 shows that the effects of the considered covariates on the extremal dependence
are unaltered by changing the radial threshold. The extremal dependence between low
winter temperatures in Montana and Zermatt is high, regardless of the values taken by
the covariates t and d. The range of values of the extremal coefficient observed in Fig-
ure 2.9 is in line with the findings of Davison et al. [2013], where the value of the extremal
coefficient for the dependence between extreme low winter temperatures (in Switzerland)
is around 1.3 for pairs of resorts separated by up to 100km. Overall, the extremal coef-
ficient is lower in the extreme low winter temperatures than in the extreme high winter
temperatures. This could be explained by the fact that minimum winter temperatures
are usually observed overnight when the atmosphere is purer and not affected by local
sunshine effects and hence is more favourable to the propagation over space of cold winter
spells.

A decrease in the extremal dependence is observed from around 2007 and results in
values of the extremal coefficient that are comparable to those obtained under the warm
winter spells scenario (see Figure 2.8). This can be explained by a decrease in the intensity
of the joint extreme low temperatures, that is, milder joint extreme low temperatures,
occurring during the last years of the analysis, as can be observed in Figure 2.10. The right
panel of Figure 2.9 highlights a decrease in the extremal dependence when approaching
spring. This effect can be explained by the fact that mountains often produce their own
local winds, as can be seen for instance from

www.morznet.com/morzine/climate/local-climate-in-the-alps

These warm dry winds are mostly noticeable in spring and are called Foehn in the Alps.
Local effects obviously lead to a decrease of extremal dependence between the two resorts.
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Figure 2.10: Scatterplot of (minus) extreme low winter temperatures (in ◦C) in Montana
and Zermatt.

www.morznet.com/morzine/climate/local-climate-in-the-alps
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2.6 Final remarks
In this work, we have introduced a sturdy and general approach to model the influence of
covariates on the extremal dependence structure. Keeping in mind that extreme values
are scarce, our methodology borrows strength from a parametric assumption and benefits
directly from the flexibility of VGAMs. Our non-linear approach for covariate-varying ex-
tremal dependences can be regarded as a model for conditional extreme value copulas—or
equivalently as a model for nonstationary multivariate extremes. An important advan-
tage over existing methods is that our model profits from the VGAM framework, allowing
the incorporation of a large number of covariates of different types (continuous, factor,
etc) as well as the possibility for the smooth functions to accommodate different shapes.
The fitting procedure is an iterative ridge regression, the implementation of which is
based on an ordinary N–R type algorithm that is available in many statistical software.
An illustration is provided in the R code that can be found in the following repository
https://github.com/lindamhalla/Regression type models for extremal dependence.

The method paves the way for novel applications, as it is naturally tailored for assessing
how covariates affect dependence between extreme values—and thus it offers a natural
approach for modelling conditional risk. Conceptually, the proposed approach is valid
in high dimensions. Yet, as for the classical setting without covariates, the number of
parameters would increase quickly with the dimension and additional complications would
arise. Relying on composite likelihoods [Padoan et al., 2010] instead of the full likelihood
seems to represent a promising path for future extensions of the proposed methodology
in a high-dimensional context.

2.7 Supplementary Materials

2.7.1 Auxiliary lemmas and proofs
Recall the following notations

`(β) =
nr∑
i=1

ci + log{h(wi;β)},

m(β) = ∂`(β)
∂β

,

m(w,β) = ∂ log{h(w;β)}
∂β

,

where ci is a constant independent of β, for i = 1, . . . , nr.
As mentioned in Section 2.3.3, the penalized log-likelihood estimator (PMLE) β̂ satisfies
the following score equation

m(β)−P(γ)β = 0p(1+qd̃). (2.19)

We now define
φ(β) = ∂2`(β)

∂β∂β>
, φ(w,β) = ∂2 log{h(w;β)}

∂β∂β>
.

Based on Assumption (A2), we prove the following two lemmas that will streamline the
proof of the first part of Theorem 2.3.1, i.e., the weak consistency of β̂.

https://github.com/lindamhalla/Regression_type_models_for_extremal_dependence
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Lemma 1. Let h(w;β) be continuously differentiable a.e. for β ∈ B. If∫
sup
β∈B
‖∂h(w;β)/∂β‖ dw <∞, then for β ∈ B:

1.
∫
h(w;β) dw is continuously differentiable.

2.
∫
∂h(w;β)/∂β dw = ∂

∫
h(w;β) dw/∂β.

Proof. See Newey and McFadden [1994, Lemma 3.6].

Lemma 2. If (A2) holds, then

E {m(W,β0)} = 0, −E {φ(W,β0)} = i(β0).

Proof. By Lemma 1, it follows that

E {m(W,β0)} =
∫

m(w,β0)h(w;β0) dw =
∫ ∂h(w;β)

∂β

∣∣∣∣∣
β=β0

dw = ∂
∫
h(w;β) dw
∂β

∣∣∣∣∣
β=β0

= 0.

Now, using (A2) (parts 3 and 4) we have that

E {φ(W,β0)} =
∫
φ(w,β0)h(w;β0) dw

=
∫ ∂m(w,β)h(w;β)

∂β>

∣∣∣∣∣
β=β0

h(w;β0) dw−
∫

m(w,β0)m(w,β0)>h(w;β0) dw

= −
∫

m(w,β0)m(w,β0)>h(w;β0) dw.

We now prove the first part of Theorem 2.3.1 by proving the following lemma.
Lemma 3. Let Qa = {β ∈ B : β = β0 + n−1/2

r a} be the surface of the sphere around β0
with radius n−1/2

r ‖a‖. Then, for every ε > 0, there exists a such that

Pr
{

sup
β∈Qa

`(β,γ) < `(β0,γ)
}
≥ 1− ε,

for nr large enough.

Proof. Let β ∈ Qa, i.e., there exists a such that β = β0+n−1/2
r a. Applying a second-order

Taylor expansion around β0 of the penalized log-likelihood `(β,γ), we have

`(β,γ)− `(β0,γ) = `(β)− `(β0)− 1
2
{
β>P(γ)β − β>0 P(γ)β0

}
= n−1/2

r m(β0)>a + n−1
r
2 a>φ(β0)a − n−1

r
2 a>P(γ)a − n−1/2

r β>0 P(γ)a

+n
−3/2
r
2

∑
q

∑
r

∑
s

aqaras
∂3`(β)
∂βqrs

∣∣∣∣∣
β=β∗

, (2.20)

with β∗ in the interior of Qa. The terms involving the penalty matrix P(γ) converge in
probability to 0 due to the vanishing penalty from (A1). By the central limit theorem
(based on a Lindeberg-type condition), Lemma 2, and (A2), we have that n−1/2

r m(β0) d→
N(0, i(β0)) implying that |n−1/2

r m(β0)>a| = Op(1)‖a‖. By the law of large numbers and
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Lemma 2, we have that n−1
r φ(β0) p→ −i(β0). Hence, applying the continuous mapping

theorem, we end up with a>n−1
r φ(β0)a/2 p→ −a>i(β0)a/2 ≤ ‖a‖2λmin/2, where λmin > 0

is the smallest eigenvalue of i(β0). Finally, Assumption (A2) (last part) implies that the
terms ∂3`(β)/∂βqrs|β=β∗ < ∞ and that, by Cauchy–Schwartz inequality, the remainder
term in (2.20) vanishes in probability (is Op(n−1/2

r )). Leaving out the terms vanishing in
probability, (2.20) yields

`(β,γ)− `(β0,γ) ≤ Op(1)‖a‖ − ‖a‖2λmin/2 = T, β ∈ Qa,

for nr large enough. Thus,

Pr
{

sup
β∈Qa

`(β,γ) < `(β0,γ)
}
≥ Pr(T < 0),

implying that for every ε > 0, there exists an a such that Pr{supβ∈Qa`(β,γ) < `(β0,γ)} ≥
1 − ε. Hence, with probability tending to 1, the penalized log-likelihood `(β,γ) has a
local maximum β̂ in the interior of a sphere around β0.

Lemma 3 yields the first part of Theorem 2.3.1. Now we move to the second part of
Theorem 2.3.1. The asymptotic normality of the PMLE β̂ is derived from a second-order
Taylor expansion of the score equation (2.19) around the true parameter β0. The Taylor
expansion of (2.19) yields

m(β0)−P(γ)β0 + {φ(β0)−P(γ)}(β̂ − β0) + r = 0p(1+qd̃),

where
r = 1

2(β̂ − β0)>∂
2m(β)
∂β∂β>

∣∣∣∣∣
β=β∗

(β̂ − β0), (2.21)

and β∗ is such that ‖β∗ − β0‖ ≤ ‖β̂ − β0‖. Dividing (2.21) by n1/2
r , we obtain

1
nr
{φ(β0)−P(γ) + r̃}n1/2

r (β̂ − β0) = n−1/2
r {P(γ)β0 −m(β0)}, (2.22)

where
r̃ = 1

2(β̂ − β0)>∂
2m(β)
∂β∂β>

∣∣∣∣∣
β=β∗

.

The consistency of β̂ and the assumption on the third order derivative of log{h(w;β)} in
(A2) implies that r̃ p→ 0. Assumption (A1) implies that the terms involving P(γ) vanish
in probability. Since n−1/2

r m(β0) d→ N(0, i(β0)) and n−1
r φ(β0) p→ −i(β0) (see above),

Slutsky’s theorem implies that n1/2
r (β̂−β0) d→ N(0, i(β0)−1) and proves hence the second

part of Theorem 2.3.1.

2.7.2 Extreme temperature analysis
This section supplements Section 2.5.2.

Dependence of extreme high winter temperatures

The Dirichlet model of Table 2.2 is fitted to the pseudo-sample of extreme high temper-
atures where the angular observations corresponding to a radial component exceeding its
90%, 93%, and 97% quantiles, are considered. Figure 2.11 displays the fitted smooth
effects of time, NAO, and day in season on the extremal coefficient, along with their
associated 95% confidence intervals.
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Figure 2.11: Fitted smooth effects for the extremal coefficient under the Dirichlet model of
Table 2.2 along with their associated 95% (pointwise) asymptotic confidence bands. Dif-
ferent radial thresholds are considered: the 90% quantile (top), the 93% quantile (middle),
and the 97% quantile (bottom).

Dependence of extreme low winter temperatures

The Dirichlet model of Table 2.3 is fitted to the pseudo-sample of extreme low tempera-
tures where the angular observations corresponding to a radial component exceeding its
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90%, 93%, and 97% quantiles, are considered. Figure 2.12 displays the fitted smooth
effects of time and day in season on the extremal coefficient, along with their associated
95% confidence intervals.
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Figure 2.12: Fitted smooth effects for the extremal coefficient under the Dirichlet model of
Table 2.3 along with their associated 95% (pointwise) asymptotic confidence bands. Dif-
ferent radial thresholds are considered: the 90% quantile (top), the 93% quantile (middle),
and the 97% quantile (bottom).





Chapter 3

Non-linear models for extremal
dependence

As seen in Section 1.1.2.4, the dependence structure of max-stable random vectors can
be characterized by their Pickands’ dependence function. In the constant perspective of
borrowing information from covariates to model the extremal dependence, we develop, in
the work presented in this chapter, a flexible, semi-parametric method for the estimation of
non-stationary multivariate Pickands’ dependence functions. The term “semi-parametric”
refers here to the covariate model as we might have a part with a parametric dependence
on the covariates and a part with a smooth dependence on the covariates. The estimation
of the Pickands’ function is however performed in a non-parametric way as any finite-
parametric model for the extremal dependence cannot fully cover the class of Pickands’
dependence functions, and further adjustments are conducted to ensure that the estimator
is a genuine Pickands’ function. The correction of (non-parametric) Pickands’ estimators
Â(ω) is a standard procedure and we show in Figure 3.1 an example of this correction in the
bivariate case and based on the greatest convex minorant corrections {Â(ω)∨(1−ω)∨ω}∧1
[Deheuvels, 1991].
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Figure 3.1: Non-corrected Pickands estimators [Pickands, 1981] (dashed lines) and their
convex minorant corrections (solid lines).

We propose, in this chapter, new non-parametric estimators of covariate-dependent
Pickands’ dependence functions based on an accurate max-projection allowing to pass
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from the multivariate to the univariate setting and to rely on the generalized additive
modelling framework when incorporating covariate information. In the bivariate case, the
resulting estimator of the Pickands’ dependence function is regularized using constrained
median smoothing B-splines, and bootstrap variability bands are constructed. In higher
dimensions, we tailor our approach to the estimation of the extremal coefficient. An
extended simulation study suggests that our estimator performs well and is competitive
with the standard estimators in the absence of covariates. We apply the new methodology
to a temperature dataset in the U.S. where the extremal dependence is linked to time and
altitude.

3.1 Introduction
Extreme events are of major importance in different fields. Such events, defined as rare and
severe, may cause considerable material damage, deaths, and economic losses. A proper
statistical framework should then provide the tools for measuring extreme events through
the quantification of their frequencies, as well as intensities, which can be formulated in
terms of quantiles. Often, in practice, there is much more to gain by understanding simul-
taneous extreme events of several quantities. For example, in finance, people are interested
in the values of several assets that constitute the portfolio and the risk that the assets
collapse together. In environmental sciences, it is vital to measure the risk of simultane-
ous flooding at different points of a river [Asadi et al., 2015] or at nearby rivers. In both
cases, the quantity of interest is measured by the extremal dependence between different
variables. There is a well-established literature on modelling multivariate extremes and
thus, extremal dependence structures; some authors addressed this matter using Gaus-
sian copulas [Renard and Lang, 2007] while others analysed multivariate extreme value
copulas [Gudendorf and Segers, 2012]. When the interest is in modelling multivariate ex-
tremes, the notion of max-stable processes is very important. Max-stable processes arise
as the limiting distribution of suitably normalized componentwise maxima of independent
replications of some continuous stochastic process [de Haan, 1984, de Haan and Ferreira,
2006, Schlather, 2002]. The dependence structure of a multivariate max-stable random
vector can be characterized by its Pickands’ dependence function A (see Section 3.2.1)
defined on the unit simplex Sd−1 =

{
ω = (ω1, . . . , ωd) ∈ Rd

+ : ω1 + · · ·+ ωd = 1
}

through
the Pickands’ representation theorem [Pickands, 1981].

In this work, our main interest is modelling possible changes in the dependence struc-
ture among multivariate block maxima according to a given set of covariates x. Moreover,
the effect of some covariates does not need to have a linear form but may vary smoothly.
In classical regression analysis, a popular and flexible set of models is the class of gener-
alized additive models [Green and Silverman, 1994, Hastie and Tibshirani, 1990], which
link the mean behaviour of a random variable Y with a set of covariates X ∈ Rq through

E (Y | X = x) = g

{
u>β +

K∑
k=1

hk(tk)
}
, (3.1)

where

• g is a link function,

• (u1, . . . , us) and (t1, . . . , tK) are subsets of {x1, . . . , xq},
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• β ∈ Rs is a vector of parameters, and

• hk : Tk → R are smooth functions supported on closed Tk ⊂ R, for all k.

Chavez-Demoulin and Davison [2005] proposed a first step to bridge extreme value
theory and generalized additive models (GAM). They modelled the marginal behaviour
of extremes with a GAM, but they did not investigate the effect of covariates on the
dependence structure. In this work, we fill this gap in the context of block maxima
analysis by developing a methodology for estimating conditional Pickands’ dependence
functions A(·|x). The method relies on the max-projection of a d-dimensional max-stable
random vector Z(x), where Z(x) = (Z1(x), . . . , Zd(x))> given a set of covariates x. We
show that, conditionally on x and at any fixed value in the unit simplex, the univariate
max-projection follows a classical two-parameter Beta distribution. The second parameter
of the Beta distribution is equal to 1, and the first parameter is exactly the Pickands’
function evaluated at the specific value in the unit simplex. Under the resulting likelihood-
based framework, we benefit from the well-established framework of the GAM to fit
non-stationary Pickands’ functions evaluated at the specific value in the unit simplex.
Repeating the max-projection procedure along with the GAM at several values in the
unit simplex generates estimates of semi-parametric models for the Pickands’ function
conditional on x. In the bivariate case, for a fixed value of x, the estimated Pickands’
function is regularized by constrained median smoothing B-splines. When d ≥ 3, the
focus is on the regularization of the non-stationary extremal coefficient estimate (see
Section 3.3.4), as it allows for a simple interpretation of the extremal dependence in high
dimensions.

To the best of our knowledge, only Escobar-Bach et al. [2016] addressed the dependence
of the Pickands’ function on covariates. They considered a robust estimator, in the bi-
variate case, using local estimation with the minimum density power divergence criterion.
Few works addressed specific non-stationarity in the multivariate and spatial contexts:
Huser and Genton [2016] developed non-stationary max-stable dependence structures in
which covariates are incorporated, and their inference is based on pairwise likelihoods. de
Carvalho and Davison [2014] constructed a model for a family of spectral measures from
several populations, to each of which a set of predictors is considered. They introduced
the spectral density ratio model that they fitted using empirical likelihood methods and
showed how to relate the resulting tilting parameters to covariates. Jonathan et al. [2014b]
proposed a spline-based methodology to incorporate multiple covariates. Their approach
used a Poisson process model for the rate of occurrence of the threshold excesses and a
generalized Pareto model for the size of the threshold excesses. Our method provides a
semi-parametric, flexible framework based on the classical setup of generalized additive
models.

The chapter is organized as follows: In Section 3.2, we summarize the theory of max-
stable random vectors and then introduce the notion of max-projection from multivariate
to univariate settings. In Section 3.3, we develop the generalized additive model for the
Pickands’ dependence function in the multivariate context. We then propose a way to
regularize the Pickands’ function in the bivariate case and the extremal coefficient in
higher dimensions. We implement a bootstrapping procedure to compute the variability
bands in Section 3.3.3. Finally, in the last two sections, we perform simulations and
address the estimation of a conditional model for the Pickands’ dependence function of
the monthly maxima of the maximum and minimum temperatures in the U.S.
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3.2 Max-stable random vectors and max-projection
In this section, we first briefly recall some basics of max-stable random vectors and then
propose a max-projection procedure that synthesizes the extremal dependence of multi-
variate max-stable random vectors within a univariate Beta random variable.

3.2.1 Max-stable random vectors
The usual strategy for modelling multivariate block maxima is to take advantage of the
solid theoretical basis for modelling extreme events by completely characterizing the tail
behaviour of the underlying generating process. Multivariate extreme value theory (see
[Resnick, 1987, Chapter 5] and [de Haan and Ferreira, 2006, Chapter 6]) addresses the lim-
iting behaviour of suitably normalized componentwise maxima Mn = (Mn,1, . . . ,Mn,d)>
where Mn,j represents the maximum, over a block of size n, of the jth component of a
vector of dimension d. The asymptotic theory of multivariate extremes is concerned with
finding a non-degenerate multivariate distribution function G such that as n→∞,

Pr {(Mn,1 − bn,1)/an,1 ≤ z1, . . . , (Mn,d − bn,d)/an,d ≤ zd} → G(z1, . . . , zd), (3.2)

with sequences an,j > 0, bn,j ∈ R, j ∈ {1, . . . , d}, and G a distribution function with
non-degenerate margins. The marginal distributions of G are univariate max-stable or
equivalently generalized extreme value (GEV) distributions (see, e.g., Coles [2001] and
Section 3.5 for our treatment of the marginal behaviours). Without loss of generality (see
[Resnick, 1987, Section 5.4]), we assume that G has common unit Fréchet margins; that
is, Gj(zj) = exp (−1/zj) for zj > 0 and j ∈ {1, . . . , d}.

If the limit (3.2) exists, and G is non-degenerate, then

G(z1, . . . , zd) = exp
{
−
∫
Sd−1

max
i=1,...,d

(
ωi
zi

)
dH(ω1, . . . , ωd)

}
= exp {−V (z)} ,

where z = (z1, . . . , zd)> and H is an arbitrary finite measure that satisfies∫
Sd−1

ωjdH(ω1, . . . , ωd) = 1, j ∈ {1, . . . , d}. (3.3)

Condition (3.3) is necessary for the margins to be unit Fréchet. The positive function
V (z) is called the exponent function and is continuous, convex, and homogeneous of order
−1, i.e., V (tz) = t−1V (z), for all t > 0. The homogeneity property of V (·) implies that
V (z) = V (z/|z|)/|z| where |z| = z1 + · · · + zd. An alternative expression for V (·) is
derived by writing it as a departure from the independence case V⊥(z) = 1/z1 + · · ·+1/zd
as follows

V (z) =
( 1
z1

+ · · ·+ 1
zd

)
A(ω),

where the non-negative scalar vector ω = (z1/|z|, . . . , zd/|z|)> belongs to the unit simplex
Sd−1, and A(ω) is the Pickands’ dependence function mentioned in Section 3.1. The
exponent function can then be thought of as the extension of the Pickands’ function to
[0,∞)d. If A(ω) = 1 for all ω ∈ Sd−1, we retrieve V⊥(z). To be a valid Pickands’ function,
A has to satisfy a few conditions. The classical necessary conditions are the following

C1) A is continuous and convex, i.e., for a ∈ [0, 1],

A {aω1 + (1− a)ω2} ≤ aA(ω1) + (1− a)A(ω2), ω1,ω2 ∈ Sd−1,
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C2) For any ω = (ω1, . . . , ωd)> ∈ Sd−1, A(ω) has lower and upper limits

max (ω1, . . . , ωd) ≤ A(ω) ≤ 1,

C3) A(0, . . . , 0) = 1 andA(ei) = 1, for the boundary points with ei = (0, . . . , 0, 1, 0, . . . , 0)
for i ∈ {1, . . . , d}.

In condition C2, the lower and upper bounds represent the complete dependence and
complete independence cases, respectively. Conditions C1–C2–C3 are sufficient in the
bivariate case and necessary but not sufficient when d ≥ 3. In fact, Beirlant et al. [2004,
p. 257] discussed the example of a function that satisfies C1–C2–C3 but is not a valid
Pickands’ dependence function. Complete, sufficient, and necessary conditions for the
validity of the stable tail dependence function [Drees and Kaufmann, 1998, Huang, 1992],
and therefore the Pickands’ function, can be found in Ressel [2013], see also Charpen-
tier et al. [2014] for further details of the framework of d-variate stable tail dependence
functions, with d ≥ 3.

Two well-known non-parametric estimators of the Pickands’ dependence function are
those proposed by Pickands [1981] and Capéraà et al. [1997]. However, these estimators
are not intrinsic, i.e., they do not yield valid Pickands’ functions, and many new estimators
or modified versions of these estimators have been studied. For example, Deheuvels [1991]
investigated a truncation and convexification technique that allows any estimator to verify
conditions C1–C2. Hall and Tajvidi [2000a] corrected the estimator defined in Pickands
[1981] by using the greatest convex minorant and constrained splines while Genest and
Segers [2009] derived a rank-based modified version of the Pickands [1981] and Capéraà
et al. [1997] estimators with a correction on the end-points, and Cormier et al. [2014]
used a quadratic constrained B-spline smoothing technique. The above mentioned papers
contributed to the estimation of the Pickands’ dependence function in the bivariate case.
In the multivariate case, Fils-Villetard et al. [2008] projected the Pickands’ estimator into
a convex and closed set A of valid Pickands’ functions by minimizing the L2 distance
between this estimate and the members of A. Similar ideas are investigated in Guden-
dorf and Segers [2011, 2012]. A more recent projection method was derived in Marcon
et al. [2014] and consisted of projecting an initial estimator into A through a Bernstein
polynomials-based technique. In our context of non-stationary Pickands’ functions, we
propose in Section 3.3 a smoothing regularization technique based on constrained splines.

3.2.2 Max-projection
We assume a d-dimensional max-stable random vector Z(x) = (Z1(x), . . . , Zd(x))> with
unit Fréchet marginal distributions F and a predictor-dependent extremal dependence
A(ω|x), x ∈ X ⊂ Rq. As our emphasis is on non-stationary extremal dependence
structures, one may also consider the margins of Z(x) to be predictor-dependent, i.e.,
Fj,x(z) = Prx {Zj(x) ≤ z}, j ∈ {1, . . . , d}. In that case, a regression model applied on the
marginal GEV distributions’ parameters (see, e.g., Chavez-Demoulin and Davison [2005])
is required to transform the margins to a unit Fréchet scale.

We now introduce a new random variable

Y (ω)|x = max
[
F λ1{Z1(x)}, . . . , F λd{Zd(x)}

]
, (3.4)

with
λj = ωj

( 1
ω1

+ · · ·+ 1
ωd

)
,
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for j ∈ {1, . . . , d}, and where ω = (ω1, . . . , ωd)> is a fixed, non-negative scalar vector on
the unit simplex with non-zero entries.

Here and hereafter, (3.4) will be referred to as the max-projection of the max-stable
random vector Z(x). The following proposition establishes the distribution and mean of
Y (ω)|x.
PROPOSITION 3.2.1. The max-projection of a d-dimensional max-stable random vec-
tor Z(x) with unit Fréchet margins results in a Beta distributed random variable with
parameters Aω(x) and 1, i.e.,

Pr {Y (ω) ≤ y|x} = yAω(x), for 0 ≤ y ≤ 1,

where Y (ω)|x is defined in (3.4). In particular, E {Y (ω)|x} = g−1 {Aω(x)}, where the
concave link function equals g(u) = u/(1− u), with 0 < u < 1.
The quantity Aω(x) defines the conditional Pickands’ function A(ω|x) evaluated at a
specific value of ω. Proposition 3.2.1 allows us, given any fixed ω, to take advantage
of the well-established theory of GAM or GLM (generalized linear models) frameworks
to estimate the predictor-dependent Pickands’ function Aω(x). We develop this idea in
Section 3.3.

3.3 Smoothed models for max-stable dependence struc-
tures

In this section, we first propose a GAM for Aω(x), x ∈ X in the multivariate context
(Section 3.3.1). The resulting estimates of the conditional Pickands’ functions at any
value of ω and covariate x are denoted by Ã(ω|x). We then derive a regularized estimate
of the conditional Pickands’ function denoted Â(ω|x) in the bivariate context (Section
3.3.2), as well as a regularized estimate of the extremal coefficient in higher dimensions
(Section 3.3.4).

3.3.1 Semi-parametric estimation of the Pickands’ dependence
function in the multivariate setting

For x ∈ X , a generalized additive model for the transformed conditional mean of Y (ω)|x
can be written as

Aω(x;θ) = u>β +
K∑
k=1

hk(tk), (3.5)

where u, (t1, . . . , tK), β, and hk are as in the classical GAM (3.1), and θ ∈ Θ is a vector
of parameters containing β and hk for all k. We assume that each smooth function hk ∈
C2(Tk), the class of twice continuously differentiable functions on Tk, admits a finite mk-
dimensional basis parametrized by hk = (hk,1, . . . , hk,mk

)> ∈ Rmk and a quadratic penalty
representation

∫
Tk
h′′k(t)2 dt = h>k Skhk, where Sk is a uniquely determined symmetric

matrix [Green and Silverman, 1994, Hastie and Tibshirani, 1990, Wood, 2006b]. The class
of twice continuously differentiable smoothers with finite quadratic penalty representation
is broad and encompasses, among many flexible smoothers, the natural cubic splines, the
tensor product splines, and the cyclic cubic splines which are all included in the R package
mgcv [Wood, 2006b].

Such models are estimated by maximizing a penalized log-likelihood where the penalty
term controls the roughness of the smoothers through a vector of smoothing parameters
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γ = (γ1, . . . , γK) with higher values yielding smoother curves. The related effective de-
grees of freedom of each smooth function hk are then defined as trace (I + γkSk)−1.
Considering a sample of n observations {yi(ω),xi}ni=1 built sequentially from {Z(x1), . . . ,Z(xn)}
by fixing the value of ω ∈ Sd−1 \ {ω ∈ Sd−1|∃i, ωi = 0} and applying the max-projection
(3.4), we can write the penalized log-likelihood as

`p(θ,γ;ω) = `ω(θ)− 1
2

K∑
k=1

γk

∫
Tk

h
′′

k(tk)2dtk = `ω(θ)− 1
2

K∑
k=1

γkh>k Skhk, (3.6)

where the first term `ω(θ) is the log-likelihood of the Beta distributed random variables
{yi(ω),xi}ni=1, i.e.,

`ω(θ) =
n∑
i=1

[{Aω(xi;θ)− 1} ln yi(ω) + lnAω(xi;θ)] . (3.7)

The smoothing parameters are chosen based on the Akaike information criterion (AIC),
and we refer the interested reader to Section 4.5 in Wood [2006b] for more details regarding
the selection of the smoothing parameters. Given γ, the penalized log-likelihood (3.6)
is maximized using an iterative weighted least squares procedure based on a Newton–
Raphson algorithm (see Appendix A.1 in Chavez-Demoulin et al. [2015] for more details).
The penalized maximum likelihood estimator is defined as

θ̃
ω = argmax

θ ∈ Θ
`p(θ,γ;ω),

and the resulting estimator of the non-stationary Pickands’ dependence function isAω(x; θ̃ω).
Applying the model (3.5) at different values {ωv}ñv=1 with ωv ∈ Sd−1 \ {ω ∈ Sd−1|∃i, ωi =
0} yields a set of estimates of the conditional Pickands’ function

{
Ã(ωv|x)

}ñ
v=1

=
{
Aωv

(
x; θ̃ω

v
)}ñ

v=1
. (3.8)

Note that for ω ∈ {Sd−1|∃iωi = 1}, the values of Ã(ω|x) are fixed at 1 so that condition
C3 is satisfied. In practice, the GAM (3.5) is applied ñ times, with ñ large enough
to get accurate estimates of A(ω|x) in (3.8). From a computational aspect, the time to
convergence of the Newton–Raphson algorithm at each v ∈ {1, . . . , ñ} depends on the size
of the data and the covariate set size q, as for every standard GAM. The second parameter
of the Beta distribution being equal to 1, we have only one parameter to estimate, and
the algorithm typically converges quickly. For each model, or equivalently for each value
of ω, the selection of the relevant covariates among x is performed using variable selection
methods for GAM (see Marra and Wood [2011] for an extensive study and comparison of
the available techniques). Theoretically, the selected models can differ from one value of
ω to another, but practically, we impose the same set of covariates for all values of ω. The
imposed set of covariates is likely to be the same for any value of ω ∈ Sd−1, except near
the borders, and we set it equal to the set of covariates selected at ω = (1/d, . . . , 1/d)
as most of the information about the extremal dependence is summarized at this point.
This constraint ensures a coherence of the covariates, independently of ω, and simplifies
our algorithm.
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3.3.2 Corrected Pickands’ function estimator in the bivariate
setting

The estimator Ã(ω|x) in (3.8) can be implemented for any finite d-dimensional max-
stable random vector with an extremal dependence structure that is either stationary or
varying according to a set of predictors. However, for a fixed value of the covariates x, this
estimator is not a valid Pickands’ dependence function since it does not verify conditions
C1–C2–C3.

In this section, we focus on the correction of the estimator Ã(ω|x) in the bivariate
case and for a fixed value of the covariates x = x0. Our method consists of smooth-
ing Ã{(ω, 1 − ω)|x = x0} for ω ∈ [0, 1] so that we obtain a regularized estimator of
the Pickands’ dependence function that verifies C1–C2–C3. This is performed using the
median smoothing technique described in Koenker et al. [1994] combined with the con-
strained optimization algorithm proposed by He and Ng [1999] and improved by Ng and
Maechler [2007] to be more efficient and faster. This technique is used in Cormier et al.
[2014], where the authors estimated the Pickands’ dependence function based on the
A-plot, which is a graphical tool for detecting extremal dependence. The constrained
quantile smoothing algorithm is implemented in the R package COBS [Ng and Maechler,
2015]. For notational convenience, we set Ã(ω|x) = Ã{(ω, 1 − ω)|x}. We discretize the
interval [0, 1] by fixing ñ regularly spaced values 0 = ω1 < ω2 < · · · < ωñ−1 < ωñ = 1 and
apply the constrained smoothing technique to Ã(ω1|x = x0), . . . , Ã(ωñ|x = x0).

We define the median L∞ smoothing spline as

ĝγ,L∞(.|x = x0) = min
g

ñ∑
i=1
|Ã(ωi|x = x0)− g(ωi)|+γmax

ω
|g′′(ω)|, (3.9)

where the smoothing parameter γ is chosen based on the Schwarz information criterion
[Schwarz, 1978]. In (3.9), the L1 norm adds robustness to the estimator, and the penalty
term ensures, as in (3.6), its smoothness. Koenker et al. [1994] showed that ĝγ,L∞(.|x) can
be approximated by a quadratic smoothing spline g(·|x) which has an equivalent B-spline
representation

g(ω|x) =
N+3∑
j=1

aj(x)Bj(ω),

where N is the number of interior knots, i.e., the number of fixed equidistant points in
the support of the spline g(·|x) [Green and Silverman, 1994, Section 2.1.1].
The optimization problem (3.9) is equivalent to

min
g

ñ∑
i=1
|Ã(ωi|x = x0)− g(ωi)|+γσ

s.t. − σ ≤ g′′(ωi) ≤ σ, i ∈ {1, . . . , ñ},

or equivalently,

min
θ=(a1(x0),...,aN+3(x0),σ)>∈RN+4

ñ+1∑
i=1
| ˜̃Ai(x0)− c>i θ|

s.t.
(
D 1
−D 1

)
θ ≥ 0, (3.10)
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where
˜̃A(x0) =

(
Ã(ω1|x0) · · · Ã(ωñ|x0) 0

)>
is the (ñ+ 1)× 1 pseudo response vector,

(
c1 · · · cñ+1

)>
=


B1(ω1) . . . BN+3(ω1) 0

... · · · ... ...
B1(ωñ) . . . BN+3(ωñ) 0

0 · · · 0 γ

 is the (ñ+ 1)× (N + 4) pseudo design matrix,

and D =


B′′1 (ω2) . . . B′′N+3(ω2)

... · · · ...
B′′1 (ωñ−1) . . . B′′N+3(ωñ−1)

 ,
(see Ng and Maechler [2007] for more details).

We can now easily incorporate conditions C1–C2–C3 as a set of additional constraints
in the minimization problem (3.10):

Convexity constraint:

We add a set of ñ− 2 inequality constraints
(
D 0

)
θ ≥ 0.

Lower bound constraint:(
B1(ωi) · · · BN+3(ωi) 0

)
θ ≥ max(ωi, 1− ωi), for i ∈ {1, . . . , ñ}.

Border constraints:(
B1(ω1) · · · BN+3(ω1) 0

)
θ = 1, ω1 = 0,(

B1(ωñ) · · · BN+3(ωñ) 0
)
θ = 1, ωñ = 1.

Finally, we define our regularized estimator of the Pickands’ dependence function for
a fixed value of the covariates x0 as Â(ω|x0) = ĝγ,L∞(ω|x0), with

ĝγ,L∞(ω|x0) =
N+3∑
j=1

âj(x0)Bj(ω)

being the constrained quadratic median smoothing spline defined for any value ω ∈ [0, 1]
and satisfying conditions C1–C2–C3. To sum up, starting from the sequence (3.8) in the
bivariate case, we sequentially apply this regularization procedure at any value x0 of x and
therefore obtain the following smoothed conditional valid Pickands’ function estimators{

Â(ωv|x0)
}ñ
v=1

. (3.11)

3.3.3 Variability bands
We construct variability bands [Akritas and Politis, 2003, Ruppert et al., 2003] for (3.11)
using bootstrap techniques and, more specifically, the resampling cases method [Davison
and Hinkley, 1997, Section 6.2.4]. This bootstrapping method is safe in that it does not
assume any functional form of the regression, and it assumes only that the observations
at hand are independent.

For a fixed value ω ∈ {ωv}ñv=1, consider a sample of n observations {yi(ω),xi}ni=1
built sequentially from the bivariate observations {(Z1(xi), Z2(xi))}ni=1 by max-projection.
Then, the resampling cases bootstrap is performed as follows:
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Resampling cases bootstrap algorithm:

For each r ∈ {1, . . . , R},

1. sample with replacement from {1, . . . , n} and get i∗1, . . . , i∗n;

2. for j ∈ {1, . . . , n}, set {y∗j (ω),x∗j} = {yi∗j (ω),xi∗j}; then,

3. apply our estimation procedure to {y∗1(ω),x∗1} , . . . , {y∗n(ω),x∗n}, giving estimates
Â∗r(ω|x).

For a fixed value of the covariates x = x0, we compute pointwise (1 − α)-percentile
bootstrap variability bands of the conditional Pickands’ dependence function. This is
performed by setting the interval lower and upper bounds at each angular observation ωv,
equal to the bR (α/2)c and bR (1− α/2)c ordered statistics of Â∗1(ωv|x0), . . . , Â∗R(ωv|x0),
respectively.

Finally, we mention that the variability bands resulting from this approach are not
guaranteed to be convex. However, we notice in simulations that this condition is violated
only for very weak extremal dependences.

3.3.4 Extension to d ≥ 3
The notion of extremal dependence for high-dimensional max-stable random vectors is
often less intuitive than in the bivariate case. For instance, the Pickands’ dependence
function for d = 5 is defined on the four-dimensional unit simplex which makes its inter-
pretation difficult. In such instances, scalar quantities are needed to help practitioners.

A useful way of summarizing the extremal dependence in high dimensions d is via
the extremal coefficient. This quantity denoted η reflects the degree of tail dependence
in a multivariate extreme value distribution and is related to the Pickands’ dependence
function A via the following relation

η = dA(1/d, . . . , 1/d). (3.12)

The extremal coefficient lies in the interval [1, d], with 1 corresponding to perfect depen-
dence and d to independence. Schlather and Tawn [2002, 2003] examine the consistency
properties that must be verified by the set of extremal coefficients yielding a valid multi-
variate extreme value distribution.

Recall that when d ≥ 3, conditions C1–C2–C3 are necessary but not sufficient for
the Pickands’ dependence function to be valid. Therefore, we focus on the estimation of
extremal coefficients depending on the set of covariates x ∈ X . Using the same notations
as before, the covariate-dependent extremal coefficient is estimated using the equation

η̃ (x) = dÃ(ω0|x), (3.13)

where ω0 = (1/d, . . . , 1/d)> is a d-dimensional vector belonging to the unit-simplex Sd−1,
and Ã(·|x) is the first stage estimator defined in (3.8).

To force the extremal coefficient to belong to [1, d] for all values of x, we regularize
η̃(x) using constrained median B-splines. Recall that the first-stage estimator Ã(ω0|x)
results from the generalized additive modelling of the max-projected Beta random vari-
ables Y (ω0)|x. Due to the penalized likelihood maximization step in the GAM fitting
procedure, Ã(ω0|x) is a smooth function of the covariates x. Thus, the regularization
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step is performed by dropping the penalty term in the COBS minimization problem (3.9).
Using the same notations as in Section 3.3.2, the regularization problem is now defined
as

min
θ=(a1,...,aN+3)>∈RN+3

m∑
i=1

∣∣∣η̃ (xi)−
N+3∑
j=1

θjBj(xi)
∣∣∣ (3.14)

s.t.
(
B1(xi) · · · BN+3(xi)

)
θ ≥ 1,(

B1(xi) · · · BN+3(xi)
)
θ ≤ d, for i ∈ {1, . . . ,m},

with m the number of distinct values of the covariates x. Notice that the solution to the
optimization problem (3.14) is now a function of x, i.e.,

η̂ (x) =
N+3∑
j=1

âjBj(x), (3.15)

as opposed to the corrected Pickands’ function estimator (3.11), which is a function defined
on the unit simplex S1 for a fixed value of x.

Variability bands for the extremal coefficient estimates (3.15) are constructed straight-
forwardly based on (3.13) and bootstrapping techniques.

3.4 Simulation study
In this section, we assess the performance of our methodology by first studying the esti-
mates obtained from the max-projection combined with the median smoothing regular-
ization procedure (no covariate) and then including the generalized additive modelling in
the presence of covariates. The parameters of our simulation study are chosen to mimic
the range of values observed in the application in Section 3.5. Note that the uncertainty
assessment in the subsequent simulation studies does not take into account the uncer-
tainty resulting from the separate marginal fitting, or the use of a limiting model at a
sub-asymptotic level.

3.4.1 No covariate dependence
Since we are in the case where the Pickands’ dependence function does not depend on
covariates, the estimation procedure of Aω, for ω in [0, 1] boils down to maximizing the
log-likelihood (3.7) of the Beta distributed random variables {yi(ω)}ni=1, where n is the
number of observations at hand. Thus, the estimate of Aω is given by

Ãω,mle = −n
[
n∑
i=1

ln {yi(ω)}
]−1

.

We now need to smooth the corresponding estimates Ãω,mle using the constrained median
smoothing splines technique described in Section 3.3.2 to obtain a valid Pickands’ function
estimator Âω,mle.

We perform a simulation study in which we consider two sample sizes n = 200, 1000
from a bivariate extreme value distribution with unit Fréchet margins and the Dirichlet
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dependence model [Coles and Tawn, 1991]

V (z1, z2;α, β) = 1
z1

{
1− B

(
α + 1, β; αz1

αz1 + βz2

)}
+ 1
z2

{
1− B

(
α, β + 1; αz1

αz1 + βz2

)}
,

(3.16)
where α, β > 0 and

B(α, β;u) = Γ(α + β)
Γ(α)Γ(β)

∫ u

0
wα−1(1− w)β−1dw,

a normalized incomplete beta function.
We fix ñ = 800 regularly spaced values of ω in [0, 1] and compute Âω,mle for each value.

Note that the estimation of the Pickands’ function is sensitive to the choice of ñ, i.e., the
size of the discretization of the unit simplex, particularly when dealing with asymmetric
extremal dependence. Small discretization intervals, i.e., large values of ñ, allow us to
capture more features of the Pickands’ function. To have insight into the performance
of the Pickands’ function estimator for different levels of extremal dependence, we fix
β = 3 and set different values for α that illustrate different extremal dependence schemes:
weak, mild, and strong. In Figure 3.2, in both settings, our estimator is compared with
the Pickands [1981] and Capéraà et al. [1997] corrected estimators. In the small sample
size setting, our estimator outperforms the other estimators. When a larger sample size
is considered, our estimator is competitive with, if not slightly better than, the other
estimators.

3.4.2 Covariate-dependent Pickands’ function
We now consider two cases in which the extremal dependence depends on a set of covari-
ates. In the first setup, we focus on the estimation of the bivariate logistic dependence
model [Tawn, 1990] with the exponent measure

V (z1, z2; ρ) =
(
z
−1/ρ
1 + z

−1/ρ
2

)ρ
,

and where the parameter ρ ∈ (0, 1) depends on a set of covariates through

ρ(t, x) = τ + 1{x=“Level 1”}a0 sin(a1t) + 1{x=“Level 2”}
{
b0 sin(b1t

2) + b2
}
, (3.17)

with τ = 0.1; (a0, a1) = (0.8, 0.8); (b0, b1, b2) = (0.5, 0.21, 0.35); t is a continuous covariate
(time, say) over the range 0.3 to 3.8 discretized into 12 equally spaced values, and x is a
factor covariate with two levels “Level 1” and “Level 2”. The specific form of covariate-
dependence (3.17) is illustrated in Figure 3.3 and is ecologically motivated. If t represents
time in months, then we can observe that for each level, the extremal dependence in
December and January is the same. Moreover, (3.17) allows us to assess the performance
of our estimator in the different cases of weak, mild, and strong extremal dependence.
We consider two sample sizes (nc = 30, 400) for each distinct pair of covariates from the
bivariate logistic extreme value distribution with the corresponding dependence parameter
ρ(t, x), i.e., two samples of size n = nc × 2× 12 (= 720, 9600) in total. We suppose that
we have no prior knowledge of the form of dependence of the Pickands’ function on the
available covariates and fit the following model to the Pickands’ function

Aω(t, x;θ) = 1{x=“Level 1”}{L1 + hL1(t)}+ 1{x=“Level 2”}{L2 + hL2(t)}, ω ∈ [0, 1]. (3.18)
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Figure 3.2: Inference of the Pickands’ dependence function for the Dirichlet model with
β = 3 and different values of α with three different estimators: our proposed estimator
(in red), the Pickands [1981] corrected estimator (in green), and the Capéraà et al. [1997]
corrected estimator (in blue). The true value of the Pickands’ function is shown in solid
black lines. Each row represents a different sample size: n = 200 (top panels) and
n = 1000 (bottom panels).

In the second setup, we study the asymmetric Dirichlet extremal dependence (3.16)
where we fix β = 3 and let the parameter α depend linearly on a continuous covariate t̃
as follows

α(t̃) = 0.02× t̃, t̃ ∈ [1, 50] ∪ [100, 350].
We discretize the intervals [1, 50] and [100, 350] into 40 and 15 equally spaced values,
respectively. This choice of value range for t̃ allows the pairs of parameters (α(t̃), β) to
produce different scenarios of extremal dependence. For each of the 55 selected values
of t̃, we take two samples of size nc (nc = 12, 175), i.e., we consider two sample sizes
of n = nc × 55 (= 660, 9625) in total. Again, with no prior knowledge of the form
of dependence on the covariate t̃, we fit the following smooth model to the Pickands’
function

Aω(t̃;θ) = a+ h(t̃), ω ∈ [0, 1]. (3.19)
Table 4.1 summarizes the fitted models (3.18) and (3.19) at the value ω = 0.5.
The models are fitted reasonably well to the data. In both GAM fittings, we do not fix
the basis dimension of the smooth terms but instead estimate it from the data. Therefore,
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Figure 3.3: Covariate-dependence of the logistic dependence parameter ρ(t, x) (3.17).

L1 L2 hL1 hL2 a h

Logistic
n = 720 estimate/edf 0.81 (0.04) 0.83 (0.04) 3.04 2.14

p-value < 10−16 < 10−16 0.004 0.003

n = 9600 estimate/edf 0.76 (0.01) 0.81 (0.01) 3.12 3.53

p-value < 10−16 < 10−16 < 10−16 2.59× 10−12

Dirichlet
n = 660 estimate/edf 0.75 (0.03) 1

p-value < 10−16 4.16× 10−6

n = 9625 estimate/edf 0.75 (0.007) 5.24

p-value < 10−16 < 10−16

Table 3.1: Estimates (se) of the intercepts and the degrees of freedom (edf) of the smooth
functions in the models (3.18) and (3.19) with ω = 0.5.

if the dependence on a covariate is linear, for example, then the degree of freedom of the
smooth term will be estimated at 1.

In both setups, we take R = 1000 bootstrap samples and fix ñ = 800 regularly spaced
values in the unit simplex. For illustration purposes, we focus on the estimation of the
Pickands’ dependence function for selected values of the covariate t (logistic dependence)
and the covariate t̃ (Dirichlet dependence) that produce different strengths of extremal
dependence. Moreover, we predict in the Dirichlet dependence case the Pickands’ depen-
dence function for the unobserved value t̃ = 55.

Figures 3.4 and 3.5 display, for the different values of t and both levels, the Pickands’
function estimate and its 95% bootstrap variability bands in the logistic case and for the
two sample sizes n = 720 and n = 9600, respectively.

For the different sample sizes, we observe that regardless of the strength of the ex-
tremal dependence, the variability bands always contain the true Pickands’ function. A
comparison of Figure 3.4 and Figure 3.5 shows that the noticeable bias and large variance
observed when n = 720 are reduced when a larger sample size is considered (n = 9600).
The bias reduction is more striking when approaching extremal independence whereas the
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Figure 3.4: Estimates (solid green lines) of the Pickands’ function along with the 95%
bootstrap variability bands (dashed green lines) for the logistic model with weak, mild,
and strong dependence (from left to right) for “Level 1” (top panels) and “Level 2” (bottom
panels). The true value of the Pickands’ function is represented by solid black lines. The
simulation is performed with the sample size n = 720.

reduction in variability is notable at the different levels of extremal dependence.
As explained in Section 3.3.3, the bootstrap variability bands are not guaranteed to be
convex. However, Figure 3.4 and Figure 3.5 show that the convexity of the variability
bands is almost always verified, except for very weak extremal dependences.

Figure 3.6 displays for the different values of t̃, the Pickands’ function estimate and
the 95% bootstrap variability bands in the Dirichlet case with sample sizes n = 660, 9625.

As for the logistic dependence case, we observe that the variability bands contain the
true Pickands’ functions for the different levels of extremal dependence but are relatively
wide when n = 660. A noticeable improvement in the bias and the variance is worth
mentioning when a larger sample size is considered. The estimation procedure seems to
work well at predicting the Pickands’ function at unobserved values. For instance, for
t̃ = 55, we observe a small bias with both sample sizes and a striking variance reduction
when n = 9625.
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Figure 3.5: Same as Figure 3.4 but with n = 9600.

3.4.3 Multivariate covariate-dependent extremal coefficient

We illustrate the proposed methodology for estimating non-stationary extremal coeffi-
cients in the case of the symmetric logistic model [Tawn, 1990] with the exponent measure

V (z1, . . . , zd; ρ) =
(

d∑
i=1

z
−1/ρ
i

)ρ
, ρ ∈ [0, 1].

It can easily be proven that the extremal coefficient can be written as η (x) = dρ(x).
The simulation study is performed under the dependence dynamic ρ(t) = exp(t)/{1 +
exp(t)}, where t ∈ [−1, 2], allowing for different strengths of extremal dependence. We
consider m = 20 distinct values of t, two sample sizes n = 150 ×m and n = 1000 ×m,
and R = 500 bootstrap samples. In Figure 3.7, the theoretical extremal coefficients are
compared to the estimated ones along with their 95% bootstrap variability bands, with
different values of the dimension d. The proposed estimation methodology provides very
reasonable estimates of the extremal coefficient with narrow variability bands containing
the true values, even in the smaller sample size scenario.
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Figure 3.6: Estimates (solid green lines) of the Pickands’ function along with the 95%
bootstrap variability bands (dashed green lines) for the Dirichlet model with parameters
(α(t̃), 3) allowing for weak, mild, and strong dependence (from left to right). The true
value of the Pickands’ function is represented by solid black lines. Each row represents a
different sample size: n = 660 (top panels) and n = 9625 (bottom panels).

3.5 Application to U.S. temperature data
In this section, we investigate the dependence between hot days and warm nights in a
non-stationary way, i.e., the dynamics of extremal dependence between maximum and
minimum temperatures. Daily temperature maxima and minima measured at more than
5000 weather stations across the U.S. during the period 1950–2004 were extracted from the
U.S. Cooperative Observer Program (COOP) and are shown in Figure 3.8. The dataset
can be freely downloaded from NCAR [2016].

The first part of the analysis focuses on modelling a time-varying extremal dependence
between the daily maxima and daily minima temperatures in Colorado. We consider the
monthly maxima of daily maximaWmax and daily minimaWmin taken over the 151 stations
in Colorado. Figure 3.9 shows the time series of these monthly maxima. As expected, both
time series exhibit seasonality. Thus, we fit marginally non-stationary generalized extreme
value distributions where regression models on the location, scale, and shape parameters
are considered in order to take into account the seasonality resulting from the choice
of the block size, as well as the possible long-term trend [Chavez-Demoulin and Davi-
son, 2012, Coles, 2001, Davison and Huser, 2015, Davison and Smith, 1990, Katz et al.,
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Figure 3.7: Estimates (solid green lines) of the extremal coefficient for the symmetric
logistic model with parameter ρ(t) and d = 4 (left panels), 5 (middle panels), and 6 (right
panels), along with the 95% bootstrap variability bands (dashed green lines). The true
extremal coefficient is represented in solid black lines. Each row represents a different
sample size: n = 3000 (top panels) and n = 20000 (bottom panels).

0−200 m
200−500 m
500−1000 m
1000−2000 m
2000−3000 m
3000−4000 m

Figure 3.8: Monitoring stations available from the U.S. COOP. The colour scheme is
chosen according to the altitude levels in Table 3.3.
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Figure 3.9: Monthly maxima of daily maximum (left) and daily minimum (right) tem-
peratures in Colorado.

2002]. The location, scale, and shape parameters of the non-stationary GEVs fitted to the
monthly maxima of the daily maxima and daily minima are denoted (µmax, σmax, ξmax)
and (µmin, σmin, ξmin), respectively. Different non-stationary models with constant shape
parameters are considered. A forward model selection is performed marginally based on
likelihood ratio tests. In the first step, the model for the location parameter is chosen
while the scale parameter is constant. Then, the model for the scale parameter is cho-
sen while the location parameter is fixed at the selected model. The fitted model is the
following

µmax(t,m) = µ0t+ µ11{m=1} +
12∑
`=2

(µ1 + µ`)1{m=`},

σmax(t,m) = σ11{m=1} +
12∑
`=2

(σ1 + σ`)1{m=`},

ξmax(t,m) = ξmax,

µmin(t,m) = µ̃11{m=1} +
12∑
`=2

(µ̃1 + µ̃`)1{m=`},

σmin(t,m) = σ̃11{m=1} +
12∑
`=2

(σ̃1 + σ̃`)1{m=`},

ξmin(t,m) = ξmin,

where t represents the years (standardized between 0 and 1) and m the months. Param-
eter estimates along with their standard errors are reported in Table 3.2.

m 0 1 2 3 4 5 6 7 8 9 10 11 12
µm 20.56 0.02 1.66 5.97 10.55 14.03 18.40 19.64 18.08 15.96 11.41 4.29 0.30
(se) (0.37) (0.004) (0.51) (0.47) (0.45) (0.44) (0.44) (0.39) (0.39) (0.40) (0.42) (0.46) (0.48)
σm – 2.55 0.12 −0.24 −0.44 −0.59 −0.64 −1.34 −1.25 −1.19 −0.85 −0.34 −0.14
(se) – (0.22) (0.32) (0.30) (0.28) (0.28) (0.27) (0.24) (0.25) (0.25) (0.27) (0.30) (0.30)
ξmax −0.30(0.03)
µ̃m – −18.20 2.19 6.42 11.34 15.98 19.26 21.86 21.35 18.20 13.54 7.96 2.23
(se) – (0.57) (0.73) (0.69) (0.61) (0.60) (0.59) (0.59) (0.60) (0.60) (0.62) (0.65) (0.70)
σ̃m – 4.15 −0.75 −1.31 −2.45 −2.63 −2.92 −2.98 −2.73 −2.74 −2.30 −1.83 −1.15
(se) – (0.37) (0.45) (0.45) (0.40) (0.37) (0.38) (0.38) (0.39) (0.38) (0.38) (0.42) (0.45)
ξmin – −0.30(0.03)

Table 3.2: Parameter estimates and their standard errors (se) for the monthly maxima of
the daily maximum and daily minimum temperatures in Colorado.

Diagnostic plots are produced by transforming the data wmax(t,m) and wmin(t,m) to
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a standardized Gumbel distribution using the following transformations

gmax(t,m) = 1
ξ̂max(t,m)

ln
[
1 + ξ̂max(t,m)

{
wmax(t,m)− µ̂max(t,m)

σ̂max(t,m)

}]
,

gmin(t,m) = 1
ξ̂min(t,m)

ln
[
1 + ξ̂min(t,m)

{
wmin(t,m)− µ̂min(t,m)

σ̂min(t,m)

}]
.

The resulting QQ plots are displayed in Figure 3.10, and the fitted models appear to cap-
ture the non-stationarity reasonably well in the margins. Thus, once the data wmax(t,m)
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Figure 3.10: Gumbel marginal QQ plots for the monthly maxima of the daily maximum
(left) and daily minimum (right) temperatures in Colorado.

and wmin(t,m) are transformed to unit Fréchet, we can proceed by assuming that the non-
stationarity left in our data is at the extremal dependence level. We model a time-varying
dependence between the monthly maxima of the daily maximum and daily minimum tem-
peratures in Colorado. We fix the covariate to be the time in years and set ñ = 300 points
in the unit simplex. Figure 3.11 displays the estimate of the non-stationary Pickands’ de-
pendence function as a function of time (in years) and the angular observations ω ∈ [0, 1].
Different levels of extremal dependence can be observed through time. In particular, the
observations start to exhibit extremal dependence from around 1965 until 1985. These
observations are supported by the findings in Figure 3.12 where cross-sections of Â(ω|t) at
different years are displayed along with their 95% bootstrap variability bands. Through-
out the data analysis, variability bands are constructed based on the block bootstrap
using seasonal blocks, so that the dependence within the blocks is preserved.

Remark. Issues related to the convergence in distribution of the monthly-maxima could
arise as the length of the considered block is small. Here, a two-monthly block maxima
analysis, not shown for sake of brevity, confirms the stability of the results and the non-
stationarity of the monthly-maxima appears not to be a major issue for the estimation of
the extremal dependence structure.

To see whether the observed behaviour of the extremal dependence is region-specific,
we perform the same data analysis in different states and compare the resulting estimates
of the non-stationary extremal coefficient. Recall that the extremal coefficient (3.12)
summarizes the strength of the extremal dependence with a value of 1 corresponding to
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Figure 3.11: Estimate of the time-dependent Pickands’ dependence function Â(ω|t) for
temperatures in Colorado. For sake of visibility, the variability bands are not shown.
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Figure 3.12: Estimates of A(ω|t = t0), with t0 = 1964, 1978, and 1994 in Colorado (solid
lines). The 95% bootstrap variability bands (dotted lines) are based on 300 bootstrap
samples.

perfect dependence and a value of 2 to independence. The estimates of the non-stationary
extremal coefficients are shown in Figure 3.13.

The graphs confirm that the global behaviour of the extremal dependence between
1965 and 1985, observed in the state of Colorado, is common to many states. However, the
shape of the extremal dependence during the entire period of study is quite different from
one state to another. One can argue that the shape of the estimated extremal coefficients
might be caused by boundary effects in the GAM fitting. Therefore, we estimate the
extremal dependence during three different non-overlapping time periods. Figure 3.14
displays the estimates of the extremal coefficient in Colorado during the time periods
1950–1965, 1966–1985, and 1986–2004. The behaviour of the extremal coefficient during
these time periods is consistent with the findings shown in Figure 3.13, and therefore, we
eliminate the possibility of boundary effects, as far as the GAM fitting is concerned.
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Figure 3.13: Extremal coefficient estimates (smoothed) with the 95% bootstrap variability
bands based on 300 bootstrap samples.
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Figure 3.14: Extremal coefficient estimates (smoothed) in Colorado during different time
periods. The 95% bootstrap variability bands (dashed lines) are based on 300 bootstrap
samples.

A closer examination of the findings in Figure 3.13 shows that the general behaviour of
the extremal dependence of the pair of daily maxima and minima temperatures through
time might depend on the altitude. We observe that the extremal coefficient behaves
similarly through time in states with low altitudes, such as Alabama, Louisiana, and
Maryland, while exhibiting a different shape in the states dominated by high-altitude re-
gions, such as California, Colorado, and Montana. Thus, we decide to model the extremal
dependence across all of the 5314 weather stations in the U.S. as a function of time and
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altitude, which leads us to the second part of the analysis.
The altitudes of the weather stations vary from 0 to 3487 m and we decide to fix six

levels and consider the altitude as a categorical covariate in the GAM for the Pickands’
function. Table 3.3 shows the different categories for the altitude along with the number
of stations in each category.

Altitude (m) number of stations
1 0–200 1443
2 200–500 1973
3 500–1000 833
4 1000–2000 837
5 2000–3000 211
6 3000–4000 17

Table 3.3: Altitude levels along with the number of weather stations at each level.

The daily maximum and minimum temperatures in each altitude category are taken
over all the stations in that category. Again, we model the marginal monthly maxima
for a given level of altitude using non-stationary GEV distributions and transform these
margins to be unit Fréchet before we apply our estimation procedure. As mentioned
previously, the extremal dependence of the temperatures is now modelled as a function
of time (in years) and level of altitude, as fixed in Table 3.3. Figure 3.15 displays the
resulting estimates of the non-stationary extremal coefficient.
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Figure 3.15: Estimates of the time- and altitude-dependent extremal coefficient. For sake
of visibility, the variability bands are not shown.

The findings in Figure 3.15 confirm that the extremal dependence of the daily maxima
and minima temperatures is altitude-dependent. The substantial changes in the extremal
behaviour occurring around 1970 are seemingly more severe at low and high altitudes than
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at moderate altitudes. At this stage, we do not have a physical mechanism to explain
these climatological features, and future work with atmospheric scientists is needed to
determine the causes of our findings.

3.6 Discussion
Recently, many parametric families of stationary max-stable models have been developed.
For non-stationary data, we argue that classical non-linear regression techniques, like the
GAM, can be adapted to max-stable dependence structures, and we incorporate multi-
ple covariates of any type (continuous, factors, etc.). Our methodology could help to
tackle environmental problems in which the dynamics of extreme events are often cap-
tured using covariates, such as altitude, longitude, latitude, and time. Moreover, our
approach allows for any seasonal or within-year behaviour of extremes to be naturally
embedded in the modelling of the extremal dependence. Our method is based on a max-
projection technique, allowing an ω-sequential modelling of the Pickands’ dependence
function. The resulting estimator is then regularized in the bivariate case with a median
smoothing technique and shown, in a simulation study, to be consistent in the stationary
and non-stationary cases. In the multivariate context with d > 2, the max-projection is
still convenient in the non-stationary case because the GAM framework is applied at the
univariate level, leading to high computational stability based on a fast and convergent
Newton–Raphson algorithm commonly found in all statistical software. The smoothing
technique step is then applied to obtain valid estimates of non-stationary extremal coeffi-
cients, which in a high-dimensional context are more appropriate for assessing the degree
of extremal dependence.



Chapter 4

Exceedance-based non-linear
regression of tail dependence

As seen in Section 1.1.2.5, when the assumption of asymptotic dependence fails to hold,
models for the decay rate of the dependence in the joint tails represent an alternative
to the (classical) asymptotic theory of multivariate extremes. Therefore, additionally to
the Pickands’ dependence function characterizing the structure of the extremal depen-
dence within the class of asymptotically dependent models, the coefficient of tail depen-
dence and its multivariate extension, the angular dependence function, describe the tail
dependence within the class of asymptotically independent models. We are interested
in this chapter in situations where the probability and structure of co-occurrences of ex-
treme events in multivariate data may critically depend on auxiliary information provided
by covariates. We develop a flexible generalized additive modelling framework based on
high threshold exceedances for estimating covariate-dependent joint tail characteristics for
regimes of asymptotic dependence and asymptotic independence, i.e., covariate-dependent
Pickands’ dependence functions and covariate-dependent angular dependence functions,
respectively. The framework is based on suitably defined marginal pretransformations
and projections of the random vector along the directions of the unit simplex, which
lead to convenient univariate representations of multivariate exceedances based on the
exponential distribution. The link between the proposed projection in the asymptotic
dependence case, and the max-projection of max-stable random vectors, defined in Chap-
ter 3, is established. Good performance of the new estimators of a non-parametrically
designed covariates’ influence on extremal coefficients and tail dependence coefficients is
shown through a simulation study. We illustrate the usefulness of our modelling frame-
work on a large dataset of nitrogen dioxide measurements recorded in France between
1999 and 2012, where we use the generalized additive framework for modelling marginal
distributions and tail dependence in monthly maxima. Our results imply asymptotic inde-
pendence of data observed at different stations, and we find that the estimated coefficients
of tail dependence decrease as a function of spatial distance and show distinct patterns
for different years and for different types of stations (traffic vs. background).

4.1 Introduction
Modelling co-occurrence patterns of extreme values arising in multi-component systems
is crucial for an accurate prediction of aggregated risks. The limiting dependence struc-
tures for extreme values do not present a simple parametric form, such as the Gaussian
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dependence arising from the multivariate central limit theorem, which has spawned an
extensive literature covering a wide range of parametric to fully nonparametric depen-
dence models. When asymptotic independence arises, the limit model has a simple form
but does not indicate the rate of convergence to this limit, suggesting alternative joint
tail representations should be used to model the residual dependence at the observed
levels of the process. In this work, we use threshold exceedance data, and we develop
nonparametric modelling approaches suitable for characterizing asymptotic dependence
and asymptotic independence when the strength of the dependence and more generally
its shape may be governed by additional information given by covariate data. Only a few
approaches exist in the current literature for modelling and estimating covariate influence
on the joint tail structure. In a parametric framework, Mhalla et al. [2017b] proposed in-
tegrating covariate information through the parameters indexing angular density models,
but we want to avoid such strong parametric assumptions. In the asymptotic dependence
case, a nonparametric approach based on a baseline density for the dependence, modi-
fied through a density ratio to obtain a set of different dependence models according to
covariate information, was developed by de Carvalho and Davison [2014]. More recently,
Mhalla et al. [2017a] proposed very flexible modelling of the extremal dependence based
on a generalized additive model with shape constraints using blockwise maxima data. In
this work, we extend their approach from maxima to threshold exceedance data, and we
lift the restriction on asymptotic dependence by proposing a set of tools that work for
both asymptotic dependence classes.

Classical extreme value theory and practice are founded on max-stable processes,
which are the only non-trivial limits arising from pointwise normalized maxima taken over
independent replicates of a continuous stochastic process X = {X(s)}s∈S , with S a set of
indexes. When observed over a finite-dimensional set, the d-dimensional joint distribution
FZ of a max-stable random vector Z = (Z1, . . . , Zd) is of multivariate extreme value
type with marginal generalized extreme value distributions and a max-stable dependence
structure [de Haan and Ferreira, 2006, Section 9.2]. A handy representation of FZ is
obtained when the marginal distributions are transformed to a common unit Fréchet
distribution FZi

(z) = exp(−1/z)1[0,∞)(z). The multivariate max-stable distribution is
then written as FZ = exp{−V (z)}1[0,∞)d(z) with the exponent function V measuring the
strength and form of the dependence; the max-stable process Z is then said to be simple.
We will assume this property throughout, without loss of generality. The convergence
of the extremal dependence of any distribution F in the domain of attraction of FZ is
characterized by the property of multivariate regular variation [Resnick, 1987]:

t{1− F (tz)} → V (z) = − logFZ(z), z > 0, t→∞. (4.1)

Max-stable models are useful when data are asymptotically dependent. When this as-
sumption does not hold, limiting models are of little practical use as the property (4.1)
fails to distinguish between asymptotic independence and exact independence [Heffer-
nan and Resnick, 2007], and models for the joint tails based on hidden regular variation
[Resnick, 2002] are indispensable.

Joint tail characterizations at the interface of asymptotic dependence and indepen-
dence are often presented in a bivariate setup. In more than two dimensions, some pairs
of components may be asymptotically dependent while others are not; for a deeper theo-
retical treatment, see de Haan and Zhou [2011]. We say here that a stochastic process is
asymptotically independent if all of its pairs of components have this property; the only
possible max-stable limit in this case is full independence. In view of our aim of modelling



4.2. Max- and min-projections 81

the joint tail decay while abstracting away from the univariate marginal distributions, we
now suppose that the d-dimensional random vector XP = (XP

1 , . . . , X
P
d ) is nonnegative

with Pareto marginal distributions by applying a marginal probability integral transform
to X if necessary. The use of unit Fréchet margins (denoted by XF = (XF

1 , . . . , X
F
d )),

which are tail equivalent to XP
i , would yield the same representations in the following.

With asymptotic independence of XP
1 and XP

2 , their dependence strength vanishes as
we move further into the joint tail. A general flexible representation of the joint tail,
leading to a broad class of models suitable for asymptotic independence, was introduced
by Ledford and Tawn [1996, 1997] for bivariate random vectors and then generalized to
the multivariate setup by Wadsworth and Tawn [2013]. We denote by ω = (ω1, . . . , ωd)
a direction (also called weight or angle) that is on the unit simplex Sd = {u ∈ Rd

+ |
u1 + · · · + ud = 1} in Rd

+. Any positive random vector x = (x1, . . . , xd) > 0 can be
represented as x = (xω1 , . . . , xωd) = xω, for some scalar x > 0 and ω ∈ Sd. The joint tail
representation is

Pr
(
XP

1 > xω1 , . . . , XP
d > xωd

)
= `(x;ω)x−λω , x→ +∞, (4.2)

where ` is a slowly varying function at infinity for any value of ω ∈ Sd held fixed. The
function λω ≤ 1 is called the angular dependence function [Wadsworth and Tawn, 2012,
2013]. It must satisfy certain shape constraints and describes the decay rate along rays
in direction ω. In the case of asymptotic dependence, we have λω ≡ 1 and `(x;ω) 6→ 0
as x → ∞. If (4.1) holds, then `(x;ω) tends to a limit expressed through values of
the exponent function V , which for d = 2 is 1/xω1 + 1/xω2 − V (1/xω1 , 1/xω2). In the
bivariate case, λω generalizes the coefficient of tail dependence η introduced by Ledford
and Tawn [1996] and the dependence measure χ [Coles et al., 1999], where η = (1+χ)/2 =
1/{2λ(1/2, 1/2)} characterizes the joint tail decay rate along the diagonal of the first
hyperoctant. The coefficient η can be defined in d dimensions as 1/{dλ(1/d, . . . , 1/d)}.
In a similar way, the extremal coefficient θ ∈ [1, d] [Schlather and Tawn, 2003] is related
to V via θ = V (1, . . . , 1).

In the remainder of the chapter, Section 4.2 introduces projections based on weighted
maxima and minima of multivariate random vectors leading to convenient univariate
representations with appealing distributional properties for characterizing dependence in
the tail. In Section 4.3, we develop nonparametric inference for such dependence based on
a generalized additive modelling framework allowing the inclusion of covariate influence.
The simulation study in Section 4.4 illustrates the good performance of our methods when
the model is exact for the data but also when it represents an asymptotic approximation
to the true data distribution. In the application presented in Section 4.5, we use our
new techniques to reveal the influence of spatial distance and time on the co-occurrence
patterns of extreme values in a large dataset of French air pollution data. Conclusions
with an outlook on future work are given in Section 4.6.

4.2 Max- and min-projections
We define the notions of max-projection and min-projection of a vector x = (x1, . . . , xd) ≥
0 with respect to a weight vector ω = (ω1, . . . , ωd) ∈ Sd. The max-projection is given as
maxω(x) = maxdj=1 ωjxj, and the min-projection is defined as minω(x) = mindj=1 xj/ωj.
The link between the two projections is established through the inversion maxω(x) =
1/minω(1/x) using the convention that 1/0 =∞ and 1/∞ = 0.
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4.2.1 Asymptotic dependence
We assume that the random vector XF with distribution function F is in the max-domain
of attraction of a simple max-stable process Z. The exponent function V in (4.1) charac-
terizing a max-stable random vector Z is positive, continuous, convex, and homogeneous
of order −1 such that V (tz) = t−1V (z) for t > 0. Exploiting the homogeneity of V , an
alternative characterization of the extremal dependence is possible through the Pickands’
dependence function A [Pickands, 1981], where

V (z) =
( 1
z1

+ · · ·+ 1
zd

)
A

(
1/z1

1/z1 + . . .+ 1/zd
, · · · , 1/zd

1/z1 + · · ·+ 1/zd

)
. (4.3)

Given ω, (4.3) implies V (1/ω) = A(ω). We denote by Mmax
ω = maxdi=1 ωiZi the max-

projection of the random vector Z. Then Mmax
ω is Fréchet distributed with scale parameter

V (1/ω) ≤ 1 reflecting the level of dependence in Z at an angle ω: For z > 0, we get

Pr (Mmax
ω ≤ z) = Pr

(
Z1 ≤

z

ω1
, . . . , Zd ≤

z

ωd

)
= exp

{
−V

(
z

ω1
, . . . ,

z

ωd

)}
= exp

{
−1
z
V
( 1
ω1
, . . . ,

1
ωd

)}
. (4.4)

From (4.3), we conclude that the scale parameter is equal to Aω := A(ω), and we
remark that the corresponding min-projection Mmin

ω = 1/Mmax
ω follows an exponential

distribution with rate Aω. As argued by Ledford and Tawn [1997], a censored version
of the multivariate max-stable distribution is a natural model for asymptotic depen-
dent threshold exceedances. In view of convergence (4.1), this corresponds to applying
the approximation F (x) = exp{−V (x)} ≈ 1 − V (x) for large values of ‖x‖ or equiv-
alently, to replacing 1 − F (tz) by − logF (tz) using the logarithmic series approxima-
tion log(1 − ε) ≈ −ε for small ε > 0. We propose to consider projected data val-
ues Mmin↓

ω = 1/maxdi=1 ωiX
F
i = mindi=1X

E↓
i /ωi using standard exponentially distributed

XE↓
i = 1/XF

i , where we use ”↓” to emphasize the tail inversion. As left-censoring the
upper tail is equivalent to right-censoring the lower tail after inverting the tails, we model,
below a small fixed threshold, the projected values by the Exp(Aω) distribution, while
we censor the values above the threshold.

Our max-projectionMmax
ω is closely related to the max-projection Y (ω) used by Mhalla

et al. [2017a] for estimating max-stable dependence from maxima data where no censoring
is applied. They define

Y (ω1, ω2) = max [exp{−1/(ω2X1)}, exp{−1/(ω1X2)}] (4.5)

which corresponds to exp{−max(ω2X1, ω1X2)−1} = exp{−1/Mmax
(ω2,ω1)}. The link between

the distribution functions of the two max-projections arises from the fact that Z ∼ Exp(λ)
implies exp(−Z) ∼ Beta(λ, 1) for a random variable Z. The components of the direction
ω in (4.5) are inversed as we define the Pickands’ dependence function Aω differently
from Mhalla et al. [2017a].

4.2.2 Residual dependence in asymptotic independence
In this section, we consider marginal transformations of the data vector X = (X1, . . . , Xd)
to either standard Pareto margins XP = (XP

1 , . . . , X
P
d ) or to unit exponential mar-

gins XE = (XE
1 , . . . , X

E
d ) = log(XP ). We define the min-projection of XE as Mmin

ω =
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mindi=1X
E
i /ωi for a direction ω = (ω1, . . . , ωd) in Sd. Based on the multivariate tail

representation (4.2), the function

f(x;ω) = Pr
(
XP

1 > xω1 , . . . , XP
d > xωd

)
= Pr

(
Mmin
ω > log x

)
, for x ≥ 1,

is regularly varying at infinity with index λω. Thus,

f(tx;ω)
f(t;ω) = Pr (Mmin

ω > log x+ log t)
Pr (Mmin

ω > log t)
= Pr

(
Mmin
ω > log x+ u|Mmin

ω > u
)
→ x−λω , as u→ +∞, (4.6)

where u = log t → +∞ as t → +∞. Equivalently, the excesses of the structure variable
Mmin
ω above a high threshold u are exponentially distributed with rate λω in the limit:

Setting x̃ = log x in (4.6) yields

Pr
(
Mmin
ω > x̃+ u|Mmin

ω > u
)
→ exp {−x̃λω} , as u→ +∞. (4.7)

By using the tail structure (4.2) for characterizing asymptotic independence and appro-
priate marginal pretransformations, we can therefore model the positive excess Mmin

ω − u
of the min-projection above a fixed high threshold u through an Exp(λω)-distribution.

A more specific yet still very flexible class of asymptotically independent processes
satisfying (4.2) are the inverted max-stable processes discussed in Wadsworth and Tawn
[2012]. In unit Pareto margins, the limit relation (4.2) is exact for those models and can
be written

Pr
(
XP

1 > xω1 , . . . , XP
d > xωd

)
= x−Aω , x ≥ 1, (4.8)

with Aω the Pickands’ dependence function of the associated max-stable process, which
takes the role of the angular dependence function λω. If XP is an inverted max-stable
process, then the original max-stable process is recovered through the transformation
1/ log(XP ). The slowly varying function `(.;ω) in (4.2) is equal to 1 in this special case,
such that

Mmin
ω ∼ Exp {Aω} . (4.9)

Therefore, if we assume an inverted max-stable dependence in the joint tail of XP , we
can model data values of Mmin

ω above a fixed high threshold u through the exponential
distribution in (4.9) while censoring values below u. This is different from the general
setup with arbitrary unknown `(.;ω) where only the excesses above the threshold are
used, not the information contained in the censoring indicator 1Mmin

ω >u.

4.2.3 The case of Gaussian dependence
Suppose that XF

1 and XF
2 are unit Fréchet distributed. On one hand, Ledford and Tawn

[1996] showed that if XF
1 and XF

2 have bivariate normal dependence with correlation
ρ < 1 , then

Pr(XF
1 > r,XF

2 > r) ∼ (1 + ρ)3/2(1− ρ)−1/2(4π)−ρ/(1+ρ)r−2/(1+ρ)(log r)−ρ/(1+ρ), r →∞.
(4.10)

On the other hand, if the distribution function of XF = (XF
1 , X

F
2 ) is a bivariate extreme

value distribution F (x1, x2) = exp{−V (x1, x2)} with exponent function V and extremal
coefficient θ = V (1, 1), then

Pr(XF
1 > r,XF

2 > r) ∼ {2− V (1, 1)} r−1 +
[
{V (1, 1)}2 /2− 1

]
r−2, r →∞. (4.11)
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By assuming asymptotic dependence for data from a Gaussian copula with ρ < 1, we
would fit an extreme value model at a sub-asymptotic level. Such model misspecification
will result in biased extremal coefficient estimates smaller than 2, the value for asymptotic
independence, owing to residual dependence in the data at finite levels. We can approx-
imately quantify this bias by equating (4.10) and (4.11). The resulting subsasymptotic
extremal coefficient θ(r) is equal to

θ(r) = r −
{
r2 − 4r + 2 + 2(1 + ρ)3/2(1− ρ)−1/2(4π)−ρ/(1+ρ)r−2/(1+ρ)(log r)−ρ/(1+ρ)

}1/2
,

(4.12)
with r the marginal threshold. This relationship between r, θ(r), and ρ is displayed in
Figure 4.1 where the threshold r is set to high quantiles of the unit Fréchet distribution,
r = −1/ log(1 − 10−q) with q = 1, . . . , 10. For any ρ < 1, the coefficient θ(r) tends to
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Figure 4.1: Sub-asymptotic extremal coefficient θ(r) of the Gaussian dependence as a
function of the correlation ρ. Threshold levels are r = −1/ log(1 − 10−q), with higher
curves corresponding to higher levels

2 when r tends to infinity. This is obtained from an application of the binomial series
formula to approximate the right-hand side of (4.12).

The extremal coefficient behaves as expected in the limit cases of perfect independence
(ρ = 0) and perfect dependence (ρ = 1). By taking high thresholds such that residual
dependence in the exceedance data vanishes, the extremal coefficient is close to 2 unless
the correlation ρ ≈ 1. Detection of asymptotic independence in the Gaussian dependence
case with finite sample size was studied in Bücher et al. [2011] where the authors proposed
new estimators of the Pickands’ dependence function.

4.2.4 An illustration on data
In Sections 4.2.1 and 4.2.2, we developed asymptotically justified univariate exponential
models for both classes of asymptotic dependence and independence using projections.
Equation (4.2) characterizes the joint tail behaviour of random vectors with
λω ∈ ] max

1≤i≤d
ωi, 1], or λω = max

1≤i≤d
ωi, `(x;ω)→ 0 (asymptotic independence),

λω = max
1≤i≤d

ωi and `(x;ω) 6→ 0 (asymptotic dependence),
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where `(x;ω) has a well-defined positive limit in the asymptotic dependence case if the
regular variation property (4.1) holds. If we look at data under the assumption of asymp-
totic dependence, then we calculate the projections Mmin↓

ω to estimate the values of the
Pickands’ dependence function. If we start with the assumption of asymptotic indepen-
dence, then we calculate Mmin

ω to estimate the values of the angular dependence function.
A max-stable model characterized by the Pickands’ function A provides an appealing
link between the two dependence classes by the possibility of modelling asymptotic inde-
pendence with the corresponding inverted max-stable model whose function `(·;ω) ≡ 1 is
known a priori and whose angular dependence function is A. Notice that the link between
the two projections is as follows, using probability integral transformations:

Mmin↓
ω = − log [1− exp {−A(ω)Mmin

ω }]
A(ω) .

Figure 4.2 illustrates these relationships on bivariate data simulated according to an ex-
treme value distribution, where various marginal scales and projections at ω0 = (1/2, 1/2)
are considered. Empirical thresholds at the 95% and 5% levels are used to censor the upper
and lower tails, respectively.

4.3 Inference and regression modelling of dependence
The theory above shows that the projection techniques are appropriate for modelling
asymptotic dependence and asymptotic independence in threshold excesses. In either
case, we aim to develop a dependence model for the upper joint tail of the data distribu-
tion. With asymptotic independence, we transform the data margins to the exponential
distribution, calculate the min-projection, and model its excesses above a high thresh-
old through an exponential distribution, whose rate is given by the angular dependence
function evaluated at the projection angle. More specifically, the latter corresponds to
the Pickands’ dependence function if we utilize an inverted max-stable model. With
asymptotic dependence, we transform the data margins to the unit Fréchet distribution,
calculate the max-projection, invert the latter, and model the resulting deficits below a
small fixed threshold through an upper-censored exponential distribution, whose rate is
given by the Pickands’ dependence function evaluated at the projection angle.

By using min- and max-projections, inference is based on a univariate variable, which
frees us from handling multivariate censoring schemes in likelihood-based approaches and
the resulting computational burden. A difference between the two dependence regimes
arises in the construction of the projection. On one hand, the max-projection in the case
of asymptotic dependence retains only the highest value, which makes sense since the
asymptotic theory implies that the limit model gives a good approximation for the com-
ponents that are large. On the other hand, the min-projection in the case of asymptotic
independence retains the smallest value, which contains crucial information on the faster
tail decay rate along various directions ω, while the max-projection would converge to a
unit exponential limit carrying no useful information in this case.

In either case, inference for the dependence structure is a two-step procedure based on
a univariate structure variable. In the first step, the margins are transformed to the unit
Fréchet scale and then inverted to the unit exponential scale (asymptotic dependence) or
directly to the unit exponential scale (asymptotic independence), and we then calculate
the min-projection. The second step consists of fitting the appropriate exponential model
(4.4) or (4.7) to Mmin↓

ω and Mmin
ω , respectively. In the following, we detail the second
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Figure 4.2: Realizations of a bivariate logistic extreme value distribution (n = 2000)
with parameter 0.8 on the unit Fréchet scale (top left) and the standard exponential
scale (bottom left), its corresponding max-projection (middle), and its corresponding
min-projection (right). The red points correspond to the deficits of Mmin↓

ω0 below the 5%
quantile (top) and the exceedances of Mmin

ω0 above the 95% quantile (bottom). The dashed
black lines indicate the mean of the random variables Mmin↓

ω0 and Mmin
ω0 , i.e., the inverse of

Aω0 for the logistic model. The dashed red line corresponds to the mean of the excesses
of Mmin

ω0
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step of the inference procedure with a view towards estimating the influence of a set of
covariates y ∈ Rq.

4.3.1 Inference for the case of asymptotic dependence
Given n observations {xFj }nj=1 of the random vector XF = (XF

1 , . . . , X
F
d ) with unit Fréchet

margins, we suppose that XF is in the max-domain of attraction of an extreme value
distribution with Pickands’ dependence function A. We fix a direction ω = (ω1, . . . , ωd) ∈
Sd and calculate the observed structure variables mmin↓

ω,j = mindi=1 1/(ωixFj,i), j = 1, . . . , n.
To put focus on the dependence of extremes in the second step of the inference procedure,
we censor observations mmin↓

ω,j that are above a low threshold u > 0, for instance, chosen as
the empirical 5% quantile of mmin↓

ω,j . The likelihood function is L
(
Aω;mmin↓

ω,1 , . . . ,m
min↓
ω,n

)
=∏n

j=1 Lj (Aω) with contributions

Lj (Aω) =

 Aω exp
(
−Aωmmin↓

ω,j
)

if mmin↓
ω,j < u,

exp (−Aωu) if mmin↓
ω,j ≥ u.

When a set of covariates y ∈ Rq is available, we propose using a generalized additive
model (GAM) structure [Wood, 2017] to model the dependence in the extremes, similar
to the approach of Mhalla et al. [2017a], who estimated the Pickands’ dependence function
based on the block maxima approach. The dependence of xF on y is assumed to be at the
extremal dependence level, i.e., the covariates solely influence the Pickands’ dependence
function Aω ≡ Aω(y). This assumption implies no loss of generality as the marginal
inference is performed in a separate step. A very general model for Aω(y) arises from
supposing the semi-parametric form

Aω(y; Λ) = h−1
{

uTβ +
K∑
k=1

hk(tk)
}
, (4.13)

where h is a link function and u ∈ Rs and (t1, . . . , tK) are subvectors of y, or products
of covariates if interactions between some covariates are considered. The column vector
β ∈ Rs gathers linear coefficients whereas hk : Hk → R are smooth functions supported
on closed intervals Hk ⊂ R and admitting a finite quadratic penalty representation [Green
and Silverman, 1994]. The column vector Λ gathers all parameters to be estimated in the
model, i.e., the vector β and the linear basis coefficients of each of the smooth functions
hk. Based on a sample {xFj ,yj}nj=1, we estimate the GAM (4.13) by maximizing the
penalized log-likelihood

`(Λ,γ) = `(Λ)− 1
2

K∑
k=1

γk

∫
Hk

h
′′

k(tk)2 dtk, (4.14)

with `(Λ) = ∑n
j=1 `j(m

min↓
ω,j ,yj,Λ),

`j(mmin↓
ω,j ,yj,Λ) =

{
logAω(yj)− Aω(yj)mmin↓

ω,j if mmin↓
ω,j < u,

−Aω(yj)u if mmin↓
ω,j ≥ u.

The integrals in (4.14) are componentwise roughness penalties with smoothing parameters
γ = (γ1, . . . , γK) that balance between the smoothness of the model and its goodness of
fit. Higher values of γk yield smoother fitted curves. The related effective degrees of
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freedom of each smooth function hk are defined as trace (I + γkSk)−1, where Sk is the
positive definite penalty matrix associated to the basis representation of hk [Wood, 2017,
Chapter 5]. The maximization of the penalized log-likelihood (4.14) is performed based
on an outer-iteration procedure. At each iteration, Λ and γ are estimated separately by
penalized iteratively re-weighted least squares (PIRLS) and a prediction error method
(Generalized Cross Validation), respectively; see Wood [2017] for a detailed description
of the available methods for GAM fitting.
The penalized maximum log-likelihood estimator Λ̂n then defines the estimate Âω(y) =
h−1

{
uT β̂ +∑K

k=1 ĥk(tk)
}

of the Pickands’ dependence function evaluated at ω. A vast
amount of literature on GAM-related theory is available and includes Wood [2004, 2006a],
Marra and Wood [2011], among others.

4.3.2 Inference for the case of asymptotic independence
Given n observations {xPj }nj=1 of the random vector XP = (XP

1 , . . . , X
P
d ) with standard

Pareto margins, we suppose that XP has an asymptotic independent tail structure as
in (4.2). We fix a direction ω = (ω1, . . . , ωd) ∈ Sd and calculate the observed structure
variables

mmin
ω,j =

d
min
i=1

log(xPj,i)/ωi, j = 1, . . . , n.

We fix a high threshold u, for instance, chosen as the empirical 95% quantile of mmin
ω,j,

and extract the sample of positive excesses m̃min
ω,je = mmin

ω,je − u > 0, e = 1, . . . , Eu with
a positive number of excesses Eu > 0. Then, we maximize the likelihood composed of
contributions

Lje {λω} = λω exp
{
−λω

(
m̃min
ω,je

)}
, e = 1, . . . Eu. (4.15)

Given covariate vectors yj, we proceed as for the asymptotic dependence case by proposing
a GAM (4.13) for λω ≡ λω(y), i.e.,

λω(y; Λ) = h−1
{

uTβ +
K∑
k=1

hk(tk)
}
,

which is fitted by maximizing a penalized version of the likelihood (4.15) similarly to
(4.14) and results in the estimate λ̂ω(y) of the tail dependence function evaluated at ω.

4.4 Simulation study
We study the properties of the estimators Âω(y) and λ̂ω(y) when they are related to
a covariate vector y ∈ Rq using the link function h(x) = log{(x − 1/2)/(1 − x)}, a
modification of the logit link resulting in values within (0.5, 1). We focus on the estimation
of these two dependence functions in the bivariate case at ω0 = (1/2, 1/2), which yields
estimates of the covariate-dependent coefficients of extremal dependence θ̂(y) = 2Âω0(y)
and tail dependence η̂(y) = 1/{2λω0(y)}. Realistic sample sizes are chosen, similar to
those in the subsequent application. Note that the uncertainty assessment in the following
simulation studies does not take into account the uncertainty resulting from the separate
marginal fitting.
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4.4.1 Case of asymptotic dependence
Suppose that XF is an asymptotically dependent random vector with unit Fréchet mar-
gins. We first consider the max-domain of attraction (MDA) setting where our model
represents an asymptotic approximation of the exact tail behaviour in the data.

4.4.1.1 Data distribution in the maximum domain of attraction

We focus on the bivariate case with XF = (XF
1 , X

F
2 ) a random vector with unit Fréchet

margins and an Archimedean copula C? [Nelsen, 2006, Chapter 4] with generator ϕ(t) =
(1/t− 1)1/α for some α ∈ (0, 1), i.e., the distribution function of XF is

F (x1, x2) = ϕ
[
ϕ−1

{
exp

(
− 1
x1

)}
+ ϕ−1

{
exp

(
− 1
x2

)}]
, x1, x2 > 0. (4.16)

This distribution is in the max-domain of attraction of the logistic bivariate extreme
value distribution [Tawn, 1990] with parameter α [Fougères, 2004], and can be simulated
using the algorithm from Nelsen [2006, example 4.15, p. 144]. We estimate the covariate-
dependent extremal coefficient using deficits of Mmin↓

ω0 by setting ω0 = (1/2, 1/2) and
fixing different threshold levels.

Equation (4.4) holds when at least one variable XF
i exceeds some high threshold, and

the limiting dependence structure in the tails of XF is equal to that of a bivariate logistic
extreme value distribution [Coles and Tawn, 1991]. We empirically study the bias of the
covariate-dependent extremal coefficient estimator resulting from the application of the
limiting extreme value model.

We simulate from a covariate-dependent model (4.16) with the following generator

ϕ(t; y) =
(1
t
− 1

)1/α(y)
,

where y ∈ [0, 1] is observed at 50 equally spaced values and

α(y) = log
[
1 + exp {sin(2πy) + y2}

1 + exp {sin(2πy) + y2}

]
/ log(2) ∈ (0, 1).

Thus, the covariate-dependent extremal coefficient is

θ(y) = 2Aω0(y) = 1 + exp {sin(2πy) + y2}
1 + exp {sin(2πy) + y2}

. (4.17)

The sample size is chosen between 50000 for a threshold at the 10% level and 500000 at
the 1% level, such that an average of 100 threshold deficits of Mmin↓

ω0 arises for a fixed
value of y. Additionally, we empirically quantify the performance of our estimator in an
over parametrized setting where one of the covariates has no influence on the response by
considering a dummy categorical covariate I with two levels. In the true model (4.17), the
Pickands’ dependence function does not depend on I. We simulate the observed values
of I at random and include level-dependent predictors in the GAM structure for Aω0(y);
thus, the estimated model is

h{Âω0(y, I)} = â1 + ŝ1(y)1{I=“Level 1”} + {â2 + ŝ2(y)}1{I=“Level 2”},
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where âi, i = 1, 2 are the estimated intercepts and ŝ1, and ŝ2 are the estimated smooth
curves describing the dependence of the Pickands’ function at ω0 on y and at each level of
I. The Monte Carlo procedure is based on 500 repetitions, and 95% percentile confidence
intervals are constructed. Figure 4.3 displays the pointwise mean estimates of θ(y, I) in
both levels of I with a threshold set at the 5% level. As expected, the inclusion of I
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Figure 4.3: Estimation in the max-domain of attraction setting. Estimates (solid) and
95% bootstrap confidence intervals (dashed) of the extremal coefficient θ(y) in the first
and second levels of I in orange and red lines, respectively. The true values as given by
(4.17) are in solid black lines

in the model does not prevent it from recovering the true dependence structure of the
extremal coefficient on y in both levels. Moreover, when considering the point estimates
(i.e., the single-run experiments), the results indicate that the variable I is not statistically
significant in the fitted GAM. Next, we remove this artificial covariate from the model
and compare the root mean squared error (RMSE) of the resulting extremal coefficient
fits obtained for different threshold levels. The RMSE over the 500 samples is defined as

RMSE(y) =
[500∑
r=1
{θ̂r(y)− θ(y)}2/500

]1/2

,

where θ̂r(y) is the covariate-dependent extremal coefficient estimate obtained from the
rth sample. Figure 4.4 shows the RMSE of θ̂(y) for different threshold levels. The RMSE
tends to decrease when we take lower threshold levels. Similar shapes of the RMSE
function are observed for threshold levels below 10%, with a noticeable decrease in the
RMSE for values of y corresponding to weak extremal dependence, i.e., for values of y
between 0.2 and 0.4.

4.4.1.2 Max-stable data distribution

We now simulate bivariate samples with max-stable dependence where our asymptotic
dependence model class contains the exact model. The observations come from the logistic
extreme value copula with unit Fréchet margins and dependence parameter α(t) = t−0.05,
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Figure 4.4: Estimation in the max-domain of attraction setting, with the root mean
squared error of the estimates of θ(y) for y ∈ [0, 1] based on 500 samples and obtained at
different threshold levels

t ∈ [0.1, 1]. The covariate-dependent extremal coefficient θ(t) is 2α(t). Figure 4.5 displays
the RMSE of the extremal coefficient estimates with respect to t for the 10%, 5%, 3%,
and 1% threshold levels. The RMSE is mostly unaffected by the threshold level as our
modelling assumption (4.4) holds exactly, as opposed to the sub-asymptotic setting in
Section 4.4.1.1. Therefore, we observe a lower RMSE (see Figure 4.4), as there is no
estimation bias resulting from penultimate modelling.
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Figure 4.5: Root mean squared error of the estimates of θ(t) for t ∈ [0.1, 1] with respect
to different threshold levels, for 500 simulations
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4.4.2 Case of asymptotic independence
We consider two models for an asymptotically independent random vector XE = (XE

1 , X
E
2 )

with standard exponential margins. The dependence in the tails of XE depends on the
covariates I and t, where I is a categorical covariate with two levels 1 and 2. Bivariate
Gaussian dependence with correlation ρ(t) is observed in the first level of I, and an in-
verted logistic extreme value dependence with dependence parameter α(t) is observed in
the second level of I. The dependence on covariates is as follows:

ρ(t) = t, (4.18)
α(t) = t− 0.05, (4.19)

t ∈ [0.1, 1].

Then,

η(t, I) = 1/{2λω0(t, I)} =
{
{1 + ρ(t)}/2 if I = “Level 1”,
1/{2Aω0(t)} = 2−α(t) if I = “Level 2”.

The strength of the tail dependence varies from low (small values of ρ(t), large values of
α(t)) to strong (large values of ρ(t), small values of α(t)) where η(t, I) < 1 unless ρ(t) ≡ 1
or α(t)→ 0 (perfect dependence).

For assessing the performance of our generalized additive modelling framework for the
coefficient of tail dependence when different strengths of tail dependence are observed, we
construct the following model for the angular dependence function:

h{λω0(t, I)} = λ0 + s1(t)1{I=“Level 1”} + s2(t)1{I=“Level 2”}, (4.20)

with intercept λ0 and smooth functions s1 and s2 of t. Our simulation study is based on
an average of 100 threshold exceedances of Mmin

ω0 = min(2XE
1 , 2XE

2 ) for a fixed value of
the covariate vector (t, I); the sample size varies between 105 for a threshold at the 90%
level and 106 at the 99% level. As before, 500 repetitions are carried out. We consider
different threshold levels to quantify the bias resulting from the estimation of η(t, I) based
on (4.7) at a finite threshold u or equivalently (4.2) at a finite level x.

The RMSE defined as

RMSE(t, I) =
[500∑
r=1
{η̂r(t, I)− η(t, I)}2/500

]1/2

,

with η̂r(t, I) the covariate-dependent tail dependence coefficient estimate obtained from
the r-th bootstrap sample, is displayed in Figure 4.6. In the Gaussian case, the RMSE
decreases when the threshold level increases but increases when stronger dependence is
considered, i.e., when ρ(t) (or t, equivalently) increases. This is due to the slow conver-
gence of tail measures at sub-asymptotic levels for the Gaussian dependence; see Coles
et al. [1999]. In the inverted extreme value case, the estimator’s performance is largely
unaffected by the threshold level as Equation (4.8) entails that the approximation (4.2)
is exact at finite levels.

4.5 Application to nitrogen dioxide data
We illustrate the modelling of covariate-dependent tail dependence on a nitrogen dioxide
(NO2) [µg/m3] data set, extracted from the European air quality database for pollutants
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Figure 4.6: Root mean squared error of the bootstrap estimates of η(t, I) for I = 1, i.e.,
the Gaussian case (solid lines), and for I = 2, i.e., the inverted logistic extreme value case
(dashed lines). Different threshold levels are considered

AirBase1. It comprises 569 measurement stations in France with hourly records of NO2
observed over 14 years between 1999 and 2012; see the map of stations in Figure 4.7. With
NO2 produced mostly by the burning of fossil fuel and motor vehicle exhaust, we propose
to distinguish traffic stations where the NO2 level is predominantly determined by nearby
traffic (129 stations) from background stations, often located in built-up areas, whose
level of NO2 is influenced by a combination of many sources (440 stations). Figure 4.8
shows NO2 measurements in 1999 for two background stations located 3 km apart (“Metz-
Centre” and “Metz-Borny”) and for two traffic stations located 8 km apart (“Auto A1-
Saint-Denis” and “Rue Bonaparte”). The measurements at the two background stations
seem to follow a similar pattern, with large values recorded around the same time periods
and low values observed during the summer season when most of the NO2 is transformed
into ozone through sunlight. The comparison of the NO2 measurements for the two traffic
stations is less straightforward. The magnitude of observations is much higher than for the
background sites. Large observations seem to occur mostly locally although the stations
being very close.

Such insights justify the distinction between the two station types when investigating
the co-occurrence of large concentrations measured at pairs of stations. Moreover, it is
natural to ask whether the frequency of co-occurrences of high pollution levels has changed
over time, for instance, as a result of regulatory measures. For the present analysis, we
reduce the dimension of data by considering monthly maxima at each of the 569 stations,
which avoids modelling of hourly patterns in NO2 concentration levels and of intraday
dependence between the measurements [Shi et al., 2014].

At each station, the marginal distribution of monthly maxima is modelled using a
generalized extreme value (GEV) distribution. Its parameters for location µ and scale σ

1https://www.eea.europa.eu/data-and-maps/data/aqereporting-2
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Figure 4.7: Map of nitrogen dioxide measurement stations in France that are “back-
ground” (blue × symbols) or “traffic” (red + symbols) stations

are allowed to vary smoothly with the year and month of the observed maxima as follows:

µ(t,m) = µ0 + f1(t) + f2(m),
σ(t,m) = σ0 + g1(t) + g2(m),

where t and m denote the year and month of the observed maxima, respectively, f1 and g1
are smooth functions accounting for the trend, and f2 and g2 are cyclic smooth functions
accounting for the seasonal component in the data [Wood, 2017, Section 5.3]. Likelihood
ratio tests are performed to assess whether we need smoothly varying terms or whether
parametric and sinusoidal terms already provide a good fit. The final fitted model is
then used to transform the data at each station to the unit Fréchet distribution using the
probability integral transform.

We focus on modelling the dependence between high NO2 measurements recorded
at pairs of stations. The dependence should naturally tend to decay with the distance
between the stations in each pair. Therefore, we include distance (in kilometres) as a
covariate in our model along with the type of area (traffic/background) and time (year),
as discussed above. We consider the great circle distance between the stations, i.e., the
shortest distance over Earth’s surface, and fix the distance resolution at 10 km, which
represents the minimal distance by which stations must be separated to be distinguish-
able. This setting leads to 93 distinct values for the distance covariate, 340, 740 pairs of
observations for the background stations and 61, 705 pairs for the traffic stations. Both



4.5. Application to nitrogen dioxide data 95

Background stations

Jan Mar May Jul Sep Nov Jan

0
50

15
0

N
O

2 
[μ

gm
−3

 ]

Jan Mar May Jul Sep Nov Jan

0
50

15
0

Time

N
O

2 
[μ

gm
−3

 ]

Traffic stations

Jan Mar May Jul Sep Nov Jan

50
15

0
N

O
2 

[μ
gm

−3
 ]

Jan Mar May Jul Sep Nov Jan

0
15

0
30

0

Time

N
O

2 
[μ

gm
−3

 ]

Figure 4.8: Nitrogen dioxide measurements recorded in 1999 at two background stations
in Metz (top) and two traffic stations in Paris (bottom)

tail measures, based on the assumption of either asymptotic dependence or asymptotic
independence, are modelled. We construct the following “full” models for the extremal
coefficient and the tail dependence coefficient:

h{θ(t, d, type)/2} = θ0 + 1{type=“Background”}{f1(t) + f2(d) + f(t, d)}+
1{type=“Traffic”}{θ1 + g1(t) + g2(d) + g(t, d)}, (4.21)

h
[
{2η(t, d, type)}−1

]
= η0 + 1{type=“Background”}{f̃1(t) + f̃2(d) + f̃(t, d)}+

1{type=“Traffic”}{η1 + g̃1(t) + g̃2(d) + g̃(t, d)}, (4.22)

where t represents time (in years), d the distance between the stations in each pair (in
km), and h(x) = log(x− 1/2)− log(1− x). The interaction between time and distance is
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represented using a tensor product basis [Wood, 2017, Section 5.6]. We fit models (4.21)
and (4.22) based on the deficits of the 5% quantile of Mmin↓

ω0 and the exceedances of the
95% quantile of Mmin

ω0 with ω0 = (0.5, 0.5), respectively.
To start, we conduct a simpler, purely spatial analysis and consider the models without

time effects and such that data are pooled together over the whole period for each pair of
stations during the estimation. Estimated summaries θ̂(d, type) and η̂(d, type) are shown
in Figure 4.9; they clearly hint at asymptotic independence with estimates and bootstrap-
based pointwise confidence intervals of θ very close to 2, while those of η are clearly
bounded away from 1. Overall, the joint tail decay rates in asymptotic independence
appear to be quite fast with pointwise confidence envelopes of η contained between 0.5
and 0.7 approximately. A partial explanation for this relatively weak dependence is that
our univariate models have already appropriately removed seasonal trends in the data,
such that dependence in the resulting residuals cannot arise from intermediate-range
clustering in space and time. As a matter of fact, as seasonal patterns are typically
spatial, filtering out these patterns would result in a spatial de-clustering in the region
where the seasonal features are observed. We detect a stronger weakening of dependence
with increasing distance in the traffic stations, which makes sense because the peaks in
the NO2 concentrations are strongly influenced by nearby traffic.
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Figure 4.9: Estimation of distance-dependent dependence summaries for the nitrogen
dioxide data. Left: θ̂(d, type), assuming asymptotic dependence. Right: η̂(d, type), as-
suming asymptotic independence

Next, we consider regression fits (4.21) and (4.22) with spatial and temporal compo-
nents; i.e., we have a more complex, higher-dimensional model for the predictors, and we
expect the estimation uncertainty to be higher. Table 4.1 summarizes both fitted models.
All the considered covariate effects, except for the distance between traffic stations when
the tail dependence coefficient is modelled, are statistically significant.
This confirms our intuition that high NO2 concentrations are relatively localized for the
traffic stations. A block bootstrap procedure treating NO2 measurements from each month
and each year as independent for each type of area is used to assess the uncertainty.
Figure 4.10 shows cross sections of the estimates of the extremal coefficient for the traffic
and background stations; we fix one of the two continuous covariates to show the smooth
effect of the other. For both area types, the estimates are very close to the upper bound
of the extremal coefficient for almost all values of t and d. This result implies weak



4.5. Application to nitrogen dioxide data 97

Table 4.1: Estimates (se) of the intercepts and the degrees of freedom (edf) of the smooth
functions in models (4.21) and (4.22)

θ̂0 θ̂1 f̂1 ĝ1 f̂2 ĝ2 f̂ ĝ

θ̂(t, d, type)
estimate/edf 12.76(0.39) −2.41(0.69) 3.98 3.55 3.82 0.84 15.55 2.92

p-value < 10−16 4.74× 10−4 < 10−16 < 10−16 < 10−16 1.21× 10−2 < 10−16 < 10−16

η̂0 η̂1
ˆ̃f1 ˆ̃g1

ˆ̃f2 ˆ̃g2
ˆ̃f ˆ̃g

η̂(t, d, type)
estimate/edf 1.86(0.03) −0.46(0.07) 3.88 3.11 3.82 0 9.62 1.66

p-value < 10−16 4.49× 10−10 < 10−16 < 10−16 < 10−16 0.61 < 10−16 2.98× 10−4
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Figure 4.10: Cross sections of the covariate-dependent θ̂(t, d) with the corresponding 95%
bootstrap uncertainty intervals. The bootstrap is based on 300 bootstrap samples

extremal dependence between the NO2 measurements at the pairs of stations, and we
can suppose asymptotic independence in the data. We now focus on the estimates of
the tail dependence coefficient; the sub-asymptotic modelling of the tails should be more
informative in this case. Figure 4.11 displays cross sections of the estimate of the tail
dependence coefficient η̂(t, d) for the different types of area. For the considered years, the
residual tail dependence is relatively weak and largely unaffected by the distance between
traffic stations, owing to the very localized features of traffic pollution inducing high
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Figure 4.11: Cross sections of the mean bootstrap estimate of η̂(t, d) along with the
corresponding 95% bootstrap uncertainty intervals. The bootstrap procedure is based on
300 bootstrap samples

concentrations of NO2. Unreported results with a distance resolution of 5 km have shown
globally higher tail dependence estimates (over time) for close traffic stations that are at
most 5 km apart. The uncertainty in the estimators η̂(t, d, “Traffic”) is relatively high due
to the small amount of information available from the traffic stations. For background
stations, the smooth effect of distance on the tail dependence is more pronounced with a
decrease in the dependence at larger distances. The sharpness of the decrease shows some
variation over time, with higher tail dependence for close background stations observed
in 2007. The smooth effect of time on the tail dependence is important mainly for small
distances with an overall slight increase over time for the traffic stations and a bump
(increase) in the dependence around 2005 and 2009 for the background stations. These
effects are observable for stations up to 100 km apart although with a lower magnitude
of the dependence measure.

4.6 Conclusion
Starting from a d-dimensional random vector X with either asymptotic dependence or
independence, we developed min- and max-projection techniques allowing us to simplify
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the joint tail characterization problem to univariate modelling with well-understood expo-
nential distributions for which generalized additive modelling under censoring is feasible
and well-known from survival modelling. The exponential rate carries crucial information
about the form and the rate of the joint tail decay in different directions. This setup fa-
cilitates flexible inference for the tail dependence as it is based on the excesses or deficits
of a univariate exponential random variable while censoring observations that do not con-
tribute to the joint tail, and it allows us to include multiple covariates of different types
through the GAM framework. Although we focused on estimating the covariate influence
for a fixed direction, we can apply the regularization technique of Mhalla et al. [2017a]
in different directions to obtain smooth and valid estimates of the Pickands’ dependence
function or the angular dependence function under shape constraints and for a fixed set
of covariates.

Our application demonstrates that it is useful to apply both projection techniques in
practice to compare covariate-driven estimates for tail dependence summaries in each of
the two asymptotic regimes. Our pairwise modelling of NO2 measurements in France to
investigate the effect of time and spatial distance on the joint tail behaviour showed strong
evidence against asymptotic dependence. The results of our application gave strong sup-
port for asymptotic independence with estimated extremal coefficients close to 2 and the
confidence intervals of tail dependence coefficients bounded away from 1. Our methodol-
ogy constitutes an important step toward the distinction between asymptotic dependence
and independence, when there is no clear evidence for one of the two models or when dif-
ferent model classes arise for different covariate configurations. Formal hypothesis testing
of asymptotic dependence against asymptotic independence for a fixed set of covariates
would be an important extension. As our censoring mechanisms select different observa-
tions according to the two models, likelihood-based tests are not directly applicable, but
non-parametric tests of extremal dependence could provide guidance [e.g., Dey and Yan,
2015, Chapters 17 and 18]. Finally, depending on the application context, a threshold
that varies with covariates and/or directions could be used to determine excesses and
deficits, which could reduce or homogenize estimation bias and uncertainty.





Conclusion

The research presented in this thesis is centred around developing new models and infer-
ence methods for covariate-dependent extremal dependence structures, and has two main
orientations. The first one concerns the development of non-parametric inference methods
for tail dependence measures, and is tackled in Chapters 3 and 4. The second one relates
to the incorporation of the effects of covariates on the tail structure based on (vector)
generalized additive models, and is addressed in Chapters 2, 3, and 4.

In Chapter 2, we extend the parametric modelling of the extremal dependence, un-
der the assumption of asymptotic dependence, to take into account the effects of a set
of covariates. This extension relies on two main ingredients: the spectral representation
of multivariate extreme value distributions and the vector generalized additive models.
Relying on parametric models for the extremal dependence, we prove, under mild con-
ditions, the consistency and asymptotic normality of the resulting penalized maximum
likelihood estimator of the covariate-varying angular density. The novel approach to
extremal dependence modelling is illustrated on temperature datasets recorded at two
monitoring stations, and interesting dynamics between the considered covariates and the
temperatures extremal dependence are uncovered. As an extension, it would be inter-
esting to consider a full model that links the effect of covariates to both the margins
and the extremal dependence, at once. Based on the developed inference framework,
this is a natural extension of our method that would allow a more accurate uncertainty
assessment by taking into account the uncertainty due to the marginal fitting –though
the computational complexity would escalate even for moderate dimensions. Further-
more, in high dimensions where the bias in extremal dependence modelling is generally
more pronounced, the use of a censored likelihood approach instead of the full Poisson
likelihood would certainly lead to a substantial improvement of the performances of our
approach. Although it seems entirely feasible to use censored methods probably com-
bined with pairwise or higher-order composite likelihoods [Huser and Davison, 2013] in
high dimensions, it is, however, less obvious to see how these inference techniques could
be adapted in our VGAM context as second order derivatives of the log-likelihood must
be derived. A potential alternative approach would be to consider a Bayesian hierarchi-
cal framework [Cooley et al., 2007] where models for the margins and the dependence
structure are embedded in different layers. The inclusion of the effect of covariates on the
different model parameters would be performed in the same spirit as in Opitz et al. [2018]
where a Bayesian generalized additive modelling framework to estimate extreme quantiles
over space and time in high dimensions is proposed, and inference is based on integrated
nested Laplace approximations (INLA) [Rue et al., 2009] where Gaussian priors on the
covariates are imposed.

In Chapter 3, we propose a novel estimator of the Pickands’ dependence function.
The estimation procedure is based on an original projection technique, termed the max-
projection, allowing to handle the dependence in a multivariate max-stable random vector
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through a univariate Beta random variable, and a regularization technique yielding valid
estimators of the Pickands’ function. By adapting the GAM infrastructure to the de-
veloped framework, non-stationarity in the Pickands’ dependence function and extremal
coefficients is flexibly modelled and no a priori assumptions on the structure of the ex-
tremal dependence are made. Estimation of the covariate-dependent Pickands’ function
is performed sequentially along different directions in the unit simplex and we mention
that it is more appropriate in high dimensions to focus on the projection at the barycen-
tre as it highly reduces the computational cost of our method while retrieving most of
the information about the extremal dependence. The resulting estimators are found to
be competitive with standard estimators in the absence of covariates, and we illustrate
the approach on a temperature dataset in the U.S. where time and altitude are linked to
the dependence between hot days and warm nights. The approach presented in this work
relies on a two-step procedure to ensure the validity of the bivariate Pickands’ dependence
function and the (partial) validity of the extremal coefficient in higher dimensions. In the
bivariate case, it would of course be more appealing to model the influence of the covari-
ates on the Pickands’ function and to regularize it at once. One can go some way towards
this goal, by adapting the framework of the shape constrained additive models (SCAM)
[Pya and Wood, 2015] to model the Pickands’ function as a function of the covariates
and the angular component, i.e., A(ω,x), and to impose at the same time, the convexity
of the marginal smooth related to the angular component. While this approach would
free us from imposing the convexity constraint in the cobs regularization step, we would
nevertheless still require this second step to ensure the bound and border constraints.
Moreover, the SCAM infrastructure dealing uniquely with univariate and bivariate shape
constrained smooths, the incorporation of the convexity constraint in the GAM step would
only be beneficial in the case where a unique covariate is handled so that the interaction
between the angular component and this covariate can be properly modelled.

In Chapter 4, we devise a projection technique, in the same vein as the work presented
in Chapter 3, that allows modelling the tail dependence in multivariate settings and under
asymptotic dependence and asymptotic independence. We show how the min-projection
results in an exponential random variable which carries the information regarding the
structure of the extremal dependence under the assumption of asymptotic dependence
and the information regarding the tail decay rate under the assumption of asymptotic
independence. Building on the projection from the multivariate to the univariate setting,
generalized additive models for the Pickands’ and the angular dependence functions are
constructed to assess the effect of a set of covariates on the tail dependence. We illustrate
the approach on a large dataset of pollutants in France where we model the dependence
between large nitrogen dioxide concentrations in pairs of stations as a function of the dis-
tance between the stations, the type of the stations, and time. The illustration is inspired
by the use of spatio-temporal max-stable models in geostatistics, while abstracting away
from the curse of dimensionality from which these models suffer, owing to the use of the
GAMs at a univariate level. An interesting feature of the proposed min-projection relies
on the ability of the resulting random variable to model, depending on whether its up-
per or its lower tail is considered, the tail dependence under both regimes of asymptotic
dependence and asymptotic independence. Therefore, a natural extension of our work
would be to consider a testing procedure to discriminate between these two regimes. One
could perform, for a fixed set of covariates, two tests of exponentiality [Torabi et al., 2018]
on the lower tail and on the exceedances in the upper tail. Thus, when one of the tests
rejects the null hypothesis, we can conclude that the assumption of asymptotic depen-
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dence or independence might be violated. We need to keep in mind that, as highlighted
in the simulation study, the choice of the threshold level is crucial when retrieving the
strength of the tail dependence or decay rates, and that consequently we should perform
the tests at different threshold levels and combine the results to conclude on the type of
the asymptotic regime. Additionally, and in the perspective of discriminating between the
asymptotic regimes, we could consider an independence likelihood where the likelihoods
obtained under the assumptions of asymptotic dependence and independence are con-
catenated and the Pickands’ and tail dependence functions, at the same fixed direction in
the unit simplex, are estimated simultaneously with standard errors adequately adjusted
[Chandler and Bate, 2007]. This inference procedure would enable us to include a ridge-
or a bayes-inspired penalty to exclude undesirable parameter estimates that prevent us
from discriminating between the asymptotic regimes.

Throughout this thesis, we have seen how generalized additive models can be adapted
to endow multivariate extreme value modelling with a higher flexibility and a wider appli-
cability. The methods developed in this thesis allow one to model the dependence between
extreme events while borrowing information from the working environment. Although we
have only considered environmental applications in this thesis, the developed methods are
applicable in a wide range of fields including finance where, for example, the dependence
between joint extreme losses of stocks can be modelled as a function of their type of sector.
When dealing with high-dimensional data, these methods are still applicable but subject
to the usual caveats attached to both likelihood-based and non-parametric approaches
to extreme value modelling. On one hand, the non-parametric approaches are expected
to perform poorly in high dimensions compared to the parametric ones [Vettori et al.,
2018] and the non-parametric estimators devised in this thesis are no exception to this
curse of dimensionality. As a matter of fact, the proposed projection techniques reduce
the information regarding the multivariate joint tail dependence to a univariate random
variable requiring therefore a substantial amount of data when the dimension increases.
On the other hand, likelihood inference for max-stable distributions is computationally
demanding in large dimensions [Castruccio et al., 2016] and the increase of its complexity
is more noticeable in the covariate-dependent framework considered in this thesis, due to
the additional complexity stemming from the smooth modelling of the parameters. To
circumvent these computational challenges, the common approach is to rely on composite
likelihoods [Padoan et al., 2010, Varin et al., 2011, Huser and Davison, 2013, Sang and
Genton, 2014]. Additionally to the resulting loss of efficiency relative to maximum like-
lihoods, these misspecified likelihoods require the complete specification of a joint model
for the data, which might not be available in some applications, e.g., high-dimensional
financial applications.

The dynamic modelling of extremes undertaken in this thesis represents an attempt
to fill the gap between the developments of non-stationary marginal models and depen-
dence models, but there is room for future improvements and extensions. For instance,
the issue of uncovering the asymptotic class of the data or potentially how transitions
between the asymptotic regimes are related to a set of predictors, can be tackled in a
more “straightforward” way based on hybrid models. An ongoing work with Raphaël
Huser aims at constructing generalized additive models for extremes based on copula
families able to capture both asymptotic dependence and independence through a unique
parameter ensuring the transition between the two classes [Huser and Wadsworth, 2018].
The Newton–Raphson optimization algorithm, used in this thesis in the presence of a
smoothing penalty term, is rather cumbersome to implement when adding the covariate-
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dependence component to this type of copulas, and we are considering an alternative
approach based on the local likelihood [Davison and Ramesh, 2000], hence avoiding the
addition of a penalty term. Finally, an interesting application of the developed methods,
that will hopefully be soon undertaken, consists of discovering causal relationships [Pearl
et al., 2016] between a tail dependence measure and a set of covariates. In the spirit of
the causal inference approach of Peters et al. [2016] which relies on the invariance of a
prediction under causal models, the idea would be to compare the regression coefficients
when regressing the tail dependence measure (target variable) on a set of covariates, un-
der different changes of the environment (e.g., different time periods), and to retain the
causal predictors whose influences on the target variable remain invariant.
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A. Bücher, H. Dette, and S. Volgushev. New estimators of the Pickands dependence
function and a test for extreme-value dependence. The Annals of Statistics, 39:1963–
2006, 2011. doi: 10.1214/11-AOS890.
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