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Optimal policy for value-based decision-making

Satohiro Tajima'*, Jan Drugowitsch"?* & Alexandre Pouget'>#

For decades now, normative theories of perceptual decisions, and their implementation as
drift diffusion models, have driven and significantly improved our understanding of human
and animal behaviour and the underlying neural processes. While similar processes seem to
govern value-based decisions, we still lack the theoretical understanding of why this ought to
be the case. Here, we show that, similar to perceptual decisions, drift diffusion models
implement the optimal strategy for value-based decisions. Such optimal decisions require the
models’ decision boundaries to collapse over time, and to depend on the a priori knowledge
about reward contingencies. Diffusion models only implement the optimal strategy under
specific task assumptions, and cease to be optimal once we start relaxing these assumptions,
by, for example, using non-linear utility functions. Our findings thus provide the much-needed
theory for value-based decisions, explain the apparent similarity to perceptual decisions, and
predict conditions under which this similarity should break down.
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n everyday ambiguous and noisy environments, decision-

making requires the accumulation of evidence over time. In

perceptual decision-making tasks (for example, discriminating
a motion direction), choices and reaction times are well-fit by
drift diffusion models (DDMs)!~3. These models represent the
accumulated belief informed by sensory evidence as the location
of a diffusing particle that triggers a decision once it reaches one
of two decision boundaries. DDMs are known to implement
theoreticallgf optimal algorithms, such as the sequential likelihood
ratio test*~® and more general algorithms that handle varying task
difficulty’.

Recently, DDMs have been shown to also describe human
behaviour in value-based decisions, where subjects compare the
endogenous values of rewarding items (for example, deciding
between two lunch options). This suggests that humans perform
value-based decisions by computations similar to those used for
standard perceptual decision (such as visual discrimination of
random dot motion directions). In this case, the DDMs are driven
only by the difference in item values, and thus predict the choices
to be insensitive to the absolute values of the compared items
(Fig. 1)3719. In particular, relying only on the relative value means
that it might take on average longer to decide between two equally
good options than between items of very different values.

This raises an important question: do DDMs indeed imple-
ment the optimal strategy for value-based decisions? Intuitively,
absolute values should also influence the decision strategy, such
that relying only on relative values appears suboptimal. In
particular, it seems unreasonable to wait for a long time to decide
between two nearly similar highly rewarding options. None-
theless, DDM:s or related models are generally better at explaining
human behaviour than alternative models. For example, race
models (RMs) assume independent ‘races’ to accumulate evidence
for individual options. Once one of these races reaches a decision
criterion the corresponding choice is triggered!"12. Even though
RMs are sensitive to absolute choice values and as such predict
more rapid choices for higher rewarded options, they neither fit
well human behaviour in perceptual decision-making tasks'? nor
in value-based decision tasks in which decisions are usually better
described by relying only on relative values'>!*. Does this mean
that humans use DDMs even though these model implement
suboptimal strategies, or that DDMs indeed implement the
optimal strategy for value-based choices? What is clear is that we
need to understand (i) what the optimal strategy for value-based

‘Which do you want?’
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decisions is, (ii) why the value-based and perceptual decision
seem to be fitted by the same class of models (DDM:s) despite the
qualitative difference between these tasks and (iii) to which
degree value-based and the perceptual decisions differ in terms of
their normative computational strategies.

In this paper, we derive the theoretically optimal strategy for
value-based decisions, and show that this strategy is in fact
equivalent to a particular class of DDMs that feature ‘collapsing
boundaries’ whose distance shrinks over time. We show that the
exact shape of these boundaries and the associated average
reaction times depend on average-reward magnitudes even if
decisions within individual trials are only guided by the relative
reward between choice options. Finally, we highlight the
difference between value-based and standard perceptual deci-
sions, reveal specific conditions under which the optimality of
DDMs are violated, and show how to reconcile the ongoing
debate on whether decision makers are indeed using collapsing
decision boundaries. In contrast to previous work that assumed
particular a priori mechanisms underlying value-based choices,
such as RMs or DDMs"~18, our work instead deduces optimal
decision-making mechanisms based solely on a description of the
information available to the decision maker. Thus, the use of
diffusion models for value-based choices is not an a priori
assumption of our work, but rather a result that follows from the
normative decision-making strategy.

Results

Problem setup and aim. Consider a decision maker choosing
between options that yield potentially different rewards (or
‘values’), as, for example, choosing between two lunch menu
options in the local restaurant. If the decision maker knew these
rewards precisely and immediately then she should instantly
choose the more rewarding option. However, in realistic scenar-
ios, the reward associated with either option is uncertain a priori.
This uncertainty might, for example, arise if she has a priori
limited information about the choice options. Then, it is better to
gather more evidence about the reward associated with the
compared options before committing to a choice (for example,
when choosing among lunch menus, we can reduce uncertainty
about the value of either menu by contemplating the composition
of each menu course separately and how these separate courses
complement each other). However, how much evidence should

‘Which do you want?’
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Figure 1 | DDMs for value-based decisions. The purple lines represent the decision boundaries. The red arrows indicate the mean drift rate. The grey
fluctuating traces illustrate sample trajectories of a particle that drifts in the space of relative value between two given options. (left) If an option is
preferred (that is, yields higher reward) than the other, the mean drift is biased toward the boundary of preferred option, making the particle to hit the
decision boundary within a relatively short time. (right) However, if the given options are equally good, DDM assumes a mean drift without any bias,
requiring much longer time for the particle to hit either decision boundary—even if both options are highly rewarding.
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Figure 2 | Typical value-based decision-making task. (a) (left) Prior distribution from which the rewards for a pair of options are sampled. r; and r»

indicate the reward magnitudes for individual options (for example, objects presented on left- and right-hand side of the screen in each trial). (right) A
typical visual stimulus in each trial. (b) Reaction-time task. In each trial, the decision maker is presented with a pair of options. The decision maker reports
her choice as soon as she has decided which of the two options she prefers. The reaction time (T;) can vary among trials, and individual trials are separated

by a fixed inter-trial interval.

we accumulate before committing to a choice? Too little evidence
might result in the choice of the lower-rewarding option (the less
appreciated lunch menu), whereas long evidence accumulation
comes at the cost of both time and effort (for example, missing
the passing waiter yet another time). In what follows, we for-
malize how to best tradeoff speed and accuracy of such choices,
and then derive how the decision maker ought to behave in such
scenarios. We first introduce each component of the decision-
making task in its most basic form, and discuss generalizations
thereof in later sections.

We assume that, at the beginning of each trial, the two options
have associated true rewards, z; and 2z, which are each
stochastically drawn from separate normal distributions with a
fixed mean z; for option je{l,2} and common variance aﬁ.
These true rewards are unknown to the decision maker, as they
are never observed directly. Instead, we assume that the
decision maker observes some momentary evidence with mean
zot, 0x;; ~ N (zj0t,0*6t) for both options j&{1,2} simultaneously
in small time-steps i of duration of. Note that variability (and
associated ambiguity) of the momentary evidence can arise through
noise sources that are both internal or external to the decision
maker—sources that we discuss in more detail further below.

Before observing any momentary evidence, we assume that the
decision maker holds a normally distributed belief z; ~ N'(z;, 6%)
with mean z; and variance o2, which are, respectively, the mean
and variance of the distribution from which the reward are being
drawn from at the beginning of each trial. In other words, this a
priori belief corresponds to the actual distribution from which the
true rewards are drawn (that is, the decision maker uses the
correct generative model), and entails that option j is most likely
to yield reward z;, but might also yield other rewards, with the
spread of rewards around z; controlled by the level of uncertainty
o2 about z; For now, we only consider the case in which the
amounts of reward associated with both options are uncorrelated
and, on average, the same (z; =2;). In terms of choosing
between lunch menu options, either menu would a priori yield
the same reward, and the true rewards of either menu option are
independently of each other drawn from the aforementioned
normal distribution (Fig. 2a). Later, we discuss the consequences
of a correlation between true option values.

As soon as being presented with sensory evidence dx;; the
decision maker accumulates further information about the
rewards associated with either choice option. This momentary
evidence 0x;,; reveals noisy information about the true reward z;,
such that each additional piece of momentary evidence reduces
the uncertainty about this reward. We emphasize that neither of
the true rewards is ever observed without noise. As a result, the
decision maker needs to accumulate evidence to reduce
uncertainty about the underlying true rewards by averaging out
the noise. Longer evidence accumulation results in a better
average and lower associated uncertainty.

The noise in the momentary evidence itself can have both
internal and external sources. External sources constitute the
potentially stochastic nature of stimuli, perceptual noise,
ambiguity and incomplete knowledge. For example, having
not yet read the main course and dessert of a particular menu
option causes uncertainty about the option’s value due to
incomplete knowledge. Internal sources could result from
uncertain memory, or value inference that extends over time.
One example for such value inference would be to sequentially
contemplate the value of different features of a particular menu
course over time.

Formally, after observing the value-related evidence dx;(0:¢)
from time 0 (onset of momentary evidence) to some time ¢, the
decision-maker’s posterior belief about the true reward, z; of
option j is given by

a/t ol x(t) oald’/t ) (1)
al/t+o—§zf o2/t+o2 t 'c2/t+a2)

The posterior mean is an evidence-weighted combination of
the a priori mean zjand the time-averaged accumulated evidence
xj(t = not) = >." | dxj;, and the posterior variance (that is
uncertainty) decreases monotonically with time (see Methods
section). Due to uncertainty in the momentary evidence, the
accumulated evidence x;(t) itself describes a stochastic process.
Here, and in contrast to other models of decision-making (both
perceptual'®?® and value-based'>!6), all stochasticity in the
accumulated evidence results from ambiguity in the momentary
evidence itself, rather than from noise in the mechanisms that
implement the decision-making process. In other words, the

zj\éx](Ot)NN(
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process responsible for the accumulation of the evidence is
assumed to be noiseless, an assumption consistent with recent
neurophysiological recordings.?!

What are the costs and rewards that the decision maker
incurs during the course of her decisions? In terms of costs we
assume that the decision maker pays a cost ¢ per second of
accumulating evidence, from onset of the choice options
until an option is chosen. This cost could, for example, be an
explicit cost for delayed choices, or represent the effort induced
by evidence accumulation. In the context of choosing between
lunch menus, this cost might arise from missing the passing
waiter yet again, or from being late for a post-lunch meeting.
Choosing option j is associated with experiencing some reward 7
that is a function of the true reward z; associated with this option,
as, for example, when experiencing reward for consuming the
lunch. For now, we assume experienced and true reward to be
equivalent, that is r; = z;. For a single choice, the overall aim of the
decision maker is to maximize expected reward minus expected
cost,

(2)

where the expectation is across choices j and evidence
accumulation times T, given the flow of evidence dx; (0:T) from
time 0 to T. We first derive the optimal behaviour, or ‘policy’, that
maximizes this objective function for single, isolated choices and
later generalize it to the more realistic scenario in which the total
reward in a long consecutive sequence is maximized.

<rj | 0x;(0 : T)> —(T),

Optimal decisions with DDMs with collapsing boundaries. To
find the optimal policy, we borrow tools from dynamic pro-
gramming (DP). One of these tools is the ‘value function’, which
can be defined recursively through Bellman’s equation. In what
follows, we show that the optimal policy resulting from this value
function is described by two time-dependent parallel bounds in
the two-dimensional space of current estimates of the true option
rewards. These bounds are parallel with unity slopes, approach
each other over time and together form a bound on the difference
of reward estimates. This difference is efficiently inferred by
diffusion models, such that DDMs can implement the optimal
strategy for value-based decision-making.

Bellman’s equation for optimal value-based decision-making. To
define the value function, assume that the decision maker has
accumulated some evidence about the option rewards for some
time t. Given this accumulated evidence, the value function
returns the total reward the decision maker expects to receive
when following the optimal policy. This value includes both the
cost for evidence accumulation from time ¢t onwards and the
reward resulting from the final choice. The expected rewards,
#(t) = (r; | 0x(0: t)), and elapsed time ¢ are sufficient statistics
of the accumulated evidence (see Methods section), such that the
value function is defined over these quantities. At each point in
time t during evidence accumulation we can either commit to a
choice or accumulate more evidence and choose later. When
committing to a choice, it is best to choose the option associated
with the higher expected reward, such that the total expected
reward Vy4(71, ) for choosing immediately is given by the value
for ‘deciding’, V4(#1,#2) = max{#;,7,} (Fig. 3a). When accumu-
lating more evidence for a small duration ¢, in contrast, the
decision maker observes additional evidence on which she
updates her belief about the true rewards while paying
accumulation cost ¢dt. At this stage, she expects to receive a
total reward of V(t+ dt, #1(t+ dt), 7,(¢t+ 0t)). Therefore, the
total expected reward for accumulating more evidence is given by
the value for ‘waiting’, (V(t+dt, #1(t+ ot), 72(t + Jt))) — cot
(Fig. 3b), where the expectation is over the distribution of future

4

expected rewards, 71 (t + 0t) and 7, (¢ + 0t), given that they are 7,
and 7, at time f (see Methods section for an expression of this
distribution). The decision maker ought to only accumulate more
evidence if doing so promises more total reward, such that the
value function can be written recursively in a form called
Bellman’s equation (Fig. 3a-c,e; see Supplementary Note 1 for
formal derivation),

V(t7 ;’1, ;'2) = max {Vd(?h i’z),
(V(t+ 0t 71 (t+0t), 72 (t+ 0t)) | F12(t) = F12) — ¢ Ot}
(3)

With knowledge of the value function, optimal choices are
performed as follows. Before having accumulated any evidence,
the subjective expected reward associated with option j equals the
mean of the prior belief, #; = Z;, such that the total expected
reward at this point is given by V(0,7 =2z;,7, = Z;). Once
evidence is accumulated, 7; and 7, evolve over time, reflecting the
accumulated evidence and associated updated belief of the true
reward of the choice options. It remains advantageous to
accumulate evidence as long as the total expected reward for
doing so is larger than that for deciding immediately. As soon as
deciding and waiting become equally valuable, that is,
Va(t1,72) = (V(t+0t, 71(t+ 5t), P2(t+0t))) — cot, it is best to
choose option j associated with the higher rewarded expected
rewarded 7. This optimal policy results in two decision
boundaries in (#,7;)-space that might change with time
(Fig. 3f). In-between these boundaries it remains advantageous
to accumulate more evidence, but as soon as either boundary is
reached, the associated option ought to be chosen.

Parallel optimal decision boundaries. For the task setup
considered above, the decision boundaries take a surprisingly
simple shape. When plotted in the (7;,7,)-space of estimated
option rewards for some fixed time f, the two boundaries are
always parallel to the diagonal 7; = 7, (Fig. 3f). Furthermore, they
are always above and below this diagonal, reflecting that the
diagonal separates the regions in which the choice of either option
promises more reward. Here, we provide an informal argument
why this is the case.

The argument relies on the fact that, for each time ¢, the decision
boundaries are determined by the intersection between the value
for deciding and that for waiting (Fig. 3¢,d). Both of these values
share the property that, in lines parallel to the diagonal, they are
linearly increasing with slope one. Formally, both functions satisfy
f(t, 71+ C, 72+ C) = f(t,71,72) + C for any fixed time #, reward
estimates 7 and 7, and arbitrary scalar C. This implies that, if they
intersect at some point (?f, ?;‘), thus forming part of the decision
boundary, they will intersect at the whole line (7] + C, 7; + C) that
is parallel to the diagonal (Fig. 3c.e,f). Therefore both decision
boundaries are parallel to the diagonal.

How can we guarantee that the values for both deciding and
waiting are linearly increasing in lines parallel to the diagonal?
For the value for deciding, Vy4(#1,7,) = max{#,7,}, this is
immediately obvious from its definition (Fig. 3a and caption).
Showing the same for the value for waiting requires more work,
and is done by a backwards induction argument in time (see
Methods section for details). Intuitively, after having accumulated
evidence about reward for a long time (f— o0), the decision
maker expects to gain little further insight by any additional
evidence. Therefore, deciding is better than waiting, such that the
value function will be that for deciding, V(t,71,72) = Va(#1,72),
which, as previously mentioned, is linearly increasing in lines
parallel to the diagonal, providing the base case. Next, it can be
shown that, if the value function at time ¢+t is linearly
increasing in lines parallel to the diagonal, then so is the value of
waiting at time #, and, as a consequence, also the value function at
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Figure 3 | Finding the decision boundaries in value-based decision. (a) The expected values of choosing either option are defined as a two-dimensional
function (surface), max{, .}, of a pair of reward estimates, (1, 2), at time t. The dark coloured line shows the section at 71 + 7, = 0.5. (b) Similarly, the value
surface for ‘waiting’ (that is, the expected value after observing new evidence for a short period dt, subtracted cost for waiting cdt) is defined as a function of
(f1,72). Note that, around the diagonal, f; = 5, the value for waiting is smoother than that for choosing due to the uncertainty about future evidence. (¢,d) The
value surfaces for choosing and waiting superimposed, and their sections at t; +, = 0.5. The decision boundaries (dotted lines) are determined by points in
the space of reward estimates in which the value for ‘deciding’ (blue) equals that for waiting (red). In the region where waiting has a higher value than choosing
either option (blue below red curve/surface), the decision maker postpones the decision to accumulate more evidence; otherwise, she chooses the option that is
expected to give the higher reward. Because the relationship between the two value surfaces is translational symmetric in terms of mean reward "*T'Z their
intersections are parallel and do not depend on this mean reward. (e) The expected value V(t) is given by the maximum of the values for choosing and waiting.
This surface determines the value for waiting (b) at the next-earlier time step, t — ot. (f) Decision boundaries and associated choices shown in the two-

dimensional (i, f,)representation. Note that the two boundaries are always parallel to the diagonal, /; = 7,. This is because the both value functions (for

deciding and for waiting) are linearly increasing with slope one in lines parallel to the diagonal (a,b). For the value for deciding, for example, below the diagonal
we have > r,, such that V4(h, 72) = fr, and therefore Vy(f1 + C, 2 + C) = i1+ C = V4(h,72) + C, where C is an arbitrary scalar. The value for waiting can be

shown to have the same property.

time t—essentially because the uncertainty about how the reward
estimate evolves over time is shift-invariant (does not depend on
current expected rewards, (71,7); see Methods section). The
value function at time ¢ is the maximum over the value for
deciding and that for waiting. As both increase linearly in lines
parallel to the diagonal, so does this value function, V(¢,7,7)
(Fig. 3c,e). This completes the inductive step.

To summarize, an induction argument backward in time
shows that both the values for deciding and waiting increase
linearly in lines parallel to the diagonal for all £. As a consequence,
the decision boundaries, which lie on the intersection
between these two values, are parallel to this diagonal
for all times t. In Supplementary Methods, we demonstrate
the same property with an argument that does not rely
on induction. In both cases, the argument requires, for any
fixed ¢, a stochastic temporal evolution of our expected reward

estimates that is shift-invariant with respect to our current
estimates (71,72). In other words, for any estimates (7,7,), the
decision maker expects them to evolve in exactly the same
way. This property holds for the task setup described above
and some generalizations thereof (Supplementary Note 1),
but might be violated under certain, more complex scenarios,
as described further below.

Optimal decisions with collapsing boundaries, and by diffusion
models. A consequence of parallel decision boundaries is
that optimal choices can be performed by tracking only the
difference in expected option rewards, 7; — #,, rather than both
71 and 7, independently. To see this, consider rotating these
boundaries in (71, 7,)-space by —45° such that they come to be
parallel to the horizontal axis in the new (7] + 5, 7, — #1)-space
(Fig. 4ab). After the rotation they bound 7 —#, and are
independent of 71 + 7.
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Figure 4 | Optimal decision boundaries computed numerically by DP. (a) The decision boundaries and choices at three representative time points
(t=0.5, 1 and 2s), shown in the space of reward estimates (f1,72). (b) The same as a, but shown in a rotated space, (F‘gb ,%) (¢) The decision

boundaries in terms of the expected reward difference, h ;;2, as functions of time. The distance between boundaries decreases as time elapses, and
collapses to zero at some point. (d) The same decision boundaries shown in the space of accumulated evidence, which is represented by the particle
location in a DDM. The cyan trace is a sample particle trajectory, representing evidence accumulation and the subsequent choice of option 1.

For Gaussian a priori rewards (Fig. 2a), numerical solutions
reveal that the distance between the two boundaries decreases
over time, resulting in ‘collapsing boundaries’ (Fig. 4c) that can be
explained as follows. In the beginning of the decision, the true
option rewards are highly uncertain due to a lack of information.
Hence, every small piece of additional evidence will make the
running reward estimates substantially more certain. This makes
it worth to withhold decisions by far-separated decision
boundaries (Fig. 4c for small #). Once a significant amount of
evidence is accumulated, further evidence will barely increase
certainty about the true rewards. Thus, it becomes more
preferable to decide quickly rather than to withhold choice for
an insignificant increase in choice accuracy (even for similar
reward estimates, 7, —7; ~ 0, and residual uncertainty about
which option yields the higher reward). The narrowing boundary
separation ensures such rapid decisions (Fig. 4c for large f).

We can further simplify the optimal decision procedure by
implementing the computation of the expected option reward
difference by a diffusion model. As long as z; = z,, such an

6

implementation remains statistically optimal, as the diffusing
particle, x(t)=x,(f) — x,(t), (recall that x;(t = ndt) = Y ;| 0x;;)
and elapsed time ¢ form a set of sufficient statistics of the
posterior r1(t) — r,(£)|0x(0:t) over this difference (see Methods
section). Furthermore, x;(f) can be interpreted as the sample path
of a particle that diffuses with variance ¢ and drifts with rate zj.
For this reason, x(¢) diffuses with variance 262 and drifts with rate
Z1 — 2, thus forming the particle in a diffusion model that
performs statistically optimal inference. The same mapping
between expected reward difference and diffusing particle allows
us to map the optimal boundary on reward into boundaries on
x(t) (Fig. 4c,d). Therefore, models as simple as diffusion models
can implement optimal value-based decision-making.

Moving from single choices to a sequence thereof. So far we
have focused on single choices in which the decision maker trades
off the expected reward received for this choice with the cost
associated with accumulating evidence about the true option
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Figure 5 | Effects of prior and task demands on the speed of boundary collapse. (a) The decision boundaries for value-based decisions that maximizes
the reward per unit time. The average a priori reward 2 *2'?2 is varied from —1to 8, while keeping z; = Z,. The inset shows two examples of prior distributions
(blue and red: mean reward O and 4, respectively). The figure illustrates that the optimal decision boundaries depend on the prior knowledge about the
average reward across trials. (b) The decision boundaries that maximizes the number of correct response per unit time for accuracy-based decisions. (The
‘correct rate' in value-based decisions can be defined, for example, as the probability of choosing the more preferable option.) These boundaries do not vary
with & fz are all plotted on top of each other. Here, the decision boundaries were derived with the same dynamic-programming procedure as for the value-
based case, except for that the rewards were assumed to be binary, and only one if the decision maker correctly identified the option with the larger

‘reward’ cue z; (see Methods section). In contrast to the reward-rate maximization strategy for value-based decisions (a), the decision strategy maximizing
the correct rate is invariant to the absolute values of mean reward/evidence strength, thus demonstrating a qualitative difference between value-based and
perceptual decision-making in terms of the optimal strategy. In addition, the optimal boundaries in the value-based case approach each other more rapidly
over time than for perceptual decisions. The faster boundary collapse for value-based decisions is consistent across a broad range of mean absolute

rewards, showing that the distinction in boundary dynamics is not just due to the difference in expected reward rates, but reflecting a qualitative difference

between the geometries of value functions in these two tasks.

rewards. This setup assumes a single choice and, besides the
accumulation cost, infinite time to perform it. In realistic sce-
narios, however, such choices are usually embedded within a
sequence of similar choices. Here, we consider how such
embedding influences the form of the optimal policy.

Maximizing the reward rate across choices. We assume that
each choice within the sequence follow the previous single-choice
setup. That is, after onset of the choice options, the decision
maker pays a cost ¢ per second for accumulating evidence about
the true option rewards. At choice, she receives the true reward
associated with the chosen option. The choice is followed by a
(possibly stochastic) waiting time of t,, seconds on average, after
which two new choice options appear and new evidence is
accumulated. The true reward associated with either option is
before choice option onset drawn according to the previously
described Gaussian prior (Fig. 2a), such that these rewards
remain constant within individual choices, but vary across
consecutive choices. Rather than maximizing the total expected
reward for each individual choice, we assume that the aim is to
maximize the total expected reward within a fixed time period,
independent of how many choices are performed within this
period. To avoid boundary effects, we assume the period duration
to be close-to-infinite, such that maximizing the total expected
reward within this period becomes equivalent to maximizing the
reward rate p, given by

(rj | 0x;(0:T)) —¢(T)
tw+(T) ’

(4)

where the expectation is, as for equation (2), across choices j and
evidence accumulation times T, given the flow of evidence. Here,
it is critical that we fix the time period while leaving open the
number of choices that can be performed. If we instead were to fix
the number of choices while leaving open the time to make them,
it again becomes optimal to maximize the total expected reward
for each of these choices separately, such that the optimal policy

for each such choice is the same as that for single, isolated
choices.

Infinite choice sequences make using the standard value function
difficult. This value function returns the total expected reward for
all current and future choices when starting from the current state.
For an infinite number of such future choices, the value function
might thus become infinite. One way to avoid this is to use instead
the ‘average-adjusted value’ function, which—in addition to an
accumulation cost—penalizes the passage of some time duration Jt
by — pdt, where p is the reward rate. This reward rate is by
equation (4) the total reward received (including accumulation
costs) per second, averaged over the whole choice sequence.
Penalizing the value function by this reward rate makes explicit the
implicit loss of rewards due to potential future choices that the
decision maker misses out on when accumulating too much
evidence for the current choice. This penalization allows us to treat
all choices in the sequence as if they were the same, unique choice.
A further consequence of this penalization is that the value function
for accumulating more evidence for some duration ¢t undergoes a
more significant change, as accumulating this evidence now comes
at a cost — (c+ p)ot instead of the previous — cdt (see Methods
section for the associated Bellman equation). For positive reward
rates, p >0, this cost augmentation implies more costly evidence
accumulation such that it becomes advantageous to accumulate less
evidence than for single, isolated choices. This change is
implemented by decision boundaries that collapse more rapidly
(shown formally in Supplementary Note 1, see also Supplementary
Fig. 1). Thus, collapsing decision boundaries implement the optimal
policy for both single choices and sequences of choices, with the
only difference that these boundaries collapse more rapidly for the
latter. The duration of inter-choice waiting #, modulates this
difference, as with t,— 0o, the reward rate described by
equation (4) reduces to the expected reward for single, isolated
choices, equation (2). Therefore the policy for single trials is a
special case of that for maximizing the reward rate in which the
waiting time between consecutive choices becomes close-to-infinite.
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Figure 6 | In some scenarios the optimal policy becomes even more complex than two parallel boundaries in the space of expected reward estimates.
This property might, for example, break down if the utility that the decision maker receives from her choices is not the reward itself but instead a non-linear
function of this reward. If this utility grows sub-linearly in the reward, as is frequently assumed, the decision boundaries approach each other with
increasing expected reward, as higher rewards yield comparably less utility. In such circumstances, optimal choices require tracking of both expected
reward estimates, t; and r,, independently rather than only their difference. To demonstrate this, here we assumed a saturating utility function, Utility = u(r),
which saturates at r— o0 and r— — oo. This could be the case, for example, if rewards vary over a large range over which the subjectively perceived utility
follows a non-linear saturating function of this reward. (In this figure, u is modelled with a tangent hyperbolic function, but the exact details of the functional
form do not qualitatively change the results). The logic of the different panels follows that of Fig. 2. (@) The value function surface for choosing either of two
options. (b) The value surfaces for postponing decision to accumulate more evidence for a period of dt. (¢) The two value surfaces superimposed. (d) The
decision boundary and choice represented in the two-dimensional space of (f1,7,). Note that the distance between decision boundaries is narrower in the

regime where estimated rewards are high on average, resembling ‘RMs'™12, which are more sensitive to absolute reward magnitudes than DDMs.

Dependency of the policy on the prior distribution of reward. As
shown above, optimal value-based decisions are achieved by
accumulating only the difference of reward estimates, as
implementable by DDMs. However, this does not mean that
the absolute reward magnitudes have no effect on the decision
strategy; they affect the decision boundary shape. Figure 5a shows
how the optimal decision boundaries depend on the mean of the
a priori belief about the true rewards across trials. When both
options are likely to be highly rewarding on average, the
boundaries should collapse more rapidly to perform more choices
within the same amount of time. In the light of a guaranteed high
reward, this faster collapse promotes saving time and effort of
evidence accumulation. The boundary shape does not change for
trial-by-trial variations in true rewards (which are a priori
unknown) for the same prior, but only when the prior itself
changes. This sensitivity to the prior and associated average
rewards also differentiates reward rate-maximizing value-based
decision-making from decisions that aim at maximizing the
reward for single, isolated choices (Supplementary Note 1), and
from classic paradigms of perceptual decision-making (Fig. 5b,
see also Discussion section). To summarize, for value-based
decisions that maximize the reward rate, the a priori belief about
average-reward magnitudes affect the strategy (and, as a
consequence, the average reaction time) by modulating the speed
of collapse of the decision boundaries, even if choices within
individual decisions are only guided by the relative reward
estimates between options.

The limits of diffusion models for value-based decisions. For all
scenarios we have considered so far, diffusion models can imple-
ment the optimal decision-making policy. Here, we discuss that
this is still the case for some, but not all generalizations of the task.
For some tasks, the optimal policy won’t even be representable by
parallel boundaries in the (71,7,)-space of expected reward esti-
mates. This is, for example, the case when the prior/likelihood
distributions of reward/evidence are correlated in a particular way
(see Methods section and Supplementary Note 1), or when the
utility function is non-linear (see Fig. 6 for an example).

Thus, diffusion models only seem to implement the optimal
decision strategy under very constrained circumstances. However,
even beyond these circumstances, diffusion models might not be
too far off from achieving close-to-optimal performance, but their
loss of reward remains to be evaluated in general circumstances.
Laboratory experiments could satisfy conditions for diffusion
models to be close-to-optimal even in the presence of a non-
linear utility function. Such experiments often use moderate
rewards (for example, moderately valued food items, rather than
extreme payoffs) in which case a potentially non-linear utility
would be well-approximated by a linear function within the tested
range of rewards.

Discussion
We have theoretically derived the optimal behaviour for value-
based decision-making with noisy evidence about rewards. Our
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analysis revealed that the optimal strategy in a natural problem
setup (where values are linear in rewards) reduces to a DDM with
time-varying boundaries. This result provides a theoretical basis
for why human decision makers seem to feature behaviour in
such tasks that, just as in accuracy-based (conventional
perceptual) decisions, is well captured by DDMs—despite the
profound qualitative difference in task structures (for example, a
two-dimensional value functions for value-based tasks, but not
for accuracy-based ones). Furthermore, we found that the optimal
strategy does not always reduce to DDMs if we assume non-linear
relationships between value and reward (Fig. 6), predicting that
human behaviour may deviates from DDMs in specific experi-
mental conditions (perceived utility following a non-linear
saturating function of this reward; Fig. 6d); interestingly, such
decision boundary structure might be better approximated by
‘correlated RMs! 112,

Simultaneous to our work, another theoretical study by
Fudenberg et al. (unpublished work??) has recently focused on
optimal evidence accumulation and decision-making for value-
based decisions. This study provides a more in-depth
mathematical  characterization of the optimal policy
implemented by diffusion model with collapsing boundaries.
Their analysis, however, is restricted to single, isolated choices,
and—unlike us—does not consider policy changes for reward rate
maximization, nor non-linear utility functions that invalidate the
use of diffusion models.

Whether human and animal use collapsing decision bound-
aries is a topic of debate in the recent accuracy-based>* and value-
based’ decision-making studies. Interestingly, a recent meta-
analysis study reports that whether subject uses collapsing
boundaries varies strongly across tasks and individuals?}. Our
theory suggests that the optimal boundary dynamics is sensitive
to task demands (for example, reward-rate maximization or
correct-rate maximization) as well as the absolute mean reward
magnitude (in contrast to perceptual decision-making; see
Supplementary Note 2). Thus, subjects might switch their
decision strategies depending on those experimental factors,
emphasizing the need to carefully control these factors in further
studies.

Still, in both daily lives and laboratory experiments, humans
can sometimes take a long time to decide between two valuable
options, which might reflect suboptimal behaviour or an
insufficiently fast collapse of the bound. For instance, a recent
empirical study by Oud et al?* reports slower-than-optimal
value-based and perceptual choices of human decision makers in
a reward rate maximization setting. These slow choices might
arise, however, from incompletely or incorrectly learned priors
(Supplementary Note 3), and warrant further investigation.
Another slowing factor is insufficient time pressure induced by,
for example, fixing the number of choices instead of the total
duration of the experiment. In this case, the slow reaction times
may not reflect a suboptimal strategy. For example, Milosavljevic
et al.? have found that subjects can take a surprisingly long time
to decide between two high-valued items but, in this experiment,
subjects had to perform a fixed number of choices without any
time constraint. Their reward at the end of the experiment was
determined by drawing one item among all the items selected by
the subject’. With such a task design, there is no explicit incentive
for making fast choices and, therefore, the optimal strategy does
allow for long reaction times. All of the above cases highlight that
the seeming irrationality of slow choices between two high-valued
options might in fact reflect a completely rational strategy under
contrived laboratory settings. Thus, by revealing the optimal
policy for value-based decisions, the present theory provides a
critical step in studying the factors that determine our decisions
about values.

What do collapsing boundaries in diffusion models tell us
about the neural mechanisms involved in such decisions?
Previous studies concerning perceptual decisions have linked
such boundary collapse to a neural ‘urgency signal’ that
collectively drives neural activity towards a constant threshold”-?>.
However, note that in such a setup even a constant (that is, non-
collapsing) diffusion model bound realizes a collapsing bound in
the decision maker’s posterior belief’. Analogously, a constant
diffusion model bound in our setup realizes a collapsing bound
on the value estimate difference. Furthermore, how accumulated
evidence is exactly coded in the activity of individual neurons or
neural populations remains unclear (for example, compare refs 6,26),
and even less is known about value encoding. For these reasons we
promote diffusion models for behavioural predictions, but for now
refrain from directly predicting neural activity and associated
mechanisms. Nonetheless, our theory postulates what kind of
information ought to be encoded in neural populations, and as
such can guide further empirical research in neural value coding.

Methods

Structure of evidence and evidence accumulation. Here, we assume a slightly
more general version of the task than the one we discuss throughout most of the
main text, with a correlated prior and a correlated likelihood. Further below we
describe how this version relates to the one in the main text. In particular, we
assume the prior over true rewards, given by vector z = (z1,2,)", to be a bivariate
Gaussian, z ~ N(z, X,), with mean Z and covariance X.. In each small time step
i of duration 0t, the decision maker observes some momentary evidence dx; =

(5x1_i, (5x2_i)T ~ N (zdt, Xot) that informs her about these true rewards. After
accumulating evidence for some time ¢ = ndt, her posterior belief about the true
rewards is found by Bayes’ rule, p(z | 6x(0 : t)) o p(z) [T\, p(6x;i | z), and results in

z | 6x(0:t) ~ N(Z(t)(2] "2+ X7 'x(1)), Z(1)),

where we have defined x(f) = Y., 6x; as the sum of all momentary evidence up

to time £, and X(¢) = (X, '+t ") " as the posterior covariance (hereafter,
when X(f) is a function of time it denote the posterior covariance, rather than the
covariance of evidence, X). For the case that experienced reward r=(r;, rz)T equals
true reward z, that is r =z, the mean estimated option reward #(¢) =

(z | 0x(0: t)) is the mean of the above posterior.

Expected future reward estimates. Finding the optimal policy by solving Bell-
man’s equation requires computing the distribution of expected future rewards
#(t + Ot) given the current expected rewards #(¢). Assuming a small ¢ such that
the probability of an eventual boundary crossing becomes negligible, we can find
this distribution by the marginalization

p(F(t+at) | #(t) = ‘/p(i'(t+(3t) | 0x(t+ 0t),#(t))p(dx(t+dt) | #(t))dox(t + dt).

As #(t + Jt) is the mean of the posterior of z after having accumulated evidence up
to time ¢+ 0t, it is given by

F(t+0t) = Z(t+06)X(t) " "#(t) + Z(t + 0t) X " 1ox(t + It),

where we have used x(t+ 0t) =x(t)+ 0x(t -+ 6t) and x(t) = Z(Z(t) B 1i(t) -1 z),
following from the definition of #(¢). Furthermore, by the generative model for the
momentary evidence we have dx(t+ 6t) | z ~ N (2dt, X5t), and our current
posterior is z | #(t) ~ N (#(t), Z(t)), which, together, gives

Ox(t+0t) | #(t) ~ N (#(t)ot, 25t + X(t)5t*). With these components, the mar-
ginalization results in

#(t+6t) | #(t) ~ N(#(t), Z(t+0t) X' Z(t+5t)5t),

where we have only kept terms of order ot or lower. An extended version of this
derivation is given in Supplementary Note 1.

More specific task setups. Here, we consider two more specific task setups. In the
first one, the prior covariance is proportional to the likelihood covariance, that is
X2, =aX. This causes the posterior z to be given by

~1
2| x(0:1) ~ N( AR .U z).
o+t LA A A A o ]

In this case, the posterior mean becomes independent of the covariance, and is a
weighted mixture of prior and accumulated evidence. The distribution over
expected future reward estimates becomes #(t + 0t) | #(t) ~ N(#(t),

(o=t +1) 722). In terms of choosing among lunch menus, a positively correlated
prior could correspond to differently skilled cooks working on different days, such
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that the true rewards associated with the different options fluctuate jointly. A
correlated likelihood might correspond to fresh produce in one menu option

predicting the same in the other menu option. If the likelihood covariance is

proportional to that of the prior, diffusion models still implement the optimal
choice policy.

In the second more specific setup we assume both prior and likelihood to be
uncorrelated, with covariance matrices given by X, = ¢2I and X = ¢L. This is the
setup discussed throughout most of the work, and results in an equally
uncorrelated posterior z, that is for option j given by equation (1). The distribution
over expected future reward estimates is also uncorrelzated, and for option j is given
by #(t+5t) | #(t) ~ N#(t),0 (o, 2 +tc"2) ).

A more general scenario than the ones we have discussed so far is that both the
decision-maker’s a priori belief about the true rewards, as well as the likelihood of
the momentary evidence about these rewards are correlated, but the prior
covariance is not proportional to the likelihood covariance. Once prior covariance
and likelihood covariance are not proportional to each other anymore, diffusion
models fail to implement the optimal policy. Even then, the optimal policy in the
(71, 72)-space of expected reward estimates is still given by two boundaries parallel
to the identity line, such that we can again only bound the difference between these
estimates. However, these are bounds on expected reward estimate differences, and
not on a diffusing particle. Mapping the estimates into a single diffusing particle
requires combining them linearly with combination weights that change over time,
which is incompatible with the standard diffusion model architecture (although it
can be implemented by an extended diffusion model as shown in (ref. 27). Thus,
parallel decision boundaries on expected reward estimates do not automatically
imply that diffusion models can implement optimal decisions.

Evidence accumulation and decisions with diffusion models. For the class

of tasks in which the decision boundaries in (7, 7,) are parallel to the diagonal,

the optimal policy can be represented by two boundaries, &;(¢) and &,(f), on

the expected reward difference A7(t) = 7,(t) — 72(¢), such that evidence is

accumulated as long as &,(t) <A#(t) <&, (), and option 1 (option 2) is chosen as

soon as A7(t) > &, (¢) (A#(t) < &,(t)). To implement this policy with diffusion

models, we need to find a possibly time-dependent function x(t) = f(A#(t), t) that

maps the expected reward difference A7(t) into a drifting/diffusing particle

dx(t) = pdt + 0,dW,, that drifts with drift 4 and diffuses with variance (rﬁ, and

where dW, is a Wiener process. Such a mapping allows us to find the boundaries

Oicq12y(£) = f(&(£), t), that implement the same policy by bounding particle x(f).
For the general case of a correlated prior and correlated likelihood, as discussed

further above, we have #(t) = X(t)X, 'z + X(t)X ~'x, where x(¢) drifts and

diffuses according to x(t) ~ N(zt, Xt). Using x(t) = 2zt + /tI'y, where

0= (n,1,)" ~ N(0,I), and a T that satisfies I'' = X, we find

Ai(t) = (a1 (t) — a(8))t + VE((b11 (1) — bar (), + (bra(t) — baa(£))11,),

with a,(f) denoting the elements of vector a(t) =t~ '2(t)X 'z+ 2(t)X "'z and
bii(t) being the elements of matrix B(t) = X(t)X ~'T. The above describes a
diffusion process with drift and diffusion that vary over time in different ways.
Therefore, we cannot find a function f{ -, ¢) that maps A7(¢) into a diffusing particle
with constant drift and diffusion. As a result, we cannot use diffusion models for
optimal decision-making in this case.

One reason for this incompatibility is that the posterior covariance changes
from prior covariance, £(0)=ZX,, to likelihood covariance, lim; .., X(t) =t 1%,
over time and influences the relation between drift and diffusion. If we set the prior
covariance proportional to the likelihood covariance, that is X, = o, then we can
find a mapping to diffusion models. Using the mean of the posterior z from the
previous section, we find that #(t) = (a1 +¢) " ((t7ta='z+2)t+ /1),
which results in the expected reward difference

1
a4t

A#(t) = (¢ E@ —2) + 21 —22)t+ VEH(ru —120)m + G2 = 722)m)),
where y;; are the elements of I'. Now, as long as z; = z, (a priori, both options have
the same true reward), we can use the mapping f(A#(t),t) = (¢! +t)A#(t) to
map the boundaries in the diffusion model space, which features a particle that
drifts with drift u =z, — z, and diffuses with variance

2 2
oy =0n—72)" + 012 —712)"

The setup that is discussed throughout the main text becomes even simpler,
with a diagonal prior covariance, X, = ¢2I, and a diagonal likelihood covariance
X = ¢°I. Using the mean of the posterior in equation (1), and again assuming
Z| = 2, a similar argument as before shows that the mapping f(A?(t),t) =
(62 /02 + t) A#(t) allows us to implement optimal decision-making with a diffusion
model with drift =z, —z, and diffusion variance ¢2 = 2¢7.

Bellman's equation for single isolated trials. The rationale behind optimal

decision-making in single, isolated trials is explained in the main text and is here
repeated only briefly. At each point in time f after onset of the choice options, the
decision maker performs the action that promises the largest sum of expected

rewards from that point onwards (including the cost for accumulating evidence).
Given that at this time the decision maker holds a posterior belief over values with
sufficient statistics (¢, 71, #2), the sum of expected rewards is denoted by the value
function V(t,#, 7). The available actions are to either choose option one or two,

10

or to accumulate more evidence and decide later. Deciding immediately, the
decision maker would choose the option that is expected to yield higher reward,
such that the value associated with deciding is V4(1,7,) = max{#,#}. Accu-
mulating evidence for another time period ot comes at cost cdt but is expected to
yield reward V(¢ + 0t, 7 (¢ + Ot), 72 (¢ + 0t)). Here, the expectation is over how the
sufficient statistics are expected to evolve when accumulating more evidence, and is
given by the bivariate Gaussian #(f 4 dt) | #(¢) that we have derived further above.
Thus, the value for waiting is (V (¢ + 0t, 71 (t + dt), 72 (t + dt))) — cot. At any time ¢,
the decision maker chooses the action associated with the higher value, which leads
to Bellman’s equation, as given by equation (3) in the main text. This equation on
one hand defines the value function, and on the other hand determines the optimal
policy: as long as the value for waiting dominates, the decision maker ought to
accumulate more evidence. Once the value for deciding becomes larger, it is best to
choose the option that is expected to yield the higher reward.

Bellman's equation for reward rate maximization. In order to find Bellman’s
equation and the associated optimal policy that maximizes the reward rate, we
borrow concepts from average-reward DP (refs 7,28). We do so to avoid that the
value function associated with the first trial becomes infinite if this trial is followed
by an infinite number of trials that, in total, promise infinite reward. Average-
reward DP penalizes the passage of some time Jt by cost pdt, where p is the reward
rate, equation (4), which equals the average expected reward per unit time. With
this additional cost, and the value function turns into the ‘average-adjusted value’
function V(t, 7,7, p), which is the same for each trial in the sequence, and is
defined as follows. Immediate decisions are expected to be rewarded by
max{#,7,}, followed by some waiting time ¢,, that comes at cost pt,,. After this
waiting time, the decision maker holds belief (,71,7,) = (0,21,2,) (recall that
denotes the prior mean for option j) at the onset of the next trial, and therefore
expects reward V(0,Z;,%, p) in this trial. Thus, the value for decision immediately
is given by max{#,7,} — pt,, + V(0,z1,2, p). The value for accumulating more
evidence is the same as for single, isolated trials (see previous section), only that the
cost increases from cdt to (c + p)ot. Bellman’s equation is again given by taking the
maximum over all values. In contrast to single, isolated trials, the policy arising
from Bellman’s equation is invariant to global shifts in the value function. That is,
we can add some constant C to the average-adjusted value associated with all
sufficient statistics, such that V(t,71, 7, p) — V(t, 71,72, p) + C, and would
recover the same policy?®. As a result, we can arbitrarily fix the average-adjusted
value for one such statistic, and all other values follow accordingly. For
convenience, we choose V(0,Z;,%,, p) = 0, which results in Bellman’s Equation

Va(i1, 72, p),

Vit b b2, p) :max{<\7(t+5t,?1(t+6t),?z(t+(5t),p) | F1a(t) :ﬁ.z>7(c+p)5z}‘

where Vy(#1, 72, p) is given by Vy(#1, 2, p) = max{#,#,} — pt,. This also gives us
a recipe to find p : V(0,%1,%,p) = 0 will only hold for the correct p, such that we
can compute V(0,Z,2,, p) for some arbitrary p, and then adjust p until
V(0,21,2,, p) = 0 holds. This is guaranteed to provide the desired solution, as
V(0,21,%, p) is strictly decreasing in p as long as £,,>0 (rather than t,, = 0; see
Supplementary Note 1).

Bellman's equation for maximizing the correct rate. We now move to assuming
that, all that matters to the decision maker is to identify the higher rewarded option,
irrespective of the associated true reward. To do so, we abolish the identity between
true and experienced reward, z and r, and instead assume that an experienced reward
of =Ry is associated with choosing option j if z;>z;, i#j, and a reward of
T = Tincorr With the alternative choice. This captures the case of maximizing the
correct rate for value-based decisions, and also relates closely to simpler perceptual
decisions in which the decision maker only gets rewarded for correct choices (for
example, ref. 29), as long as the momentary evidence is well-approximated by a
Gaussian. Evidence accumulation in this setup remains unchanged from before, as
the posterior z | 0x(0 : £) contains all information required to compute the expected
experienced reward. This posterior is fully specified by the sufficient statistics
(t,21,%2), where we have defined zj = z; | 0x(0: ¢t).

The value function for single, isolated trials changes in two ways. First, it is now
defined over (t,z;,2,) instead of (¢,7,7,) (previously we had
(t,71,72) = (t,21,22), which does not hold anymore). Second, the value for
deciding changes as follows. When choosing option one, the decision maker
receives reward R, with probability p(z; >z, | dx(0 : t)) and reward Ri,corr with
probability p(z; <z, | 0x(0 : t)). Thus, the expected reward associated with this
choice is Reorep(21>22 | 0x(0 : £)) + RincorrP(21 < 22 | 0x(0 : t)). The expected
reward for option two is found analogously, and results in the value for deciding

Reorep(z21>25 | 0%(0 : t)) + Rincorrp(z1 < 22 | 6x(0 : t))<}

Valt,21,2) = ‘“a"{ Reoup(z2>21 | %0 : 1)) + Rinconrp(22 < 21 | 0x(0 2 1))

As the posterior z | 0x(0 : t) is Gaussian in all task setups we have considered, the
probabilities in the above expression are cumulative Gaussian functions that are
functions of the sufficient statistics (t,Zz;,2,). Besides these two changes, the value
function and associated Bellman Equation remain unchanged (see Supplementary
Note 1 for explicit expressions).

Moving from single, isolated trials to maximizing the correct rate over
sequences of trials requires the same changes as when moving from single trials to
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maximizing the reward rate. In particular, the value function turns into the
average-adjusted value function that penalizes the passage of some time Jt by pdt,
where p is now the correct rate rather than the reward rate. The correct rate is still
the average experienced reward (minus accumulation cost) per unit time, but—due
to the changed definition of experienced reward—does not anymore relate to the
true reward, but only if the option associated with the larger associated true reward
was correctly identified. This causes the value for deciding to be additionally
penalized by pt,,. The value for waiting some more time J¢ to accumulate more
evidence incurs an additional cost pdt, but remains unchanged otherwise. The
average-adjusted value function is again invariant under addition of a constant,
such we choose V(0,Z;,%,,p) = 0. This fully specifies the value function and
associated Bellman equation, which is provided in Supplementary Note 1.

Linearity of value function for waiting. Here, we show that value function for
waiting increases linearly in line parallel to the diagonal within the (71,7, )-space,
which is required to show that the optimal decision boundaries are parallel to the
diagonal. We will do so by a backwards induction argument in time. The base case
for the induction argument relies on the shape of the value function for large times,
t— 00. For such times, the decision maker incurs a large cost for accumulating
evidence up until that time, and also expects to gain little further insight into the
true rewards when accumulating more evidence. As a consequence, at such times it
will always be better to decide immediately rather than to accumulate more evi-
dence. Therefore, the value function will be given by the value for deciding,
V(t,#1,%,) = Vq(#1,72), which, as discussed in the previous paragraph, is linearly
increasing in lines parallel to the diagonal.

The inductive step will show that, if the value function at time ¢+ 0t is linearly
increasing in lines parallel to the diagonal, then so it the value of waiting at time ¢,
and, as a consequence, also the value function at time t. The value of waiting at
time ¢ is given by V(t+ dt,7,(t + Jt), 72 (¢ + t)) — cdt, where the expectation is
over future expected rewards 7 (t + 0t) and #,(t 4 ot), and reflects the uncertainty
about how the reward estimate evolves over time. For our case, the distribution
describing this uncertainty is a bivariate Gaussian (as described in the previous
sections), centred on the current expected rewards, (71,7,), and with a covariance
that only depends on . Its shift-invariant shape causes the expectation
V(t+ ot, 71 (t+ Jt), 7,(t + Jt)) to be a smoothed version of V(¢ + ot, 7, 7,) that, as
V(t+t,71,,), linearly increase in lines parallel to the diagonal. The value of
waiting is this expectation shifted by the constant momentary cost — cdt, and
therefore also has this property (Fig. 3b). This establishes that, if the value function
at time £+ 6t is linearly increasing in lines parallel to the diagonal, then so is the
value of waiting at time ¢. The value function at time ¢ is the maximum over the
value for deciding and that for waiting. As both increase linearly in lines parallel to
the diagonal, so does this value function, V (¢, 71,,) (Fig. 3c,e). This completes the
inductive step.

The induction argument shows that both value for deciding as well as that for
waiting increases linearly with slope one in lines parallel to the diagonal for all t.
This immediately means that, if they intersect at some point (7}, ;), then they will
intersect at the whole line (7] + C,#; + C) that is parallel to the diagonal (Fig. 3c).
As a consequence, the decision boundaries, which lie on the intersection between
these two values, are parallel to this diagonal for all times t. See Supplementary
Note 1 for the proof of the same property with an argument that does not rely on
induction.

Finding the optimal policy numerically. To find the optimal policy for the above
cases numerically, we computed the value function by backward induction®’, using
Bellman’s equation. Bellman’s equation expresses the value function at time f as a
function of the value function at time ¢+ Jt. Therefore, if we know the value
function at some time T, we can compute it at time T — Jt, then T — 2t, and so on,
until time t=0. We usually chose some large T, significantly beyond the time
horizon of interest, at which we set V(T,2;,2;) = V4(21,2,), independent of the
value at any ¢> T. For any time t< T, we represented the value function over the
remaining two parameters (21,2;) (or (71,7,) in the value-based task) numerically
over an equally space two-dimensional grid. This grid allowed us to compute the
integral that represents the expectation over the future value numerically by the
two-dimensional convolution between future value Vt + dt,1t + 6t,22t 4 5t and
transition probability distribution P(2(t + 6¢) | 2(¢)). For any such time, the
optimal decision boundaries were found on this grid by the intersection of the
value for deciding and that for waiting. We handled boundary effects in space and
time by significantly extending the grid beyond the area of interest and cropping
the value function after fully computing it over the extended range.

In the reward rate and correct rate case, computing the value function requires
knowledge of the corresponding rate p. This p was unknown, but could be found
by the condition V(0,2,2,p) = 0. V(0,%1,2, p) is strictly decreasing in p
(Supplementary Note 1), such that we could initially assume an arbitrary p for
which we computed V(0,21,%, p). The correct p was then found by iterating the
computation of V(0,Z,2,, p) within a root finding procedure until
V(0,21,2,p) = 0.

The following parameters were used to generate the figures. We set the prior
mean as z; = z, = 0, except for Fig. 5 where we varied z; + z, while fixing z; = z,.
The prior variance was g2 = 16, and observation noise o2 = 4, for both options.
We used a grid spanning — 10 < z; <10 and —10 < 2, < 10, in steps of 0.4 in

both dimensions. The maximum time to consider was set to T=>5s, with time-
steps of size 0t =10.005s for backward induction. To focus on the effect of reward
rate, we assumed no explicit cost of evidence accumulation, c=0 and a waiting
time ¢, set to 0.5s.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information File.
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