

Archive ouverte UNIGE

https://archive-ouverte.unige.ch

Article scientifique

Commentaire 2021

Published version

Open Access

This is the published version of the publication, made available in accordance with the publisher's policy.

The persistent illusion of using coronary angiography alone to guide decision-making for myocardial revascularization

Cimci, Murat; Degrauwe, Sophie; Iglesias, Juan Fernando

How to cite

CIMCI, Murat, DEGRAUWE, Sophie, IGLESIAS, Juan Fernando. The persistent illusion of using coronary angiography alone to guide decision-making for myocardial revascularization. In: European journal of cardio-thoracic surgery, 2021, vol. 59, n° 1, p. 283. doi: 10.1093/ejcts/ezaa200

This publication URL: https://archive-ouverte.unige.ch/unige:161031

Publication DOI: 10.1093/ejcts/ezaa200

© The author(s). This work is licensed under a Other Open Access license https://www.unige.ch/biblio/aou/fr/guide/info/references/licences/

model. In addition, the web application offers an intuitive and practical application to estimate the individual mortality risk of patients with acute type A dissection. Based on this information, it is possible to perform an external validation of the model we propose by collecting the relevant patient data, performing logistic regression modelling including variable selection and then comparing the results. Nevertheless, for reasons of transparency and following the proposed guidelines for data reporting, we can provide the information postulated by reporting the predictive model with its predictive equation. The prediction equation is as follows:

 $Log(P/(1 - P)) = -3.64121 + 0.01771 \times age (in years) + 0.16853 \times sex$ (1 = male) + 0.54945 \times catecholamines at referral + 1.11547 \times resuscitation + $0.66739 \times \text{need for intubation} - 0.21789 \times \text{aortic valve regurgitation} \ (1 =$ grade III or IV) + 0.36599 \times hemiparesis + 0.62578 \times coronary malperfusion + 0.55821 × visceral malperfusion + 0.24675 × peripheral malperfusion + 0.25096 \times dissection extension to aortic arch + 0.22098 \times dissection extension to supra-aortic vessels + 0.36676 × dissection extension to descending aorta + 0.24252 × primary entry tear aortic arch + 0.57208 × previous cardiac

The category 'unknown or other' was complemented for practical reasons into the provided web application and was converted to the value of 0 in the respective variables. With this information we hope that we could satisfy Dr Sartipy's points and help to facilitate the future validation projects and we look forward to finding the results of external validation in the literature.

REFERENCES

- Sartipy U. Reporting on the development of risk prediction models. Eur J Cardiothorac Surg 2021;59:282.
- Czerny M, Siepe M, Beyersdorf F, Feisst M, Gabel M, Pilz M et al Prediction of mortality rate in acute type A dissection-the German Registry for acute type A aortic dissection score. Eur J Cardiothorac Surg 2020; doi:10.1093/ejcts/ezaa156.

doi:10.1093/ejcts/ezaa249 Advance Access publication 9 August 2020

The persistent illusion of using coronary angiography alone to guide decision-making for myocardial revascularization

Murat Cimci (, Sophie Degrauwe () and Juan F. Iglesias () * Division of Cardiology, Geneva University Hospitals, Geneva, Switzerland

Received 30 March 2020; accepted 9 May 2020

Keywords: Myocardial revascularization • Coronary physiology • Heart valve disease

We read with great interest the article by Del Forno et al. [1], in which 77 patients with ≥50% but <70% coronary artery stenoses who underwent elective aortic or mitral valve surgery without myocardial revascularization were evaluated at a median follow-up duration of 4.3 years. We would like to highlight crucial features concerning the assessment of angiographically intermediategrade coronary stenoses in patients undergoing valvular surgery. Coronary angiography has traditionally been accepted for the assessment of coronary artery stenosis severity and to guide the decision-making for myocardial revascularization [2]. Recent evidence indicates however that discordances between angiographically derived ≥50% diameter stenosis (DS) and haemodynamically significant coronary artery stenosis occur in nearly one-third of patients [3]. The optimal diagnostic DS threshold also varies according to the amount of viable myocardium subtended, with a lower DS cut-off observed in coronary segments subtending a large amount of myocardial mass compared to coronary lesions supplying smaller areas [3]. This anatomic approach is therefore unlikely to correctly identify lesions that are truly flow-limiting and may result in inappropriate treatment decisions. In the present study, the lack of preoperative assessment for both myocardial ischaemia and viability in coronary stenoses deferred from revascularization may explain low event rates and the absence of between-group differences in clinical outcomes as significant clinical benefits from myocardial revascularization compared to conservative management may hardly be expected in stable coronary artery disease patients with mostly functionally non-relevant coronary lesions. Furthermore, the study did not include patients with angiographically intermediate left main coronary artery stenoses, which are usually underestimated using the 50% DS cut-off [3], thus precluding conclusions with regard to the safety of myocardial revascularization deferral based on coronary angiography alone in these high-risk patients. Physiological assessment of coronary lesions in patients with valvular disease remains challenging because traditional noninvasive and invasive indices of coronary stenosis severity have not been validated in this setting [2]. Severe heart valve disease impacts on coronary microcirculation and influences coronary haemodynamics. Recent evidence suggests that invasive pressure-derived resting indices of coronary stenosis severity may be less vulnerable to the confounding effect of a stenotic aortic valve than hyperaemic indices such as the fractional flow reserve [4], but further trials elucidating the close interplay between coronary physiology and heart valve disease for clinical decision-making are still needed.

REFERENCES

- Del Forno B, Ascione G, Lapenna E, Trumello C, Ruggeri S, Belluschi I et al Is myocardial revascularization really necessary in patients with >50% but <70% coronary stenosis undergoing valvular surgery? Eur J Cardiothorac Surg 2020; doi:10.1093/ejcts/ezaa047.
- Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ et al 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 2017;38:2739-91.
- Toth G, Hamilos M, Pyxaras S, Mangiacapra F, Nelis O, De Vroey F et al Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart I 2014:35:2831-8.
- Ahmad Y, Götberg M, Cook C, Howard JP, Malik I, Mikhail G et al Coronary hemodynamics in patients with severe aortic stenosis and coronary artery disease undergoing transcatheter aortic valve replacement: implications for clinical indices of coronary stenosis severity. JACC Cardiovasc Interv 2018:11:2019-31.

doi:10.1093/ejcts/ezaa200 Advance Access publication 22 July 2020

Reply to Cimci et al.

Benedetto Del Forno (D a.b.*, Guido Ascione (D a.b., Ottavio Alfieriab and Michele De Bonis (1)

^a Department of Cardiac Surgery, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

*Corresponding author. Department of Cardiac Surgery, IRCCS San Raffaele Hospital, 'Vita-Salute' San Raffaele University, Via Olgettina, 60, 20132 Milano, Italy. Tel: +39-02-26437102; fax: +39-02-26437125; e-mail: delforno.benedetto@hsr.it (B. Del Forno).

Received 7 May 2020; accepted 9 May 2020

Keywords: Moderate coronary stenosis • Aortic valve replacement • Mitral valve replacement • Mitral valve repair • Intentional omission strategy • Coronary artery bypass grafting

^{*}Corresponding author. Department of Cardiovascular Surgery, University Heart Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany. Tel: +49-761-27028180; fax: +49-761-27025500; e-mail: martin.czerny@universitaets-herzzentrum.de (M. Czerny).

^{*}Corresponding author. Division of Cardiology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, 1211 Geneva 14, Switzerland. Tel: + 41 (0)22 372 72 00; e-mail: juanfernando.iglesias@hcuge.ch (J.F. Iglesias).

^b Department of Cardiac Surgery, IRCCS San Raffaele Scientific Institute, Milan,