
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Thèse 2009 Open Access

This version of the publication is provided by the author(s) and made available in accordance with the

copyright holder(s).

A systematic language engineering approach for prototyping domain

specific modelling languages

Venceslau Pedro, Luis Miguel

How to cite

VENCESLAU PEDRO, Luis Miguel. A systematic language engineering approach for prototyping domain

specific modelling languages. Doctoral Thesis, 2009. doi: 10.13097/archive-ouverte/unige:11946

This publication URL: https://archive-ouverte.unige.ch/unige:11946

Publication DOI: 10.13097/archive-ouverte/unige:11946

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:11946
https://doi.org/10.13097/archive-ouverte/unige:11946

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Centre Universitaire d’Informatique Professeur D. Buchs

A Systematic Language Engineering
Approach for Prototyping Domain

Specific Modelling Languages

THÈSE

présentée à la Faculté des sciences de l’Université de Genève
pour obtenir le grade de Docteur ès sciences, mention informatique

par

Luis Miguel VENCESLAU PEDRO

du

Portugal

Thèse No 4068

Genève
Atelier d’impression ReproMail

2009

Acknowledgements

This dissertation would not have been possible without the support of very
important people.

I would like to thank to Prof. Didier Buchs for the opportunity to work
with him and his team at the University of Geneva. He provided the necessary
environment and resources that allowed me to develop the present work. I
express my recognition for his insights on the most formal aspects and their
importance in the context of this work.

Second, I would like to thank to professors João Araújo, Nicolas Guelfi,
Philipe Dugerdil and Shane Sendall that accepted to be members of this
thesis jury. It is my pleasure to have such a distinct group of persons and
professionals to evaluate my work.

I’d also like to thanks to all members of the Software Modelling and
Verification Group of the University of Geneva. For all their comments and
hints in several stages of this work. It was a pleasure to work with all of
them. A special thank you to Alexis Marechal, Steve Hostetler and Vasco
Amaral that where particularly helpful in the last phase of this work.

To Adrien Chantre, Gaelle Ribordy, Helio de Sousa, Judith Dirk, Kerstin
Brinkmann, Nadine Oberli, Micaela Santos, Tobias Brosch and Yanick Vuille.
All of them, as well as other friends, created an environment that made me
feel home.

I am also thankful to Sergio Coelho for all his motivation and help with
my integration in Geneva. Above all for his generous friendship.

I want to thank to Matteo Risoldi that have been an ’out of the box’
friend and colleague, and that always created the best possible environment.
I am very fortunate for all his help.

My great acknowledgment to my long time friends that have always been
supportive of my decisions. To Marta Carvalho that has constantly a ’hi’
that makes me laugh; to Dinis Klose that has encouraged me without any
questions, that helps me anytime he can and is most of the time right; to
Nuno Gaspar for all his good mood and constant search for a nice place for
having fun; to Nuno Barros that usually helps in the most incredible things

i

and that is able to do them in a way that amazes me; to Ruben Coelho my
deep appreciation for all his serenity, affection and phone calls. All of them
helped me to grow up as a person and professional.

I am grateful to my family that helped me to have the opportunities for
continuing my studies. A very special thank you to Filipa Burgo, Iolanda
Burgo and Eǵıdio Ramos for their interest, encouragement and help whenever
needed.

Finally, I am extremely grateful to Joana who was always present. For
her support, her patience, her understanding, her encouragement. For always
being capable of providing me with the energy to look forward. For all her
original comments and sense of humor. For all the small things that only she
is capable of.

For Joana and all her support.

Sommaire

Language Driven Engineering (LDE) est un sujet d’application et de recherche
relativement récent. Ce qui est encore plus récent est l’intèrêt grossissant
porté par la communauté s’intéressant au développement des Domain Spe-
cific Modelling Language (DSML) dans le domaine de l’ajout de sémantique
aux DSMLs. Pour certains, la sémantique devraient être fournies dans un
dialecte spécifique au domaine, alors que pour d’autres, la sémantique de-
vraient être données en utilisant une méthodologie générique et un framework
d’enrichissement sémantique. Sans prendre en considération les différences
entre ces conjectures concernant le ”comment”, il subsiste malgré tout un
consensus sur le fait que la sémantique est, de nos jours, un sujet de recherche
très important dans la communauté des DSMLs. Une preuve de cela est la
récente création d’un groupe de travail examinant les aspects de sémantique
relatives aux DSMLs dans le dernier workshop OOPSLA DSM’08.

La sémantique des langages et la validation de son comportement sont
deux aspects très interconnectés. Il est donc naturel d’espérer qu’une fois que
nous serons capable de définir la sémantique des langages nous souhaiterons
les valider. Cette opération est évidemment d’une énorme importance puisque
la valeur d’un langage est très limitée si ces programmes/modèles ne se com-
portent pas de la faon souhaitée.

Comme dans la plupart des domaines techniques les processus de valida-
tion sont souvent obtenus en utilisant des techniques de prototypage. Bien
que considéré comme un moyen de validation de concept ou/et d’implémentation
très puissant, les techniques de prototypage sont généralement négligées: leur
complexité et leurs difficultés à mettre en oeuvre dans la pratique et dans
des environnements de production empêchent leur usage systématique.

Dans ce document nous proposons un framework conceptuel et une possi-
ble implémentation d’un environnement permettant le prototypage de DSMLs.
Nous nous connecterons sur les aspects de diversité et d’évolution des lan-
gages. Il est à la fois prévu qu’un DSML évolue dans le temps et que
les ingénieurs de langage soient capable de réutiliser certains concepts déjà
implémentés. Le travail ayant donné origine à ce document se concentre

v

sur la manière de résoudre les problèmes d’évolution et de réutilisation des
langages.

Afin de mieux comprendre les problématiques impliquées, nous allons
commencer par présenter, de la faon la plus pédagogique possible, une étude
exhaustive sur les méthodologie et les environnements de développement des
DSMLs. Nous allons comparer les divers outils et techniques disponibles et
nous mettrons en évidences les contributions se concentrant sur le processus
d’enrichissement sémantique des DSMLs ainsi que sur son application. Cette
thèse se poursuivra sur la proposition d’un framework supportant la compo-
sition des aspects syntaxiques et sémantiques des DSMLs. Une vue formelle
des aspects méthodologiques sera présentée ainsi qu’une implémentation d’un
DSML. L’objectif principal de ce document est de présenter les développements
couvrant tout les aspects de l’apport sémantique aux DSMLs afin de soutenir
le prototypage rapide et un niveau élevé de réutilisation.

En résumé, cette thèse se base sur une approche formelle en ce qui
concerne la description de la méthodologie et fournit trois cas d’études de
spécification de DSML distincts. En utilisant plusieurs ”standards” bien
connus de la communauté, ce document propose une méthode cohérente et
intégrée de prototypage et de développement des DSMLs.

Abstract

Language Driven Engineering (LDE) is a fairly recent subject of application
and research. Even more recent is the growing interest of providing oper-
ational semantics to DSMLs. For some, semantics should be provided in
a domain-specific dialect, whereas for others, semantics should be provided
using a generic methodology and framework for semantics’ enrichment. Re-
gardless of the difference between conjectures concerning the ’how’, it is
consensual that semantics is becoming a very important research topic in
the DSML community. Recent evidence is the working group created for dis-
cussing semantic-related aspects of DSMLs in the latest OOPSLA DSM’08
workshop.

Language semantics and validation of its behaviour are two aspects that
are very interconnected. It is to be expected that once we are able to define
a language semantics, we will want to validate it. This operation is very
important since language value is very limited if its programs/models do not
behave as expected.

As in most of the engineering areas, the validation process is often achieved
by using prototyping techniques. Although considered to be a very powerful
way of validating a concept and/or an implementation, prototyping tech-
niques are generally neglected due to their complexity and difficulty to use
in practical and production environments, thus preventing systematic usage.

In this document, we propose a conceptual framework and a possible
implementation for an environment that supports DSML prototyping. We
focus on the diversity and evolution aspects of the language. It is expected
that a DSML evolves over time but it is also expected that language engineers
could re-use several of the concepts implemented. This thesis focused on
tackling problems of language evolution and re-usability.

To better understand the problematics involved, we first started providing
an exhaustive survey over the methodologies and the DSMLs development
environments trying to be as pedagogical as possible. We compared several
techniques and tools available. We also enhanced the contributions that
focus on the process for DSML semantics enrichment and its application.

vii

The dissertation continues with a proposal for a framework that supports
syntactical and semantical composition of domain specific concepts. A formal
overview of the methodological aspects is presented. A description of a DSML
for implementing these notions is also described. The main goal of this
thesis is to present the developments that cover all facets when providing
semantics to DSML in order to support rapid prototyping and a high level
of re-usability.

To summarise, this thesis is based on a formal approach for the method-
ology description and provides a set of three distinct case studies for DSML
specification. Using several well known standards in the Software Language
Engineering (SLE) community, this thesis proposes a coherent and integrated
method for DSML prototyping development.

Contents

Acknowledgements i

Sommaire v

Abstract vii

1 Introduction 1
1.1 Context . 1
1.2 Domain Specific Modelling Languages 3
1.3 Motivation . 4
1.4 Contribution . 6
1.5 Document Organisation . 7

2 State of the Art: Methodologies 9
2.1 Unified Modeling Language 9
2.2 Meta-Modeling . 10
2.3 Model Driven Architecture (MDA) 12
2.4 Model Transformations . 13
2.5 Query / Views / Transformations 16
2.6 Meta-Model Composition . 17
2.7 Package Merge . 19
2.8 Model Extension . 21
2.9 Transformation Composition 22
2.10 Semantic Anchoring . 23
2.11 Summary . 24

2.11.1 Merging New and Old Ideas 24

3 State of the Art: Tools 27
3.1 Domain Specific Modelling Languages 27
3.2 Domain Specific Languages Development Environments 28

3.2.1 Generic Modeling Environment (GME) 29

ix

3.2.2 Atom3 . 30

3.2.3 Eclipse Modeling Framework (EMF)/Graphical Mod-
eling Framework (GMF) 31

3.2.4 MetaEdit+ . 32

3.2.5 Microsoft DSL Tools 33

3.3 Summary . 34

4 Model Structure Formalisation 37

4.1 ECore Formalism . 37

4.2 Metamodels Formalisation . 38

4.2.1 Metamodel example 40

4.3 Models formalisation . 42

4.3.1 Model Example . 44

4.4 Summary . 46

5 Tools For Domain Composition 49

5.1 Transformation of Domain Concepts 49

5.2 CO-OPN as Target Formalism 50

5.2.1 Algebraic Abstract Data Type Module 53

5.2.2 Class Module . 56

5.2.3 Context Module . 62

5.2.4 Sub-typing and Inheritance in Concurrent Object Ori-
ented Petri Nets (CO-OPN) 66

5.3 ATL as Transformation Language and Engine 68

5.3.1 Structure of ATL Module 69

5.3.2 ATL Data Types . 72

5.3.3 ATL Example . 74

5.4 Summary . 76

6 Providing Semantics for Domain Models 77

6.1 General Approach . 78

6.2 Metamodel Parameterization 80

6.2.1 Metamodel Parameterization Example 82

6.2.2 Models Composition 88

6.3 Transformation Definition . 88

6.4 Parameterized Transformations 89

6.5 Domain Specific Modelling Language (DSML) Definition . . . 93

6.6 Transformation Composition in Action 94

6.6.1 Railway System DSML Transformation Composition . 99

6.7 Target Languages . 101

7 CoPsy Environment 103

7.1 Problem Analysis . 103

7.2 CoPsy Implementation . 107

7.2.1 CoPsy Metamodel . 107

7.3 Defining a CoPsy Specification 111

7.3.1 Specification of Metamodel Composition 111

7.3.2 Specification of Transformation Composition 113

7.3.3 Specification of Models 114

7.4 CoPsy Behaviour . 117

7.4.1 Composition of Metamodels 117

7.4.2 Models Composition 118

7.4.3 Transformation Composition Algorithm 119

7.4.4 Transformation Execution 121

8 Case Studies 123

8.1 Moving Entities . 123

8.1.1 Generic Moving Entities Transformation 124

8.1.2 The Railway System DSML 127

8.1.3 The Robot System DSML 132

8.2 Control Systems DSML . 136

8.2.1 Generic Cospel DSML 137

8.2.2 Event Model extension of Cospel 139

8.2.3 Hierarchical Model Extension of Cospel 142

8.2.4 Geometry Model extension of Cospel 143

8.3 Multi-Flavours Petri Nets . 148

8.3.1 Generic Petri Nets . 148

8.3.2 Standard Petri Nets 149

8.3.3 Colored Petri Nets . 151

8.3.4 Algebraic Petri Nets 154

8.4 Comparison Between Case Studies 160

8.5 Summary . 160

9 Conclusions 163

9.1 Discussion . 163

9.2 Possibilities for Future Work 164

9.3 Outcome . 165

A Acronyms 169

B CO-OPN Example Specifications 171
B.1 CO-OPN Booleans ADT . 171
B.2 CO-OPN Machine Class . 173
B.3 CO-OPN Machine Context Specification 176

C Moving Entities Transformations 179
C.1 Generic Moving Entities DSML Transformation 179
C.2 Train Entity Transformation 182
C.3 Railay System DSML Transformation 185
C.4 Robot Entity Transformation 190
C.5 Robot System DSML Transformation 195

D COSPEL Transformations 197

E Thesis Presentation 205

References 245

List of Figures

1.1 Domain Specific Modelling Language (DSML) Challenges . . . 3

2.1 Metamodelling Framework 4-layers Architecture 11
2.2 Specification of UML2 Package Merge 20
2.3 UML2 Package Merge Result 20
2.4 Metamodel Extension: Petri Nets Metamodel prior to Extension 21
2.5 Metamodel Extension: Marking Extension 22
2.6 Metamodel Extension: Petri Nets Metamodel with Marking

Extension . 22

4.1 Ecore Metamodel . 38
4.2 Simplified Petri Nets Metamodel 40
4.3 Petri Nets Two State Machine Model 44
4.4 Conformity Relation between Petri Nets Model and Metamodel 47

5.1 CO-OPN metamodel: focus on CO-OPN modules 52
5.2 CO-OPN metamodel: focus on ADT Interface 54
5.3 CO-OPN metamodel: focus on ADT Body and Axioms Defi-

nition . 55
5.4 CO-OPN metamodel: focus on Class Interface 57
5.5 CO-OPN metamodel: focus on Class Body without Axiom

definitions . 58
5.6 CO-OPN metamodel: focus on Class Body Axiom definition . 60
5.7 CO-OPN metamodel: focus on Context Interface 63
5.8 CO-OPN metamodel: focus on Context Body 65
5.9 CO-OPN metamodel: focus on Module Inheritance 66
5.10 An overview of ATL Model Transformation 68
5.11 ATL Data Types metamodel 73
5.12 An overview of ATL Model Transformation 75

6.1 Composition Framework Overview 78
6.2 Metamodel Extension by Parameterization 82

xiii

6.3 Generic Moving Entities DSML Metamodel mmDSMLgen . . 83
6.4 The Train Entity Metamodel mmTrain 84
6.5 Railway System Metamodel mmDSMLRailwaySystem 85
6.6 The Robot Entity Metamodel mmRobot 86
6.7 Robot System Metamodel . 87
6.8 Relationship between Metamodels and Transformations 90
6.9 Parameterization of Transformations (without instances) . . . 91
6.10 Instantiation of the Transformation Parameterization 92
6.11 Transformation Composition for Edge Elements - View 1 . . . 95
6.12 Transformation Composition for Edge Elements - View 2 . . . 96
6.13 Transformation Composition for Edge Elements - View 3 . . . 96
6.14 Transformation Composition for non-Edge Elements - View 1 . 97
6.15 Transformation Composition for non-Edge Elements - View 2 . 98
6.16 Transformation Composition for non-Edge Elements - View 3 . 98
6.17 Example of Edge and non-Edge Metamodel Elements 99
6.18 Example of Transformation Composition for an Edge Element 100
6.19 Example of Transformation Composition for an Non-Edge El-

ement . 101

7.1 CoPsy Use Case Diagram . 104
7.2 CoPsy Execution Activity Diagram 106
7.3 CoPsy Metamodel . 107
7.4 CoPsy Specification of Configuration Parameters 112
7.5 CoPsy Specification of ϕ Mapping Function 113
7.6 CoPsy Specification emphasis in ψ Mapping Function 115
7.7 Models Definition in a CoPsy Specification 115

8.1 Metamodels for the Moving Entities Case Study 125
8.2 Composed Metamodels for the Moving Entities Case Study . . 130
8.3 Robot Entity model and Transformation to CO-OPN 136
8.4 Generic Cospel Metamodel: mmCospelgen 137
8.5 mmEvent Cospel Metamodel 139
8.6 Event Extension of Cospel: mmCospelevent metamodel 140
8.7 Transformation substitution for the Event model extension . . 141
8.8 Parameterization of Transformations for the Event model ex-

tension . 142
8.9 mmHierarchy Cospel Metamodel 143
8.10 Transformation substitution for the Hierarchical model extension144
8.11 mmGeometry Cospel Metamodel 145
8.12 Transformation composition for the Geometry model extension 145
8.13 Full Cospel Metamodel mmCospelfull 147

8.14 Generic Petri Nets Metamodel: mmGenPN 148
8.15 Standard Petri Nets Extension Parameter: mmPNStandard . 150
8.16 Standard Petri Nets Metamodel: mmStandardPN 151
8.17 Standard Petri Nets Transformation Substitution Excerpt . . . 152
8.18 colour Petri Nets Extension Parameter: mmPNColor 152
8.19 Colored Petri Nets Metamodel: mmColoredPN 153
8.20 colour Petri Nets Transformation Substitution Excerpt 154
8.21 Algebraic Petri Nets Extension Parameter: mmPNAlg 155
8.22 Algebraic Petri Nets Metamodel: mmAlgPN 157
8.23 Algebraic Petri Nets Transformation Substitution Excerpt . . 158
8.24 Algebraic Petri Nets Model Example 159

B.1 CO-OPN ADT Booleans Specification 172
B.2 CO-OPN Machine Class Specification 174
B.3 CO-OPN Machine Class Specification using EMF Editor . . . 175
B.4 CO-OPN Machine Context Specification using CO-OPN Graph-

ical Resp resentation . 176
B.5 CO-OPN Machine Context Specification using EMF Editor . . 177

List of Tables

3.1 DSML Tools Comparison Summary 35

8.1 Case Studies Comparison . 161

xvii

List of Listings

5.1 Module Inheritance abstract syntax 67
5.2 ATL Header Definition . 69
5.3 ATL Import Definition . 70
5.4 ATL Helper Definition . 70
5.5 ATL Rule Definition . 71
5.6 CO-OPN Equivalent of Petri Nets Machine Model 75
8.1 Fragment of Moving System Transformation to CO-OPN . . . 125
8.2 Fragment of Train Entities Transformation to CO-OPN 131
8.3 Robot Entities Start and Stop Semantics 134
8.4 Robot Entities Action Plan Transformation 135
8.5 Excerpt of GenericCospel Type element to CO-OPN 138
8.6 Skeleton Rule for GenericCospel Objects’ Transformation . . . 139
B.1 CO-OPN Boolean ADT Specification 171
B.2 CO-OPN Machine Class Specification 173
B.3 CO-OPN Machine Context Specification 176
C.1 Complete Transformation of Moving Entities to CO-OPN . . . 179
C.2 Complete Transformation of Train Entities to CO-OPN 182
C.3 Complete Transformation of Railway System DSML to CO-OPN185
C.4 Complete Transformation of Robot Entities to CO-OPN . . . 190
C.5 Complete Transformation of Robot System DSML to CO-OPN 195
D.1 Generic COSPEL ATL Transformation 197
D.2 Event Model ATL Transformation 202

xix

Chapter 1

Introduction

A language that is used will be changed.
- Meir M. Lehman

This chapter presents a brief introduction to the methodology and con-
cepts used in the context of the work developed for this thesis.

The latest trends in the development of languages suggest that Domain
Specific Modelling Languages (DSMLs) are the core in the new research sub-
jects of Software Language Engineering (SLE) and Language Driven Engineering
(LDE). The arguments most used in favour of the SLE approach are that:

1. DSMLs solve problems within clearly definable domains of application
such that software engineers are able to create DSMLs that solve real
problems more rapidly and with higher quality;

2. Developers apply DSMLs to improve productivity and quality in areas
ranging from finance to control systems, macro scripting to graphical
user interfaces. In order to do this, they use abstractions provided by
the DSML that make available the artefacts expressed in the problem
domain vocabulary.

This work is a SLE approach to the development of DSML prototyping.

1.1 Context

The Model Driven Architecture (MDA) initiative added a new perspective to
the Software Development Process. It puts as fist class the models and the
relations between them. The exposure of models at all levels of the develop-
ment cycle is both a strength of the methodology and a weakness: a strength

1

2 Chapter 1. Introduction

because it forces to use different levels of abstraction, which allows one to
clearly separate concerns and to split complexity; a weakness because using
models in a massive way at different levels of abstraction and complexity
induces complex problematics. An extensive use of models raises questions
on how to preserve coherence and conformity in what concerns models rep-
resenting different languages at different levels of reasoning and that evolve
at different rhythms.

Using abstraction mechanisms does not make the system’s complexity
disappear. It’s rather a technique of looking at the problem from the con-
crete perspective representing an actor’s point of view. Applying abstraction
mechanisms at several levels of the system development process benefits from
hiding information and highlighting only the aspects that are more relevant
for the perspective under analysis.

The MDA framework is based on defining Platform Independent Model
(PIM), Platform Specific Model (PSM) and the transformations between
them (Bezivin, 2005). The PIM is a model with a high level of abstraction
independent from the technology and PSM a more concrete model. From
PIM, several transformations can be defined to different PSM. This method-
ology defines a standard framework on how models defined in one language
can be transformed into models of other languages and transformations are
one of the key elements.

The relation between the different levels of abstraction is one of the con-
cerns in the MDA framework and, due to definition of transformations, it
is possible to create a coherent relation between them. Albeit, some of
the biggest challenges of software engineering these days are still to mas-
ter: complexity, diversity and evolution (Clark, Sammut, & Willans, 2008).
The challenge of managing complexity is the main topic of many approaches
and frameworks (Sommerville, 1995; Booch, 2004; Jacobson, 2004). In this
work we will thus focus on the challenge of diversity and complexity.

The challenge of diversity reflects how developers and engineers have to
manage in a non-homogeneous environment. Life would be much easier if
there was only one programming language and one deployment platform.
This is, however, not the case and for very good reasons. Diversity is not
really a single challenge, but a category of challenges, namely:

• diverse domains;

• diverse customer requirements;

• diverse implementation technologies;

• diverse tools and artefact types.

1.2. Domain Specific Modelling Languages 3

Complexity

Diversity Evolution

Figure 1.1. Domain Specific Modelling Language (DSML) Challenges

In order to manage complexity, one approache is to focus on domain
problems and to try to provide a solution for each one of them. The DSMLs
comes as a suitable approach and the Language Engineering Development is
a way of providing such a solution.

All these challenges involved in the development of DSMLs or Domain
Specific Modelling Language (DSML) development environments intersect
at some point. The Fig. 1.1 provides an illustration of this overlapping:
when a particular environment needs several solutions in that same domain,
complexity transforms into a diversity problem; diversity implies at some
point a high level of evolution; and evolution makes developer’s life easier
but implies to rise complexity in terms of DSML development.

1.2 Domain Specific Modelling Languages

The term DSML is used in software development to indicate a modelling
(and sometimes programming) language dedicated to a particular problem
domain, a particular problem representation technique and/or a particular
solution technique. The concept is not new - special-purpose programming
language and all kinds of modeling/specification languages have always ex-
isted, but the term DSML has become more popular due to the rise of
domain-specific modelling. Domain-specific languages are considered 4GL
programming languages. Along with the concept of DSMLs, the concept of

4 Chapter 1. Introduction

families of DSMLs is also often used. This term is mainly introduced because
it is very common that there are only variations of the same system, evolu-
tions of the same system, or even because different DSMLs simply share a
big number of concerns.

More specific abstractions can be used in fewer products (i.e., by members
of a smaller product family), but contribute more to their development. More
general abstractions can be used in more products (i.e., by members of a
larger product family), but contribute less to their development. Higher
levels of specificity allow more systematic re-use (Greenfield, Short, Cook, &
Kent, 2004, p. 24) .

Developers increasingly turn to DSMLs to manage diversity and com-
plexity which encapsulates a context (usually refereed to domain) providing
(Jackson & Sztipanovits, 2006):

• A set of components or language terms and constructs with which em-
bedded hardware / software can be modelled;

• A set of constraints that enforce proper use of components;

• A set of semantic mappings that generate simulation traces, embedded
code, and verifications results from models.

Systems are often specified by capturing complex interrelationships be-
tween concepts. A good approach for developing DSMLs is being able to
separate domain concepts, concerns or different language modules. At the
end of its development cycle, a DSML will capture a set of concepts. By using
an incremental development approach the complex product being developed
is still manageable. Since language development tends not to be a one-cycle
process, providing a modular development environment allows to cope with
complexity by incrementally adding new features. Simultaneously, most of
the DSML environment are not linked with a single technology and a good
DSML development environment should be able to deal with diversity.

1.3 Motivation

DSMLs have been very successful in embedded systems. They have been
adopted and used regularly in other domains but with little formal support.

From its very starting days, the purpose of software engineering was to
make software development an engineering task. Through the establishment
of a methodology, this work aims to be systematically applied to solve some
problems in DSMLs development. Providing the process with precise formal

1.3. Motivation 5

grounds, this work aims to offer a framework that allows DSMLs prototyp-
ing for validation of concepts. This makes the DSML development a more
engineering process by reducing development time, increasing quality and
re-using concepts.

The Language-Driven development is one of the topics under development
that approaches diversity as well as complexity. Language has always been a
fundamental way of communicating. Developing DSMLs is a step that allows
to think at the problem domain correct abstraction and to communicate using
an appropriate mechanism. The latest developments in the area suggests
that concepts should be close to the problem domain and simultaneously
re-usable.

In the subject on which this work is developed, there is usually a lack of
reusability of concepts and a propensity to neglect the semantics of the lan-
guage. It is common to stop at a very syntactic level while defining method-
ologies and approaches for DSMLs development.

While the idea of using DSMLs is not new, its support in terms of tools
is rather limited. Development environments that include features helping
the systematisation of tasks for the development of DSMLs only started to
be developed within the last decade. Moreover, ideas of reusability and
semantics anchoring are not yet very mature and most of the time scarce.

Most DSMLs are designed from scratch using engineers’1 experience in de-
signing languages. Our motivation while producing this work was to be able
to provide a working framework that allows the ease of development of DSML
prototypes without the need to create, validate and deploy a whole new devel-
opment environment. In the approach proposed, we present a methodology
that allows to:

• avoid effort duplication;

• cope with the urgency of high-quality reusable metamodel fragments
(with a precise transformational semantics);

• significant reduction in the time for creating a new DSML;

The framework we have developed is based on metamodels (domain con-
cepts) fragments that are composable and have associated structural seman-
tics and semantic mappings. A domain concept in the context of this work
is more than a metamodel: it is an abstract syntax defined in a standard
fashion with a transformation to one or several precise target languages.
Such languages provide well defined semantics in the context of the domain

1In the context of DSMLs development it is common to use the word metamodeler in
order to identify the engineers that are part of the DSML development.

6 Chapter 1. Introduction

concept meaning. A domain concept can be seen as a building block that
represents a basic idea that can be present in one or several DSMLs. It is
an artefact used to express a concept and that can be composed with other
domain concept(s) (or even with an already pre-defined DSML) in order to
extend it.

This definition of domain concept is very expressive in the sense that
rather than only defining an abstract syntax and associating a structural
semantics, we work at the level of semantics mappings to PSMs. In the
work presented in this thesis the semantic mappings are achieved by model
transformation rules defined for each of the domain concepts.

As it will be presented in Chap. 3 most of the available tools for DSML
development provide very little or no support for semantic specification. This
also applies to re-usability and compositional aspects of a language develop-
ment cycle. Both of these aspects, together with the notion that DSML
prototyping should be a task with more formal and pragmatic support, mo-
tivated this work.

1.4 Contribution

The contribution resulting from the development of this work is mainly a
proposal for a methodology and an implementation of a framework prototype
that allows semantic enrichment of domain concepts. The main results of
composing domain concepts as it will be explained in this document are to:

• be able to manage language complexity in terms of language design
and maintainability;

• allow re-use of concepts for faster language development;

• cope with domain diversity by being able to define complete DSMLs;

• use a framework that allows fast development of DSMLs for validation
of its behaviour without having to define a new development environ-
ment from scratch for each one of the DSMLs;

• be able to compose domain concepts both at the level of its metamodel
and its semantics. The first by providing model and metamodel com-
position at the syntax level; the second by allowing the composition
model transformation rules relative to its metamodel.

In the next chapters we will detail how to define domain concepts and,
mainly, how to place them together. By composition and parameterization,
a set of domain concepts are used to form a DSML or a family of DSMLs.

1.5. Document Organisation 7

1.5 Document Organisation

This document is organised as follows:

• Chapter 2 provides a detailed overview of the work developed in the
area from the methodological point of view. At the end of this chapter
we provide a comparison between some of the existing techniques and
the our work;

• Chapter 3 presents a set of DSML development environments and high-
lights each ones’ strengths and weaknesses according to pre-defined cri-
teria;

• Chapter 4 gives a formal definition of models and metamodels. While
using a standard notation in the context of MDA, this chapter con-
tributes with a set of definitions that allow models and metamodels to
be expressed in a formal way;

• Chapter 5 gives an overview of the framework and the main concepts
behind it from a more pragmatic point of view. The chapter gives a
survey of the tools and frameworks used for the implementation of the
methodology. In particular, it presents the Concurrent Object Oriented
Petri Nets (CO-OPN) specification language and the ATLAS Transfor-
mation Language (ATL).

• Chapter 6 details the proposed methodology. We present how meta-
models and transformations are composed. This chapter suggests a
set of definitions that allow to parameterize metamodels, its associated
transformations, and to provide derived models that are the result of
applying parameterization at model level;

• Chapter 7 specifies the CoPsy framework. This chapter details the
CoPsy DSML implementation, features, and provides an analysis of its
usage;

• Chapter 8 reflects the application of the methodology defined in the
document. It presents three case studies:

1. Development of a DSML for representing the Moving Entities Sys-
tem. This DSML is particularised in two other DSMLs in the
course of the chapter: one representing a DSML for a Railway
System and the second one a DSML for controlling Robots in an
hypothetical world;

8 Chapter 1. Introduction

2. An implementation of the COntrol systems SPEcification Language
(Cospel). Several modules of Cospel were isolated and develop-
ment of this DSML prototype is achieved using the CoPsy frame-
work;

3. Development of a multi-flavour Petri-Nets environment. This ex-
ample uses the CoPsy framework and methodology to incremen-
tally provide the implementation of three Petri-Nets formalisms:
Standard Petri Nets; Coloured Petri-Nets; and Algebraic Petri-
Nets.

• Chapter 9 presents a discussion based on the results obtained and open
issues.

Chapter 2

State of the Art: Methodologies

The concepts presented in this chapter will not be described in detail: most
of them cover a vast domain of knowledge that represent a wide range of
concepts that cannot be described exhaustively. We will concentrate, rather,
on the aspects that we think are more useful for understanding our proposal
and to highlight the relations between each other.

For clarity and organisational purposes, the state of the art is presented in
two separate chapters. The first one covers the more methodological aspects
and the second one presents an overview of some of the tools available for
DSMLs development.

2.1 Unified Modeling Language

The Unified Modeling Language (UML) (Object Management Group, 2005;
Booch, Rumbaugh, & Jacobson, 1999) is a modeling language for specifying,
visualising, constructing and documenting the artefacts of software-intensive
systems. The Object Management Group (OMG) has approved UML as a
standard in 1997.

After several years of experience using UML, the OMG issued requests
for proposals to upgrade UML extending it with additional capabilities that
were desired in several application domains. Examples of new features in-
cluded are: Object Constraint Language (OCL) language integration; ex-
tended metamodel to eliminate redundant constructs and to allow the reuse
of well-defined subsets by other specifications; the availability of profiles to
define domain and technology-specific extensions. The UML has evolved no-
tably in the last six years. The more interesting modifications are at the
level of the uniformisation its parts and at a more precise formalisation of its
constructs. Most of these changes affect the internal representation of UML

9

10 Chapter 2. State of the Art: Methodologies

constructs (the metamodel) and its relationship to other specifications:

• Unification of the core of UML with the conceptual modeling parts
of Meta-Object Facility (MOF) (Object Management Group, 2002a)
allowing UML models to be handled by generic MOF tools and repos-
itories. In recent years the Essential MOF (EMOF) standard has been
supported by a large number of tools and projects including the ones
from the Eclipse foundation.

• Restructuring of the UML metamodel to eliminate redundant con-
structs and to permit reuse of well-defined subsets by other specifi-
cations.

• Availability of profiles to define domain and technology-specific exten-
sions of UML.

UML provides a semantic base in the form of a metamodel that defines
well-formed models, and possible relationships between models and model
elements. The UML metamodel is finalised in its latest version and is used to
provide an important consistency level so to ensure coherence among models.
UML is only a language: it is process-independent and therefore does not
prescribe how its notations should be used. Consequently, using UML to
model any kind of specific systems still requires a method - a choice of models
and a process of their elaboration.

2.2 Meta-Modeling

A metamodel is an artefact that can be seen as the definition of a language.
It is also known as the abstract syntax of a language being the description
of all the constructs that can be used in that language.

There are several general definitions of architectures for meta-data han-
dling and, in particular, for metamodel manipulation. There are two main (Gerber
& Raymond, 2003) metamodelling framework definitions: the OMG MOF (Object
Management Group, 2002a, 2007a) and the open source Eclipse Meta-Modeling
Framework (EMF) (Budinsky, Steinberg, Merks, Ellersick, & Grose, 2004).
In general, these frameworks are organised in four different abstraction levels
that are presented in 2.1:

i) Data layer - M0 - usually containing source code derived from the M1
level for different program languages, e.g. Java and C++;

2.2. Meta-Modeling 11

ii) Model layer - M1 describing the information in M0 layer. It contains
the models from which the source code in M0 layer is generated, e.g.
UML;

iii) M2 - Meta model layer that is a description of the models in layer M1.
It is this meta model that defines the abstract syntax of a language and
precises which artefacts can be present in the model, e.g. Metamodel of
UML;

iv) Meta metamodel layer - M3 is MOF/EMF themselves.

Metametamodel

Metamodel

Model

conformsTo

conformsTo

metametamodel element

metamodel element

model element

Data

conformsTo

data element

conformsTo

MetaClass

MetaClass

MetaClass

Figure 2.1. Metamodelling Framework 4-layers Architecture

The MOF framework (specified in (Object Management Group, 2002a,
2007a)) describes a standard modeling formalism that supports metamodel

12 Chapter 2. State of the Art: Methodologies

abstractions. It does not define any standard graphic representation of its
models but there exists a clear mapping between MOF and UML. Currently
OMG defines two different versions of MOF: EMOF that stands for Essential
MOF; and CMOF meaning Complete MOF.

The EMF (Budinsky et al., 2004; Eclipse Project, 2008) open source
framework is the next generation of metamodelling and object repository
technology. It creates Java code for graphically editing, manipulating and
serialising data based on a model specified in XML Schema, UML, or anno-
tated Java. EMF tends to take a bottom-up approach whereas MOF tends
to take a top-down approach and it is aligned with OMG’s EMOF definition.

The definition of a metamodel is frequently a very syntactic operation
that lacks rigour (Combemale et al., 2006). There have been recently several
attempts to develop methodologies and support tools that tackle this issue.
The integration of the OCL (Object Management Group, 2006; Akehurst
& Patrascoiu, 2004; Warmer & Kleppe, 2003) is the first step to provide
better quality environments of metamodel definition. The Kermeta (Triskell
team, 2008; Drey, Faucher, Fleurey, Mahé, & Vojtisek, 2008) workbench is a
metaprogramming environment based on an object-oriented DSL optimised
for metamodel engineering. Kermeta features a comprehensive environment
for metamodel engineering such as an Eclipse plug-in that integrates with
several other Eclipse functionalities. The environment includes: specifica-
tion of abstract syntax; static semantics (OCL) and dynamic semantics with
connection to the concrete syntax model; metamodel prototyping and simu-
lation; model transformation; and aspect weaving.

2.3 Model Driven Architecture (MDA)

In line with the idea of raising the level of abstraction in the development of
software by the use of transformations, OMG proposed MDA (Object Man-
agement Group, 2003). MDA is a framework for software development, where
models are not used only to document and communicate the requirements
and software design decisions. They are elevated to key artefacts that directly
represent executable elements of the software. MDA defines three steps for
going from concept to software realisation (Kleppe, Warmer, & Bast, 2003):

• A model of the software system is constructed that is independent of
any implementation technology, e.g. independent of JEE (Sun, 2008),
.NET (Microsoft, n.d.), etc. This type of model is referred to as a
Platform Independent Model (PIM).

• The PIM is transformed into one or more Platform Specific Models

2.4. Model Transformations 13

(PSMs), depending on the chosen mapping strategy. A PSM is tailored
to specifying a system in terms of the implementation constructs that
are available in one specific implementation technology, e.g., a database
schema for a DB2 database, EJB Websphere platform, etc.

• The PSMs are, at last, transformed into code.

Using model-driven development to define metamodels for each language
provides the necessary artefacts to perform transformations both at the PIM
to PIM level and at the PIM to PSM level.

Since the PSMs are typically close to the implementation platform, the
transformation step from PIM to PSMs is usually more complex than the
step from PSMs to code. The idea behind MDA is that it should be possible
to choose different mapping strategies with a different set of PSMs generated
from the PIM, and that the transformations between the PIM, PSM, and
code should be automated. The effect of automating the transformation from
PIM to PSM means that the development team largely deals with models,
where modeling, in turn, would become programming on a higher level. In
this way, development will become more and more a modeling activity with
the goal of producing a good, high-level, technology-independent model of
the software system.

Clearly, to realise the MDA vision, one needs to be able to describe the
transformation between PIM and different PSMs, and then have tools trans-
form the PIM based on the description provided. Even though the details of
MDA are still being refined, there are already a number of tools that offer
support for the MDA framework, e.g., (Borland, n.d.; Software, 2007; IBM,
2007; Corporation, 2007).

2.4 Model Transformations

A Meta-Modeling framework can be used to formally define a language or
a set of languages, e.g. UML. UML has been described as a family of lan-
guages (e.g., (Cook, 2000)) due to its rich set of notations and many possible
interpretations of these notations (i.e., semantic variation points in the lan-
guage). Furthermore, the many different models possible with UML allow
developers to make abstractions, projections and refinements of the software
system under development. However, the implied use of multiple models to
describe the system, each of which describes a view of the system at a certain
level of abstraction, increases the likelihood of inconsistencies between views
and hence an additional overhead on the maintenance of models. This fact,
along with the need to change models in pre-definable ways, has increased

14 Chapter 2. State of the Art: Methodologies

the importance of R&D work on supporting automation of model-to-model
transformations using a metamodel as a starting point.

As described in (Sendall, 2003), model transformation can be seen as
taking a set of input parameters including source and target models, and
producing a set of target model elements as output. Consequently, there
is a mapping relation set up between the source model elements and the
target model elements (one-to-many or many-to-one). One can imagine a
number of different usage contexts that could be beneficial to a software
development project; some of these include (Sendall & Kozaczynski, 2003;
Selonen, Koskimies, & Sakkinen, 2001):

• Refining Models;

• Abstracting Models;

• Generating Additional Views;

• Synchronisation of models;

• Applying Software Patterns;

• Re-factoring Models.

Model transformations can be used and applied to several tasks/phases
of the development process. Some of them include:

Refining Models: The development of an application can be logically viewed
as being made up of several steps taking one from vision to realisation;
this is essentially the process of stepwise refinement. It is a common
problem analysis method of breaking down a problem level-by-level
that supports incremental delivery, and parallel work during the devel-
opment process;

Abstracting Models: Reverse engineering of models, i.e., going from more
concrete models to more abstract ones, can be useful for modellers that
wish to work/communicate at a higher level of abstraction. The task of
abstracting from certain details can be seen as a transformation from a
more concrete model to a more abstract model. Most of the time these
types of tasks are usefull in the process of understanding concepts in the
sense that are abstractions are provided in the domain of application
dialect;

2.4. Model Transformations 15

Generating Additional Views: The generation of different views from
existing models can be useful for concentrating on a particular concern
of the system where non-pertinent information is filtered out. Such ap-
proaches are useful for combating complexity and for offering a focused
view on those parts of the system that relate to the perspective of a
particular stakeholder. The generation of views can also be seen as a
transformation from existing models;

Synchronisation of models: Ensuring consistency between models requires
one to keep models up-to-date with changes made to one another (both
in the vertical/refinement and horizontal/aspect sense), where there is
an overlap in information shared by models. For example, the addi-
tion of a class attribute in one model could require the attribute to
be added to other models that also shows the attributes of that class.
This activity of model synchronisation can be seen as a transformation.
Automating this task facilitates more consistent and correct models;

Applying Software Patterns: The need to apply architectural and design
patterns and UML idioms can often arrive over the course of a soft-
ware development project. The reasons for applying a pattern can be
diverse: changing the design strategy (e.g., all uses of MVC-style collab-
orations are transformed into PAC-style collaborations), improving the
design (e.g., remove circular dependencies between two components by
introducing an intermediary component), optimising performance (e.g.,
grouping multiple remote procedure calls into a single call), or meet-
ing other extra-functional requirements and quality attributes. The
application of a software pattern can be seen as a transformation that
evolves existing models;

Re-factoring: Evolution is a key point in any software project. As require-
ments change over time, a model may become difficult to maintain, i.e.,
it is in a form that is not well-suited to perceive future modifications.
A way to improve the form of a model is to refactor it according to cer-
tain criteria. Re-factoring a model involves changes to the model with
the constraint that they must preserve behaviour, i.e., the behaviour of
the modelled system is the same before and after the re-factoring: only
the form is different. Re-factoring a model implies a transformation in
the same domain of application that evolves existing models.

There are two main approaches regarding how models can be transformed:

• Graph transformation systems make use of graph rewriting techniques
to manipulate graphs (Rozenberg, 1997). A Graph Transformation

16 Chapter 2. State of the Art: Methodologies

(GT) is defined in terms of a set of production rules. A production rule
consists of a Left-Hand Side (LHS) graph and a Right-Hand Side (RHS)
graph. Such rules are the graph equivalent of term rewriting rules,
i.e., intuitively, if the LHS graph is matched in the source graph, it is
replaced by the RHS graph.

• Program transformation techniques (also known as Meta-Programing
or Generative Programing (GP)) are used in many areas of software
engineering ranging from program synthesis to program optimisation
and program re-factoring, to reverse engineering and documentation
generation. Program and model transformation are an approach that
allows to automatically generate software from a generative domain
model (Czarnecki & Eisenecker, 2000). A generative domain model is
a model of a system family that consists of a problem space, a solution
space, and the configuration knowledge. The problem space defines the
appropriate domain-specific concepts and features. The solution space
defines the target model elements that can be generated and all possible
variations (Moss & Muller, 2005). The configuration knowledge speci-
fies illegal feature combinations, default settings, default dependencies,
construction rules, and optimisation rules. GP introduces generators
as the mechanisms for producing the target.

As a summary, model transformation is the task of taking a input in a
certain domain and producing an output in another (or the same) domain:
Taking one or more models as input and producing one or more models as
output requires a clear understanding of the abstract syntax and the seman-
tics of both the source and target (Sendall & Kozaczynski, 2003).

2.5 Query / Views / Transformations

Query / Views / Transformations (QVT) OMG proposal is a standard that
provides standard means (languages and models) for expressing transforma-
tions, which are amenable to use by humans and execution by computers.
In QVT, a transformation between candidate models is specified as a set of
relations that must hold for the transformation to be successful (Ehrig et al.,
2005). A transformation invoked for enforcement is executed in a particular
direction by selecting one of the candidate models as the target. Relations in
a QVT transformation declare constraints that must be satisfied by the ele-
ments of the candidate models. A relation, defined by two or more domains
and a pair of when and where predicates, specifies a relationship that must

2.6. Meta-Model Composition 17

hold between the elements of the candidate models. A domain is a distin-
guished typed variable that can be matched in a model of a given model
type. A domain has a pattern, which can be viewed as a graph of object
nodes, their properties and association links originating from an instance of
the domain’s type (Object Management Group, 2007b).

We have been observing in the last year a significant increase of QVT com-
pliant languages implementation (Jouault & Kurtev, 2006; ATLAS Group,
2007; DUPE et al., n.d.; ikv++ technologies, 2008).

The Kermeta workbench (Drey et al., 2008) provides with a metapro-
gramming environment based on an object-oriented Domain Specific Language
(DSL) optimised for metamodel engineering. Kermeta is a metamodelling
language which allows describing both the structure and the behaviour of
the models. It is intended to be used as the core language of a model-
oriented platform. It has been designed to be a common basis to implement
Metadata languages, action languages, constraint languages or transforma-
tion language.

ATL (ATLAS Group, 2007, 2006; Jouault & Kurtev, 2006) is a model
transformation language and toolkit developed in the context of Model-
Driven Engineering (MDE). ATL provides ways to produce a set of tar-
get models from a set of source models by specifying a transformation logic
which is itself a model. ATL is specified as both a metamodel and a textual
concrete syntax and it is an implementation of the QVT proposal (Object
Management Group, 2007b).

2.6 Meta-Model Composition

The reusability of metamodels is a fundamental point in MDA. In parti-
cluar, reusability of domain models from application to application is very
important considering that transformations are also a key component of
the methodology. Metamodels should be available in order to be extended
and composed so that DSL concepts, present in other languages, can be
used (Nordstrom, Sztipanovits, Karsai, & Ledeczi, 1999).

In (Ledeczi, Karsai, Volgyesi, & Maroti, 2001), the semantics of several
metamodel compositional operators are defined. The following compositional
operators are defined:

Equivalence Operator : The equivalence operator is used to show a full
union between two UML class objects. The two classes cease to be
two separate classes, but instead form a single class. Thus, the union
includes all attributes and associations, including generalization, spe-
cialization, and containment, of each individual class;

18 Chapter 2. State of the Art: Methodologies

Inheritance Operators : There have been defined two types of metamodel
composition via inheritance. They are supported by GME(Institute
for Software Integrated Systems, Vanderbilt University, n.d.),(Ledeczi,
Maroti, & Volgyesi, 2001):

• Implementation Inheritance Operator: In this type of metamodel
composition, the children inherits all of the parents attributes,
but only the containment associations where the parent acts as
the container. No other associations are inherited;

• Interface Inheritance Operator: This type of inheritance is the
second operator of this type supported by GME. This operator
means that the inheritance allows no attribute inheritance, but
does allow full association inheritance, with one exception: con-
tainment relations where the parent functions as the container are
not inherited.

Note that the union of Implementation Inheritance and Interface Inher-
itance operators gives the common inheritance, and their intersection
is null.

These operators support a certain level of metamodel composition. They
are fully implemented and integrated in the Generic Modeling Environment
(GME).

Other metamodel composition operators have been defined by Emerson
and Sztipanovits. The authors present a series of techniques for metamodel
composition, such as:

Metamodel Merge: consists of stitching two DSMLs together into a uni-
fied whole. When the DSMLs include modeling constructs that capture
a shared set of entities they are fused together. This is applied to the
meta-objects with the same name and metatype;

Metamodel Interface: allows to compose metamodels of two DSMLs cap-
turing two distinct but related domains. Using this composition re-
quires the definition of an interface between the two modelling lan-
guages consisting of new modelling entities and relations. These rela-
tions do not strictly belong to either of the composed modelling lan-
guages;

Class Refinement: this operator is used when one DSML captures in de-
tail a modelling concept that exists only as a black box in a second

2.7. Package Merge 19

DSML. The relationship between the two composed modelling lan-
guages is given by the hierarchical containment of the constructs of
one metamodel within a single construct of another metamodel;

These types of metamodel composition defined in both (Emerson & Szti-
panovits, 2006) and (Ledeczi, Karsai, et al., 2001) can be used in order to
compose metamodels but only at the syntax level. It is an interesting tech-
nique if the language engineer is only interested in defining DSMLs with very
little behaviour.

2.7 Package Merge

This is an approach for model extension defined in the UML2 specifica-
tion (Object Management Group, 2007d). The model extension technique
was defined Package Merge. This operation was defined to assist in modu-
larizing the UML2 metamodel. Package merge is intended to allow modeling
concepts defined at one level to be extended with new features.

It also defines compliance levels regarding merged packages. To support
the exchange of models and interoperability between UML tools, UML2 par-
titions the set of all its modeling features into four horizontal layers called
compliance levels (Zito, Diskin, & Dingel, 2006). Level L0 only contains
the features necessary for modelling the kind of class-based structures typi-
cally encountered in object-oriented languages. Level L3, on the other hand,
encompasses all of UML. It extends level L2 with features that allow the
modeling of information flows, templates, and model packaging.

The package defining level Li+1 is obtained from Li by merging new fea-
tures into the package describing Li. For instance, the level L1 package is
created by merging 11 packages (e.g., Classes::Kernel, Actions::BasicActions,
Interactions::BasicInteractions, and UseCases) into the level L0 package. In
the UML 2.1 specification, package merge is described by a set of transforma-
tions and constraints grouped by metamodel types. The constraints define
pre-conditions for the merge, such as when two package elements ’match’,
while the post-conditions are given by the transformations. The merge of
two packages proceeds by merging their contents as follows: Two match-
ing elements are merged recursively. Elements that do not have a matching
counterpart in the other package are deep-copied.

To illustrate package merge, consider a simple class model of students as
in package Students on the left of Fig. 2.2.

Suppose we would like to extend this model with the information con-
certing the student’s faculties as in the Student Faculties package. To

20 Chapter 2. State of the Art: Methodologies

Students Student Faculties

idnumber : Integer
Student

name : String
Person

1*email : String
Student

address : String
Faculty

studiesIn
<<merge>>

degree : Enum
Degree

**
hasDegree

Figure 2.2. Specification of UML2 Package Merge

achieve this, package Student Faculties is merged into package Students,
as indicated by the arrow in between the two packages. The Students pack-
age is denominated as the receiving package. Its elements (classes Student,
Person, and Degree and the association hasDegree) are called receiving el-
ements. Student Faculties is the merged package. Its elements (classes
Student and Faculty and association studiesIn) are called the merged el-
ements. The resulting package is obtained by merging the elements into the
receiving package. Since the class Student in Student Faculties matches
the class of the same name in Students package, the two are merged recur-
sively by adding the property email to the receiving class. The class Faculty
and the association studiesIn, however, do not match any elements in the
receiving package. Using the package merge definition these elements are sim-
ply copied. The � merge � arrow merely implies these transformations.
Fig. 2.3 shows the result of applying the package merge technique.

Students

idnumber : Integer
email: String

Student

name : String
Person

1

*

address : String
Faculty

studiesIn

degree : Enum
Degree

**
hasDegree

Figure 2.3. UML2 Package Merge Result

2.8. Model Extension 21

2.8 Model Extension

The Model Extension method is presented in (Barbero, Jouault, Gray, &
Bezivin, 2007). The article presents a conceptual and practical approach to
model extensibility, in which new models are created as derivations from base
models. There are several situations where such an extensibility mechanism
is useful and essential (e.g.,in the case of hierarchies of metamodels). In order
to achieve the goal of model extension, the article is based on the existence
of an additional relation between models called extensionOf .

When a metamodel is used as an extension of the initial metamodel, the
extensionOf relation is described as the ’composition’ of those two meta-
models into a single one. This ’composed’ metamodel is derived from the
two metamodels: when a concept exists in both metamodels, the result of
the extension is the merging of elements from the initial metamodel and from
its extension.

Due to the relevance, simplicity and similarities with some examples we
present in this document, we will re-use the example provided in (Barbero
et al., 2007). The example is based on the Petri formalism. It starts by
first describing a classical Petri net: a set of places and transitions linked by
directed arcs. Arcs run from a place to a transition or from a transition to
a place. The metamodel depicted on Fig. 2.4 specifies all the concepts of a
simple Petri net.

Figure 2.4. Metamodel Extension: Petri Nets Metamodel prior to Extension

The metamodel in Fig. 2.4 does not allow the design of Petri nets with a
specific execution state. To overcome this limitation the solution is to add the
concept of a state description to the Petri net metamodel. In the example
the authors propose to extend the previous metamodel with the concepts
describing the state of a Petri net at a given time. Such a Petri net is said
to be marked. A marked Petri net can be represented by attaching a set of

22 Chapter 2. State of the Art: Methodologies

Tokens to some Places. This addition does not affect the previously defined
structure of the Petri net.

The metamodel of the Petri net with marking is depicted on Fig. 2.5. It
adds the concept of Marking as a set of Tokens. Each Token is associated
with a Place.

Figure 2.5. Metamodel Extension: Marking Extension

This new metamodel is an extension of the original Petri net metamodel.
The final metamodel obtain by applying metamodel extension can be de-
picted in Fig. 2.6. This combination merges the common concept of Place
to build the complete metamodel.

Figure 2.6. Metamodel Extension: Petri Nets Metamodel with Marking Extension

The Model Extension approach presents a conceptual framework with
an implementation defined in KM3 (Jouault & Bézivin, 2006), a DSL for
Metamodel Specification.

2.9 Transformation Composition

Decomposition and separation are common approaches to solve complex
tasks. In the world of transformations, this approach is also important while
dealing with complex models and in order to allow reusability. Decomposi-
tion may be implemented using several approaches (Marvie, 2004).

2.10. Semantic Anchoring 23

• at the level of the transformation definition language. A transformation
is defined using basic transformations implying the compilation of the
transformation definitions. This approach relies on the definition of a
new transformation based upon an existing one;

• defining executable transformations as a composition of executable ele-
mentary transformations. This approach is similar to component based
engineering.

The key idea of compositional transformation is to decompose the system
specification into properties that describe the behaviour of its subsystems. In
(Caporuscio, Ruscio, Inverardi, Pelliccione, & Pierantonio, 2005), a technique
and a tool are presented that allows decomposition of software applications
checking the existence of mutual dependencies among components.

Since transformations are also models described in certain transformation
languages, there are also benefits of defining transformation patterns. Some
of these patterns include (Bezivin, Jouault, & Palies, 2005):

1. Transformation parameters - in many model transformations some
attributes of the target metamodel are hard-coded. They have become
parameters for the transformations as they have side effects on the
result;

2. Multiple matching patterns when there has to be one rule that
matches a collection of source elements.

2.10 Semantic Anchoring

In (K. Chen, Sztipanovits, Abdelwalhed, & Jackson, 2005), a technique is
presented that allows to ’anchor’ semantics to a metamodel. This tech-
nique is mainly based on the use of Abstract State Machines (ASM) and
the Graph Rewriting and Transformation (GReAT) as instruments in the
GME (Software Integrated Systems, 2005). Semantic units are defined by
attaching a transformation to each metamodel in the GME.

The work presented in (K. Chen et al., 2005) proposes the use of a
metamodeling process within GME for rapid and inexpensive development
of DSMLs. However, in order to simplify the DSML semantics, this work
discusses semantic anchoring which is based on the transformational speci-
fication of semantics. It uses the mathematical model, ASM, as a common
semantic framework. It shows a formal operational semantics for a set of
basic models of computations called semantic units. Semantic anchoring of

24 Chapter 2. State of the Art: Methodologies

DSMLs means the specification of model transformations between DSMLs
and selected semantic units.

Although there are several conceptual similarities between the work pre-
sented in this thesis and the work on Semantic Anchoring (both approaches
use a model transformation language to provide semantics), we mostly con-
centrate on the compositional and extension aspects of metamodels. In par-
ticular, we focus on transformations modularization and re-use, while the
work defined in the Semantic Anchoring approach concentrates mostly in
attaching pieces of semantics to a metamodel.

2.11 Summary

This chapter confirms the diversity of methodologies and techniques available
in Model-Driven Engineering (MDE) and, in particular, for Domain Specific
Modelling Language (DSML) support. In such an heterogeneous environ-
ment, it is often not easy to interface and to be able to use the ones one
might need to provide a DSML specification. Albeit this fact, there is a
clear path going in the direction for the standardisation1 of the processes for
DSML development and a perspicuous concern in the language semantics.

2.11.1 Merging New and Old Ideas

The contents of this section act as a small comparison of the techniques
against the work presented in this thesis. Therefore this section could also
be titled Introduction to the Scientific Contribution of This Work.

The work described so far compares with the one on this thesis as:

Meta-Model Composition All the work available that presents ’techniques
for metamodel composition’ only defines constructs for the syntax do-
main of the language. All the techniques present and define a set of
operators that allows to compose metamodels or, in other words, to
compose the abstract syntax of the language. These techniques are
very powerful and easy to use if we don’t need to manipulate seman-
tic constructions. Compared with the work presented in this thesis,
we can say that metamodel composition is a subset of the operations
provided. We do not provide a set of composition operators explicitly
but the parameterization mechanism available is powerful enough to
be able to express any of these metamodel composition operators;

1For example, the evolution of UML from it first version with minimum definition, to
UML2 with a comprehensive metamodel and a much more precise definition.

2.11. Summary 25

Package Merge: This method is an UML-specific operation that is difficult
to express for other kinds of metamodels. The package merge operation
has not been provided in a clearly defined conceptual framework and
it only works at the metamodel level. It is also a very syntactical oper-
ation that lacks precision since it is defined in a very informal fashion.
This type of composition is not supported in the work presented in this
thesis. We argue that merging domain concepts is a very ambiguous
operation. A merge operation implies that none or very small defini-
tion on how elements of the domain concepts to be merged is provided.
Moreover, the semantics of package merge is perceived as complicated.
For instance, the UML manual describes it as complex and tricky ;

Model Extension: Model extension is a technique for achieving some level
of reusability. In the of context model engineering, model extension
plays the same type of role as class inheritance in the object technol-
ogy environments. It is a technique that, again, works at a syntactic
level. In the syntactic domain this approach allows to extend models
with new concepts. The methodology we propose in this thesis also
supports this kind of composition. If we want to compare both ap-
proaches we could say that Model Extension is a technique for simple
model extension whereas the method in this thesis represents a generic
approach for model extension. While Model Extension approach only
allows to extend one element of the metamodel at a time, the ap-
proach we propose allows to extend and parameterize a subset of the
metamodel. However, in the approach presented in this document, the
semantical aspects of the language are also considered;

Semantic Anchoring: It is fair to say that semantic anchoring is the closest
technique to the work presented in this thesis. The work on semantic
anchoring describes how to add semantics to a DSML (or a domain con-
cept). What is not defined in the Semantic Anchoring technique is how
to compose the semantic blocks. Semantic Anchoring allows to specify
the semantics of a DSML by transforming it to another (more precise
domain) but it is not possible to compose the transformations. Conse-
quently, it is impossible to provide reusability of the defined semantic
blocks. Compared with Semantic Anchoring this work also allows to
’anchor’ semantics to a domain concept. The methodology we present
goes a step further and does not allow to have a metamodel without
an associated transformation. In addition to Semantic Anchoring, we
provide the necessary constructs for composing semantic blocks in a
very abstract way.

26 Chapter 2. State of the Art: Methodologies

Furthermore, the work presented describes a method that is not bound
to a particular technology. Although we will also express an implementation
in an integrated and full featured environment, the technique presented is
general enough to allow other implementations. The work that we will start
describing can be seen as a generic conceptual framework for:

a) generic metamodel composition;

b) automation of the correspondent model composition;

c) semantics definition based on transformation composition.

Each one of these points allow a high level of reusability at all levels.

Chapter 3

State of the Art: Tools

While the previous chapter concentrated in the more methodological aspects,
this one focuses on the pragmatic angle of the development of Domain Specific
Modelling Languages (DSMLs).

3.1 Domain Specific Modelling Languages

Software development as an engineering area focuses on the usage of a set
of established methodologies that can be systematically applied to solve new
problems (Thibault, 1998) namely: reducing time, increasing quality, ensur-
ing user safety, etc.

Domain Specific Language (DSL) (Deursen, Klint, & Visser, 2000) are
programming languages or executable specification languages dedicated to
a particular domain or problem. They address the issues stated before, es-
pecially in the areas in which evolution at a rapid rate is crucial. DSLs
provide, through appropriate built-in abstractions and notations, expressive
power focused on a particular problem domain.

DSLs have been used because different domains of knowledge demand
differentiated treatment concerning their support in terms of software lan-
guages. These languages are much more expressive in their domain, allowing
domain experts to understand, validate, modify, and often develop DSL pro-
grams themselves (Ladd & Ramming, 1994).

There are several approaches used for defining DSL (Luoma, Kelly, &
Tolvanen, 2004) most of them based on the metamodel definition. Some of
these approaches are: Domain expert’s or developer’s concepts; Generation
output; Look and feel of the system built; Variability space.

Each (independent) metamodel can be considered analogous to an ab-
stract syntax for a DSL. Taking this into account, model-based DSLs play

27

28 Chapter 3. State of the Art: Tools

an important role in MDA. Its contribution enabled the support for defini-
tion and use of new standards (Gerber & Lawley, 2004) (e.g. UML Profile
for enterprise distributed Object Computing (Object Management Group,
2004) standard, with domain-specific metamodels for component collabo-
ration and business process modelling). Tools like the the ones described
in (Kosayba, Marvie, & Geib, 2004) and (Vangheluwe & Lara, 2004) allow
a domain-specific visual environment through a visual reconfiguration of the
metamodel. Such tools profit from the MDA approach (Bichler, 2003) to go
from a PIM to a specific modelling tool also considering different graphical
representations for it.

3.2 Domain Specific Languages Development

Environments

A number of tools exist which allow one to define a domain-specific visual
language by the specification of a metamodel or by using domain model
diagrammatical conventions. Some of these Integrated Development Envi-
ronments are compared in this section by using the following criteria:

Language Evolution the possibility to add, remove and modify language
concepts and how these modifications propagate;

Verification the availability of metamodel and model verification; the abil-
ity of producing test case and oracle generation;

Graphical Mapping if it allows graphical mapping for elements and con-
nections, and the generation of menus and tool-bars;

Transformation the capability for defining transformation; which trans-
formation language is supported; possibility of re-factoring models and
metamodels; the availability of model analysis functionalities;

Composition the availability of features to manage re-use of concepts and
to compose them.

The Integrated Development Environments (IDEs) that we will consider
in this comparison are:

• The Generic Modeling Environment (GME) (Software Integrated Sys-
tems, 2005);

• Atom3 (Vangheluwe & Lara, 2004);

3.2. Domain Specific Languages Development Environments 29

• Eclipse Modeling Framework (EMF)/Graphical Modeling Framework
(GMF) (Budinsky et al., 2004);

• MetaEdit+ (MetaCase Consulting, 2008)

• Microsoft DSL Tools (Cook, Jones, Kent, & Wils, 2007)

The next sections of this chapter are dedicated to describing each one of
the tools according to the criteria previously defined.

3.2.1 Generic Modeling Environment (GME)

GME is an modelling environment developed at Vanderbilt University. In
GME, a DSML is described as a paradigm which is essentially a metamodel.
GME comes with a DSML plugin that, according to our defined criteria, is
characterised as:

Language Evolution High: Evolving paradigms can be preserved if ele-
ments, links and references are not renamed or removed;

Verification Medium: It provides a model and a metamodel checker for their
structure and constraints.

No test case or Oracle generator is provided.

Custom validation categories can be added and the code generators can
be modified to allow test and oracle generation;

Graphical Mapping Medium: This IDE supports decorators for both ele-
ments and connections. The visual drawing of an object is achieved
with the definition of Component Object Model (COM) also called
decorators. In addition simple bitmaps can be used as icons;

Composition Medium: GME provides some syntactical constructs for com-
position:

• Metamodel Merge operator that identifies metamodel join points
as metamodel elements with identical names;

• Interface Inheritance;

• Implementation Inheritance.

It also allows re-use of registered paradigms by importing them into
paradigms under development.

30 Chapter 3. State of the Art: Tools

Transformation High: Transformations in GME are possible by using one
of two possibilities:

1. Integrating with the GReAT system;

2. Using the generated C++ and Java interfaces generated from the
metamodel structure.

Composition of transformations is not available.

3.2.2 Atom3

The Atom3 IDE is a Tool for Multi-formalism and Meta-Modelling. The main
idea behind this tool is ’Everything is a model’. Models and metamodels are
always manipulated as graphs. The metamodel based formalism is based on a
Entity-Relationship model with additional constraints. Defined metamodels
(formalisms) can by used as the base formalism for defining new metamodels.

Language Evolution Low: Language Evolution is not supported by Atom3;

Verification Medium: This tool provides neither test case nor oracle genera-
tor. Model validation is executed on-the-fly during specification: model
integrity and constraint solver are applied to the graph;

Graphical Mapping High: All elements defined in an Atom3 metamodel
can be provided with a graphical representation.

In this development environment, the user can easily create or import
new graphical elements. Bitmaps can be used to represent any kind
of objects and connections and an internal graphical editor is made
available for designing graphical elements.

Tool bars can be defined and generated;

Composition None: No explicit composition mechanisms are available within
the Atom3 framework;

Transformation Medium: Only graph grammars can be used to perform
model to model manipulation or to generate textual representations.
In order to express a model transformation, Python scripting language
must be used.

No explicit functions of transformation composition is available.

3.2. Domain Specific Languages Development Environments 31

3.2.3 EMF/GMF

The Eclipse Modeling Framework (EMF) project is a modelling framework
and code generation facility for building tools based on a structured data
model. The metamodel formalism which is used for defining metamodels is
the Ecore formalism.

The Graphical Modeling Framework (GMF) provides a generative com-
ponent and runtime infrastructure for developing graphical editors based on
EMF.

Language Evolution High: Evolving paradigms can be preserved if ele-
ments, links and references are not renamed or removed. User can
perform manual modifications and, by using a special comment in the
Java source code, the modifications will be kept even if modifications
are performed in the metamodel;

Verification High: Within the EMF/GMF, framework it is possible to eas-
ily use JUnit test case generator and Oracle generator for the JUnit
tests generated.

Simple serialisation tests are generated automatically from the meta-
model. A functionality for model and metamodel validation is available
by user action.

Taking into account that EMF/GMF are part of the Eclipse framework,
it is easy to integrate with EclEmma a Java Code Coverage tool;

Graphical Mapping Very-High: In this metamodelling development frame-
work all elements present in a metamodel can be graphically repre-
sented. Groups of objects are possible to define as well as compart-
ments and containers. An associated behaviour can be defined to each
one of these;

Tool bars which may include menu items can be generated.

The user can easily use new graphical elements in most of the image
formats including Scalable Vector Graphics (SVG). GMF allows to
import an extensive set of Icons and Connection elements present in
the standard Eclipse repository;

Composition None: The EMF/GMF environment does not support any
kind of composition mechanisms;

Transformation High: Most of the transformation languages available are
Ecore-based and can be installed as an Eclipse plug-in. This is an

32 Chapter 3. State of the Art: Tools

advantage of using EMF/GMF. Graph grammars and QVT-based lan-
guages are available (e.g. ATL and Kermeta).

In addition, it is possible to use the generated Java interfaces and to
extend the automatic generated Java programs for model manipulation.

Functionalities for transformation composition are not available.

3.2.4 MetaEdit+

MetaEdit+ is a multi-user and multi-platform environment that supports
simultaneously both system development and method development. It is a
commercial tool developed by MetaCase. It is know for its successful case
studies at Nokia, AT&Tm Fusjitsu Siemens, etc.

This environment uses Graph-Object-Property-Port-Role-Relationship (GOP-
PRR) as the formalism for defining metamodels. Each one of these are de-
nominated metatypes.

Language Evolution High: Generated and hand written code can be sep-
arated. Protected blocks can be defined into the generated result;

Verification Medium/High: Provides metrics and model checking.

Does not generate automatically test cases but the code generator is
configurable.

This tool also allows model animation for simple validation operations;

Graphical Mapping High: This tool provides a Symbol Editor and an
extensive Library of available symbols. Symbols can be changed ac-
cording to model data. Functionalities of Import/Export symbols are
also available.

The user can create and configure menus, toolbars and a printing auto-
layout is present;

All elements in the metamodel can be mapped into a graphical repre-
sentation using multiple behaviours;

Composition Low: Provides a library of 70+ metamodels that can be re-
used;

Transformation Medium: Transformation under MetaEdit+ is possible by
using the Generator Editor, i.e. customisation of code generators. An-
other option is to use the automatically generated interfaces.

There is no support for transformation composition.

3.2. Domain Specific Languages Development Environments 33

3.2.5 Microsoft DSL Tools

DSL tools from Microsoft are able to generate visual designers that are cus-
tomised for a problem domain. It is based on the .NET framework and some
of the Visual Studio modules were developed using DSL tools. For example
the Distributed Systems Designers or Class Designer are modules entirely
developed using Microsoft DSL Tools.

It uses a Domain Model as metamodeling formalism. Domain Model is
built using pre-defined diagrammatic conventions. Many of these diagram-
matics are derived from UML and include conventions representing structure
and representing behaviour.

Language Evolution High: DSL Tools provide a ’Custom Code’ repository
in which users can add all their manual instructions. This repository
is always preserved during the DSML development cycle;

Verification High: Allows model and metamodel, toolbox, and menu vali-
dation; Provides constraint solver against models in order to check its
integrity against the defined metamodel.

No automatic unit test generators are available but Microsoft Visual
Studio provides functionalities that help define them and to automate
its execution. A code coverage tool is also available.

Custom validation categories can be added and code generators can be
modified to allow test and oracle generation;

Graphical Mapping Very-High: A graphical definition can be assigned to
all elements and all connectors. Elements can be of one of five shapes:
geometry, compartment, image, ports and swim lanes.

This environment supports Inheritance between shapes which have a
high degree of configuration.

Menus and toolbars are automatically generated and customisable;

Composition None: No composition mechanisms are available in Microsoft
DSL Tools;

Transformation Medium: Transformations in this environment can only be
specified by using the derived C# interfaces.

Composition of transformation is not supported.

34 Chapter 3. State of the Art: Tools

3.3 Summary

Table 3.1 provides a summary of the criterias used for comparison of each
one of the tools presented.

As we can see from the previous description, there are already quite some
tools available in the market for DSMLs development. Some are open source,
others commercial and others are academic tools. All of them base the their
DSML development philosophy by starting to create a metamodel of the
language.

In terms of abstract and concrete syntax, they all meet very well the
requirements for a DSML development environment. Some contain fancier
features than others but, overall, all of them can cope with all syntax aspects
of a language. We should just emphathise that, although it might not be
the easiest tool to use or the more intuitive, the EMF/GMF framework is
probably the most powerful due to one key aspect: it is integrated in the
Eclipse platform and a lot of plugins exist and can be integrated in order
to have a more powerful development environment. It is probably the only
platform that allows, for example, to develop textual DSLs using the same
framework and integrate it with a graphical part.

Concerning semantical aspects, all the tools presented are less powerful
than what is desired for a DSML development environment. When provid-
ing language semantics, they all rely very much on either the built-in code
generator templates or in the specific APIs generated for each one of the
DSMLs. These tools, in general, offer the user one of three different architec-
tural approaches for defining transformations: the direct model manipulation
approach, the intermediate representation approach, or the transformation
language support approach. It is our belief that this is not enough and that,
in the future, a better manner for defining (or attaching) semantic informa-
tion should be available.

As we can see from table 3.1 at least one of the tools presented has High or
Very High in all of the comparison criteria except for the Composition one.
We consider this to be a lack on how tools have thus been so far developed.
This fact, together with the idea that a more semantical point of view must be
added to DSML development environments, justifies the approach presented
in the thesis.

Because the Eclipse platform is open source, easier to interface and pro-
vides a lot of extra features, the implementation of the methodology we are
going to present, will be implemented as a plugin for this platform.

3.3. Summary 35
D

S
M

L
T

o
ol

s
D

ev
el

op
m

en
t

E
n
v
ir

on
m

en
ts

C
ri

te
ri

a
G

M
E

A
to

m
3

E
M

F
/G

M
F

M
et

aE
d
it

+
D

S
L

T
o
ol

s

L
an

gu
ag

e
E

vo
lu

ti
on

H
ig

h
N

on
e

H
ig

h
H

ig
h

H
ig

h

V
er

ifi
ca

ti
on

M
ed

iu
m

M
ed

iu
m

H
ig

h
M

ed
iu

m
/H

ig
h

H
ig

h

G
ra

p
h
ic

al
M

ap
p
in

g
M

ed
iu

m
H

ig
h

V
er

y
-H

ig
h

H
ig

h
V

er
y
-H

ig
h

T
ra

n
sf

or
m

at
io

n
H

ig
h

M
ed

iu
m

H
ig

h
M

ed
iu

m
M

ed
iu

m

C
om

p
os

it
io

n
M

ed
iu

m
N

on
e

N
on

e
L

ow
N

on
e

T
ab

le
3.

1.
D

SM
L

T
oo

ls
C

om
pa

ri
so

n
Su

m
m

ar
y

36 Chapter 3. State of the Art: Tools

Chapter 4

Model Structure Formalisation

In this chapter we provide a formalisation for metamodels and models. This
will allow us to describe the models and metamodels from a structural per-
spective.

The first part of the chapter is dedicated to the definition of metamodels
while the second section focuses on the definition and formalisation of models
construction.

4.1 ECore Formalism

In this section we formalise a metamodel. For this definition our work is
based on the meta-metamodel definition of Ecore (Eclipse Project, 2008)
provided in (Budinsky et al., 2004). Ecore is a formalism for describing
metamodels based on a set of concepts and relations between them. Ecore is
compliant with the standard definition (Object Management Group, 2007a)
of metamodelling languages for industrial modelling tools provided by the
OMG. The Fig. 4.1 shows a graphical representation of a simplified version
of the Ecore metamodel using UML-like class diagrams syntax. The Ecore
metamodel is a meta-metamodel. It corresponds to the top of the Fig. 2.1
(Sec. 2.2) that shows the 4-layers Architecture of a metamodelling framework

An Ecore metamodel defines a set of concepts used for defining metamod-
els. Metamodels are characterised by:

• a set of metaclasses of type EClass. Each EClass has a name, zero or
more attributes, and zero or more references;

• attributes that are described by the Ecore class EAttribute. Attributes
are defined by a name and by a type EDataType;

37

38 Chapter 4. Model Structure Formalisation

• references that are used to represent one end of an association between
classes. A reference is represented by the metaclass EReference. A
reference is defined by a name, a boolean flag to indicate if it represents
containment, a multiplicity defined by a lower and an upper bound;

• data types represented by the class EDataType. A data type can be a
primitive type (e.g. EInteger, EString, etc.) or user defined EENum;

• inheritance relations allowing each metaclass to have a super-class.
This relation is represented by the eSuperTypes association relation
in EClass class.

Figure 4.1. Ecore Metamodel

4.2 Metamodels Formalisation

According to this definition and the Ecore meta-model in Fig. 4.1 we pro-
pose a metamodel formalisation. This formalisation is based on a set of
metaclasses and the relations between them.

Definition 4.1. Universe of Metamodels.
MM corresponds to the universe of Metamodels.

Definition 4.2. Metamodel.
A metamodel is a 13-tuple

mm = 〈MC,MAT,MR,PT,MetaClass,MAttrType,MAttrLower,

MAttrUpper,RefType,MContainment,MLower,MUpper,MSuper〉
where:

4.2. Metamodels Formalisation 39

• MC is a finite set of meta-classes;

• MAT is the finite multiset of meta-attributes. MAT is the union of
the set of meta-attributes in each meta-class:

⋃
mc∈MCMATmc

• MR is the finite set of meta-references;

• PT = {PT1, PT2, ..., PTn} is the set of primitive types where each
primitive type is defined by the set of values DPTn ;

• MetaClass : MAT ∪ MR −→ MC The function that returns the
meta-class that each meta-attribute or meta-reference belongs to;

• MAttrType : MATmc −→ PT The function that links to each meta-
attribute a Primitive Type;

• MAttrLower : MAT −→ Z+ The function that returns the lower
bound of the meta-attribute.

• MAttrUpper : MAT −→ Z+ The function that returns the upper
bound of the meta-attribute;

• RefType : MR −→MC The function that links to each meta-reference
a meta-class type;

• MContainment : MR −→ {true, false} The function that specifies if
a meta-reference is a containment relation;

• MLower : MR −→ Z+ ∪ {∗} The function that returns the lower
bound of the meta-reference;

• MUpper : MR −→ Z+ ∪ {∗} The function that returns the upper
bound of the meta-reference.

• MSuper : MC ×MC The inheritance relation at the meta-class level.
This function function defines a specialisation relation between two
meta-classes.

Definition 4.3. Metamodel elements singularity.
The set of elements in a metamodel are unique:

(MC ∩MAT) = ∅

(MR ∩ PR) = ∅

40 Chapter 4. Model Structure Formalisation

Moreover, the completeness of a metamodel formalisation follows the
specification of the following definitions.

This formalisation defines a metamodel as a set of meta-classes MC,
meta-attributes MAT and meta-references MR. The function MetaClass
allows to link each meta-reference and each meta-attribute to its unique meta-
class; function MAttrType returns the primitive type of a meta-attribute;
and function MRefType that returns the type of a meta-reference. In addi-
tion, the metamodel is defined by an inheritance function named MSuper.

4.2.1 Metamodel example

As an example let us use an excerpt of the Petri Nets metamodel presented
in in Fig. 4.2. This example uses Ecore standard graphical representation.
It is a simplified version of a Petri Nets metamodel used in this section for
simplicity reasons. In further sections more detailed Petri Nets metamodels
will be introduced.

Figure 4.2. Simplified Petri Nets Metamodel

In a formal fashion, this particular Petri Nets metamodel is defined as
follows:

• MC = {PetriNet, PetriNetElement,Node,Arc, Transition, P lace, Term}
Representing the set of meta-classes in the metamodel;

• MAT = MATPetriNet ∪MATPetriNetsElement ∪MATNode ∪MATArc ∪
MATTransition ∪MATPlace ∪MATTerm

The set of meta-attributes indexed by meta-class.

4.2. Metamodels Formalisation 41

• MATPetriNet = {name}

– MAttrLower(name) = 1, MAttrUpper(name) = 1

Meaning that the meta-attribute name for the meta-class PetriNet
has a 1−1 cardinality. This implies a mandatory name while defin-
ing Petri Net models.

• MATPetriNetsElement = {}

• MATNode = {name}

– MAttrLower(name) = 1, MAttrUpper(name) = 1

• MATArc = {name}

– MAttrLower(name) = 0, MAttrUpper(name) = 1

The fact thatMAttrLower(name) is set to 0 andMAttrUpper(name)
is set to 1 means that Petri Nets’ Arcs are not forced to have a
name.

• MATTransition = {}

• MATTerm = {term}

– MAttrLower(term) = 1, MAttrUpper(name) = 1

• MATPlace = {initialMarking,maxNumOfTokens}

– MAttrLower(initialMarking) = 1, MAttrUpper(initialMarking) =
1

– MAttrLower(maxNumOfTokens) = 1, MAttrUpper(maxNumOfTokens) =
1

• MR = {ownedNetElements, from, to, ownedTerm}

• PT = {EString, EInt}

• MetaClass(ownedNetElements) = PetriNet,
MRefType(ownedNetElements) = PetriNetElement
Containment(ownedNetElements) = true
Lower(ownedNetElements) = 0
Upper(ownedNetElements) = ∗

42 Chapter 4. Model Structure Formalisation

• MetaClass(ownedTerm) = Arc
MRefType(ownedTerm) = Term
MContainment(ownedTerm) = true
MLower(ownedTerm) = 1
MUpper(ownedTerm) = 1

• MetaClass(from) = Arc
MRefType(from) = Node
MContainment(from) = false
MLower(from) = 1
MUpper(from) = 1

• MetaClass(to) = Arc
MRefType(to) = Node
MContainment(to) = false
MLower(to) = 1
MUpper(to) = 1

• MAttrType(name) = EString

• MSuper =
{(Transition,Node), (Place,Node)}

4.3 Models formalisation

Models are artefacts that are written in the language of a particular meta-
model. Therefore, a model is a set of constructions that are in conformity
with a metamodel as described in the previous section.

This section provides a set of definitions that allows to formally define a
model in conformity with a particular metamodel.

Definition 4.4. Universe of Models.
M is the universe of Models.

Definition 4.5. Model.
Giving a metamodel mm

mm = 〈MC,MAT,MR,PT,MetaClass,MAttrType,MAttrLower,

MAttrUpper,RefType,MContainment,MLower,MUpper,MSuper〉

4.3. Models formalisation 43

a model is defined as set of model elements:

mmm = 〈ME,MClass, ElemAttr, ElemRef,Mult〉

where

• ME is the set of the model elements;

• MClass : ME −→ MC is the function that gives the unique meta-
class for a model element; For each element of a model this functions
associates a unique meta-class.

• ElemAttr : ME × AT −→ Dpt the function ElemAttr that takes as
input a model element and an attribute. It returns a set of values of
this attribute on its primitive type, having:

– me ∈ME, an element me of the model ME

– AT is the set of attributes of the meta-class: AT = MATMClass(me),
the set of attributes of the meta-class MClass(me);

– ∀at ∈ AT, pt = MAttrType(at), the domain of the values of the
attribute at;

– ElemAtr(me, at) ∈ DMAttrType(at).

•
ElemRef : ME ×MR −→ (ME)j

the function ElemRef that takes as input a model element and a ref-
erence. It returns one or several elements of the model of the meta-
reference type, with:

– me ∈ME, a model element of ME;

– ref ∈ MR a meta-reference from the set of meta-refences of the
meta-class of me;

– MetaClass(ref) = MClass(me).

the function that associates to (me, ref) a k-uplet so that ElemRef(me, rk) =
(me1, ...,mej)k ∈ (ME)k in the domain of MRefType(refk), where
j ∈ Z+ : MLower(rk) ≤ j ≤MUpper(rk)

• Mult : ME ×MR −→ Z+ the function Mult that returns the number
of model elements of type MetaClass(me):

– me ∈ME, a model element of ME

44 Chapter 4. Model Structure Formalisation

– ref ∈MR a meta-reference from the set of meta-references of the
meta-class of me

– MetaClass(ref) = MClass(me)

Definition 4.6. Model Conformity.
Giving mm a metamodel and m a model, the conformsTo is a relation

that returns the metamodel to which a given model is in conformity with:

mm |=conformsTo m

A model is a set of ’model elements’ that satisfy a given reference meta-
model.

4.3.1 Model Example

In the Fig. 4.3 we show an example of a Petri Nets model. This model is
representative of a machine with two states: stopped and running, as well
as two transitions start and stop that allow to go from one state to the
other. The arcs that connect the transitions and states are also depicted.

stopped running

start

stop

Machine

1

11

1

Figure 4.3. Petri Nets Two State Machine Model

Formalising this model using the previous definitions results in the fol-
lowing description:

Model elements The elements that defined the Petri Net in Fig. 4.3 are:
{mepn,mep1,mep2,metr1,metr2,mea1,mea2,mea3,mea4, t1, t2, t3, t4} ∈ME
with:

• mepn the Petri Net machine: MClass(mepn) = PetriNet;

4.3. Models formalisation 45

• mep1 andmep2 Petri Net stopped and running places: MClass(mep1) =
Class(mep2) = Place;

• metr1 andmetr2 the start and stop transitions respectively: MClass(metr1) =
Class(metr2) = Transition

• mea1, mea2, mea3 and met4, the Arcs that connect transitions to
places and vice-versa: MClass(mea1) = Class(mea2) = Class(mea3) =
Class(mea4) = Arc

• t1, t2, t3 and t4, the Terms associated to the Arcs.: MClass(t1) =
Class(t2) = Class(t3) = Class(t4) = Term

Model Element Attributes The functions that characterise the attributes
at the model level are defined as:

• ElemAttr(mepn, name) = {Machine},
Mult(mepn, name) = 1

• ElemAttr(mep1, name) = {stopped},
ElemAttr(mep1, initialMarking) = 1

• ElemAttr(mep2, name) = {running},
ElemAttr(mep2, initialMarking) = 0

• ElemAttr(metr1, name) = {start}
• ElemAttr(metr2, name) = {stop}
• ElemAttr(t1, term) = {1}
• ElemAttr(t2, term) = {1}
• ElemAttr(t3, term) = {1}
• ElemAttr(t4, term) = {1}

Model Element References the definition of relation between elements
are defined as follows:

• ElemRef(mepn, ownedNetElements) =
{mep1,mep2,metr1,metr2,mea1,mea2,mea3,mea4, t1, t2, t3, t4},
Mult(mepn, ownedNetElements) = 12

• ElemRef(mea1, ownedTerm) = {t1},
Mult(mea1, ownedTerm) = 1

• ElemRef(mea2, ownedTerm) = {t2},
Mult(mea2, ownedTerm) = 1

• ElemRef(mea3, ownedTerm) = {t3},
Mult(mea3, ownedTerm) = 1

46 Chapter 4. Model Structure Formalisation

• ElemRef(mea3, ownedTerm) = {t4},
Mult(mea4, ownedTerm) = 1

• ElemRef(mea1, from) = {mep1}, Mult(mea1, from) = 1,
ElemRef(mea1, to) = {met1}, Mult(mea1, to) = 1;

• ElemRef(mea2, from) = {met1}, Mult(mea2, from) = 1,
ElemRef(mea2, to) = {mep2}, Mult(mea2, to) = 1;

• ElemRef(mea3, from) = {mep2}, Mult(mea3, from) = 1,
ElemRef(mea3, to) = {met2}, Mult(mea3, to) = 1;

• ElemRef(mea4, from) = {met2}, Mult(mea4, from) = 1,
ElemRef(mea4, to) = {mep1}, Mult(mea4, to) = 1;

The relation between the metamodel and model levels of abstraction is
illustrated in Fig. 4.4. The model and metamodel formalised previously are
related with each other as depicted.

4.4 Summary

This chapter provided a formal definition of a model and metamodel. It
presented a series of definitions that allows to be very precise in what concerns
metamodel and model elements. At the end of the chapter we introduced the
relation of conformity between a model and a metamodel. The conformsTo
relation will be used several times in the chapters that follows allowing to
describe a model in relation to its metamodel. This relation definition creates
a ’typing’ relationship between models and the metamodel that is in its origin.

4.4. Summary 47

stopped running

start

stop

Machine

conformsTo

MClass Relation

1 1

1 1

Figure 4.4. Conformity Relation between Petri Nets Model and Metamodel

48 Chapter 4. Model Structure Formalisation

Chapter 5

Tools for Domain Syntactic and
Semantic Composition

In this chapter we will go through the general process of providing seman-
tics to domain concepts from the point of view of the tools used. Although
the methodology described in this document is general enough to be used
with several target languages and several transformation languages, in this
chapter we focus in a specific target and transformation language. We de-
scribe Concurrent Object Oriented Petri Nets (CO-OPN) language as target
in order to give semantics to the domain concepts and in ATLAS Transfor-
mation Language (ATL) as transformation language as a mean to achieve
transformations.

The goal of this chapter is to provide background on CO-OPN and ATL
so that examples in the following chapters can be easily assimilated.

By using CO-OPN as the target formalism and ATL as the transformation
language and engine we can provide semantics as the composition of small
blocks that will define a prototype for simulation and validation of DSMLs.

5.1 Transformation of Domain Concepts

As previously mentioned, the semantics of a domain concept is given by
transformation. The approach proposed can use several target languages
in order to provide the desired semantics to the domain concept (details of
the methodology are presented in Sec. 6.1. Albeit this fact we will mostly
concentrate on transformations that have as domain the CO-OPN language.

CO-OPN is an object-oriented specification formalism based on Petri Nets
and algebraic specifications. It is suitable to fully support specifications of
complex concurrent and distributed systems. Modelling with CO-OPN pro-

49

50 Chapter 5. Tools For Domain Composition

vides the advantage of dealing with specifications that can be executed from
an unambiguous representation of the system. The CO-OPN language and
COOPBuilder IDE have been provided with MDA concepts and function-
alities that allow to integrate with solutions for the prototyping of Domain
Specific Languages.

For transforming from a domain concept to CO-OPN (or to any other tar-
get formalism) we used the ATLAS Transformation Language (ATL). Using
ATL was just a question of choice and an other transformation languages
could have been used. ATL has been chosen because of its features in the
field of Model-Driven Engineering (MDE). It provides ways to produce a set
of target models from a set of source models.

In order to transform models we have to have a metamodel defined for
each one of the domain concept. The metamodels we use are defined using
the ECore formalism. The ECore formalism is supported by ATL and we
defined a CO-OPN metamodel completely based on ECore so that we could
use it as target formalism in the transformations.

For being able to use all these concepts we have integrated our work in
the Eclipse Modeling Framework (EMF). As the name suggests the EMF
framework is integrated in the Eclipse platform. It allows to use several fea-
tures of the code generation facility for building tools and other applications
based on a structured data model. From a model specification described
in XMI, EMF provides tools and runtime support to produce a set of Java
classes for the model, along with a set of adapter classes that enable viewing
and command-based editing of the model, and a basic editor. Model Query,
Model Transaction, and Validation Framework, are also available.

5.2 CO-OPN as Target Formalism

Concurrent Object Oriented Petri Nets (CO-OPN) (Buchs & Guelfi, 1991,
2000; Biberstein, Buchs, & Guelfi, 1997; Biberstein, 1997) is a formal spec-
ification language allowing symbolic execution and state space exploration.
It consists in combining Petri nets and object oriented data structures to
provide a framework for the design and specification of concurrent and dis-
tributed systems.

Under some restrictions, the CO-OPN existing utilities (A. Chen, Buchs,
Lucio, Pedro, & Risoldi, 2006) allow to:

a) generate a prototype for a given specification;

b) enrich it with user specific code;

5.2. CO-OPN as Target Formalism 51

c) execute it or perform verification of implementations through testing;

d) high level of modularisation of both CO-OPN specifications and generated
code used for prototyping.

In this sense CO-OPN is both the intermediary semantic format for a
given domain concept allowing code generation for validation and verification
purposes.

There are various reasons why CO-OPN is suitable to be chosen as the
target format for domain concepts transformation. Some of the more relevant
are:

• It is modular specification language allowing to specify different DSL
components and their relationships;

• The specifications are described in a completely abstract axiomatized
fashion;

• The system states can be completely defined and explored;

CO-OPN specifications are made by three types of modules: Algebraic
Abstract Data Types (ADTs), Classes, and Contexts :

• Algebraic Abstract Data Type (ADT) modules represent data and their
associated operations;

• Class modules are an encapsulation of algebraic Petri nets that allows
to describe both structure and component behaviour;

• Context modules are a higher level of encapsulation defining the con-
textual coordination between components.

All three types of modules have the same basic structure. They are
composed of three parts: a header, an interface and a body. Fig. 5.1 shows an
excerpt of the CO-OPN metamodel focused on the basic CO-OPN modules.

• The header section contains information about inheritance and gener-
icity.

• The interface section contains components of the modules that are ac-
cessible by other modules.

• The Body section contains information about the behavior and the
state of the module.

52 Chapter 5. Tools For Domain Composition

Figure 5.1. CO-OPN metamodel: focus on CO-OPN modules

Figure 5.1 presents part of the CO-OPN that describes Package. A Pack-
age can be defined as a set of related modelling elements, grouped together to
share the same namespace. The structure of the CO-OPN package is similar
to the ones known in other object oriented modelling languages, except that
a COOPNPackage is the outermost element in CO-OPN. In other words, this
means that any modelling component in CO-OPN must be in a Package.

CO-OPN element is the root element of the metamodel, and represents CO-
OPN Metamodel. A metamodel root element is required by the Ecore
metamodelling language, on which our transformation framework is
based.

COOPNPackage represents the CO-OPN element called package. A
COOPNPackage contains none or several subPackages (see
ownedSubPackages composition). A Package can be defined as a set of
related modelling elements, grouped together to share the same names-
pace. The structure of the CO-OPN package is similar to the ones
known in other object oriented modelling languages. COOPNPackage is
the outermost modelling element of the CO-OPN metamodel and con-
tains none or several modelling elements called Module (see ownedModules
composition).

Module is an abstract element of the CO-OPN and represents the three dif-
ferent type of modules, Algebraic Abstract Data Type (ADT), Classes

5.2. CO-OPN as Target Formalism 53

and Contexts.

The following subsection describes each one of the CO-OPN modules.
Fragments of each one of the modules’ metamodel will be used in order to
provide essential information regarding CO-OPN. This information will be
later needed in order to understand the transformations defined from the
domain concepts to CO-OPN .

5.2.1 Algebraic Abstract Data Type Module

The Algebraic Abstract Data Type (ADT) module describes data types that
can be used by other CO-OPN ADT or Class modules. The header section
of an ADT defines inheritance features. The Interface section includes,
among other constructions, Sorts, Generators and Operations. The Body

section regroups the definition of axioms: axioms define the ADT semantics
by defining the behaviour of operations and generators.

Firstly we will show the acADT Interface in more detail. Fig. 5.2
shows part of the CO-OPN metamodel that define the ADT focusing on the
interface section of it.

Interface The interface section specifies module components that are going
to be accessible by other modules. An ADT interface aggregates none
or several Use, Operation, Sort and Generator;

Use represents a reference to another CO-OPN module. It is represented by
the Use EClass element. Not shown in the ADT metamodel excerpt
for readability reasons there the usedModuleForAdt association that
allows to identify which module is referenced. This association is the
opposite relation for the ownedInterfaceUses composition;

Sort specifies a set of sorts that identify one of the ADT signature’s part.
A Sort is identified by sortName attribute represents the type name;

Operation define the operations that can be performed on the data type
under specification. An Operation is characterised by a CoDomain and
none or several Domain. The name attribute represents the unique name
of the operation in the ADT;

Codomain is the definition of the operation result type. It is characterised
represented by an attribute name. Since Codomain is an ADT type it
also has a mandatory reference (codomainSort in the metamodel) to
Sort EClass elemtent;

54 Chapter 5. Tools For Domain Composition

Figure 5.2. CO-OPN metamodel: focus on ADT Interface

Domain defines the type of each operation parameter. It is described by
the name and order attributes that represent, respectively, the name of
the operation parameter type, and the order in which will figure in the
operation signature. Similarly as the Codomain each domain provides a
mandatory reference to the ADT type (domainSort association in the
metamodel);

Generator is the function that builds all the possible values of the ADT’s
sort. It can be seen as a constructor for the data type being specified.
The name attribute contains the syntactic expression of the generator
function. A Generator is also defined by one Codomain and none or
several Domains.

The interface section of an ADT basically specifies the ADT’s signature.
Its semantics is defined in the Body section. Fig. 5.3 depicts a subset of the
ADT Body metamodel section focused on the definition of the ADT axioms.

Axiom is the root element for defining the ADT semantics. The Axiom

meta-class is a specialisation of the AxiomTheorem meta-class meaning

5.2. CO-OPN as Target Formalism 55

Figure 5.3. CO-OPN metamodel: focus on ADT Body and Axioms Definition

that, axioms and theorems have the same abstract syntax in CO-OPN
ADTs. An axiom is identified by a name represented in the meta-
model as the name attribute AxiomTheorem meta-class. Both Axiom

and Theorem have the same syntactic structure. In the CO-OPN meta-
model they are a specialisation of the AxiomTheorem meta-class;

Sort specifies set of sorts can be defined for ADT’s ’internal’ use. A Sort is
identified by sortName attribute represents the type name;

Use Similar to the meaning of the Use meta-class in the Interface section,
represents a reference to another CO-OPN module;

Operation Like in the Interface section of the ADT definition defines
the operations that can be performed on the data type. Operations
defined in the Body section are to be used only within the ADT under
specification;

Generator Again, it is the function that builds all the possible values of
the ADT’s sort. They are of private use to the ADT;

56 Chapter 5. Tools For Domain Composition

Equation represents the set of equations allowing to specify the semantics
of an ADT axiom. It is defined by an expression allowing to express
the equation’s statement;

Condition allows to express a boolean condition that is evaluated. The
specification of a condition in the ADT axiom implies that axiom can
only be executed if the condition is evaluated to true. The AndCondition,
OrCondition and NotCondition meta-classes are a specialisation of
the OperatorCondition meta-class which, on its turn, is specialises
the ADTAtom meta-class. All this setup of meta-classes that specialise
and are specialised define a recursive structure that allow to specify
conditions of the type (var1 = var2) = true&(var3 > 0) = true.

ADTAtom Defined as the class that specialises OperatorCondition and
Equation, it allows to specify the leaf of the axiom’s definition.

As an example of the definition of an ADT using CO-OPN language
please see Appendix B.1. In this appendix we use both CO-OPN textual
concrete syntax and the syntax based on ECore in order to show both ways
of specifying an ADT.

5.2.2 Class Module

In CO-OPN Classes act as object templates. Objects are net instances of
these classes. An object is an independent entity, composed of an internal
state (defined by the collection of all places and transitions in the class). The
internal state of the object is encapsulated, and the only way to interact with
an object from the outside is to ask one of its services (also called Methods).
Interaction between objects is realized by using synchronization expressions,
through methods and gates or by an internal transition.

The header section of a Class module contains information about inheri-
tance. The interface section contains module’s components that are accessi-
ble by other modules. The Fig. 5.4 highlights some of the components that
define a CO-OPN Class module. This figure focuses on the Interface part
of it.

Module is abstract and represents the three different type of modules,
ADTs, Classes and Contexts. name attribute represents the name of
the module.

COOPNClass represents the CO-OPN Class. A Class is composed by an
Interface and a Body. Interface is defined here by the ownedInterface
composition;

5.2. CO-OPN as Target Formalism 57

Figure 5.4. CO-OPN metamodel: focus on Class Interface

Interface A Class interface contains none or several Use, Gate and Method

represent respectively by the ownedInterfaceUses, ownedInterfaceGates
and ownedInterfaceMethods respectively. It is also composed by one
ore several ClassType;

ClassType represents the type of the Class. name attribute in inherited
from the Type meta-class and identifies the class type;

Use it allows to create a reference to another module. This reference is
represented by the Use modelling element by the usedModuleForClass
association. This association points to the Module meta-class that can
be either a CO-OPN Class or ADT;

Method are the services that the class provides to the outside. The name

serves as an unique identification of it. A CO-OPN Class method is
composed of none or several typed elements. This defines the signature
of a method in the class. The TypeElement meta-class is related with
the Method meta-class by the ownedMethodTypeElements composition.
Creating one instance of the TypeElement EClass is the equivalent of
creating a method parameter in Java. In CO-OPN a method parameter
is designated by an that can be present in any place of the method’s

58 Chapter 5. Tools For Domain Composition

signature. As an example, the method sum(,) can also be written
as sum . The number of elements of type TypeElement must be
equal to the number of in the method’s name. The order attribute
is an unique identifier that allows to specify the expected type of each
method’s attribute;

Gate is a specific transition which represent an outgoing event, the required
service. Gates and methods are complementary and have the same
syntactical structure;

One other section of a CO-OPN Class is its body. The most impor-
tant characteristic of the CO-OPN Class body section is that groups the
underlying petri-nets and axioms’ definition. In other words the semantics
of objects are defined in this part of the CO-OPN specification, while pro-
viding the necessary information to their templates. In Fig. 5.5 we present
a simplified metamodel of the body section of a CO-OPN Class.

Figure 5.5. CO-OPN metamodel: focus on Class Body without Axiom definitions

Method A method in the CO-OPN body section represents a private ser-
vice for the objects instances of the ClassType defined in the interface
section. It has the same overall structure as a method in the interface;

Gate is a private required service. Syntactically it is defined similarly to the
gate in the interface section;

5.2. CO-OPN as Target Formalism 59

Place represents a state (as in the Petri Net formalism). The collection of
all places represents the state of a class instance. A place is identified
by an unique name. The name attribute of the Place meta-class in the
metamodel. A variable is typed by an association placeType to the
meta-class Type (not shown on the figure). The type is either of type
ClassType or Sort;

Use Similar to the Use definition in the interface section;

Variable A variable is an internal ’attribute’. It is used to parameterize
axioms, methods and gates. As for a place, a variable is typed by an
association variableType to the meta-class Type;

Initial The Initial element of a CO-OPN class is used to initialise the de-
fined variables and places. If Initial is defined for a place or variable
in a CO-OPN class, the objects of that class will have their places and
variables initialised to the values defined in the Initial field;

Axiom As for ADTs, a class body is also composed by axioms and theorems.
Again, they define the behaviour of the class. An axiom is composed of
none or several pre conditions, post conditions, synchronisations, and
tests. The Pre, Post, Synchronization and Test meta-classes defines
these entities in the metamodel. An axiom is also composed by zero
or one condition and one event. A detailed description of these will be
provided while presenting some details of the class metamodel in Fig.
5.6;

Pre The pre-condition that must be satisfied by a place when an axiom is
evaluated;

Post The post-condition that must be satisfied by a place when an axiom
is evaluated;

Test Test is a part of the axiom that must be evaluated to true in order
for the axiom to be executed. Tests act on variables or on services
provided by objects.

60 Chapter 5. Tools For Domain Composition

F
ig

ur
e

5.
6.

C
O

-O
P

N
m

et
am

od
el

:
fo

cu
s

on
C

la
ss

B
od

y
A

xi
om

de
fin

it
io

n

5.2. CO-OPN as Target Formalism 61

Having described the generic aspects of CO-OPN body structure we pro-
ceed by providing a more detailed characterisation of some aspects of it. The
Fig. 5.6 focus on the conditions and events components of a class axiom.

Condition An axiom can have zero or one condition represented in the
figure by the Condition meta-class. The condition is the way of ex-
pressing in which circumstances (state of the system) the axiom can
be triggered. A condition is a composition of one condition atom
(ConditionAtom meta-class in the metamodel). This meta-class is spe-
cialised by the Equation and OperatorCondition meta-classes. The
OperatorCondition is specialised by the OrCondition, AndCondition
or NotCondition meta-classes that, themselves are composed by other
condition atoms. This allows to have conditions as a composition of
statements like (a > b) = true and (a > 0) = true.

Event is the name of the service that will trigger the axiom evaluation and,
in case of evaluation to true, its execution. An event can be either a
gate or a method defined in the class. The attribute name in the Event

class defines which method or gate it corresponds to;

Synchronization In CO-OPN the syncrhonisation part of an axiom defines
what services are going to be executed if the axiom pre-conditions,
post-conditions and condition are evaluated to true. These services
can be methods or gates defined both in the class or defined in other
classes. A synchronisation is a composition of a synchronisation atom
(SynchronizationAtom meta-class in the metamodel) that is specialised
by the SynchronisationTerm and OperatorSynchronization meta-
classes. This last meta-class is specialised by the AlternativeSynch,
ParallelSynch and SequenceSynch meta-classes which. These meta-
classes are a composition of SynchronizationAtom elements and they
represent the types synchronisation available in CO-OPN:

• Alternative is represented as + in CO-OPN textual concrete syn-
tax. It allows to express service calls in a non-deterministic fash-
ion. E.g. o.methodA + o.methodB means that either o.methodA
or o.methodB is going to be executed;

• Parallel is represented as // in CO-OPN textual concrete syntax.
It allows to call services in parallel. The services expressed with
this operator will be executed simoultaneously. E.g.
o.methodA // o.methodB means that methodA and methodB of
object o are executed in parallel;

62 Chapter 5. Tools For Domain Composition

• Sequence is represented by .. CO-OPN textual concrete syntax.
This operator allows to express services call in sequence, i.e. one
after the other. The o.methodA .. o.methodB expression means
that methodA is called and after which methodB is called.

CO-OPN contexts are units of computation where included entities are
coordinated following the same synchronization rules used for class methods
and gates. CO-OPN components are organized hierarchically: contexts can
contain sub-contexts and objects; objects can have places and transitions;
places can contains tokens. Furthermore, if we ignore the transactional as-
pect of CO-OPN transitions, CO-OPN models with different types of tokens
correspond to different kinds of Petri nets.

Contexts are coordination entities. They are the responsible to coordi-
nate activities among classes. Coordination is done by mean s of behavioral
axioms that connect methods and gates of the embedded entities.

5.2.3 Context Module

As the previous two CO-OPN modules, contexts can be separated in interface
and body sections. The metamodel’s interface section is presented in Fig.
5.7. This part of a CO-OPN context is composed of:

Context Use is a pointer to another CO-OPN context. It allows the ’inclu-
sion’ of contexts into other contexts so that services defined by them
can be used;

Method A method is a public service that allows coordination with other
context services and services available through objects;

Gate is a public required service that will coordinate with other services
either defined in other contexts or made available through objects;

Use it allows to create a reference to another CO-OPN module. Similar to
the Use field in a CO-OPN class or ADT.

In what concerns the body section, a CO-OPN context is organised as
follows:

Use is the reference to other CO-OPN modules used in the body section;

Method is the private service that allows coordination with other context
services and services available through objects;

5.2. CO-OPN as Target Formalism 63

Figure 5.7. CO-OPN metamodel: focus on Context Interface

Gate is a private required service that will coordinate with other services
either defined in other contexts or made available through objects;

AxiomTheorem the way of providing the semantics within a context. An
axiom or theorem are composed by a condition, a required and a pro-
vided event. In the metamodel, these constructions are presented as
Condition, RequiredEvent and ProvidedEvent meta-classes. The re-
quired event is what triggers the axiom’s execution. It is either a CO-
OPN method or gate. The condition defines in which circumstances
the axiom is going to be executed. A condition is a composition of
equations possible separated by an operator. Operators can by the
logical or, and or not.

The provided event section represents what operations have to be ex-
ecuted in case the axiom’s condition is evaluated to true. This part
of the CO-OPN language is a composition of events by using the syn-
chronisation operators available. Its usage and semantics is similar to
the one presented for CO-OPN classes in Sec. 5.2.2 on page 61. Again,

64 Chapter 5. Tools For Domain Composition

the provided event is built with the sequential, parallel and alternative
synchronisation operators.

5.2. CO-OPN as Target Formalism 65

F
ig

ur
e

5.
8.

C
O

-O
P

N
m

et
am

od
el

:
fo

cu
s

on
C

on
te

xt
B

od
y

66 Chapter 5. Tools For Domain Composition

Sec. B.3 shows a CO-OPN context using the different concrete systaxes
available.

5.2.4 Sub-typing and Inheritance in CO-OPN

Sub-typing and inheritance are two different notions in CO-OPN. An in-
heritance relationship is a syntactic mechanism which allows to reuse parts
of existing specifications to create a new specification. Sub-typing relation-
ship is based on the strong substitutability principle, which implies that,
in any context, any class instance of a type may be substituted for a class
instance of its super-type while the behavior of the whole system remains
unchanged (Buchs & Guelfi, 2000). Two classes related by inheritance are
not necessarily related by sub-typing. CO-OPN offers a much less restrictive
mechanism than those provided by other object oriented formalisms, such
like UML, MOF or Ecore. A complete illustration of the distinction between
inheritance and sub-typing in the CO-OPN language is illustrated in (Buchs
& Guelfi, 2000).

Fig. 5.9 presents part of the CO-OPN metamodel that defines the Module
inheritance and sub-typing mechanism.

Figure 5.9. CO-OPN metamodel: focus on Module Inheritance

Module is abstract and, as described in the three previous sections, repre-
sents the three different types of modules, ADTs, Classes and Contexts.
A Module contains none or several modelling elements Inherit that al-
low to express inheritance relations;

5.2. CO-OPN as Target Formalism 67

Inherit represents an inheritance. Each inheritance point to a CO-OPN
module by means of the inherit EReference. The Inherit meta-class
is composed none or several Rename, Redefined and Undefined.

Rename element represents the action of renaming a inherited module prop-
erty into another. Properties that can be renamed depends on the type
of module;

Redefined element represents the action of redefining a inherited module
property. Inherited properties are ignored and replaced by the new
properties definition. Properties that can be redefined depends on the
type of module;

Undefined element represents the action of eliminating a inherited module
property. Properties that can be eliminated depends on the type of
module;

SubType represents the action of sub-typing a module. The structure of a
SubType depends on the type of module.

Listing 5.1. Module Inheritance abstract syntax
ModuleType moduleName

2 Inherit inheritedModuleName
Rename

4 sourcePropertyName −> targetPropertyName ;
Redefine

6 sourcePropertyName −> targetPropertyName ;
Undefine

8 sourcePropertyName −> targetPropertyName ;
Interface

10 . . .
Body

12 . . .
End moduleName

The structure of Module components involved in the sub-typing and in-
heritance mechanism depends on the type of Module. For instance Rename,
Redefined, Undefined and SubType meta-classes. In particular for the case
of a CO-OPN class the Inherit meta-class is composed of none or several
Rename associated to the abstract meta-class RenamableProperty. It rep-
resents Class module components which attribute name can be modified in
the renaming process. Properties that can be renamed are the ClassType,
Method and Gate, which all extends the abstract RenamableProperty. A new
name can be assigned to each one of the properties that are being renamed.

The structure of the redefined and undefined processes are similar to this
one.

68 Chapter 5. Tools For Domain Composition

Class sub-typing mechanism involves essentially the ClassType meta-
class. A CO-OPN class interface contains none or several SubType that
represent the sub-typing. A SubType is composed by a SuperTypeElement

(which represents the super-type), and a SubTypeElement (which representes
the sub-type). Both elements have a Type that is a ClassType. Note that
the structure is exactly the same for the ADT sub-typing mechanism except
that ClassType gives its place to an ADT Sort.

5.3 ATL as Transformation Language and En-

gine

In this section we will provide an overview of the ATLAS Transformation
Language (ATL). For the context of this work it is important to highlight
the availability and usability of ATL. The implementation of the methodol-
ogy presented relies on ATL in what concerns specification and execution of
transformations.

Ecore

ATL

MMLeft MMRight

Left2Right

Left Right

conformsTo conformsToconformsTo

conformsTo

conformsTo conformsTo

Transformation

Figure 5.10. An overview of ATL Model Transformation

ATL(ATLAS Group, 2006) is a model transformation language and toolkit
developed by the ATLAS Group and integrated in the Eclipse Model-to-
Model (M2M) project. ATL is an answer to the OMG MOF (Object Manage-
ment Group, 2007c) and QVT RFP (Object Management Group, 2002b). It

5.3. ATL as Transformation Language and Engine 69

is a model transformation language specified as both metamodel and textual
concrete syntax with an hybrid of declarative and imperative programming
approach. ATL mainly focuses on model to model transformations which
are specified by means of ATL modules. ATL also allows to create model to
primitive data type programs. These units are denominated queries and aim
to compute a primitive value, such as a string or an integer.

Fig. 5.10 summarizes the full model transformation process using ATL.
A model Left, conforming to a metamodel MMLeft, is here transformed into
a model Right that conforms to a metamodel MMRight. The transformation
is defined by the model transformation model Left2Right which itself con-
forms to a model transformation ATL metamodel. The set of ATL, MMLeft
and MMRight conform to the metametamodel that in this case is Ecore. Sec.
5.3.3 presents an example that shows how an ATL transformation is de-
fined according to the models and metamodels involved. Fig. 5.12 shows
an ’instance’ of Fig. 5.10 taking into account the example of Petri Nets
transformation.

5.3.1 Structure of ATL Module

The structure of an ATL module is briefly defined as (ATLAS Group, 2006):

Header Section

A header section that defines some attributes that are relative to the trans-
formation module. It defines the name of the transformation module and the
name of the variables corresponding to the source and target models

Listing 5.2. ATL Header Definition
module module name ;
create output models [from | refines] input models ;

Listing 5.2 shows the generic definition of the ATL module where:

• module is the name of the module;

• create specifies the target models declaration;

• the source models are defined either by the keyword from (in normal
mode) or refines (in case of refining transformation). It is possible
to declare several input or output models by separating the declared
models by a coma. The name of the declared models is used to identity
them.

70 Chapter 5. Tools For Domain Composition

Import Section

An optional import section allows to import some existing ATL libraries.
The declaration of an ATL library is defined as shown in Listing 5.3.

Listing 5.3. ATL Import Definition
uses e x t e n s i o n l e s s l i b r a r y f i l e n a m e ;

Helpers

A set of helpers that can be viewed as an ATL equivalent to Java methods;
An ATL helper is defined by:

• a name corresponding to the method’s name;

• a context type that defines the context in which it is defined. This is
analogous to the way a method is defined in the context of given class
in Object-Oriented (OO) programming.

It defines the kind of elements the helper applies to, the type of the
elements from which it will be possible to invoke it. The context may be
omitted in a helper definition. In such a case, the helper is associated
with the global context of the ATL module, which means that, in the
scope of such a helper, the variable self refers to the run module/query
itself.

Besides helpers, the ATL language makes it possible to define at-
tributes. When compared to a helper, an attribute can be viewed as a
constant that is specified within a specific context. The major differ-
ence between a helper and an attribute definition is that the attribute
accepts no parameter;

• a return value type. In ATL, each helper must have a return value;

• an ATL expression representing the code of the helper;

• an optional set of parameters. A parameter is identified by a couple
(parameter name, parameter type).

The scheme of an ATL helper is provided in Listing 5.4.

Listing 5.4. ATL Helper Definition
helper [context context type] ? def : helper name (parameters) : r e tu rn type=exp ;

5.3. ATL as Transformation Language and Engine 71

Rules

A set of rules that defines the way target models are generated from source
ones. In ATL, there exist two different kinds of rules that correspond to
the two different programming modes provided: the declarative and imper-
ative programming. The matched rules are the one allowing to program
in a declarative fashion; and the called rules allowing to specify imperative
programming.

The matched rules constitute the core of an ATL declarative transforma-
tion since they make it possible to specify:

• for which kinds of source elements target elements must be generated;

• the way the generated target elements have to be initialized.

A matched rule is identified by its name. It matches a given type of source
model element, and generates one or more kinds of target model elements.
The rule specifies the logic how generated target model elements must be
initialized from each matched source model element.

A matched rule (introduced by the keyword rule) is composed by the
mandatory source and target patterns. Two optional patterns can be used
and represent the local variables and the imperative sections. When defined,
the local variable section is introduced by the keyword using. It enables to
locally declare and initialize a number of local variables;

The source pattern of a matched rule is defined by using the keyword
from. It allows to specify a model element variable that corresponds to the
type of source elements the rule has to match. This type corresponds to an
entity of a source metamodel of the transformation.

The target pattern of a matched rule is defined after the keyword to.
It allows to specify the elements to be generated when the source pattern
of the rule is matched, and how these generated elements are initialized. A
target pattern element corresponds to a model element variable declaration
associated with its corresponding set of initialization bindings. This model
element variable declaration has to correspond to an entity of the target
metamodels of the transformation.

The optional imperative section, introduced by the keyword do, makes
it possible to specify some imperative code that will be executed after the
initialization of the target elements generated by the rule.

Listing 5.5 provides the schema of an ATL rule.

Listing 5.5. ATL Rule Definition
rule rule name {

2 from

72 Chapter 5. Tools For Domain Composition

i n va r : i n type [(
4 cond i t i on

)] ?
6 [using {

var1 : var type1 = in i t e xp1 ;
8 . . .

varn : var typen = in i t e xpn ;
10 : = ; }] ?

to
12 out var : out type (

b ind ings1
14) ,

out var : distinct out type foreach (e in c o l l e c t i o n) (
16 bind ings2

) ,
18 . . .

out varn : out typen (
20 bindingsn

)
22 [do {

statements
24 }] ?
}

The called rules provide the imperative programming functionalities. They
can be seen as a particular type of helpers: they have to be explicitly called
to be executed and they can accept parameters. However, as opposed to
helpers, called rules can generate target model elements as matched rules do.
A called rule has to be called from an imperative code section, either from a
match rule or another called rule.

Since the called rule does not match any source model element, the initial-
ization of the target model elements that are generated by the target pattern
has to be based on a combination of local variables, parameters and module
attributes. The target pattern of a called rule is defined in the same way the
target pattern of a matched rule is.

5.3.2 ATL Data Types

The ATL data type scheme is very similar to the one defined by OCL. Fig.
5.11 provides an overview of the data types structure present in ATL.

The class OclType corresponds to the definition of the type instances spec-
ified by OCL. It is associated with a specific OCL operation: allInstances().
This operation, which accepts no parameter, returns a set containing all the
currently existing instances of the type self. In ATL there is another addi-
tional operation that enables to get all the instances of a given type that be-
long to a given metamodel. For example, the allInstancesFrom(metamodel
: String) operation returns a set containing the instances of type self that
are defined within the model namely identified by metamodel.

5.3. ATL as Transformation Language and Engine 73

Figure 5.11. ATL Data Types metamodel

The operation defined over the class OclAny are the set of operations
common to all existing data types and include:

• comparison operators: =, <>;

• oclIsUndefined() returns a boolean value stating whether self is un-
defined;

• oclIsKindOf(t:oclType) returns a boolean value stating whether self
is an either an instance of t or of one of its subtypes;

• oclIsTypeOf(t:oclType) returns a boolean value stating whether self
is an instance of t.

ATL also implements a number of additional operations:

• toString() returning a string representation of self

• oclType() returns the oclType of self;

• asSequence(), asSet(), asBag() respectively return a sequence, a
set or a bag containing self;

• output(s:String) writes the string s to the Eclipse console.

• debug(s:String) returns the self value and writes the s : self value
string to the Eclipse console;

74 Chapter 5. Tools For Domain Composition

• refSetValue(name:String, val:oclAny) is a reflective operation that
enables to set the self feature identified by name to value val. It returns
self;

• refGetValue(name:String) is a reflective operation that returns the
value of the self feature identified by name;

• refImmediateComposite() is a reflective operation that returns the
immediate composite;

• refInvokeOperation(opName:String, args:Sequence) is a reflective
operation that enables to invoke the self operation named opName with
the sequence of parameter contained by args.

OCL also defines a set of primitive data types that are implemented in
ATL. The primitive datatypes are the types corresponding to the Boolean,
Integer, Real and String data types. A set of operations are also defined
over these types.

In addition to primitive types, ATL also supports collection data types.
Namely:

• Set is a collection without duplicates. Set has no order;

• OrderedSet is a collection without duplicates. OrderedSet is ordered;

• Bag is a collection in which duplicates are allowed. Bag has no order;

• Sequence is a collection in which duplicates are allowed. Sequence is
ordered.

A collection can be seen as a template data type. This means that the
declaration of a collection data type has to include the type of the elements
that will be contained by the type instances.

ATL provides a large number of operations in the context of the different
supported collection types. The description of the supported ATL operations’
one collections is out of the scope of this document. A detailed description
is provided

5.3.3 ATL Example

Taking the Petri Nets presented in Fig. 4.2 the general path for transforming
it to CO-OPN is obtained by defining an ATL transformation that takes as
source the Petri Nets metamodel and model, the CO-OPN metamodel and

5.3. ATL as Transformation Language and Engine 75

Ecore

ATL

PetriNets
Metamodel

CO-OPN
Metamodel

pn2coopn

Machine coopnMachine

conformsTo conformsToconformsTo

conformsTo

conformsTo conformsTo

Transformation

Figure 5.12. An overview of ATL Model Transformation

producing a target CO-OPN model. The Fig. 5.12 is a specialisation of the
general schema of an ATL transformation in Fig. 5.10.

In Fig. 5.12 MMLeft and MMRight are replaced by PetriNets MetaModel

and CO-OPN Metamodel respectively. The Left model is replaced by the Petri
Nets model Machine (in Fig. 4.4) and the Right model by the coopnMachine
CO-OPN model that will be produced by the transformation. pn2coopn

stands for the ATL transformation specification that we detail in the rest of
this subsection.

The equivalent of the Machine Petri Nets model in CO-OPN language
will be as presented in Listing 5.6.

Listing 5.6. CO-OPN Equivalent of Petri Nets Machine Model
Class CLASSMachine ;

2 Interface
Type machineType ;

4 Methods s t a r t ; stop ;

6 Body
Use BlackTokens ;

8 Places
stopped : blackToken ;

10 running : blackToken ;
In i t i a l

12 stopped @;
Axioms

14 s t a r t : : stopped @ −>running @;
stop : : running @ −>stopped @;

16 End machine ;

76 Chapter 5. Tools For Domain Composition

5.4 Summary

In this chapter we went through an overview of the tools used in order to
apply the methodology that we are going to describe on Chap. 6. In partic-
ular we described CO-OPN from the perspective of a language engineering.
In the context of this work we implemented a metamodel for CO-OPN that
we have described some parts in this chapter. In Sec. 5.3 we presented the
ATL language that we are going to use while applying transformations for
the examples presented in Chap. 8 of this document.

Chapter 6

Providing Semantics for Domain
Models

The aim of this section is to provide an overall definition of a methodology
that allows to easily deal with semantics of DSMLs. Adding semantics to a
domain is a two-step operation:

1. Define a metamodel of the domain concept;

2. Specify a transformation that maps the semantics of the domain con-
cepts in a target formalism;

The metamodel is defined by means of a metamodelling formalism whereas
transformations are defined in relation to a source and a target metamodel.
Moreover transformations take a model in conformity with a source meta-
model and produce another model that is in conformity with the metamodel
of the target formalism.

Instead of focusing on defining the complete semantics of a DSML by
defining a complete transformation to a target plat form, the purpose of this
work is to allow modularity of semantic constructions. DSMLs are built using
iteractive and incremental processes and so should be their semantics. Taking
this into account we propose a generic method that allows modularisation
of metamodels, models and associated transformations that represent the
semantic mapping.

In this chapter we go into the most formal aspects of the work. It focuses
on the fundamentals of the methodology by describing all the concepts in-
volved. A set of formal definitions are provided. We detail how composition
of metamodels, models and transformations are specified and instantiated.
The result of these compositions provide the basis for the Compositional
Platform for Domain Specific Modelling Languages Prototyping (CoPsy)
implementation presented later in Chap. 7.

77

78 Chapter 6. Providing Semantics for Domain Models

6.1 General Approach

For the context of this work both a methodology and a tool was developed.
The methodology is not tied to a particular technology or language. Its
formal definition supports this statement and allows to explain the applied
philosophy at a high level of abstraction.

Fig. 6.1 provides a high level overview of the methodology developed
during this thesis’ work.

Meta-metamodel
 formalism

Concepts Structure and
Transformation

Composition

Domain
Concepts

Semantic World

conformsTo Domain Concept Models
conformsTo

uses

Target
Language(s)

Prototype

Code
Generation

Validation

Simulation and
 Execution

Transformation

Transformation
Templates

Figure 6.1. Composition Framework Overview

On the top of the figure is represented the meta-metamodelling formalism.
It is the root for defining metamodels. It is a formalism that allows to specify
the abstract syntax of a domain concept by providing constructs to define

6.1. General Approach 79

metamodels.
The Domain Concepts box includes the metamodels of each DSML block.

These metamodels are instances of the meta-metamodelling formalism and
have associated transformation templates represented by the vertical arrows
coming out from the box. Transformations are the operations that pro-
vide semantics to the domain concepts by mapping them to target models.
These target models have an associated semantics. The transformation has
as co-domain a formalism that provides to the models the desired seman-
tics imposed by the transformation definition. The transformation of each
block is a self-contained and atomic operation - transformation defined for
each fragment of the domain should be executable independently from other
domain blocks.

The conformsTo is the relation defined in Definition 4.6. The confor-
mity relation between Domain Concepts and the metamodel formalism, and
between Domain Concept Models and Domain Concepts define the type of
models of each one of the instances.

For being able to define a DSML using these blocks, the metamodels of
the blocks must be composed. This is done by means of language block
parameterization. The Concepts Structure and Transformation Composition
rectangle represents the action of composing the concepts according to the
defined parameterization. As it will be exposed in Sec. 6.2 and Sec. 6.3 this
is a two step operation involving first the composition of metamodels and
second the composition of the transformations.

The definition of a transformation for each domain block, together with
the instance models that are in conformity to the block metamodels, allows
to build specifications in the target languages. Each domain concept, which
has an associated transformation model, can be parameterized by another do-
main concept, which also has a transformation model. This parameterization
means we can replace a concept in a block with a concept from another block
which is richer, more refined, or has a different transformation template.

A transformation is represented by one of the arrows labelled Transfor-
mation Templates. Each transformation is defined as a set of other trans-
formations Trmm→mmt = {Tr1

mm→mmt, T r
2
mm→mmt, . . . , T r

n
mm→mmt} each one

of them corresponding to the rule(s) of transforming certain elements of the
source model into elements of the target model.

A transformation is a function Trmm→mmt : im, ctx → imt, ctx′, where
im is a model in the source DSML (i.e. an instance of the source DSML
metamodel mm), imt a model in the target formalism (i.e. an instance of
the target formalism metamodel mmt), ctx and ctx′ the system’s execution
state before and after transformation.

Each domain block can be parameterized by defining the elements that

80 Chapter 6. Providing Semantics for Domain Models

serve as parameter and the ones that replace them. The parameterization is
processed in two steps: the syntactical one implying the metamodel compo-
sition, and the semantic one that takes care of transformations’ composition.

6.2 Metamodel Parameterization

A parameterized metamodel is a metamodel where a parameter is described
by its formal parameter. This parameter can be replaced by an effective
parameter. For each parameterization, several possible replacements can be
accomplished.

A parameterized metamodel is defined as follows.

Definition 6.1. Parameterized Metamodel.
Having mm ∈MM, and taking into account that MM is the universe of

metamodels a parameterized metamodel is:

mmpar = 〈mm, fp, Ffp〉

where:

• fp ∈MM is a formal parameter that acts as a template for the possible
replacements;

• and Ffp is a set of formulas representing constraints over fp that must
be respected.

The formal parameter fp ⊆ mm since it defines a sub-set of the elements
in mm.

The parameterization can be instantiated by the effective parameter ep ∈
MM , iff ep |= ϕ(Ffp). This means that conditions expressed in the fp
world must be satisfied by ep. The ϕ is a total function that creates a map
between elements of fp and ep.

The fp defines a template of what elements can be replaced in the meta-
model mm. These elements are a set of the ECore model composed by
EClass and their relations, the EReference elements. The fp metamodel is
a subset of the metamodel mm. It can not define elements outside the set of
metamodel elements defined from mm.

The effective parameter ep is, in fact, a metamodel that defines at least
the elements defined by fp. This is the main difference between fp and ep:
fp defines the minimum template and ep provides the real metamodel to
serve as concrete parameter used for instantiation. Instantiation is allways
performed by using ep.

6.2. Metamodel Parameterization 81

In order to proceed with a metamodel composition, the formal parameter
fp is then replaced by an effective parameter ep.

Definition 6.2. Metamodel parameterization.
Given mm,mm′, fp, ep metamodels and Ffp a set of constrait formulas,

a parameterization is defined as:

mm′ = mm[fp
ϕ←− ep, Ffp]

where,

• ep ⊃ ϕ(fp) re-defines, at least, the elements defined by fp;

• ϕ is a total function that creates a map between elements of fp and ep

ϕ : fp→ ep

in order to establish the replacement of nodes (classes) and references
(associations, aggregations and generalisations).

• Ffp the set of formulas over the formal parameter fp that must be
satisfied after parameterization.

This definition presents how metamodel parameterization is specified.
Three metamodels must be provided in order to have a complete specifica-
tion of a parameterized metamodel. The metamodel composition execution
depends on the possible instantiation of the specified parameterization. The
conditions expressed in the fp domain must be satisfied by ep. Otherwise
metamodel composition, as specified, can not be executed.

A simplified diagram of the metamodel parameterization is presented in
Fig. 6.2.

This figure shows that a DSML metamodel is extended by defining its
formal parameter and by substituting it with an effective parameter.

On the left-hand side the metamodel of the DSML is represented. In
the white background ellipse a grey background rectangle shows the part
of the DSML metamodel that is defined by fp. Several formal parameters
fp can be defined for each DSML each one of them representing a distinct
parameterization1. On the right hand-side of the figure the ep metamodel is
presented. The latest is going to substitute fp and a new DSML metamodel
is generated. The metamodel resulting from parameterization is depicted in
the bottom part of the figure.

1For simplification of the theory presented we only express one formal parameter fp.

82 Chapter 6. Providing Semantics for Domain Models

Substitutes
fp

DSML Metamodel
ep Metamodel

ep

DSML Metamodel
after parameterization

Figure 6.2. Metamodel Extension by Parameterization

6.2.1 Metamodel Parameterization Example

Let us use simple system’s DSML specification in order to illustrate the
methodology. Suppose we want to define a modelling language for the pur-
pose of specifying the simulation of moving entities. Although we might
understand the general principle that suits several domains demanding for
DSMLs to implement their concepts (like train systems control, street traffic
control, etc.), we do not have yet the full details to completely describe a
DSML.

The general concepts involved, that might influence the syntax description
of a DSML, could be described as having both World Structure information,
and the mentioned moving Entities (i.e. trains, cars, etc.).

The World Structure could be composed by Junction Points and Way

Segments (i.e. cross-roads, etc.) that are responsible to connect Way Segments

(that depending on the domain could be particularised to rails, streets, chan-
nels, etc.) . Each Way Segment is composed by two end points, each of them
could be connected to one Junction Point. However how many segments
are plugged to junction points, we define as rule that we can not plug both
end points of a given to the same Junction Point.

The corresponding metamodel of the general concepts described previ-
ously are depicted in Fig. 6.3. This figure defines the metamodel of a generic
DSML here named mmDSMLgen.

This example allows to build metamodels for several (two in the example
we are presenting) different DSMLs starting from the same generic meta-
model: one DSML for describing a a Train system; and the other a metamodel

6.2. Metamodel Parameterization 83

Figure 6.3. Generic Moving Entities DSML Metamodel mmDSMLgen

for representing a Robot System. Both metamodels are going to be defined
by using the parameterization definition 6.2. In the metamodel from Fig. 6.3
we represent the parameterized elements JunctionPoint and MovingEntity

with a grey background in order to better distinguish them.

84 Chapter 6. Providing Semantics for Domain Models

Figure 6.4. The Train Entity Metamodel mmTrain

The Railway System Metamodel

Now we want to define a modelling language for the purpose of specifying
the simulation of a simplified railway system. The particularisation of our
previously defined Entity in the general metamodel to the concept of train
is depicted in Fig. 6.4.

Basically, we define the concept Train as having a Structure with an
attribute name, and the behaviour as an Action Plan.

A possible particularisation of the concept Junction Point could be to
the concept of Railway Station.

The referred Action Plan is a sequence of possible GoTo Actions. In-
formally the behaviour of a GoTo action is to send the a particular train to a
given Railway Station.

Having mmTrain the metamodel corresponding to the Train System, we
define the parameterization as follows:

• The formal parameter fp the metamodel corresponding to the MovingEntity
and JunctionPoint elements of mmDSMLgen;

• mmTrain in 6.4 the effective parameter ep;

• ϕ = {〈MovingEntity, T rainEntity〉,
〈JunctionPoint, RailwayStation〉
〈ownedEntities, ownedTrainEntities〉
〈ownedJunctionPoints, ownedRailwayStations〉}

6.2. Metamodel Parameterization 85

Figure 6.5. Railway System Metamodel mmDSMLRailwaySystem

The result of the metamodel parameterization is presented in Figure 6.5
with the new and affected elements prior to transformation with a grey back-
ground. As it was previously introduced, the new metamodel is obtained by
applying the metamodel parameterization as:

mmDSMLRailwaySystem =

mmDSMLgen[{MovingEntity} ∪ {JunctionPoint} ϕ←− mmTrain, true]

The true Ffp means that, for this example, they are allways satisfied.
This means the metamodel can be composed without having to take into
account particular constraints regarding the formal parameter structure.

86 Chapter 6. Providing Semantics for Domain Models

Figure 6.6. The Robot Entity Metamodel mmRobot

The Robot System Metamodel

Suppose now that we want a DSML to describe the domain of robot systems.
Let us define a simplified robot system. The Robot has no particular way seg-
ment to follow, nevertheless the Junction Points can be seen as intermediate
Pickable Object.

The sequence of possible actions for our Robot as defined in Figure 6.6
is: Start, Stop and Pick Object. The informal semantics associated to these
three actions can be described in natural language in the following way:

• Start - to start moving the robot forward in order to reach the Pickable
Object and make it disappear once reached. The robot stops immedi-
ately after waiting for the next target. If no goal is set the robot does
not move;

• Stop - to stop moving the robot;

• Pick Object - this action sets the target (Pickable Object) where the
robot should move. In other words the robot gets the reference to the
object to pick, rotating a certain angle in order to be facing the object
and be able to mode forward in a straight line to find the object when
the Start action is called.

Having mmDSMLRobotSystem the DSML metamodel corresponding to the
Robot System, we define it as follows:

6.2. Metamodel Parameterization 87

Figure 6.7. Robot System Metamodel

• the formal parameter fp the metamodel corresponding to the MovingEntity
and JunctionPoint elements of mmDSMLgen;

• the effective parameter ep the metamodel mmRobot in Fig. 6.6;

• ϕ = {〈MovingEntity, RobotEntity〉,
〈JunctionPoint, Object〉}

The result of the metamodel parameterization is presented in Figure 6.7.
The Robot System metamodel is obtained by applying:

mmDSMLRobotSystem =

mmDSMLgen[{MovingEntity} ∪ {JunctionPoint} ϕ←− mmRobot, true]

As we exposed in this section we can observe that parameterization of
metamodels is a suitable technique for building DSMLs in an incremental
procedure. At the same time it was exposed that the same approach also
allows to re-use concepts in the definition of several DSMLs. This technique
permits to have a more constructive and engineering approach while defining
metamodels for DSMLs when compared to the traditional away of defining
every DSML metamodel from scratch and as a single block without having
any common boundary between other metamodels.

88 Chapter 6. Providing Semantics for Domain Models

6.2.2 Models Composition

As a consequence of the metamodel parameterization and creation of new
metamodels in conformity with the parameterization’s definition, models
that are conformTo the metamodels involved in the paramameterization
must also be composed. This composition follows the same rules as the
metamodel composition resulting from the parameterization. Models of the
two metamodel involved in the parameterization stay intact (in order to al-
low traceability and compatibility to its initial metamodels). Rather than
modifying the existing models, new models are generated that will respect
the conformTo relationship with the metamodel resulting from parameteri-
zation.

In what concerns this point, some practical aspects need to be analysed
and in which will focus on Sec. 7.4.2. This analysis and the solutions pro-
posed will allow the language engineer to be sure that the desired composition
is being executed.

6.3 Transformation Definition

A transformation is a set of mapping rules that define the semantics of a
DSML in a target formalism.

Definition 6.3. Transformation.
A transformation is the set transformation blocks

Trmm→mmt = {Tr1
mm→mmt, T r

2
mm→mmt, ..., T r

n
mm→mmt}

where,

• mm ∈ MM represents the metamodel for which the transformation
relates to;

• mmt ∈MM is the metamodel of the target formalism;

• n is the number of transformation blocks (or transformation rules) that
compose a transformation.

Each Trnmm→mmt block defines a semantic mapping between a part of the
source and target formalisms.

A transformation is the application of the set of rules in a model of the
formalism.

6.4. Parameterized Transformations 89

Definition 6.4. Transformation Application.

Trmm→mmt(im) = im′

where,

• im is the model that is conformTo mm metamodel;

• im′ the model in the target DSML. im′ is in conformity with mmt.

Applying a transformation Trmm→mmt(im) implies that the model im
that is conformTo the metamodel mm is transformed into another model
im′ in the space of conformity of the target metamodel mmt.

6.4 Parameterized Transformations

A DSML or domain concept have associated transformations providing the
necessary semantics in the target formalism. Since a DSML is parameter-
ized this means that the transformations must also be parameterized. Such
parameterization is defined in this section.

In the semantic domain, when defining a parameterization we also have
to define it onto transformations associated to the metamodels. A transfor-
mation parameterization is defined as:

Definition 6.5. Transformation Parameterization.

Trmm′→mmt = Trmm→mmt[Trfp→mmt
ϕ,ψ←−− Trep→mmtp]

where:

• mm is the metamodel being parameterized;

• mm′ is the metamodel resulting from the mm metamodel parameteri-
zation: mm′ = mm[fp

ϕ←− ep, Ffp]

• mmt the metamodel of the target language;

• Trfp→mmt the template transformation defined for fp;

• Trep→mmtp the template transformation defined for ep;

• ϕ the source mapping function: Dom(Trfp→mmtp)→ Dom(Trep→mmtp)
where Dom stands for Domain of a transformation;

90 Chapter 6. Providing Semantics for Domain Models

mm mm′

mmt mmt ∪mmtp

mm[fp
ϕ←− ep, Ffp]

Metamodel Parameterization

Transformation Parameterized Transformation
Trmm→mmt Trmm→mmt[Trfp→mmt

ϕ,ψ←−− Trep→mmp]

Figure 6.8. Relationship between Metamodels and Transformations

• ψ the target mapping function : Cod(Trfp→mmtp) → Cod(Trep→mmtp)
where Cod is the CoDomain of a transformation;

A parameterized transformation acts from models conformTo the mm′

metamodel that is already a the result of a parameterization. The resulting
models of a parameterization are in the domain of the mmt metamodel. The
transformation’s parameterization allows to compose transformations defined
for models conformTo the formal parameter fp and having as domain of
application models conformTo the metamodel of the target platform mmt,
with the transformation of models conformTo to the effective parameter ep
into models of on the domain of the target platform metamodel mmtp. The
target platform of the transformation defined for fp and ep can be different.
Fig. 6.8 shows the relation between metamodels and the transformations
involved in the parameterization process.

Similarly as for the metamodel parameterization’s instantiation, transfor-
mations also have an associated behaviour when it comes to its instantiation.

Definition 6.6. Transformation Instantiation.

im = Trmm′→mmt(im
′) = Trmm→mmt[Trfp→mmt

ϕ,ψ←−− Trep→mmtp](im
′)

where,

• mm is the metamodel being parameterized;

• mm′ is the metamodel resulting from the mm metamodel parameteri-
zation mm[fp

ϕ←− ep, Ffp];

• mmt the metamodel of the target formalism;

• im′ a model conformTo mm′;

• im a model conformTo the target metamodel mmt.

6.4. Parameterized Transformations 91

fp

Target metamodel

mm′

ϕ(fp, ep)

Trmm

Trfp

Trep

Trep

Trmm′

Target metamodel

Target metamodel

πep

πmm

πTrep

πTrmm

mm

ep

ep

Figure 6.9. Parameterization of Transformations (without instances)

In other terms, if the formal parameter fp relates to ep by ϕ in the source
DSML domain, and if we apply the transformations Trfp→mmt and Trep→mmtp
to instances ifp and iep of their respective metamodels, then ψ expresses the
relation between Trfp→mmt(ifp) and Trep→mmtp(iep) in the target language
domain. From the operational point of view, ψ defines which transformations
in fp are replaced by what transformation in ep.

Fig. 6.9 resumes how the mm, fp, ep and mm′ metamodels and their
transformations relate to each other2.

The arrows marked with π represent projection of metamodels: the mm′

metamodel, for example, if projected by mm (i.e. πmm), gives the grey part
of mm, i.e. the part that does not include fp. This figure does not presents
the ψ function, as this figure does not represents any information at the level
of the instantiation. Each one of the transformations present in the DSML
specification has an associated projection that represents which elements of
the metamodel it relates with.

Via these parameterizations and by applying the resulting transforma-
tions on the instances of the resulting metamodels, it is possible to obtain
models in the target language with a high level of re-usability of previously
existing transformations.

Fig. 6.103 shows a more concrete overview over the transformations. It

2In order to improve the readability of the figure and we simplified the notation for
the representation of the transformation. We represent Trep instead of Trep→mmtp, Trmm

replacing Trmm→mmt and Trfp instead of Trfp→mmt
3For readability purposes, this figure does not expicits the target metamodels in the

transformation functions.

92 Chapter 6. Providing Semantics for Domain Models

DSML instance models

Transformation
Templates

Transformations

Conforms to

DSML Metamodel

ep'

Target Language(s) Metamodel

Conforms to

Target Language(s) Models

ep

iep

iep'

Trep

Trep′

Trep′(iep′)

Trep(iep)

Figure 6.10. Instantiation of the Transformation Parameterization

represents generic schematic view from the point of view of the transforma-
tion instantiation and execution.

On the top of the figure it is represented the relation between several pos-
sible ep, corresponding transformation, and the part of the target’s formalism
metamodel. In this figure, Trep stands for Trep→mmtp and Trep′ stands for
Trep′→mmtp′ . The Trep→mmtp and Trep′→mmtp′ are not to be seen as transfor-
mation instantiations. They are rather a way of showing to which parts of
the metamodel they are related to, e.g. Trep→mmtp relates the ep metamodel
with the target formalism metamodel represented by the small white back-
ground rectangle. The bottom of the figure show the instances of the meta-
models’ and how transformations produce models in the target formalism
domain. Instantiating the transformation Trep→mmtp(iep) produces a model
corresponding to the graph in the grey background square at the bottom
right side of the figure.

Definition 6.7. Parameterized Transformation Construction.
Giving Trmm→mmt a parameterized transformation construction is defined

as:

Trmm→mmt∪mmtp = Trmm→mmt\Trfp→mmt + Trep→mmtp

• mm is the metamodel of the DSML;

• fp is a metamodel sub-set of mm;

6.5. DSML Definition 93

• ep is a parameterization metamodel;

• mmt and mmtp are metamodels of the target formalisms.

The final set of transformation rules are obtained by subtracting4 from
the initial set of rules the ones corresponding to the formal parameter and
adding to the rules that define the transformation of the effective parameter.

6.5 DSML Definition

Transformations provide a way of going from a source to a target formalism.
In the particular case of this work the goal is to start from a DSML and
to finish in the dialect of a target formalism. The target formalism being
the one that provides the necessary semantics. As a consequence from the
fact that both metamodels and transformations are parameterized, a DSML
defined using this technique, will also be a parameterized DSML.

Having formalised metamodels, composition of metamodels and associ-
ated transformations, we continue by providing a definition of a DSML and
what a parameterized DSML stands for.

Definition 6.8. Domain Specific Modeling Language.
A DSML is as a 4-tuple

DSML = 〈mm,mmt, F, Trmm→mmt〉

where,

• mm is the DSML metamodel;

• mmt the metamodel of the target formalism;

• F the set of constraints over the DSML metamodel5;

• Trmm→mmt is the set of transformation rules providing the DSML se-
mantics.

The mm metamodel and the transformation Trmm→mmt have both been
obtained by parameterization.

4The + and backslash are the set operators for union and minus
5Constraints can be expressed in any kind of constraint language supported by the

metamodelling formalism used in the implementation of the methodology, e.g. OCL.

94 Chapter 6. Providing Semantics for Domain Models

6.6 Transformation Composition in Action

Previous sections defined both metamodel and transformation compositions.
Although in what concerns metamodels we think it is clear how the approach
applies, regarding transformation we believe that some more detail will help
to clarify the approach presented. Taking this into account, this section is
dedicated to show how transformations are composed.

For the purpose of better understanding of transformations’ composition
we consider two scenarios:

1. The case in which the transformation domain element in fp defined by
ψ is in the edge of the metamodel. This means that the element has
no linked elements from it. It is an element with no connected nodes
from it;

2. The case in which the element is not an edge element of the metamodel.

For the first case, the transformation composition is performed as shown
in Figg. 6.11, 6.12 and 6.13.

The three figures present three different views which illustrate, step by
step, what happens while composing the transformation rules.

For what concerns these descriptions we consider that:

• Trfp→mmt is the set of n transformation rules defined for fp metamodel:
Trfp→mmt = {Tr1

fp→mmt, T r
2
fp→mmt, ..., T r

n
fp→mmt};

• analogously, Trep is the set of transformation rules for ep metamodel:
Trep→mmt = {Tr1

ep→mmt, T r
2
ep→mmt, ..., T r

n
ep→mmt};

• TrDSMLmm′→mmt stands for the complete definition of the transfor-
mation after composition. In the diagrams representing each one of
the views, only blocks corresponding to the rules of Trep→mmt and
Trfp→mmt are represented. This was done explicitly for simplicity rea-
sons although the full transformationTrDSMLmm′→mmt might contain
other rules;

For the case of a composed DSML in which the fp element in the ϕ
function is an edge element like in Fig. 6.11 the ψ composition function is
defined as:

ψ = {〈Tr2
fp→mmt, T rep→mmt〉}

Meaning the transformation defined for the element in the fp metamodel
to which corresponds the transformation Tr2

fp→mmt is to be replaced by the
transformation defined for ep

6.6. Transformation Composition in Action 95

View 1 from Fig. 6.11 shows the state of the transformation rules before
anything happens;

... ...

Tr1
fp→mmt

Trfp→mmt

Tr2
fp→mmt

Trn
fp→mmt Trn

ep→mmt

Tr1
ep→mmt

Tr2
ep→mmt

Trep→mmt

ψ = {〈Tr2
fp→mmt, T rep→mmt〉}

Figure 6.11. Transformation Composition for Edge Elements - View 1

View 2 in Fig. 6.12 presents the step in which the left side of the ψ function is
erased from the full transformation view. This a necessary intermediary
step to allow replacement of ep corresponding transformation in the
next step;

View 3 as depicted from Fig. 6.13 shows how transformation rules are
packed together by the end of the execution of the composition. This
is the last step in the composition chain that places the transformation
rules defined for ep in the empty spot left from the previous step.

Since the transformations are, as defined previously, a set of transforma-
tion rules, the order in which the rules are applied is not important. More-
over, rules that are applied by using a graph based matching technique will
always be applied by following the matched patterns and not the order which
they were specified.

Transformation composition defined over elements from non-edge ele-
ments are more complex. The main reason for the increase of complexity
is because, typically, we don’t want to replace the totality of the element’s
transformation for a new one. By complete replacing its transformation, we’ll
lose transformation information we don’t want to: we might have transfor-
mation rules for the linked elements that depend on the execution of that
element transformation.

96 Chapter 6. Providing Semantics for Domain Models

... ...

Tr1
fp→mmt

Trfp→mmt

Trn
fp→mmt Trn

ep→mmt

Tr1
ep→mmt

Tr2
ep→mmt

Trep→mmt

Figure 6.12. Transformation Composition for Edge Elements - View 2

Tr1
fp→mmt

...

Trn
fp→mmt

...

Trn
ep→mmt

Tr1
ep→mmt

Tr2
ep→mmt

}
Trfp→mmt|Tr2

ep→mmt

Trep→mmt

}
Trfp→mmt

ϕ,ψ←−− Trep→mmt

TrDSMLmm′→mmt

Figure 6.13. Transformation Composition for Edge Elements - View 3

6.6. Transformation Composition in Action 97

The main goal behind this strategy is to be able to compose transfor-
mation blocks without the need to replace transformation rules in the fp
side, but rather to do it in the ep side. Figg. 6.14, 6.15 and 6.16 provide a
schematic perspective on the three views that build the composition process:

View 1 presented in Fig. 6.14 shows the state of the transformation rules
after composition execution. In the left-hand we have the set of rules
corresponding to Trfp→mmt. The rule Tr1

fp→mmt is what we define as
TF the rule. This is the rule we are parameterizing but we don’t want
to replace its transformation definition. This rule is Trfp→mmt|TF a
restriction of Trfp→mmt to TF . On the right side we define Trep→mmt−
TE as the piece of Trep→mmt that is going to replace Tr1

fp→mmt;

... ...

Tr1
fp→mmt

Trfp→mmt

Tr2
fp→mmt

Trn
fp→mmt Trn

ep→mmt

Tr1
ep→mmt

Tr2
ep→mmt

Trep→mmt

ψ = {〈Tr1
fp→mmt, (Trep→mmt − TE) ∪ (Trfp→mmt|TF)〉}

{Trfp→mmt|TF } TE

Trep→mmt − TE}
Figure 6.14. Transformation Composition for non-Edge Elements - View 1

View 2 depicted from Fig. 6.15 presents the step in which the right side of
the ψ function is removed from the full transformation view. Trep→mmt
is now only the part Trep→mmt − TE as TE is unwanted in the final
version of the transformation;

View 3 in Fig. 6.16 shows how transformation rules are packed together by
the end of the execution of the composition.

The composition definition for these cases is

ψ = {〈Trnfp→mmt, (Trep→mmt − TE) ∪ (Trfp→mmt|TF)〉}
where Trnfp→mmt is the rule we want to parameterize but not to replace

in the source DSML transformation. TE the rule in the effective parameter
transformation set that is to be removed so that Trnfp→mmt can be maintained.

98 Chapter 6. Providing Semantics for Domain Models

... ...

Tr1
fp→mmt

Trfp→mmt

Tr2
fp→mmt

Trn
fp→mmt Trn

ep→mmt

Tr2
ep→mmt

Trep→mmt

{Trfp→mmt|TF

Trep→mmt − TE}
Figure 6.15. Transformation Composition for non-Edge Elements - View 2

...

...

Tr1
fp→mmt

Tr2
fp→mmt

Trn
fp→mmt

Trn
ep→mmt

Tr2
ep→mmt

{Trfp→mmt|TF

Trep→mmt − TE {

Trfp→mmt
ϕ,ψ←−− Trep→mmt

TrDSMLmm′→mmt

} Trfp→mmt

Figure 6.16. Transformation Composition for non-Edge Elements - View 3

6.6. Transformation Composition in Action 99

6.6.1 Railway System DSML Transformation Compo-
sition

For illustrating the composition of transformations lets consider the definition
of the Rail Way System DSML base on the Moving Entities generic DSML
defined previously. First let’s start by showing what is an Edge and a non-
Edge element in metamodel. In Fig. 6.17 the EClass MovingEntity is what
we consider an Edge element of the metamodel. The EClass JunctionPoint

has linked elements such as EndPoint1 and EndPoint2 thus it is what we
define as a non-Edge element.

non-Edge Element

Edge Element

Figure 6.17. Example of Edge and non-Edge Metamodel Elements

The metamodel parameterization definition of this DSML was specified
using the ϕ function

ϕ = {〈MovingEntity, T rainEntity〉, 〈JunctionPoint, RailwayStation〉,
〈ownedEntities, ownedTrainEntities〉,

〈ownedJunctionPoints, ownedRailwayStations〉}

In this specification the elements that correspond to rules in the transforma-
tion definition are the 〈MovingEntity, T rainEntity〉 and

100 Chapter 6. Providing Semantics for Domain Models

〈JunctionPoint, RailwayStation〉. The first one is an edge element. It
means that transformation composition is performed by replacing the trans-
formation defined in the fp side by the one ep side. Schematically in Fig.
6.18 this means that the rule that corresponds to the ruleMovingEntities

will be replaced by the rules defined in TrTrainEntity.

rule ruleMovingEntities {
 from
 me : MovingEntity!MovingEntity
 to
 cl : COOPNMetaModel!COOPNClass(...)
}

rule ruleTrainEntity {
 from
 tr : TrainEntity!TrainEntity
 to
 cl : COOPNMetaModel!COOPNClass(...)
}

rule ruleActionPlan {

 (. . .)

}

rule ruleGoToAction {

 (. . .)

}

ψ = {〈Trfp, T rep〉}

ep = TrTrainEntityTrfp

Figure 6.18. Example of Transformation Composition for an Edge Element

In terms of transformation composition for non-edge elements like the
JunctionPoint being parameterized by RailwayStation, the composition
works slightly diferent. We cannot just eliminate the transformation rule
from the fp side because it (an usually does) might contain references to
other transformation rules. By replacing it, we would lose all the transfor-
mation defined from it. Taking this into account, the composition in non-edge
elements keeps the transformation rule defined for the element in fp, ignores
the rule from the ep side that corresponds to the element in ep defined by
ϕ, and adds to the fp transformation all other rules in the ep side. This
procedure is illustrated in Fig. 6.19

The generic approach for composing transformations is as presented in
this section. A complete description and definition of transformation com-
positions is presented in Chap. 8 where the case studies are described.

6.7. Target Languages 101

rule ruleJunctionPoint {
 from
 jp : MovingEntity!JunctionPoint
 to
 cl : COOPNMetaModel!COOPNClass(...)
}

rule ruleTrainEntity {
 from
 tr : TrainEntity!TrainEntity
 to
 cl : COOPNMetaModel!COOPNClass(...)
}

rule ruleActionPlan {

 (. . .)

}

rule ruleGoToAction {

 (. . .)

}

ψ = {〈Trfp, (Trep − TE) ∪ (Trfp|TF)〉}

Tr1
fp Tr1

ep

Tr2
ep

Tr3
ep

{ }
}
}

{ } TETrfp|TF

} Trep − TE

ep = TrTrainEntityTrfp

Figure 6.19. Example of Transformation Composition for an Non-Edge Element

6.7 Target Languages

The approach defined in this document supports multi-formalism approaches
in the sense that several target languages can easily used together. The pre-
condition for this to be allowed it to have a metamodel that represents the
abstract syntax of the language. In the examples presented in Chap. 8
we mostly use CO-OPN as target formalism but we also demonstrate that
other languages can be used. Specifically we show how Structured Query
Language (SQL) can be used.

The choice of target formalism depends heavily on the kind of seman-
tics we need to give to our DSML. We decided to use CO-OPN as a target
language for most of the implementation of this methodology. The main jus-
tification relies on the fact that using CO-OPN allows using several language
features, such as concurrency and transactionality, that are included in CO-
OPN and that would be complex to express with a classic general-purpose
language. Models expressed in CO-OPN are transformed into an equivalent
semantics in Java by using COOPNBuilders’ prototype generator(Chachkov,
2004).

Although we can argue that we can provide any type of semantics in
CO-OPN language it is our believe that a methodology as presented in this
document should be more general than to be constraint to a single target
language and platform. In addition, while developing DSMLs we feel the
need to allow users to specify and understand their models in an environment
the most close to the problem domain as possible. Having saying that, it is
easy to imagine that, for example when dealing with 3D representation of
objects in a spacial environment, there exist a quantity of languages that will
cope better than CO-OPN.

102 Chapter 6. Providing Semantics for Domain Models

Chapter 7

CoPsy Environment

While the approach is general with respect to the transformation framework
used, its implementation has some framework-specific adjustments. We chose
to focus on the concrete framework provided from ATL (ATLAS Group,
2007). This framework provides a rule-based transformation language which
offers both declarative and imperative constructs, lending itself well to com-
plex transformations; and a framework making it easy to apply a set of
transformation rules to a model, given a source and a target metamodel. We
also use the Eclipse Modelling Framework infrastructure in order to develop
CoPsy.

Compositional Platform for Domain Specific Modelling Languages Pro-
totyping (CoPsy) is itself a DSML. It is available as an Eclipse pluggin
developed using EMF allowing to specify DSML composition.

7.1 Problem Analysis

Being a DSML CoPsy captures the concepts of its domain of application. Its
nature and containment allows to narrow its functionalities to a small and
unbiguous list.

The requirements covered by CoPsy DSML are the following:

• Specification of metamodel composition;

• Execution of metamodel composition;

• Composition of instances of the metamodels;

• Specification of transformation composition;

• Execution of transformation composition.

103

104 Chapter 7. CoPsy Environment

These five items represent domain concepts that must be captured by
CoPsy DSML. The CoPsy metamodel for this domain of application is pre-
sented in Fig. 7.3.

Language
Engeneer

Specify
Metamodel

Composition

Specify
Transformation

Composition

Execute
Metamodel

Composition

Execute
Transformation

Composition

Compose
Instances of
Metamodels

Figure 7.1. CoPsy Use Case Diagram

The Fig. 7.1 captures CoPsy requirements in form of UML use case
diagram.

Remembering that a metamodel parameterization is defined by

mm′ = mm[fp
ϕ←− ep, Ffp]

and that a transformation parameterization is defined by :

Trmm′→mmt = Trmm→mmt[Trfp→mmt
ϕ,ψ←−− Trep→mmtp]

A more detailed version of CoPsy’s functionalities is the follwoing:

• Express metamodel composition by specifying:

7.1. Problem Analysis 105

– the base metamodel (mm). This represents the metamodel of the
DSML that is being parameterized;

– the parameter metamodel. It is the ep effective parameter meta-
model that is going to replace the elements defined as fp formal
parameter metamodel;

– ϕ elements representing the mapping between ep and fp.

• Produce the metamodel resulting from parameterization;

• Produce an ATL transformation for composing instances of the base
metamodel mm and the efective metamodel ep;

• Express transformation composition by specifying:

– the transformation for the base DSML;

– the transformation for the DSML of the ep domain;

– ψ elements representing the mapping function between transfor-
mation rules for ep and fp.

The process of specifying and executing a CoPsy is present in form of
UML activity diagram in Fig. 7.2. The activities involved are:

• Configure represents the process of configuration meaning that all
necessary parameters are initialized;

• Specify ϕ is the activity in which the map between ep and fp elements
are specified;

• Execute Metamodel Composition the action of composing metamodel
mm and ep into a new metamodel mm′;

• Execute Model Composition is the activity that allow to take models
in conformity with mm and ep and make them in conformity with the
new metamodel mm;

• Specify ψ the action of specifying the mapping function between trans-
formation rules of fp and dp;

• Execute Transformation Composition the activity of composing the
transformations from mm and ep into a single one taking into account
the ψ mapping function;

• Execute Transformation the activity that takes the models in con-
formity with mm′ and transforms them into the target formalism by
applying the composed transformation.

106 Chapter 7. CoPsy Environment

Configure

Specify φ

Execute
Metamodel

Composition
Specify ψ

Execute
Transformation

Composition
Execute Model
Composition

Execute
Transformation

Figure 7.2. CoPsy Execution Activity Diagram

7.2. CoPsy Implementation 107

7.2 CoPsy Implementation

After having defined the CoPsy domain of application its implementation (as
for defining any DSML using a Software Language Engineering approach)
starts by providing an abstract syntax in form of metamdel. The CoPsy
metamodel represented in Fig. 7.3. When instantiated it allows to create
specifications of DSML composition.

Figure 7.3. CoPsy Metamodel

7.2.1 CoPsy Metamodel

The CoPsy metamodel captures the specification of DSMLs composition. It
can be divided in three main parts:

108 Chapter 7. CoPsy Environment

1. Default Parameters: they represent the attributes used in the Configure
activity and allow the specification to be configured in what concerns
all the necessary default parameters;

2. ϕ Mapping Function: the part of the metamodel that allows to specify
metamodel composition relations;

3. ψ Mapping Function: where transformation rules relations are possible
to define.

Each one of the CoPsy’s metamodel sections is defined by the following
parameters:

Default Parameters The CompositionSpecification meta-class defines
the parameters that must be specified in order to define the configura-
tion parameter for DSML composition:

• inputMMRepository is the name of the repository in which the
metamodels and transformations are localised;

• outputMMRepository is the name of the repository in which the
results of metamodel and transformation composition are going to
be stored. This parameter is optional. If not provided it will be
assumed as equal to inputMMRepository;

• outputMM is the name for the metamodel resulting from composi-
tion;

• dsmlATLTransformation the name of the ATL file containing the
transformation rules of the DSML under parameterization;

• epATLTransformation the ATL file name with the transformation
definition of the DSML of the effective parameter;

• outputATLTRansformation the ATL file in which the composed
transformation is going to be stored;

• ownedBaseMetamodel aggregation to MetaModelReference meta-
class allow to specify the metamodel of the DSML being parame-
terized;

• ownedEPmetamodel aggregation to MetaModelReference enables
specification of the efective parameter metamodel. Both ownedBaseMetamodel

and ownedEPmetamodel are defined by a metamodelname and a ref-
erence to an EPackage. This reference points to the Ecore meta-
model. The EPackage metaclass in the CoPsy metamodel is not
owned by the CoPsy DSML metamode. It is rather a reference to

7.2. CoPsy Implementation 109

the default Ecore metamodel. The fact of providing a reference to
the Ecore EPackage explicitly allows CoPsy to be automatically
aware of the structure and contents of the metamodels part of
the composition process. This facilitates consistency checks and
unambiguous specifications of ϕ mapping functions.

Metamodel Composition (ϕ function) The function that allows to map
metamodel elements of the DSML metamodel mm and the effective
parameter metamodel:

• From the CompositionSpecification metaclass the ownedPhi

aggregation to PhiMappingFunction metaclass with 1..1 cardi-
nality imposes the definition of a ϕ mapping function;

• The ϕ is a set of elements represented in the CoPsy metamodel
by the metaclass PhiElement identified by an elementname. This
metaclass is abstract and specialised the PhiLink and PhiNode

metaclasses;

• The PhiLink metaclass allows to specify mappings between ele-
ments of the metamodel of type EReference. The definition of
fpecorereference and epecorereference association with 1..1
cardinality forces the definition of correct map between an ERef-
erence in the DSML metamodel and an EReference in the meta-
model of the ep DSML. The EReference metaclass is not part of
the CoPsy metamodel - it is an element from the standard ECore
metamodel.

• The PhiNode metaclass allows to specify mappings between ele-
ments of the metamodel of type EClass. Two references with 1..1
cardinality (fpecoreclass and epecoreclass) allows to enforce
the coherence of the ϕ map in what concerns the nodes. As for
the EReference, the EClass metaclass is an element of the ECore
standard metamodel.

Transformations Composition (ψfunction) The part of the metamodel
that allows to map transformation rules defined for the DSML under
parameterization and the rules in the effective parameter DSML:

• From the CompositionSpecification metaclass the ownedPsi

aggregation to PsiMappingFunction metaclass with 1..1 cardi-
nality allows to specify the ψ mapping function;

• The psi is a set of elements represented in the CoPsy metamodel
by the metaclass PsiElement identified by an elementname. This

110 Chapter 7. CoPsy Environment

metaclass is abstract and specialised the PsiRule and PsiTargetPattern

metaclasses;

• The PsiRule metaclass allows to specify ψ element that are re-
lated to ATL transformation rules. This element has three at-
tributes: isLazyRule, fprulename and eprulename. All of them
with 1..1 cardinality meaning that they must be provided while
defining a CoPsy specification. The isLazyRule states if the map-
ping function under specification is an ATL lazy rule or a stardard
rule. The fprulename and eprulename stand for the name of the
rule in the DSML being parameterized and the rule in the effective
parameter domain;

• Instead of defining a map between two rules, language engineer
might just want to specify a map between a part of a rule. Since
in ATL a rule is defined as a set of target patterns, in CoPsy we
allow to create a map between fp and ep target patterns inside of
an ATL rule. This is done by specifying the PsiTargetPattern el-
ement. This element is described by the fprulename, eprulename
that points to which rule the target pattern is part of. The
fptargetpattername and eptargetpattername define which tar-
get pattern part of the rules are to be mapped.

Defining Models This is were models in conformity to both DSML under
parameterization and the DSML defined by the effective parameter are
specified. These models are specified so that, after performing meta-
model composition, the language is able to compose them in confor-
mity to the composed metamodel. In the CoPsy metamodel this is
represented by DSMLModel metaclass. This metaclass has dsmlModel,
epModel and composedModel. The first two define a model of the
DSML under parameterization and a model of the DSML of the effec-
tive parameter respectivly. The last one is optional and represents the
model to be generated by the model composition activity.

This simple, yet powerfull metamodel allows to provide all information
needed for specifying a DSML composition. Next section presents an example
based on the Moving entities example in case study presented in Sec. 8.1.

7.3. Defining a CoPsy Specification 111

7.3 Defining a CoPsy Specification

Lets assume we want to specify the composition of the Generic Moving Enti-
ties as in the example we presented while describing the methodology in Sec.
6.2.1, with the Railway System DSML in Sec. 6.2.1. The metamodels used
for this specification are the ones defined in Figg. 6.3 and 6.4.

We start to define a CoPsy DSML composition by setting the configura-
tion parameter. This means to create an instance of the CompositionSpecification
metaclass with:

• inputMMRepository set to /CoPsySpecs/MovingEntities;

• outputMMrepository. The same value as the inputMMRepository will
be assumed;

• outputMM the name of the output metamodel set to: DSMLRailwaySystem.ecore;

• dsmlATLTransformation set to GenericMovingSystem.atl;

• epATLTransformation set to TrainEntity.atl;

• outputATLTRansformation as RailWaySystem.atl

• One instance of MetaModelReference for the ownedBaseMetamodel

aggregation that provides a reference to the MovingEntitiesDSML
EPackage. This represents the mm′ metamodel in the formal definition;

• Another instance of MetaModelReference for the ownedEPMetamodel

that provides a reference to the TrainEntityDSML EPackage. This
instance of MetaModelReference is the equivalent to the ep metamodel
in the formal definition.

In Fig. 7.4 it is shown the CoPsy Editor with focus on the parameters’
configuration as stated previously.

7.3.1 Specification of Metamodel Composition

The next step on defining a CoPsy specification is to define the metamodel
composition parameters. Again we’ll use the example defined in Sec. 6.2.1
in which the following metamodel parameterization was defined:

• The formal parameter fp the metamodel corresponding to the MovingEntity
and JunctionPoint elements of mmDSMLgen;

• mmTrain in Fig. 6.4 the effective parameter ep;

112 Chapter 7. CoPsy Environment

Figure 7.4. CoPsy Specification of Configuration Parameters

• ϕ = {〈MovingEntity, T rainEntity〉,
〈JunctionPoint, RailwayStation〉,
〈ownedEntities, ownedTrainEntities〉,
〈ownedJunctionPoints, ownedRailwayStations〉}

7.3. Defining a CoPsy Specification 113

In the CoPsy editor we represent this by specifying a set of instances of
PsiNode and PsiLink. Fig. 7.5 shows how the ϕ mapping function is defined
using the CoPsy editor. The CoPsy editor suggests the available EClasses
or EReferences for each one of the metamodels specified in the configuration
step. This means that, defining MovingEntitiesDSML as the EPackage
for the ownedBaseMetamodel in the previous step, implies that CoPsy editor
will only suggests as possible nodes in the fpecoreclass field the EClasses
from MovingEntitiesDSML. In the bottom part of Fig. 7.5 this result is
explicit.

Figure 7.5. CoPsy Specification of ϕ Mapping Function

By executing this executemetamodelcomposition operation defined in
the CoPsy metamodel we are going to obtain the metamodel similar to the
one in Fig. 6.5. The new and affected elements prior to transformation with
a grey background.

7.3.2 Specification of Transformation Composition

The specification of the ψ mapping function follows the specification of the
ϕ mapping function. This time, instead of metamodel elements we are inter-
ested in ATL rule elements. We are not going to explain all the details of the

114 Chapter 7. CoPsy Environment

transformations and its composition in this chapter. They are extensively
presented in the case study chapter. For the particular case of the Moving
Entities example the full description of transformation composition is pre-
sented in Sec. 8.1.2. So, without going into details, there are two ψ mapping
functions for being able to obtain the Railway System DSML. One relates
with the ϕ element langleMovingEntity, T rainEntity〉 and the other with
the ϕ element 〈JunctionPoint, RailwayStation〉.

In the CoPsy environment they are specified as follows:

• ψ1 as an instance of the PsiTargetPattern metaclass with:

– elementname set to 〈MovingEntities, TrainEntities〉;
– eprulename set to ruleInit;

– eptargetpattername set to coopnclasstr;

– fprulename set to init;

– eptargetpattername set to coopnclassme;

– psielement reference set to the ϕ element langleMovingEntity, T rainEntity〉.

• ψ2 as an instance of the PsiTargetPattern metaclass with:

– elementname set to 〈JunctionPoint, RailwayStation〉;
– eprulename set to ruleInit;

– eptargetpattername set to coopnclassstation;

– fprulename set to init;

– eptargetpattername set to coopnclassjp;

– psielement reference set to the ϕ element 〈JunctionPoint, RailwayStation〉.

Fig. 7.6 shows the CoPsy specification with emphasis on the specification
of ψ elements. The name of the transformation rules are not important at
this stage. The are explained in detail in Sec. 8.1.2 when we introduce the
ATL transformations for each one of the DSMLs and its composition.

7.3.3 Specification of Models

There are three models of interest when providing a CoPsy specification:

1. A model for the original DSML (before parameterization). This model
is represented by the dsmlModel attribute in the DSMLModel metaclass
of the CoPsy metamodel. In

7.3. Defining a CoPsy Specification 115

Figure 7.6. CoPsy Specification emphasis in ψ Mapping Function

Figure 7.7. Models Definition in a CoPsy Specification

116 Chapter 7. CoPsy Environment

The CoPsy DSML allows to specify several 3-tuples of models. Each
one of them creates a environment of application for the execution of model
composition and transformation execution. In Fig. 7.7 is possible to see the
part of CoPsy editor that allows to define the concerned models.

7.4. CoPsy Behaviour 117

7.4 CoPsy Behaviour

After defining a CoPsy specification the natural next step its to execute it.
As defined in the CoPsy activity diagram in Fig. 7.2 there are four options:

1. to execute metamodel composition;

2. to execute model composition;

3. to execute transformation composition;

4. to execute transformation;

As it is explicit from the activity diagram there is a dependency from one ac-
tivity to its predecessor. Dispite this fact, it is possible to execute metamodel
composition without previously specifying the ψ mapping function.

The next subsection illustrates the behaviour of executing a CoPsy spec-
ification using the order privouslly defined.

7.4.1 Composition of Metamodels

The first step to achieve DSML composition is to execute metamodel compo-
sition based on the CoPsy specification. The metamodel composition oper-
ation takes the DSML base metamodel (the DSML under parameterization)
and parameterizes it with the DSML metamodel from the effective parameter
ep.

The metamodel compostion execution is described by performing the fol-
lowing sequence os activities:

1. Initialize the objects for the DSML base metamodel and the ep meta-
model;

2. Initialize a new Ecore package according to the outputMM parameter in
the instance of CompositionSpecification of the CoPsy specification;

3. In the CoPsy specification search for both instances of PhiNode and
PhiLink metaclasses;

4. Take all elements of the DSML base metamodel that are not referenced
in any of the PhiElement instance and clone them to the composed
metamodel;

5. Take all elements of the epDSML metamodel defined in the PhiElement
and clone them to the composed metamodel;

118 Chapter 7. CoPsy Environment

6. For each of those elements get the element to which it is related in
the DSML base metamodel. Check for relations that the element in
the base DSML metamodel might have and propagate them to the ep
clone element in the composed metamodel.

Taking into account that a metamodel parameterization is

mm′ = mm[fp
ϕ←− ep, Ffp]

and using the previously defined CoPsy specification for the Railway Sys-
tem we get the resulting metamodel as:

DSMLRailwaySystem.ecore =

MovingEntitiesDSML.ecore[fp
ϕ←− TrainEntity.ecore, true]

with fp and ϕ defined as in Sec. 7.3.1.

7.4.2 Models Composition

For being able to execute any transformation a metamodel is not enough.
So far the composed DSML metamodel is what we have. Starting from here
there are two possibilities. Either to create new models that are in conformity
with the composed metamodel or to re-use models that were already defined
for both DSMLs. The first approach might be the one to be used generally
since we expect developers to start developing in the new version of the
language. The second is a very useful approach, specially in what concerns
re-usability and fast validation/prototyping.

The CoPsy environment supports an automatic composition of models.
In the case of the previous example, models in conformity with TrainEntity
are composed into models of MovingEntitiesDSML. The result are models
in conformity with the new DSMLRailwaySystem metamodel.

The executemodelcomposition operation defined in the CoPsy meta-
model is reponsible for implementing this action.

Although most of the metamodel composition execution can be automat-
ically managed there are some limitation that forces user intervention. In
particular the following cases must be resolved by the language engineering :

• When an association/aggregation is parameterized with a different car-
dinality. If the upper bound of the original cardinality is set to ∗ and
the upper bound of the new element is different from ∗, the language
engineer is prompted to choose which model elements should be kept
and which one should be ignored;

7.4. CoPsy Behaviour 119

• When an attribute of a metaclass is parameterized with a different
cardinality, the same previous behaviour applies.

This procedure allows to provide a coherent conformity relation between
the composed models and the metamodel generated from composition.

7.4.3 Transformation Composition Algorithm

Lets first recapitulate the definition of a DSML:

DSML = 〈mm′,mmt, F, Trmm′→mmt〉

in which the final transformation Trmm′→mmt is given by

Trmm′→mmt = Trmm→mmt[Trfp→mmt
ϕ,ψ←−− Trep→mmtp]

The composition algorithm when the executetransfcomposition is called
from the language engineer. The behaviour of this operation is generically
as presented in Sec. 6.6. In this section we present a particular approach for
ATL language. Replacing ATL by another transformation language should
be a straight forward operation if the transformaiton language is based on a
set of transformation rules that are applied using a graph pattern matching
approach.

As a summary in what concerns the elements that play a role in the
transformation composition:

• The initial DSML is provided with a semantics by applying Trmm→mmt;

• The formal parameter is part of the metamodel of the initial DSML.
As a consequence also its transformation. The formal parameter trans-
formation is Trfp→mmt;

• The effective parameter represents a DSML that will replace the effec-
tive parameter. Its transformation is defined as Trep→mmtp;

• The domain of application of the parameterized DSML is the meta-
model mm′ = mm[fp

ϕ←− ep, Ffp].

Thus, the transformation composition algorithm works as follows:

• Update the transformation defined for the initial DSML in order to ad-
just it to the new source metamodel. All occurrences of mm metamodel
are replaced by mm′;

120 Chapter 7. CoPsy Environment

• In the transformation defined for the effective parameter, update all
occurrences of ep metamodel to mm′;

• For all elements in the CoPsy specification of type PhiElement, update
their references in the Trmm→mmt transformation;

• For parameterized elements that are edges :

– On the Trmm→mmt transformation search for the rule or target
pattern defined by the PsiElement in the CoPsy specification.
Replace the part corresponding to fp by the part defined by ep;

• For parameterized elements that are non-edge elements:

– On the Trmm→mmt transformation search for the rule or target
pattern defined by the PsiElement in the CoPsy specification.
Merge the rule defined for the fp part of the PsiElement with
the rule defined in the ep part of the PsiElement. Merging rules
implies to merge body of the rules that have the same domain of
application;

– If in the merged rule more than one target pattern is found, keep
the one from the effective parameter;

– Search for transformation patterns that are repeated and eliminate
them.

Taking the same exemple as in previous sections we get:

• The initial DSML is provided with a semantics by applying
TrMovingEntitiesDSML→COOPN ;

• The formal parameter is part of the metamodel of the initial DSML. As
a consequence also its transformation. The formal parameter transfor-
mation is Trfp→COOPN . Where fp is a subset of theMovingEntitiesDSML
metamodel;

• The effective parameter represents a DSML that will replace the effec-
tive parameter. Its transformation is defined as TrTrainEntity→COOPN ;

• The composed transformation as TrDSMLRailwaySystem→COOPN .

Applying this algorithm in the context of the ATL framework we get
a transformation TrDSMLRailwaySystem→COOPN that provides the desired se-
mantics in the CO-OPN specification language.

The next and last step is to execute this transformation.

7.4. CoPsy Behaviour 121

7.4.4 Transformation Execution

The execute transformation operation is the simpliest one in the process of
all activities that are available through CoPsy environment. This operation
executes the ATL transformation obtained from transformation rules com-
position.

For the example being used for demonstrating CoPsy functinality, this op-
eration represents the execution of the ATL transformation RailWaySystem.atl.
This has been defined in for the outputATLTransformation attribute in the
instance of CompositionSpecification as specified in Sec. 7.3.3. From exe-
cuting this transformation we get the RailWaySystem.coopnmodel CO-OPN
model.

122 Chapter 7. CoPsy Environment

Chapter 8

Case Studies

This chapter concentrates on the case studies developed during the execution
of this work. Three studies are going to be presented:

1. The moving entities example. This is a case study where we incre-
mentally build two DSMLs starting from a generic metamodel. By
composition we create two other DSMLs that represent a Railway and
a Robot system;

2. A DSML developed for Control Systems (CSs) specifications is pre-
sented using the techniques described in this thesis. The CS DSML is
presented using an incremental and modular development fashion;

3. Petri Nets Multi Flavours: we start by presenting a generic definition
of a Petri Net DSML. Step by step we enhance it with specific concepts
that will allow to generate a Coloured Petri Nets (CPN) and Algebraic
Petri Nets (APN) DSML prototypes.

8.1 Moving Entities

This case study is base on the description already provided in Sec. 6.2.1. As
a summary, this case study is based in the following characteristics:

We want to define a modelling language for the purpose of specifying the
simulation of moving entities. This language will be able to be extended in
order to implement concepts that suits several domains.

The general concepts involved in the requirements of a DSML of this
kind is as having both World Structure and Moving Entities (i.e. trains,
cars, etc.).

The World Structure is composed by Junction Points and Way Segments.
The Way Segments are the entities responsible to connect Junction Points.

123

124 Chapter 8. Case Studies

Depending on the domain they are particularised to rails, streets, channels,
or any other entity that helps moving entities to go to their destination. Each
Way Segment is composed by two end points, each of them are connected to
one Junction Point. A constraint is defined that says that it is not possible
to connect both end points of a given Way Segment to the same Junction
Point.

Junction Points are special locations in the World Structure. Depending
on the domain they are, for example, cross-roads, train stations, or any other
entity that allows connection of two Way Segments.

Starting with this generic description of a DSML that allows the specifi-
cation of Way Segments, Junction Points and Moving Entities we can partic-
ularise this DSML in two other DSMLs. To each one of them we’ll add new
information that allows to cope with the semantics of the domain. The two
examples chosen were a DSML for a Railway System and another one for a
Robot System. The metamodels for the generic DSML, the Train Entity and
the Robot Entity are summarised in 8.1. Both Train Entity and Robot Entity
metamodels are used to parameterize the generic Moving Entities metamodel
in order to obtain the two desired DSMLs.

8.1.1 Generic Moving Entities Transformation

The generic moving entities has a transformation defined using ATL to the
CO-OPN language. This transformation is based on the mmDSMLgen meta-
model as source (see top of Fig. 8.1) and the CO-OPN metamodel as target
(presented in Sec. 5.2).

The transformation of this generic DSML is defined as follows:

• The transformation rule for the world structure creates a CO-OPN con-
text. The CO-OPN context represents the interface and the modeling
element in which the segments, moving entities and junction points are
managed;

• A Way Segment in CO-OPN language is a CO-OPN Class with CO-
OPN places representing the end points. For each way segment present
in the model, an object instance of this class is also generated in the
World Structure context;

• The transformation for a Junction Point is defined as CO-OPN class
that allows to map EndPoint1 to EndPoint2. Analogously to the way
segment, for each Junction Point element in the specification, an object
of this class type in the World Structure context;

8.1. Moving Entities 125

The Robot Entity Metamodel mmRobotThe Train Entity Metamodel mmTrain

Moving Entities DSML Metamodel mmDSMLgen

Figure 8.1. Metamodels for the Moving Entities Case Study

• Moving Entity transformation implies the creation of a another CO-
OPN class for each one of the moving entities in the model.

Listing 8.1. Fragment of Moving System Transformation to CO-OPN
module GenericMovingSystem ; −− Module Template
create entitiesCOOPN : COOPNModel from e n t i t i e s : MovingEntitiesDSML ;
helper def : c reate In i tAxiom (movingEnt i t i e s : Set (MovingEntitiesDSML !

MovingEnt it ies)) : S t r ing =
’ (obj ’ + movingEnt i t i e s . f i r s t () . name + ’ . ’ + (’ setName ’ + (

movingEnt i t i e s . f i r s t () . name . t oS t r i ng ())) + ’) ’ +
5 i f (movingEnt i t i e s . s i z e () = 1) then

’ ’
else

’ // ’ +
(thisModule . c reate In i tAxiom (movingEnt i t i e s . exc lud ing (movingEnt i t i e s .

f i r s t ())))
10 endif ;

126 Chapter 8. Case Studies

rule i n i t {
from

dsml : MovingEntitiesDSML !DSML
15 to

−− Way Segment −−
coopnc lassws : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

name <− ’CLASSWaySegment ’ ,
ownedBody <− bodyws ,

20 ownedInter face <− i n t e r f a c ews
) ,
bodyws : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− endpoint1 ,
ownedPlaces <− endpoint2 ,

25 ownedPlaces <− namews
) ,
(. . .)
i n t e r f a c ews : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (

ownedInter faceClassTypes <− c lass typews ,
30 ownedInterfaceMethods <− setNamews ,

ownedInterfaceMethods <− setEndPoint1 ,
ownedInterfaceMethods <− setEndPoint2

) ,
(. . .)

35 −− Junction Point −−
coopnc l a s s jp : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

name <− ’ CLASSJunctionPoint ’ ,
ownedBody <− bodyjp ,
ownedInter face <− i n t e r f a c e j p

40) ,
bodyjp : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− s t a r t j p ,
ownedPlaces <− endjp ,
ownedPlaces <− namejp

45) ,
(. . .)
i n t e r f a c e j p : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (

ownedInter faceClassTypes <− c l a s s t ype jp ,
ownedInterfaceMethods <− s e tS t a r t j p ,

50 ownedInterfaceMethods <− setEndjp
) ,
(. . .)
−− Moving Ent i ty −−
coopnclassme : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

55 name <− ’ CLASSMovingEntity ’ ,
ownedBody <− bodyme ,
ownedInter face <− i n t e r f aceme

) ,
bodyme : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

60 ownedPlaces <− nameme
) ,
(. . .)
i n t e r f aceme : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (

ownedInter faceClassTypes <− classtypeme ,
65 ownedInterfaceMethods <− setNameme

) ,
(. . .)
−− World S t ruc ture Context −−
ctx : COOPNModel ! ”COOPNModel : : ContextModule : : COOPNContext” (

70 name <− ’CTX’ + dsml . ownedWorld . worldName ,
ownedBody <− body ,
ownedInter face <− i n t e r f a c e

) ,

8.1. Moving Entities 127

body : COOPNModel ! ”COOPNModel : : ContextModule : : Body” (
75 ownedObjects <− dsml . ownedWorld . ownedSegments−>col lect (e | thisModule .

ruleWaySegmentObj (e)) ,
ownedObjects <− dsml . ownedWorld . ownedJunctionPoints−>col lect (e |

thisModule . ru leJunct ionPointObj (e)) ,
ownedObjects <− dsml . ownedEntit ies−>col lect (e | thisModule .

r u l eEn t i t i e sOb j (e)) ,
ownedAxiomTheorems <− axiom

80) ,
(. . .)
i n t e r f a c e : COOPNModel ! ”COOPNModel : : ContextModule : : I n t e r f a c e ” (

ownedInterfaceMethods <− ctxInter faceMethods
) ,

85 (. . .)
}

lazy rule ruleWaySegmentObj {
from

90 ws : MovingEntitiesDSML ! WaySegment
to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ objWaySegment ’ + ws . id . t oS t r i ng ()

)
95 }

lazy rule ru leJunct ionPointObj {
from

jp : MovingEntitiesDSML ! Junct ionPoint
100 to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ ob jJunct ionPoint ’ + jp . name

)
}

105

lazy rule r u l eEn t i t i e sOb j {
from

me : MovingEntitiesDSML ! MovingEntit iy
to

110 obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ obj ’ + me . name

)
}

The ATL code in listing 8.1 is a fragment of the generic moving entities
DSML. For the complete ATL transformation of this DSML please refer
to Sec. C.1. This transformation provides the semantics described in the
beginning of this section to the generic moving entities DSML. As we can
see, the semantics provided is very limited. This is due to the fact that the
domain to which it applies is still very general. Albeit this fact, it is already
a complete CO-OPN specification that can be simulated and executed.

8.1.2 The Railway System DSML

A railway system is one of the possibilities to particularise the moving entities
DSML. In order to achieve the specification of a DSML representing a railway

128 Chapter 8. Case Studies

system, we particularise the previously defined MovingEntity in the generic
metamodel to the concept of train as depicted at the bottom left side of Fig.
8.1. The Train Entity metamodel is designated by mmTrain.

The Train Entity metamodel defines the concept Train as having a struc-
ture with an attribute name and the behaviour as an Action Plan.

As for the Junction Point, in the context of a Railway system, it is par-
ticularised as the concept of Railway Station.

The Action Plan is a sequence of possible GoTo Actions. Informally the
behaviour of a GoTo action is to send a train to a given Railway Station.

8.1. Moving Entities 129

Railway System Metamodel

As defined previously in Sec. 6.2.1, the metamodel resulting from composi-
tion is defined by:

• The formal parameter fp the metamodel corresponding to the MovingEntity
and JunctionPoint elements of mmDSMLgen;

• mmTrain in 6.4 the effective parameter ep;

• ϕ = {〈MovingEntity, T rainEntity〉,
〈JunctionPoint, RailwayStation〉}

The result of the metamodel parameterization is presented in Fig. 6.5
with the new and affected elements prior to transformation with a grey
background. The new metamodel is obtained by applying the metamodel
parameterization as:

mmDSMLRailwaySystem =

mmDSMLgen[MovingEntity ∪ JunctionPoint ϕ←− mmTrain, true]

The true Ffp means that, for this example, they are allways satisfied.
This means the metamodel can be composed without having to take into
account particular constraints regarding the formal parameter structure.

The metamodel resulting from the composition can be seen in Fig. 8.2
(diagram on the top of the figure).

130 Chapter 8. Case Studies

Railway System DSML Metamodel mmDSMLRailwaySystem

Robot System DSML Metamodel mmDSMLRobotSystem

Figure 8.2. Composed Metamodels for the Moving Entities Case Study

Railway System Transformation

First of all we present the transformation that corresponds to the Train Entity
DSML. This is the transformation that will be then used to parameterize the
Moving Entities DSML transformation in order to get a full transformation
for the Railway System.

The Train Entity transformation provides more precise semantics. This
semantics is a match to the much more concrete definition of the domain.
The composition of Train Entities with the Generic Moving Entities DSMLs
allows to narrow the domain of application of the DSML and simultaneously

8.1. Moving Entities 131

to provide a richer semantics on that domain. Listing ?? presents a fragment
of this transformation highlighting the rules that add more precise semantics
to the domain in question. The complete transformation of the Train Entities
DSML can be found in Sec. C.2.

Listing 8.2. Fragment of Train Entities Transformation to CO-OPN
module TrainEntity ; −− Module Template
create trainsCOOPN : COOPNModel from t r a i n s : TrainEntityDSML ;
helper def : createActionPlanAxiom (gotoAct ions : Set (TrainEntityDSML !

GoToAction) , objname : S t r ing) : S t r ing =
(. . .) ;

5 rule r u l e I n i t {
from

root : TrainEntityDSML ! Root
to
−− Railway S ta t i on −−

10 c o opnc l a s s s t a t i on : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (
name <− ’ CLASSTrainStation ’ ,
ownedBody <− bodystat ion ,
ownedInter face <− i n t e r f a c e s t a t i o n

) ,
15 (. . .)

i n t e r f a c e s t a t i o n : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (
ownedInter faceClassTypes <− c l a s s t yp e s t a t i o n ,
ownedInterfaceMethods <− methodgoto

) ,
20 (. . .)

methodgoto : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
name <− ’ goTo ’

) ,
−− Train Ent i ty −−

25 c oopnc l a s s t r : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (
name <− ’CLASSTrain ’ ,
ownedBody <− bodytr ,
ownedInter face <− i n t e r f a c e t r

) ,
30 bodytr : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− l o c a t i o n t r ,
ownedPlaces <− nametr ,
ownedVariables <− vartr ,
ownedAxiomTheorems <−axiomstr

35) ,
(. . .)
axiomstr : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (

ownedEvent <−eventtr ,
ownedPost <− post t r ,

40 ownedCondition <− c ond i t i o n t r
) ,
(. . .)
i n t e r f a c e t r : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (

ownedInter faceClassTypes <− c l a s s t yp e t r ,
45 ownedInterfaceMethods <− setNametr ,

ownedInterfaceMethods <− s e tLo ca t i on t r
) ,
(. . .)
s e tLo ca t i on t r : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

50 name <− ’ s e tLoca t i on ’
) ,
setNametr : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

name <− ’ setName ’

132 Chapter 8. Case Studies

) ,
55 (. . .)
}

lazy rule executeActionPlanAxiom {
from

60 t r a i n : TrainEntityDSML ! TrainEntity
to

axiom : COOPNModel ! ”COOPNModel : : ContextModule : : Axiom” (
ownedRequiredEvent <− reqevent ,
ownedProvidedEvent <− providedevent ,

65 ownedCondition <− cond i t i on
) ,
reqevent : COOPNModel ! ”COOPNModel : : ContextModule : : RequiredEvent” (

event <− ’ executeAct ionPlan ’ + t r a i n . name
) ,

70 (. . .)
providedeventatom : COOPNModel ! ”COOPNModel : : ContextModule : : Event” (

event <− (. . .)
thisModule . createActionPlanAxiom (t r a i n . ownedActionPlan . ownedActions , ’

obj ’ + t r a i n . name)
) ,

75 (. . .)
condit ionatom : COOPNModel ! ”COOPNModel : : ContextModule : : Equation” (

exp r e s s i on <− ’ (v a r t r a i n = ’ + t r a i n . name + ’) = true ’
)

}
80

lazy rule ru l eTra inEnt i t i e sOb j {
(. . .)

}

85 lazy rule ruleRai lWayStationObj {
(. . .)

}

8.1.3 The Robot System DSML

Suppose now that we want a DSML to describe the domain of robot systems.
Let us define a simplified robot system. The Robot has no particular way seg-
ment to follow, nevertheless the Junction Points can be seen as intermediate
Pickable Object.

The sequence of possible actions for our Robot as defined in conformity
with the Robot Entity metamodel in Fig. 6.6 is: Start, Pick Object and Stop.
The informal semantics associated to these three actions can be described in
natural language in the following way:

• Start - to start moving the robot forward in order to reach the Pickable
Object and make it disappear once reached. The robot stops immedi-
ately after waiting for the next target. If no goal is set the robot does
not move;

• Stop - to stop moving the robot;

8.1. Moving Entities 133

• Pick Object - this action sets the target (Pickable Object) where the
robot should move. In other words the robot gets the reference to the
object to pick, rotating a certain angle in order to be facing the object
and be able to mode forward in a straight line to find the object when
the Start action is called.

The Robot System Metamodel

As already defined in Sec. 6.2.1 the metamodel corresponding to the Robot
System mmDSMLRobotSystem is the following:

• the formal parameter fp the metamodel corresponding to the MovingEntity
and JunctionPoint elements of mmDSMLgen;

• the effective parameter ep the metamodel mmRobot in Fig. 6.6;

• ϕ = {〈MovingEntity, RobotEntity〉,
〈JunctionPoint, Object〉}

The Robot System metamodel is obtained by applying:

mmDSMLRobotSystem =

mmDSMLgen[MovingEntity ∪ JunctionPoint ϕ←− mmRobot, true]

The metamodel resulting from the composition can be seen in Fig. 8.2
(diagram on the bottom of the figure).

The Robot System Transformation

The transformation of the Robot Entity DSML gives the previously stated
semantics of this DSML in the CO-OPN formalism. The complete trans-
formation of the Robot Entity that will parameterize the Generic Moving
Entities DSML is presented in Sec. C.4. Taking into account that there are
a lot of similarities between the transformation of the Robot Entity DSML
and the Train Entity DSML we’ll not go into all the details of it. The proce-
dure for the transformation composition is also very similar to the one used
in the Rail Way System DSML. Instead of providing an exhaustive list of
the ATL transformation rules of the Robot Entity as for the Train Entity
we focus only in some parts that allows to provide the semantics described
previously.

The Listing 8.3 presents the transformation that gives semantics to the
Start and Stop actions. The axioms for the execution of these events have
different pre and post conditions. The transformation shows that the Start

134 Chapter 8. Case Studies

action can only be executed when the Robot is on stopped state. On the
other hand the Stop acction can only be sucessfull if the robot is on state
moving.

Listing 8.3. Robot Entities Start and Stop Semantics
rule r u l e I n i t {

from
root : RobotEntityDSML ! Root

to
5 (. . .)

bodyrobot : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (
(. . .)
ownedAxiomTheorems <−ax iomsrobotstart ,
ownedAxiomTheorems <−axiomsrobotstop

10) ,
(. . .)
ax iomsrobot s ta r t : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (

name <− ’ s t a r t ’ ,
ownedEvent <−event robot s ta r t ,

15 ownedPost <− pos t robo t s ta r t ,
ownedPre <− pre robo t s ta r t ,
ownedCondition <− c ond i t i o n r obo t s t a r t

) ,
axiomsrobotstop : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (

20 name <− ’ s top ’ ,
ownedEvent <− eventrobotstop ,
ownedPost <− postrobotstop ,
ownedPre <− prerobotstop ,
ownedCondition <− cond i t i on robo t s top

25) ,
(. . .)
e v en t r obo t s t a r t : COOPNModel ! ”COOPNModel : : ClassModule : : Event” (

event <− ’ s t a r t ’
) ,

30 po s t r obo t s t a r t : COOPNModel ! ”COOPNModel : : ClassModule : : Post” (
ownedPostTerm <− postTermrobotstart

) ,
postTermrobotstart : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (

exp r e s s i on <− ’ s t a t e moving ’
35) ,

p r e r obo t s t a r t : COOPNModel ! ”COOPNModel : : ClassModule : : Pre” (
ownedPreTerm <− preTermrobotstart

) ,
preTermrobotstart : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (

40 exp r e s s i on <− ’ s t a t e stopped ’
) ,
c ond i t i o n r obo t s t a r t : COOPNModel ! ”COOPNModel : : ClassModule : : Condit ion ” (

ownedConditionAtom <− cond i t i onatomrobot s ta r t
) ,

45 cond i t i onatomrobot s ta r t :COOPNModel ! ”COOPNModel : : ClassModule : : Equation” (
exp r e s s i on <− ’ (t h i s = S e l f) = true ’

) ,
eventrobots top : COOPNModel ! ”COOPNModel : : ClassModule : : Event” (

event <− ’ s top ’
50) ,

pos t robot s top : COOPNModel ! ”COOPNModel : : ClassModule : : Post” (
ownedPostTerm <− postTermrobotstop

) ,
postTermrobotstop : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (

55 exp r e s s i on <− ’ s t a t e stopped ’

8.1. Moving Entities 135

) ,
p re robots top : COOPNModel ! ”COOPNModel : : ClassModule : : Pre” (

ownedPreTerm <− preTermrobotstop
) ,

60 preTermrobotstop : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (
exp r e s s i on <− ’ s t a t e moving ’

) ,
(. . .)

The transformation for providing semantics for the action plan execution
is also different from the Train Entity DSML. In the Train Entity example
the action plan execution was simply a sequence of goTo actions. In the
Robot Entity DSML there are three types of actions. Listing 8.4.

Listing 8.4. Robot Entities Action Plan Transformation
helper def : createActionPlanAxiom (gotoAct ions : Set (RobotEntityDSML !

GoToAction) , objname : S t r ing) : S t r ing =
i f (gotoAct ions . f i r s t () . oc l IsTypeOf (RobotEntityDSML ! PickObject)) then

’ (’ + objname + ’ . ’ + (’ p ickObject ’ + (gotoAct ions . f i r s t () . ob j e c t .
objectName . t oS t r i ng ())) + ’) ’ +

i f (gotoAct ions . s i z e () = 1) then
5 ’ ’

else
’ . . ’ +
(thisModule . createActionPlanAxiom (gotoAct ions . exc lud ing (gotoAct ions .

f i r s t ()) , objname))
endif

10 else i f (gotoAct ions . f i r s t () . oc l IsTypeOf (RobotEntityDSML ! Star t)) then
’ (’ + objname + ’ . s t a r t ’ + ’) ’ +
i f (gotoAct ions . s i z e () = 1) then
’ ’
else

15 ’ . . ’ +
(thisModule . createActionPlanAxiom (gotoAct ions . exc lud ing (gotoAct ions .

f i r s t ()) , objname))
endif

else i f (gotoAct ions . f i r s t () . oc l IsTypeOf (RobotEntityDSML ! Stop)) then
’ (’ + objname + ’ . stop ’ + ’) ’ +

20 i f (gotoAct ions . s i z e () = 1) then
’ ’
else

’ . . ’ +
(thisModule . createActionPlanAxiom (gotoAct ions . exc lud ing (gotoAct ions .

f i r s t ()) , objname))
25 endif

else
’ ’

endif
endif

30 endif ;

As we can see from the ATL transformation on Listing 8.4 the executeActionPlan
axiom is a sequence of Start, Stop and PickObject actions.

The composition of the Robot Entity DSML with the Generic Moving
Entities DSML is presented in Sec. C.5 following the transfomation compo-
sition definition in Sec. 6.6.

136 Chapter 8. Case Studies

The Fig. 8.3 provides an example of a specification of a Robot Entity
model and its equivalent in CO-OPN after executing the transformation. The
Robot Entity model is defined by two objects (Bottle and Apple), two robots
(Robot1 and Robot2 and its respective action plans. The right side of Fig.
8.3 shows the CO-OPN specification of the Moving Entity model highlighting
the CO-OPN instances of CLASSRobot for each one of the Robots instances
of the CLASSObject for each one of the objects defined in the Moving Entity
model. It is also possible to see the sequence of events for the definition of
the executActionPlan method.

Figure 8.3. Robot Entity model and Transformation to CO-OPN

8.2 Control Systems DSML

Cospel stands for COntrol systems SPEcification Language (Cospel). This
language is based on the work in DSML development for control systems, the
BATIC3S project(SMV Group, 2008). A language named Cospel(Risoldi &
Amaral, 2007; Risoldi & Buchs, 2007; Risoldi et al., 2009, to appear) has been
designed to specify user interfaces for complex control systems using domain
abstractions. The language includes structure, behaviour and communication
aspects of a system, as well as interface-related features like user and task

8.2. Control Systems DSML 137

models. An associated framework transforms the language into an executable
system simulator and a user interface prototype. Due to the several aspects
related to control systems that the Cospel language models, the structure of
its metamodel is rather modular.

In this section we will analyse some of its features, and for each one of
them to:

• treat them as individual metamodels;

• identifying transformation for each one of them;

• show how these metamodels (and respective transformation models)
are composed into a more complex language.

This can be seen as a demonstration of how this methodology can be used
by language designers to add features to a core language in a relatively agile
way, hence maximizing reusability of partial models.

8.2.1 Generic Cospel DSML

Fig. 8.4 shows the metamodel of a Generic Cospel DSML.

Figure 8.4. Generic Cospel Metamodel: mmCospelgen

This is the metamodel that acts as the starting point for a modular cre-
ation of the complete control systems DSML. It is the core structure of the
language and provides all the abstractions to define a simple control system.
It includes the concepts of:

• Object

138 Chapter 8. Case Studies

• Type

• Finite State Machine

• Event

• Geometry

• Coordinates

Despite the fact that all the concepts needed for defining the Cospel
DSML are represented in this first metamodel, some of them (e.g. Geometry,
Coordinates, Event) do not provide enough granularity in order to associate
them with the desired semantics. The main goal of this section is then to
show how to build a Cospel DSML prototype by incrementally adding details
in a sequence of compositions of metamodels and transformations.

Transforming Generic Cospel models to CO-OPN models is done as fol-
lows, without going into too much detail of the CO-OPN code.

Types are transformed into CO-OPN Classes. States and Transitions

of the associated FSMs become respectively places and methods moving to-
kens among these places. Events are also transformed into methods in the
CO-OPN Classes. Associated geometry is transformed into a place contain-
ing the URL of the geometry data. The skeleton of the transformation rule
for Types is shown in Listing 8.5. Rules for the other classes follow a similar
schema.

Note that rules include a source model which is also a CO-OPN model;
this model contains instances of CO-OPN algebraic data types which are
mapped to data types of created methods. This model is only read, never
modified; its presence however forces us to make lazy rules and call them
explicitly, rather than relying on matching only.

Listing 8.5. Excerpt of GenericCospel Type element to CO-OPN
1 lazy rule ruleType {
2 from
3 c : COOPNMetaModel !COOPNPackage ,
4 t : Gener icCospel ! Type
5 to
6 coopnc la s s : COOPNMetaModel ! ”COOPNMetamodel : : ClassModule : : COOPNClass” (
7 name <− t . name ,
8 ownedBody <− body ,
9 ownedInter face <− i n t e r f a c e

10) ,
11 (. . .)

Objects are transformed into CO-OPN Contexts which instantiate the
classes of their associated type. Coordinates of Objects are transformed into
places in the classes. The skeleton rule for Objects is presented in Listing 8.6

8.2. Control Systems DSML 139

Listing 8.6. Skeleton Rule for GenericCospel Objects’ Transformation
1 lazy rule ru l eObjec t {
2 from
3 obj : Gener icCospel ! Object ,
4 c : COOPNMetaModel !COOPNPackage
5 to
6 ctx : COOPNMetaModel ! ”COOPNMetamodel : : ContextModule : : COOPNContext” (
7 name <− ’CTX’ + obj . name ,
8 ownedBody <− body ,
9 ownedInter face <− i n t e r f a c e

10) ,
11 (. . .)

8.2.2 Event Model extension of Cospel

The first modification we present is the refinement of the Event concept. In
themmCospelgen metamodel, the Events were associated to Types. However,
they only had a name, and were not characterized by any reactive behavior.
The goal for an event model would be to have events triggering transitions
or other events. In this perspective, we built an Event metamodel mmEvent
(Fig. 8.5) in which an Event can have several Conditions, representing
constraints of pre- and post-conditions. Each condition is associated to a
Transition, and/or to another Event. The idea of this association is to
have a trigger: an Event, when satisfying certain pre- and post-conditions,
can trigger a Transition, and/or it can trigger another Event. The Root

element is only used to allow creation of objects of the Transition and Event
class when modeling and is irrelevant for the composition.

Figure 8.5. mmEvent Cospel Metamodel

With the mmEvent metamodel by itself, we can build models where we
declare events and their behavior. Transformation of these models to CO-
OPN is relatively simple: an event becomes a CO-OPN method declaration;

140 Chapter 8. Case Studies

for each of its conditions, an axiom is created, synchronizing the method
with the corresponding transition and/or event.

Composing this metamodel with the mmCospelgen one is done by substi-
tuting the Event class in mmCospelgen with the Event class in mmEvent.
The Conditions class and all related associations are also part of the ep.
Using the definitions presented in sec. 6.1 we can express this substitution
as follows.

Having mmEvent the metamodel in Fig. 8.5 and mmCospelgen the
Generic Cospel metamodel of Fig. 8.4, the metamodel of the new DSML
with the Event extension is given by the following parameterization:

• fp the metamodel corresponding to the Event of mmCospelgen;

• the effective parameter ep a set of elements {Event, Condition,
ownedConditions, transition, triggerEvent} from mmEvent;

• ϕ = {〈Event, Event〉}

Figure 8.6. Event Extension of Cospel: mmCospelevent metamodel

The result is a new metamodel mmCospelevent resulting from the appli-
cation of:

mmCospelevent = mmCospelgen[fp
ϕ←− ep, Ffp]

and is presented in Fig. 8.6 with the new elements, and those affected by
the transformation, in a grey background. Ffp constraints are empty in this
example.

8.2. Control Systems DSML 141

rule ruleInEventMethods {
 from
 e : GenericCospel!Event
 to
 m : COOPNMetaModel!Methods(...)
}

rule ruleInEventAxioms {
 from
 e : GenericCospel!Event
 to
 a : COOPNMetaModel!Axiom(...)
}

rule ruleInEventMethods {
 from
 e : EventModel!Event
 to
 m : COOPNMetaModel!Methods(...)
}

helper def : ruleInEventAxioms
 (e : EventModel!Event) :
 Set(COOPNMetaModel!Axiom) =
 e.ownedConditions -> collect(c |
 thisModule.ruleInConditionAxioms(c));

rule ruleInConditionAxioms {
 from
 c : EventModel!Condition
 to
 a : COOPNMetaModel!Axiom(...)
}

ψ(〈Trfp, T rep〉)

Trfp Trep

Figure 8.7. Transformation substitution for the Event model extension

For the transformation composition, rules for the formal parameter, Trfp,
are replaced by those for the effective parameter, Trep. No restrictions on
Trfp and Trep are specified, i.e., the whole Trfp is substituted by the whole
Trep. The transformation composition is shown in Fig. 8.7 and is the result
of applying the definition presented in Sec. 6.1.

Having ie ∈ IM|mmCospelevent the models that are in conformity with
the mmCospelevent metamodel, it the models in the target language(s), the
application of transformation composition is defined as:

it = TrmmCospelevent [Trfp
ϕ,ψ←−− TrmmEvent](ie)

In this particular implementation, the system execution state ctx as de-
fined in Sec. 6.1 is not explicitly mentioned, as ATL manages it automati-
cally.

With reference to Figg. 6.2 and 6.10, we can see in Fig. 8.8 how the
mmEvent andmmCospelgen metamodels are composed into themmCospelEvent
metamodel, and how the composed transformation TrmmCospelevent includes
the transformation rules from TrmmEvent.

142 Chapter 8. Case Studies

Conforms to Conforms to

TrmmEvent

TrmmCospelevent
(im)

TrmmCospelevent

CO −OPN metamodelmmCospelevent metamodel

mmCospelevent model im CO −OPN model

TrmmEvent(im)

mmEvent

Event ϕ(〈Event,Event〉)

mmEvent metamodelmmCospelgen metamodel

Event

Transition

Condition

Figure 8.8. Parameterization of Transformations for the Event model extension

8.2.3 Hierarchical Model Extension of Cospel

Objects in a system have thus far only been represented as a collection with
no particular structure. In real control systems however, a desired feature
is to have hierarchies of objects, as this generally corresponds to the way
systems are built. To achieve this, we introduce a Hierarchy metamodel
mmHierarchy, in which the Object class has a children association to it-
self (0-* cardinality), as well as an opposite parent association (0-1). Trans-
forming this to CO-OPN gives, in the CO-OPN Context of a “parent object”,
the references to the CO-OPN Contexts of the “children objects”. The meta-
model expressing this description is given by Fig. 8.9.

Composing this metamodel with the result from the previous composition
is done by substituting the Object class in the previous model with the one in
this hierarchical model. Having mmHierarchy the metamodel introducing
hierarchy, and mmCospelevent the result of the previous composition, the
metamodel of the enriched DSML with the Hierarchy extension is defined
by:

• fp the metamodel of the Object class of mmCospelevent;

• the effective parameter ep a set of elements {Object, children, parent}
from mmHierarchy;

• ϕ = {〈Object, Object〉}

8.2. Control Systems DSML 143

Figure 8.9. mmHierarchy Cospel Metamodel

For what concerns transformation composition, the previously defined
transformation rule for objects, ruleObject (see 8.2.1) must not change in
this case, or we would lose information concerning the associations of Object
which are present in mmCospelevent but not in mmHierarchy; rather, a new
rule
ruleObjectWithChildren is added which extends ruleObject by specifying
a more specialized transformation for objects with children. In defining the ψ
function for this composition, instead of using the whole Trep as a parameter,
we use

(Trep − TE) ∪ (Trfp|TF)

where TE is a subset of Trep formed by all Triep such that ∃Trjfp :

Dom(Trjfp) = ϕ(Dom(Triep)) for any i, j (in other terms, all rules in Trep
who have a corresponding rule in Trfp with the corresponding domain after
parameterization); TF is a subset of Trfp formed by all the Trjfp as just
defined; (Trep− TE) is the rules in Trep minus those in TE; and (Trfp|TF)
is the subset of Trfp including only the rules in TF .

The transformation composition is shown in Fig. 8.10. Rules in black
text are those which will appear in the result.

8.2.4 Geometry Model extension of Cospel

In this section of the case study it is illustrated the fact that the approach
used is not tied to a single formalism. In addition to the transformations to
the CO-OPN, SQL will be also used as a target language. SQL is used to

144 Chapter 8. Case Studies

rule ruleObject {
 from
 obj : CospelEventModel!Object
 to
 ctx : COOPNMetaModel!COOPNContext(...)
}

rule ruleObject {
 from
 obj : HierarchyModel!Object
 to
 ctx : COOPNMetaModel!COOPNContext(...)
}

rule ruleObjectWithChildren
extends ruleObject {
 from
 obj : HierarchyModel!Object
 (obj.children.notEmpty()))
 to
 cont : COOPNMetaModel!
COOPNContext(...)
}

lazy rule ruleContextUse {
 from
 obj : HierarchyModel!Object
 to
 contuse : COOPNMetaModel!ContextUse(...)
}

ψ(〈Trfp, (Trep − TE) ∪ (Trfp|TF)〉)

Trfp Trep

Tr1
fp Tr1

ep

Tr2
ep

Tr3
ep

{ }
}
}

{ } TETrfp|TF

}Trep − TE

Figure 8.10. Transformation substitution for the Hierarchical model extension

transform the module of the Cospel language that needs to be stored in a
relational database.

In the Generic Cospel metamodel (and subsequent compositions), the
Geometry class represents only a link to a file location, containing geometrical
data (vertexes and faces) of a Type. A useful feature for modeling physical
control systems is to have available a certain number of geometrical primitive
shapes, which can be parametrized quickly, instead of having to deal with
vertexes and faces. For example, a cylinder can be defined by its height, an
outer radius, and an inner radius (for empty cylinders, or tubes).

We design a simple metamodel which achieves this by making the Geometry
class abstract and having several classes (Box, Sphere, Cylinder and GeomFile)
implement it. The metamodel for this Cospel’s module is shown in 8.11.

The transformation of this metamodel is interesting in that in the frame-
work of the BATIC3S project this geometrical information is not stored in
the CO-OPN model, but rather in a database (used then by a user interface
prototype to load a 3D scene).

This metamodel is thus transformed into a set of SQL queries (using
a simplified SQL metamodel, called sql4Cospel, with Strings representing
queries). For each geometry, an INSERT query is made in the appropriate
table (according to the kind of primitive), and an association with objects of
that type is established in another table.

Composing this metamodel with the previous ones is a matter of substi-
tuting the previous Geometry class with the new abstract Geometry class (the
Box, Sphere, Cylinder and GeomFile classes follow). Having mmGeometry
the metamodel refining geometry, and mmCospeleventHierarchy the result of

8.2. Control Systems DSML 145

Figure 8.11. mmGeometry Cospel Metamodel

the previous compositions, the metamodel of the new DSML with the Ge-
ometry extension is defined by:

• fp the metamodel of the Geometry class of mmCospeleventHierarchy;

• the effective parameter ep a set of classes
{Geometry,GeomFile, Box, Cylinder, Sphere} from mmGeometry;

• ϕ = {〈Geometry,Geometry〉}

rule ruleGeometry {
 from
 geometry : CospelEventHierarchy!Geometry
 to
 geomplace: COOPNMetaModel!Place(...)
}

rule ruleGeometry {
 from
 geometry : GeometryModel!Geometry
 to
 sql : sql4Cospel!SQLQuery (...),
 sqlmap : sql4Cospel!SQLQuery (...)
}

helper def : mapObjGeo
 (obj : GeometryModel!Object,
 geometry : GeometryModel!Geometry,
 table : String) : String = ... ;

ψ(〈Trfp, T rep|{ruleGeometry, mapObjGeo}〉)

Trfp Trep|{ruleGeometry, mapObjGeo}

Figure 8.12. Transformation composition for the Geometry model extension

146 Chapter 8. Case Studies

For the transformation composition in this case, the codomain of Trfp
and Trep is different: Trfp creates models conforming to the CO-OPN Meta-
Model, while Trep creates models conforming to sql4Cospel. The composi-
tion is shown in Fig. 8.12.

The final metamodel resulting from the discussed compositions is shown
in Fig. 8.13, where classes highlighted in grey are the ones who underwent
substitution or have been created anew.

8.2. Control Systems DSML 147

F
ig

ur
e

8.
13

.
Fu

ll
C

os
pe

l
M

et
am

od
el
m
m
C
os
p
el
f
u
ll

148 Chapter 8. Case Studies

8.3 Multi-Flavours Petri Nets

This example fucuses on defining Petri Nets DSMLs for several versions of
this formalism. This is probably the example with less interest in what con-
cerns the methodology of composition and parameterization. This is mostly
due to the fact that CO-OPN is a Petri Nets based formalism and we are
proposing to develop DSMLs that are themselves variations of the Petri Nets
formalism. Rather than providing the most interesting example on what
concerns the composition framework, this example allows to show that the
method presented in this thesis allows to provide semantics to a set of Petri
Nets formalisms starting from a generic representation of it. Instead of start-
ing from the Standard Petri Nets formalism and to extend it we define a
Generi Petri Nets formalism and then parameterize it to obtain the desired
concrete Petri Nets formalism variation.

8.3.1 Generic Petri Nets

The Fig. 8.14 shows the metamodel of the Generic Petri Nets metamodel
mmGenPN . This is the starting point for us to incrementally specify three
Petri Nets formalisms.

Figure 8.14. Generic Petri Nets Metamodel: mmGenPN

The metamodel of the Generic Petri Nets contains the notions of:

8.3. Multi-Flavours Petri Nets 149

PNSpecification The top node element of the metamodel. Is used to ag-
gregate the other constructions of a Generic Petri Nets Specification;

PetriNet Represents the root element for the elements of type Node and
Arc;

Place, Transition and Arc : Represent the standard elements of a Petri
Net. Places are allways typed and a Transition is composed by a Con-
dition;

MultiSet : The construction that allows to create expressions associated to
Arcs and Places;

Term : The element that represent an value entity (variable or constant)
used for some particular ’thing’. Terms have a type;

Type : By instantiating this metamodel element it is possible to provide a
type to Terms, MultiSets and Places;

Condition : This metamodel element allows to specify a condition that
must be evaluated to true at the moment of transition fire.

The transformation of Generic Petri Nets to CO-OPN formalism is quite
strait forward.

• The PetriNet element is transformed to a CO-OPN Class;

• Place is transformaed to CO-OPN Places in the CO-OPN Class;

• Transition, Arc and Condition are used to form CO-OPN Axioms;

• Multiset and Term are transformed into marking of the CO-OPN Places

when related with places. And transformed into values of the pre and
post conditions of the Axioms when related with the Arc element of the
metamodel;

• Instances of the Type element are transformed into CO-OPN ADTs with
a corresponding Sort name.

8.3.2 Standard Petri Nets

The Standard Petri Nets DSML is obtained by parameterizing the Generic
Petri Nets DSML using the DSML which metamodel is presented in Fig.
8.15.

150 Chapter 8. Case Studies

Figure 8.15. Standard Petri Nets Extension Parameter: mmPNStandard

This DSML provides more specific information in order to obtain the
semantics of a Petri Nets without extension. The mmPNStandard meta-
model in Fig. 8.15 is used to parameterize the mmGenPN Generic Petri
Nets metamodel by defining:

• The formal parameter fp the metamodel corresponding to the
PNSpecification, Type, ownedTypes and Condition elements ofmmGenPN ;

• mmPNStandard in 8.15 the effective parameter ep;

• ϕ = {〈PNSpecification, PNSpecification〉,
〈ownedTypes, ownedType〉,
〈Condition,Ø〉}

The 〈Condition,Ø〉 part of the ϕ specification means that the Condition
element is removed from the metamodel. Transformations corresponding to
the Condition element will also be removed from the final transformation.

The result of the metamodel parameterization is presented in Fig. 8.16
with the new and affected elements with a grey background. The new meta-
model is obtained by applying the metamodel parameterization as:

mmStandardPN =

mmGenPN [PNSpecification ∪ Type ∪ ownedTypes
∪ Condition ϕ←− mmPNStandard, true]

The metamodel resulting from the composition can be seen in Fig. 8.16.
In what concerns transformation composition the most relevant differ-

ences between the transformation of the Generic Petri Nets DSML and the
Standard Petri Nets DSML are:

• The rules regarding the transformation of the Condition element are
ignored. They are not part of the final transformation for the Standard
Petri Nets DSML;

8.3. Multi-Flavours Petri Nets 151

Figure 8.16. Standard Petri Nets Metamodel: mmStandardPN

• The transformation of the Type element is replaced by the transfor-
mation defined in the effective parameter. In the Standard Petri Nets
formalism there is only one data type. It is generally known as Black

Token. The CO-OPN environment provides a set of pre-defined ADTs
ready to use. One of them provides the semantics of a Black Token.
By using CO-OPN inheritance features the transformation of the Type

element in the effective parameter defines an ADT that inherits from
the CO-OPN BlackToken ADT.

The Fig. 8.17 shows an excerpt of the transformation composition in
order to obtain the Standard Petri Nets DSML.

8.3.3 Colored Petri Nets

The Colored Petri Nets formalism adds typing functionalities to the Stan-
dard Petri Nets. The data types in the Colored Petri Nets formalism are
usually known as colors. Each colour is a different data type. However, the
Colored Petri Nets formalism does not defines how to provide semantics to
each colour. It is common approach in the Petri Nets community to define a
set of know colors that have a precise semantics.

In order to obtain a DSML that represents the Colored Petri Nets for-
malism we use a Petri Net colour DSML. The metamodel mmPNColor for
this DSML is presented in Fig. 8.18 and will act as the effective parameter

152 Chapter 8. Case Studies

rule ruleType {
 from
 t : GenPetriNets!Type
 to
 adt : COOPNModel!COOPNADT(...)
},

rule ruleCondition {
 (...)
}

rule ruleType {
 from
 t : StandarPetriNets!Type
 c : COOPNModel!COOPNPackage,
 to
 adt : COOPNModel!"COOPNModel::ADTModule::COOPNADT"(
 name <- 'ADTToken',
 ownedAdtInherit <- adtInherit
),
 adtInherit : COOPNModel!"COOPNModel::ADTModule::Inherit"(
 inheritAdt <- c.getADT('BlackToken')
)
 (...)
}

ψ = {〈Trfp, T rep〉}

ep = TrmmPNStandardTrfp

Figure 8.17. Standard Petri Nets Transformation Substitution Excerpt

for parameterizing the Generic Petri Nets DSML.

Figure 8.18. colour Petri Nets Extension Parameter: mmPNColor

In the metamodel depicted in Fig. 8.18 the Type metaclass is abstract and
is specialised by four colours we defined to be the ones we provide support in
our colour Petri Nets DSML. The CHARColor, STRINGColor, INTColor and
DOUBLEColor allows to specify places, terms and multisets with a type which
semantics is equivalent to the one provided by most of the programming
languages.

The mmPNColor metamodel in Fig. 8.18 is used to parameterize the
mmGenPN Generic Petri Nets metamodel in order to obtain the metamodel
of the Colored Petri Nets DSML. The paremeterization is defined as:

8.3. Multi-Flavours Petri Nets 153

• The formal parameter fp the metamodel corresponding to the
Type and Transisition elements of mmGenPN ;

• mmPNColor in 8.18 the effective parameter ep;

• ϕ = {〈Type, Type〉, 〈Transition, Transition〉}

The result of the metamodel parameterization is presented in Fig. 8.19
with the new and affected elements with a grey background. The new meta-
model is obtained by applying the metamodel parameterization as:

mmColoredPN =

mmGenPN [Type ∪ Transition ϕ←− mmPNColor, true]

Figure 8.19. Colored Petri Nets Metamodel: mmColoredPN

The transformation differences between the Generic Petri Nets DSML
and the Colored Petri Nets DSML are equivalent to the ones observed in
the composition performed for the Standard Petri Nets DSML. The main
particularity is that the ruleType is more complex in the case of Colored
Petri Nets DSML. By composing with the transformation rules of the effective
parameter of the mmColoredPN we will add a semantics that allows to map

154 Chapter 8. Case Studies

each one of the colour types into the equivalent CO-OPN ADTs. The Fig.
8.20 shows a small part of the transformation substitution. As it is possible
to see, each one of the instances of the metaclasses defining the colour types,
are transformed into CO-OPN into the ADTs that provides them with the
semantics. As an example, instances of INTColor metaclass are transformed
into a CO-OPN ADT that inherits from the pre-defined ADT Naturals.

rule ruleType {
 from
 t : GenPetriNets!Type
 to
 adt : COOPNModel!COOPNADT(...)
},

rule ruleCondition {
 (...)
}

rule ruleType {
 from
 t : ColorPetriNets!Type
 c : COOPNModel!COOPNPackage,
 to
 adt : COOPNModel!"COOPNModel::ADTModule::COOPNADT"(
 (...)
 ownedAdtInherit <- adtInherit,
 (...)
),
 adtInherit : COOPNModel!"COOPNModel::ADTModule::Inherit"(
 if (t.oclIsTypeOf(ColorPetriNets!CHARColor)) then
 inheritAdt <- c.getADT('Characters')
 else if (t.oclIsTypeOf(ColorPetriNets!STRINGColor)) then
 inheritAdt <- c.getADT('Strings')
 else if (t.oclIsTypeOf(ColorPetriNets!INTColor)) then
 inheritAdt <- c.getADT('Naturals')
 enfif
 endif
 endif;
)
},

rule ruleCondition {
 (...)
}

ψ = {〈Trfp, T rep〉}

ep = TrmmPNColorTrfp

Figure 8.20. colour Petri Nets Transformation Substitution Excerpt

In addition to the substitution of the rules that correspond to the Types’
transformation, the ATL rule that is responsible for the transformation Con-
dition transformation is also substituted. In the case of the Colored Petri
Nets DSML the new ruleCondition creates a CO-OPN axiom that allows
to call an eval method. This method is responsible to evaluate in its domain
the expression provided.

8.3.4 Algebraic Petri Nets

The Algebraic Petri Nets formalism adds the functionality to be able to
specify specific data type. These data types are also known as Algebraic
Data Types. When creating a Algebraic Petri Net we do not only create
a net model with a particular behaviour but also specify the full semantics

8.3. Multi-Flavours Petri Nets 155

of the data types involved. The parameterization of the Generic Petri Nets
DSML in order to develop an Algebraic Petri Nets DSML is done using the
metamodel in Fig. 8.21.

Figure 8.21. Algebraic Petri Nets Extension Parameter: mmPNAlg

The metamodel (and associated transformation rules) in Fig. 8.21 pro-
vides the feature of being able to completely specify the semantics of a data
type. An Algebraic Data Type is define here by:

• A signature. It is composed by a set of Symbols that are typed. These
symbols are either of type OpSymbol or ConstantSymbol. Each one of
them are used with operations or constants respectively. The signature
defines the more syntactical part of the Algebraic Data Type;

• A set of equations. Equations provides the data type with a precise
semantics. Each equation is composed by a a left and a right Term

and one or none Conditions. A condition is possibly a composition of
other equations. A Term is specialised in Atom or CompTerm. An atom
is then specialised by Constant and Variable that is also typed. The
CompTerm metaclass stands for composite term and it is used to create
term that is a composition of several sub terms.

In order to obtain the Algebraic Petri Nets DSML metamodel we define
the following parameterization:

• The mmPNAlg metamodel in Fig. 8.21 is used to parameterize the
mmGenPN Generic Petri Nets;

156 Chapter 8. Case Studies

• The formal parameter fp the metamodel corresponding to the
Type, Transisition, PNSpecification and Term elements ofmmGenPN ;

• mmPNAlg in 8.21 the effective parameter ep;

• ϕ = {〈Type, Type〉, 〈Transition, Transition〉,
〈PNSpecification, PNSpecification〉, 〈Term, Term〉}

The result of the metamodel parameterization is presented in Fig. 8.22
with the new and affected elements with a grey background. The new meta-
model is obtained by applying the metamodel parameterization as:

mmAlgPN =

mmGenPN [Type ∪ Transition∪
PNSpecification ∪ Term ϕ←− mmPNAlg, true]

8.3. Multi-Flavours Petri Nets 157

F
ig

ur
e

8.
22

.
A

lg
eb

ra
ic

P
et

ri
N

et
s

M
et

am
od

el
:
m
m
A
lg
P
N

158 Chapter 8. Case Studies

In Fig. 8.23 we present a small excerpt of the transformation composition.
This figure presents a part of the transformation of an Algebraic Data Type
in the Algebraic Petri Nets DSML domain to an Abstract Algebraic Data
Type in the CO-OPN domain. The transformation is mostly a one-to-one
transformation. The concept of Algebraic Data Types in the source and
target formalism are very similar.

rule ruleType {
 from
 t : GenPetriNets!Type
 to
 adt : COOPNModel!COOPNADT(...)
},

rule rulePNSpecification {
 (...)
}

rule ruleTerm {
 (...)
}

rule ruleADT {
 from
 a : AlgPetriNets!ADT
 to
 adt : COOPNModel!"COOPNModel::ADTModule::COOPNADT"(
 (...)
 ownedSort <- a.ownedSignature.signatureTypes->collect(e | thisModule.ruleType(e)),
 (...)
)
},

rule ruleType {
 from
 t : AlgPetriNets!Type
 to
 adt : COOPNModel!"COOPNModel::ADTModule::COOPNADT"(
 name <- t.type,
 (...)
)
},

rule ruleTerm {
 (...)
}

ψ = {〈Trfp, T rep〉}

ep = TrmmPNAlgTrfp

Figure 8.23. Algebraic Petri Nets Transformation Substitution Excerpt

The ATL transformation in Fig. 8.23 shows that the rule ruleADT is
going to be added to the composed transformation. Rules ruleType and
ruleTerm are replaced by the equivalent in the right side. On the other hand
rulePNSpecification is not completly replaced.

Having the metamodel in Fig. 8.22 allows to produce Algebraic Petri
Nets models as the example presented in Fig. 8.24. This example shows
the specification of the well known dining philosophers problem for three
philosophers seated around the table.

8.3. Multi-Flavours Petri Nets 159

StartWaiting

Idle

FinishEating

TakeRTakeL

WaitL WaitR

HasL HasR

Forks

1′1
1′2

1′3

1′1
1′2

1′3

p

p (p + 1)%3

pl pr

fl

fl fr

fr

fl fr

fl, fr

pl = fl pr = fr

fr = (fl + 1)%3

Figure 8.24. Algebraic Petri Nets Model Example

160 Chapter 8. Case Studies

8.4 Comparison Between Case Studies

In order to compare the three presented case studies we defined a set of crite-
ria that allow to better observe the similarities and differences between them.
It also allows to highlight the features of the methodology in comparison to
different language engineering approaches. The criteria defined cover the
topics that we think are important to be managed by a DSML development
environment when we thing about diversification, complexity and evolution.

The criteria we use to compare the are:

Concepts Reuse : if the example provides reusability of concepts;

Language Refinement : the act of building a language step-by-step refin-
ing parts of it when new requirements arrive;

Semantic Mapping to Several Languages : if the example provides se-
mantic mapping for several semantic domains.

Incremental Language Development : if languages are built by com-
posing blocks representing domain concepts in an incremental approach;

Multi Language Development : if the example allows to show that start-
ing from generic concepts of a domain, it is possible to derive different
DSML, i.e., from a common definition we are able to specialize several
DSMLs.

The table 8.1 resumes which criteria are covered for each one of the case
studies. This table highlights the diversity of the case studies presented.
From this table it is also possible to highlight the different approaches of
language development used in each one of the case studies.

8.5 Summary

Although the three case studies correspond to rather different domains, by
using a Language Engineering approach like the one presented in this doc-
ument, we can emphasise that two very important criteria are matched in
each one o them. Both reusability of concepts and incremental language de-
velopment is achieved in all of the three. Another very important aspect is
that for each one of the case studies, the approach allows to provide a well
defined operational semantics.

For one of the case studies we showed that it is possible to use the ap-
proach in order to provide semantics in more than one domain.

8.5. Summary 161

Case Studies

Criteria Moving Entities COSPEL Petri Nets

Concepts Reuse Yes Yes Yes

Language Refinement No Yes No

Semantic Mapping
to Several Languages

No Yes No

Incremental Language
Development

Yes Yes Yes

Multi Language
Development

Yes No Yes

Table 8.1. Case Studies Comparison

The Moving Entities case study is a typical example of specialisation of
the domain. By starting from a domain specific but still broader concepts we
were able to define two specialisations of one language. These specialisations
define two DSMLs in two different domains.

The COSPEL case study is a fairly illustrative example on how to cope
with requirements evolution. The domain of application does not change in
time but its requirements might vary over time. Language evolution is a key
point in all LDE approaches and we showed that this approach is suitable
for tackling this problem.

As a summary, although not all of the case studies meet all the defined
criteria (which was not the goal of providing a comparison either) we provide
an highlight on how different techniques and different types of languages can
be developed using the methodology we propose. The table 8.1 shows that in
the context of the three case studies together we are able to provide support
for all the criteria defined.

162 Chapter 8. Case Studies

Chapter 9

Conclusions

In the context of this thesis’ development a lot of topics have been covered.
The work presented often interfaced with more than one domain. The com-
plexity of the work was not allways trivial to manage. Interfacing domains
that are not completely mature can be of difficult manipulation and repre-
sented one of the challenges of this thesis.

As in any research project, some of the work developed was more success-
ful than other. Some of it was ignored after a few weeks as concepts proof
to not be suitable - lessons learned we continued trying to avoid the same
errors. Other parts of the work are not described in detail in the document
of this thesis. Its development was an accessory for supporting the other
major parts. Overall this proves that there is a lot to do and a lot to be
investigated in the context Software Language Engineering. A lot of other
developments can be produced.

9.1 Discussion

In order to be efficient a specialized modelling language must be: intuitive,
expressive enough to represent all domain concepts and to have a clear and
precise semantics. In the work we presented we showed a framework that
facilitates the tasks for providing semantics to DSMLs. Simultaneously we
proposed to do it in an environment and using standard and well-known
techniques. We think that the proposed solution is a suitable step-forward
compared with the existing methods for DSMLs semantics’ specification. By
using the technique we developed it is possible to develop a DSML using a
very modular approach. We also think that this technique allows to enhance
quality of the produced DSMLs. The technique we develop provides a method
that allows improvement of DSML quality because:

163

164 Chapter 9. Conclusions

a) DSML development is based on several iterations by adding small con-
cepts to already existing DSML;

b) Validation of iterations is possible after execution transformation compo-
sitions;

c) Several iterations can be performed in order to verify which ones are more
suitable;

d) Coherence between versions of the language are maintained : models of
a previous version are not updated but merged into new models that are
in conformity with the new version.

Limitations of the methodology include that not everything can be com-
posed. New and old transformation blocks must have compatible domains,
and during the case study we found some coding patterns in transformation
which can cause problems (especially with imperative transformation pro-
gramming). For some of these limitations, an editor which detects problem-
atic compositions could help. In this perspective, a thorough classification of
composition problems should be done. Another limitation is that this work
obviously applies only to the cases where it makes sense to compose transfor-
mations. If DSML development requires a radical rewriting of all associated
transformations, there is no particular advantage in using this methodology.

9.2 Possibilities for Future Work

A list of possible followups regarding the research work we developed in the
Software Language Engineering are include:

• Properties check. A functionality for providing specification of proper-
ties to be guaranteed by a DSML is helpful in order to assure correct-
ness of the language. This is a very interesting topic in the DSML and
Model Checking communities;

• Semantics preservation. One of the problems we went across during the
development of this work was to answer the following question: How
can we be sure that the semantics of the domain is correctly mapped
in the target formalism(s)? This question raises several others. In
particular on the part concerning the specification of certain properties
to be checked after and prior to transformation. To research and add
functionalities for ’properties transformation’ is another aspect from
which the current work would surely have something to gain;

9.3. Outcome 165

• Testing. Test case generation from domain specific aspects is a valu-
able feature that is still not covered in the DSML development envi-
ronments. A lot open issues makes this subject a very interesting one
to pursuit.;

• Language Versioning and traceability. As language evolves find our-
selves with a set of old versions of the language and of its models. New
and old models should be able to coexist in the latest DSML environ-
ment. Accordingly, old models should be able to access new language
features and preserve its behaviour in the old environment;

• Integration with other DSML development environments;

• Graphical extensions. Several DSMLs have a very well defined and
strong graphical syntax. To provide constructions for graphical com-
position and re-utilisation is a crucial aspect for the success of LDE
techniques.

9.3 Outcome

Among other indirect results that have been produced during the time of the
development of this thesis, the following achievements can be highlighted.

Articles Published articles in Journals and refereed international Confer-
ence Proceedings

1. (Pedro, Risoldi, Buchs, Barroca, & Amaral, 2009) Incremental
Prototyping of Domain Specific Languages GUIs, in the Rapid
User Interface Prototyping, Human-Computer Interaction (To be
published in 2009);

2. (Pedro, Amaral, & Buchs, 2008) Foundations for a Domain Spe-
cific Modeling Language Prototyping Environment: A composi-
tional approach in Proceedings of the 8th OOPSLA ACM-SIGPLAN
Workshop on Domain-Specific Modeling (DSM), October 2008;

3. (Pedro, Lucio, & Buchs, 2007) System Prototype and Verification
Using Metamodel-Based Transformations, in IEEE Distributed
Systems Online, 2007;

4. (Pedro, Buchs, & Lucio, 2007) Model and Metamodel Semantics
Enrichment Using Transformations and Domain Composition, in
Rapid Integration of Software Engineering techniques 2007 (to be
published);

166 Chapter 9. Conclusions

5. (Pedro, Lucio, & Buchs, 2006a) Principles for System Prototype
and Verification Using Metamodel Based Transformations, in Pro-
ceedings of IEEE International Workshop on Rapid System Pro-
totyping, 2006;

6. (A. Chen, Buchs, Lucio, Pedro, & Risoldi, 2006) Modeling Dis-
tributed Systems using Concurrent Object Oriented Petri Nets, in
Proceedings of the Fourth International Workshop on Modelling
of Objects, Components and Agents, 2006

7. (Pedro, Lucio, & Buchs, 2006b) Prototyping Domain Specific Lan-
guages With CO-OPN, in Proceedings of Springer-Verlag Rapid
Integration of Software Engineering techniques, 2005;

Technical Reports 1. (Pedro, 2008) Metamodeling with Eclipse, Centre
Universitaire D’Informatique, Université de Genève, 2008;

2. (Pedro, 2006) UML2 to CO-OPN transformation: State Machines
and Class Diagrams, Centre Universitaire D’Informatique, Univer-
sité de Genève, 2006;

CO-OPN Metamodel The goal of this task was to provide a metamodel
for CO-OPN in a standard description . We have chosen to use the
EMF framework for defining it. Selecting EMF allowed us to, out of the
box, integrate with other tools without having to spend a lot of effort
in the technical details. Due to CO-OPN structure’s complexity its
metamodel definition implied several iterations over the time. The task
was completed successfully and its accomplishment was very important
in the context of providing a practical application of the work defined in
this thesis. Moreover, having a well defined CO-OPN metamodel in a
standard fashion allows other to be able to easily manipulate CO-OPN
specifications. A manipulation that can be wither manual by using the
generated CO-OPN pluggin for Eclipse, or manual semi-automatic by
defining matamodel-based transformations. The availability of a CO-
OPN metamodel allowed other elements of the Software Modelling and
Verification group to use CO-OPN in an integrated framework that
supports other MDA functionalities.

CO-OPN Serializer CO-OPN is much more than a language metamodel.
Its well defined semantics is what makes it interesting. In order to allow
re-use of CO-OPN semantics we had to provide a small tool that in-
terfaces the specifications described in conformity with the metamodel
with the CO-OPN kernel. This CO-OPN serializer is a transformation
that takes specifications in the new format and transforms them into

9.3. Outcome 167

the format that CO-OPN understands. With this transformation we
can re-use all the functionalities of prototyping generation, validation
and simulation.

CoPsy To provide a practical application of the methodology we described
in this thesis we developed the Compositional Platform for Domain
Specific Modelling Languages Prototyping (CoPsy) DSML. This lan-
guage allows to specify model and transformation composition of other
DSMLs. Its behaviour allows to execute composition specification.
Based on this specification, a new DSML will be generated.

168 Chapter 9. Conclusions

Appendix A

Acronyms

ATL ATLAS Transformation Language

ADT Algebraic Abstract Data Type

APN Algebraic Petri Nets

ASM Abstract State Machines

CO-OPN Concurrent Object Oriented Petri Nets

CPN Coloured Petri Nets

CS Control System

Cospel COntrol systems SPEcification Language

COM Component Object Model

CoPsy Compositional Platform for Domain Specific Modelling Languages
Prototyping

DSML Domain Specific Modelling Language

DSL Domain Specific Language

EMF Eclipse Modeling Framework

EMOF Essential MOF

GME Generic Modeling Environment

GMF Graphical Modeling Framework

169

170 Appendix A. Acronyms

GOPPRR Graph-Object-Property-Port-Role-Relationship

GP Generative Programing

GReAT Graph Rewriting and Transformation

GT Graph Transformation

IDE Integrated Development Environment

LDE Language Driven Engineering

LHS Left-Hand Side

MOF Meta-Object Facility

MDA Model Driven Architecture

M2M Model-to-Model

MDE Model-Driven Engineering

OMG Object Management Group

OCL Object Constraint Language

OO Object-Oriented

PIM Platform Independent Model

PSM Platform Specific Model

QVT Query / Views / Transformations

RHS Right-Hand Side

SLE Software Language Engineering

SQL Structured Query Language

SVG Scalable Vector Graphics

UML Unified Modeling Language

Appendix B

CO-OPN Example Specifications

B.1 CO-OPN Booleans ADT

The Listing B.1 shows the definition of a Boolean type by means of a CO-
OPN ADT. It uses CO-OPN ADT’s concrete textual syntax. The Fig. B.1
presents the same Boolean ADT. This time in the EMF platform using the
CO-OPN metamodel definition.

Listing B.1. CO-OPN Boolean ADT Specification
ADT Booleans ;

2 Interface
Sort

4 boolean ;
Generators

6 t rue : −> boolean ;
f a l s e : −> boolean ;

8 Operations
not : boolean −> boolean ;

10 and : boolean , boolean −> boolean ;
or : boolean , boolean −> boolean ;

12 xor : boolean , boolean −> boolean ;
= : boolean boolean −> boolean ;

14 Body
Axioms

16 not t rue = f a l s e ;
not f a l s e = true ;

18 t rue and booleanVar1 = booleanVar1 ;
f a l s e and booleanVar1 = f a l s e ;

20 t rue or booleanVar1 = true ;
f a l s e or booleanVar1 = booleanVar1 ;

22 f a l s e xor booleanVar1 = booleanVar1 ;
t rue xor booleanVar1 = not booleanVar1 ;

24 (t rue = true) = true ;
(t rue = f a l s e) = f a l s e ;

26 (f a l s e = true) = f a l s e ;
(f a l s e = f a l s e) = true ;

28 Theorems
; ; r e f l e x i v i t y

30 (booleanVar1 = booleanVar1) = true ;

171

172 Appendix B. CO-OPN Example Specifications

; ; symetry
32 (booleanVar1 = booleanVar2) = true => (booleanVar2 = booleanVar1) = true ;

; ; t r a n s i t i v i t y
34 (booleanVar1 = booleanVar2) = true & (booleanVar2 = booleanVar3) = true

=> (booleanVar1 = booleanVar3) = true ;
Where

36 booleanVar1 : boolean ;
booleanVar2 : boolean ;

38 booleanVar3 : boolean ;
End Booleans ;

Figure B.1. CO-OPN ADT Booleans Specification

B.2. CO-OPN Machine Class 173

B.2 CO-OPN Machine Class

In this section we present an example of a machine specification using a
CO-OPN Class. The example specifies a state machine that has two states:
running and stopped. The machie can switch stated from one to the other
using the start and stopmethods. In addition the machine contains a counter
place that allows to count the number of cycles that it went to the start state.
Moreover a reset method is specified and it allows, while the machine is at
state stopped to reset the counter to an integer value. The counter attribute
is initialised to 0. The increase method is a private one (defined in the
body section) and is called as a synchronisation when the start method is
called. Simoultaneously the numOfStartCycles gate is called in parallel
which allows to output the actual number of start cycles.

Listing B.2 shows the machine class specification in the CO-OPN concrete
textual syntax and the Fig. ?? shows the exact same specification using CO-
OPN graphical syntax: Methods are represented as black rectangles and gates
as white backgound rectangles; places are the big circles with a label; the
arrows represent pre and post conditions; and the small circle represents the
parallel synchronisation. The Fig. B.3 shows the machine class specification
using the CO-OPN EMF editor.

Listing B.2. CO-OPN Machine Class Specification
Class CLASSMachine ;

2 Interface
Use

4 Natura ls ;
Type

6 machineType ;
Gate

8 numOfStartCycles : natura l ;
Methods

10 s t a r t ;
stop ;

12 r e s e t : natura l ;
Body

14 Use
BlackTokens ;

16 Methods
i n c r e a s e ;

18 Places
stopped : blackToken ;

20 running : blackToken ;
counter : natura l ;

22 In i t i a l
stopped @;

24 counter 0 ;
Axioms

26 t h i s = Self => s t a r t With t h i s . i n c r e a s e / / t h i s . numOfStartCycles n : :
stopped @, counter n −> running @, counter n ;

stop : : running @ −> stopped @;
28 i n c r e a s e : : counter n −> counter n + 1 ;

174 Appendix B. CO-OPN Example Specifications

r e s e t n : : stopped @ −> stopped @, counter n ;
30 Where

n : natura l ;
32 t h i s : machineType ;

End CLASSMachine ;

running _

@

stopped _

0

counter _

increase

start

reset _ : natural

stop

reset n

stop

increase

start

@ @

@ @

this . increase

@

n n + 1

CLASSMachinenumOfStartCycles _ : natural

this . numOfStartCycles n

Figure B.2. CO-OPN Machine Class Specification

B.2. CO-OPN Machine Class 175

Figure B.3. CO-OPN Machine Class Specification using EMF Editor

176 Appendix B. CO-OPN Example Specifications

B.3 CO-OPN Machine Context Specification

This example illustrates how to specify a CO-OPN context. The example
presented uses the previous definition of the Machine CO-OPN class in ap-
pendix B.2.

Listing B.3. CO-OPN Machine Context Specification
Context CTXMachine ;

2 Interface
Use

4 Natura ls ;
Gate

6 numOfStartCycles : natura l ;
Methods

8 s t a r t ;
stop ;

10 r e s e t : natura l ;
Body

12 Use
CLASSMachine ;

14 Object
obj : machineType ;

16 Axioms
s t a r t With obj . s t a r t ;

18 stop With obj . stop ;
r e s e t n With obj . r e s e t n ;

20 obj . numOfStartCycles n With numOfStartCycles n ;
Where

22 n : natura l ;
End CTXMachine ;

start

reset _ : natural

stop

this . increase

CTXMachinenumOfStartCycles _ : natural

start

reset _ : natural

numOfStartCycles _ : natural

stop

obj : machineType

Figure B.4. CO-OPN Machine Context Specification using CO-OPN Graphical
Resp resentation

B.3. CO-OPN Machine Context Specification 177

Figure B.5. CO-OPN Machine Context Specification using EMF Editor

178 Appendix B. CO-OPN Example Specifications

Appendix C

Moving Entities Transformations

C.1 Generic Moving Entities DSML Trans-

formation

Listing C.1. Complete Transformation of Moving Entities to CO-OPN
−− @at lcompi ler a t l 2006
module GenericMovingSystem ; −− Module Template
create entitiesCOOPN : COOPNModel from e n t i t i e s : MovingEntitiesDSML ;

5 helper def : c reate In i tAxiom (movingEnt i t i e s : Set (MovingEntitiesDSML !
MovingEnt it ies)) : S t r ing =
’ (obj ’ + movingEnt i t i e s . f i r s t () . name + ’ . ’ + (’ setName ’ + (

movingEnt i t i e s . f i r s t () . name . t oS t r i ng ())) + ’) ’ +
i f (movingEnt i t i e s . s i z e () = 1) then

’ ’
else

10 ’ // ’ +
(thisModule . c reate In i tAxiom (movingEnt i t i e s . exc lud ing (movingEnt i t i e s .

f i r s t ())))
endif ;

rule i n i t {
15 from

dsml : MovingEntitiesDSML !DSML
to
−−−−−−−−−−−−−−−−−
−− Way Segment −−

20 −−−−−−−−−−−−−−−−−
coopnc lassws : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

name <− ’CLASSWaySegment ’ ,
ownedBody <− bodyws ,
ownedInter face <− i n t e r f a c ews

25) ,
bodyws : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− endpoint1 ,
ownedPlaces <− endpoint2 ,
ownedPlaces <− namews

30) ,
endpoint1 : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

179

180 Appendix C. Moving Entities Transformations

name <− ’ EndPoint1 ’
) ,
endpoint2 : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

35 name <− ’ EndPoint2 ’
) ,
namews : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

name <− ’ ID ’
) ,

40

i n t e r f a c ews : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (
ownedInter faceClassTypes <− c lass typews ,
ownedInterfaceMethods <− setNamews ,
ownedInterfaceMethods <− setEndPoint1 ,

45 ownedInterfaceMethods <− setEndPoint2
) ,
c l a s s typews : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (

name <− ’ waysegment ’
) ,

50 setNamews : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
name <− ’ setName ’

) ,
setEndPoint1 : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

name <− ’ setEndPoint1 ’
55) ,

setEndPoint2 : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
name <− ’ setEndPoint2 ’

) ,
−−−−−−−−−−−−−−−−−−−−

60 −− Junction Point −−
−−−−−−−−−−−−−−−−−−−−
coopnc l a s s jp : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

name <− ’ CLASSJunctionPoint ’ ,
ownedBody <− bodyjp ,

65 ownedInter face <− i n t e r f a c e j p
) ,
bodyjp : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− s t a r t j p ,
ownedPlaces <− endjp ,

70 ownedPlaces <− namejp
) ,
s t a r t j p : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

name <− ’ S ta r t ’
) ,

75 endjp : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
name <− ’End ’

) ,
namejp : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

name <− ’name ’
80) ,

i n t e r f a c e j p : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (
ownedInter faceClassTypes <− c l a s s t ype jp ,
ownedInterfaceMethods <− s e tS t a r t j p ,
ownedInterfaceMethods <− setEndjp

85) ,
c l a s s t yp e j p : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (

name <− ’ j unc t i onpo in t ’
) ,
s e t S t a r t j p : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

90 name <− ’ s e t S t a r t ’
) ,
setEndjp : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

name <− ’ setEnd ’

C.1. Generic Moving Entities DSML Transformation 181

) ,
95

−−−−−−−−−−−−−−−−−−−−
−− Moving Ent i ty −−
−−−−−−−−−−−−−−−−−−−−
coopnclassme : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

100 name <− ’ CLASSMovingEntity ’ ,
ownedBody <− bodyme ,
ownedInter face <− i n t e r f aceme

) ,
bodyme : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

105 ownedPlaces <− nameme
) ,

nameme : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
name <− ’name ’

110) ,
i n t e r f aceme : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (

ownedInter faceClassTypes <− classtypeme ,
ownedInterfaceMethods <− setNameme

) ,
115 c lasstypeme : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (

name <− ’ movingent ity ’
) ,

setNameme : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
120 name <− ’ setName ’

) ,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− World S t ruc ture Context −−

125 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ctx : COOPNModel ! ”COOPNModel : : ContextModule : : COOPNContext” (

name <− ’CTX’ + dsml . ownedWorld . worldName ,
ownedBody <− body ,
ownedInter face <− i n t e r f a c e

130) ,

body : COOPNModel ! ”COOPNModel : : ContextModule : : Body” (
ownedObjects <− dsml . ownedWorld . ownedSegments−>col lect (e | thisModule .

ruleWaySegmentObj (e)) ,
ownedObjects <− dsml . ownedWorld . ownedJunctionPoints−>col lect (e |

thisModule . ru leJunct ionPointObj (e)) ,
135 ownedObjects <− dsml . ownedEntit ies−>col lect (e | thisModule .

r u l eEn t i t i e sOb j (e)) ,
ownedAxiomTheorems <− axiom

) ,
axiom : COOPNModel ! ”COOPNModel : : ContextModule : : Axiom” (

140 ownedRequiredEvent <− reqevent ,
ownedProvidedEvent <− providedevent

) ,
reqevent : COOPNModel ! ”COOPNModel : : ContextModule : : RequiredEvent” (

event <− ’ initDSML ’
145) ,

prov idedevent : COOPNModel ! ”COOPNModel : : ContextModule : : ProvidedEvent” (
ownedProvidedEventAtom <− providedeventatom

) ,
providedeventatom : COOPNModel ! ”COOPNModel : : ContextModule : : Event” (

150 event <− i f (dsml . ownedEnt i t ies . o c l I sUnde f ined ()) then
’ ’

else

182 Appendix C. Moving Entities Transformations

thisModule . c reate In i tAxiom (dsml . ownedEnt it ies)
endif

155) ,

i n t e r f a c e : COOPNModel ! ”COOPNModel : : ContextModule : : I n t e r f a c e ” (
ownedInterfaceMethods <− ctxInter faceMethods

) ,
160 ctxInter faceMethods : COOPNModel ! ”COOPNModel : : ContextModule : : Method” (

name <− ’ initDSML ’
)

}

165 lazy rule ruleWaySegmentObj {
from

ws : MovingEntitiesDSML ! WaySegment
to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
170 name <− ’ objWaySegment ’ + ws . id . t oS t r i ng ()

)
}

lazy rule ru leJunct ionPointObj {
175 from

jp : MovingEntitiesDSML ! Junct ionPoint
to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ ob jJunct ionPoint ’ + jp . name

180)
}

lazy rule r u l eEn t i t i e sOb j {
from

185 me : MovingEntitiesDSML ! MovingEntit iy
to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ obj ’ + me . name

)
190 }

C.2 Train Entity Transformation

Listing C.2. Complete Transformation of Train Entities to CO-OPN
−− @at lcompi ler a t l 2006
module TrainEntity ; −− Module Template
create trainsCOOPN : COOPNModel from t r a i n s : TrainEntityDSML ;

5 helper def : createActionPlanAxiom (gotoAct ions : Set (TrainEntityDSML !
GoToAction) , objname : S t r ing) : S t r ing =
’ (’ + objname + ’ . ’ + (’ goTo ’ + (gotoAct ions . f i r s t () . goto . stationName .

t oS t r i ng ())) + ’) ’ +
i f (gotoAct ions . s i z e () = 1) then

’ ’
else

10 ’ . . ’ +
(thisModule . createActionPlanAxiom (gotoAct ions . exc lud ing (gotoAct ions .

f i r s t ()) , objname))
endif ;

C.2. Train Entity Transformation 183

rule r u l e I n i t {
15 from

root : TrainEntityDSML ! Root
to
−−−−−−−−−−−−−−−−−−−−−
−− Railway S ta t i on −−

20 −−−−−−−−−−−−−−−−−−−−−
c o opnc l a s s s t a t i on : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

name <− ’ CLASSTrainStation ’ ,
ownedBody <− bodystat ion ,
ownedInter face <− i n t e r f a c e s t a t i o n

25) ,
bodystat ion : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− namestation
) ,
namestation : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

30 name <− ’name ’
) ,
i n t e r f a c e s t a t i o n : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (

ownedInter faceClassTypes <− c l a s s t yp e s t a t i o n ,
ownedInterfaceMethods <− methodgoto

35) ,
c l a s s t y p e s t a t i o n : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (

name <− ’ t r a i n s t a t i o n ’
) ,
methodgoto : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

40 name <− ’ goTo ’
) ,

−−−−−−−−−−−−−−−−−−−−
−− Train Ent i ty −−

45 −−−−−−−−−−−−−−−−−−−−
c oopnc l a s s t r : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

name <− ’CLASSTrain ’ ,
ownedBody <− bodytr ,
ownedInter face <− i n t e r f a c e t r

50) ,
bodytr : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− l o c a t i o n t r ,
ownedPlaces <− nametr ,
ownedVariables <− vartr ,

55 ownedAxiomTheorems <−axiomstr
) ,
l o c a t i o n t r : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

name <− ’ Locat ion ’
) ,

60

nametr : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
name <− ’name ’

) ,
va r t r : COOPNModel ! ”COOPNModel : : ClassModule : : Var iab le ” (

65 name <− ’ vartrainname ’
) ,
axiomstr : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (

ownedEvent <−eventtr ,
ownedPost <− post t r ,

70 ownedCondition <− c ond i t i o n t r
) ,
event t r : COOPNModel ! ”COOPNModel : : ClassModule : : Event” (

event <− ’ setName vartrainname ’
) ,

184 Appendix C. Moving Entities Transformations

75 po s t t r : COOPNModel ! ”COOPNModel : : ClassModule : : Post” (
ownedPostTerm <− postTermtr

) ,
postTermtr : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (

exp r e s s i on <− ’name vartrainname ’
80) ,

c ond i t i o n t r : COOPNModel ! ”COOPNModel : : ClassModule : : Condit ion ” (
ownedConditionAtom <− condi t ionatomtr

) ,
cond i t ionatomtr : COOPNModel ! ”COOPNModel : : ClassModule : : Equation” (

85 exp r e s s i on <− ’ (t h i s = S e l f) = true ’
) ,
i n t e r f a c e t r : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (

ownedInter faceClassTypes <− c l a s s t yp e t r ,
ownedInterfaceMethods <− setNametr ,

90 ownedInterfaceMethods <− s e tLo ca t i on t r
) ,
c l a s s t y p e t r : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (

name <− ’ t r a i n ’
) ,

95 s e tLo ca t i on t r : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
name <− ’ s e tLoca t i on ’

) ,
setNametr : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

name <− ’ setName ’
100) ,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Dummy Context to c rea t e Objects−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

105 ctx : COOPNModel ! ”COOPNModel : : ContextModule : : COOPNContext” (
name <− ’CTXRoot ’ ,
ownedBody <− body ,
ownedInter face <− i n t e r f a c e

) ,
110

body : COOPNModel ! ”COOPNModel : : ContextModule : : Body” (
ownedObjects <− root . ownedTrainEntit ies−>col lect (e | thisModule .

r u l eTra inEnt i t i e sOb j (e)) ,
ownedObjects <− root . ownedRailwayStations−>col lect (e | thisModule .

ruleRai lWayStationObj (e)) ,
ownedAxiomTheorems <− root . ownedTrainEntit ies−>col lect (e | thisModule .

executeActionPlanAxiom (e)) ,
115 onwedBodyVariables <− c t xva r i ab l e

) ,
i n t e r f a c e : COOPNModel ! ”COOPNModel : : ContextModule : : I n t e r f a c e ” (

ownedInterfaceMethods <− ctxInter faceMethods
) ,

120 ctxInter faceMethods : COOPNModel ! ”COOPNModel : : ContextModule : : Method” (
name <− ’ executeAct ionPlan ’

) ,
c t xva r i ab l e : COOPNModel ! ”COOPNModel : : ContextModule : : Var iab le ” (

name <− ’ v a r t r a i n ’
125)
}

lazy rule executeActionPlanAxiom {
from

130 t r a i n : TrainEntityDSML ! TrainEntity
to

axiom : COOPNModel ! ”COOPNModel : : ContextModule : : Axiom” (
ownedRequiredEvent <− reqevent ,

C.3. Railay System DSML Transformation 185

ownedProvidedEvent <− providedevent ,
135 ownedCondition <− cond i t i on

) ,
reqevent : COOPNModel ! ”COOPNModel : : ContextModule : : RequiredEvent” (

event <− ’ executeAct ionPlan ’ + t r a i n . name
) ,

140 providedevent : COOPNModel ! ”COOPNModel : : ContextModule : : ProvidedEvent” (
ownedProvidedEventAtom <− providedeventatom

) ,
providedeventatom : COOPNModel ! ”COOPNModel : : ContextModule : : Event” (

event <− i f (t r a i n . ownedActionPlan . oc l I sUnde f ined ()) then
145 ’ ’

else i f (t r a i n . ownedActionPlan . ownedActions . o c l I sUnde f ined ()) then
’ ’

else
thisModule . createActionPlanAxiom (t r a i n . ownedActionPlan . ownedActions ,

’ obj ’ + t r a i n . name)
150 endif

endif
) ,
c ond i t i on : COOPNModel ! ”COOPNModel : : ContextModule : : Condit ion ” (

ownedConditionAtom <− condit ionatom
155) ,

condit ionatom : COOPNModel ! ”COOPNModel : : ContextModule : : Equation” (
exp r e s s i on <− ’ (v a r t r a i n = ’ + t r a i n . name + ’) = true ’

)
}

160

lazy rule ru l eTra inEnt i t i e sOb j {
from

t r a i n : TrainEntityDSML ! TrainEntity
to

165 obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ obj ’ + t r a i n . name

)

170 }

lazy rule ruleRai lWayStationObj {
from

r s : TrainEntityDSML ! RailWayStation
175 to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ ob jTra inStat ion ’ + r s . stationName

)
}

C.3 Railay System DSML Transformation

Listing C.3. Complete Transformation of Railway System DSML to CO-OPN
−− @at lcompi ler a t l 2006
module GenericMovingSystem ; −− Module Template
create entitiesCOOPN : COOPNModel from e n t i t i e s : DSMLRailwaySystem ;

5 helper def : c reate In i tAxiom (movingEnt i t i e s : Set (DSMLRailwaySystem !
MovingEnt it ies)) : S t r ing =

186 Appendix C. Moving Entities Transformations

’ (obj ’ + movingEnt i t i e s . f i r s t () . name + ’ . ’ + (’ setName ’ + (
movingEnt i t i e s . f i r s t () . name . t oS t r i ng ())) + ’) ’ +

i f (movingEnt i t i e s . s i z e () = 1) then
’ ’

else
10 ’ // ’ +

(thisModule . c reate In i tAxiom (movingEnt i t i e s . exc lud ing (movingEnt i t i e s .
f i r s t ())))

endif ;

15 helper def : createActionPlanAxiom (gotoAct ions : Set (DSMLRailwaySystem !
GoToAction) , objname : S t r ing) : S t r ing =
’ (’ + objname + ’ . ’ + (’ goTo ’ + (gotoAct ions . f i r s t () . goto . stationName .

t oS t r i ng ())) + ’) ’ +
i f (gotoAct ions . s i z e () = 1) then

’ ’
else

20 ’ . . ’ +
(thisModule . createActionPlanAxiom (gotoAct ions . exc lud ing (gotoAct ions .

f i r s t ()) , objname))
endif ;

rule i n i t {
25 from

dsml : DSMLRailwaySystem !DSML
to
−−−−−−−−−−−−−−−−−
−− Way Segment −−

30 −−−−−−−−−−−−−−−−−
coopnc lassws : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

name <− ’CLASSWaySegment ’ ,
ownedBody <− bodyws ,
ownedInter face <− i n t e r f a c ews

35) ,
bodyws : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− endpoint1 ,
ownedPlaces <− endpoint2 ,
ownedPlaces <− namews

40) ,
endpoint1 : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

name <− ’ EndPoint1 ’
) ,
endpoint2 : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

45 name <− ’ EndPoint2 ’
) ,
namews : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

name <− ’ ID ’
) ,

50

i n t e r f a c ews : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (
ownedInter faceClassTypes <− c lass typews ,
ownedInterfaceMethods <− setNamews ,
ownedInterfaceMethods <− setEndPoint1 ,

55 ownedInterfaceMethods <− setEndPoint2
) ,
c l a s s typews : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (

name <− ’ waysegment ’
) ,

60 setNamews : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
name <− ’ setName ’

) ,

C.3. Railay System DSML Transformation 187

setEndPoint1 : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
name <− ’ setEndPoint1 ’

65) ,
setEndPoint2 : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

name <− ’ setEndPoint2 ’
) ,
−−−−−−−−−−−−−−−−−−−−−

70 −− Railway S ta t i on −−
−−−−−−−−−−−−−−−−−−−−−
coopnc l a s s jp : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

name <− ’ CLASSTrainStation ’ ,
ownedBody <− bodyjp ,

75 ownedInter face <− i n t e r f a c e j p
) ,
bodyjp : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− s t a r t j p ,
ownedPlaces <− endjp ,

80 ownedPlaces <− namejp

) ,
s t a r t j p : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

name <− ’ S ta r t ’
85) ,

endjp : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
name <− ’End ’

) ,
namejp : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

90 name <− ’name ’
) ,
i n t e r f a c e j p : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (

ownedInter faceClassTypes <− c l a s s t ype jp ,
ownedInterfaceMethods <− s e tS t a r t j p ,

95 ownedInterfaceMethods <− setEndjp ,
ownedInterfaceMethods <− methodgoto

) ,
c l a s s t yp e j p : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (

name <− ’ t r a i n s t a t i o n ’
100) ,

s e t S t a r t j p : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
name <− ’ s e t S t a r t ’

) ,
setEndjp : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

105 name <− ’ setEnd ’
) ,
methodgoto : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

name <− ’ goTo ’
) ,

110

−−−−−−−−−−−−−−−−−−−−
−− Train Ent i ty −−
−−−−−−−−−−−−−−−−−−−−
c oopnc l a s s t r : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

115 name <− ’CLASSTrain ’ ,
ownedBody <− bodytr ,
ownedInter face <− i n t e r f a c e t r

) ,
bodytr : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

120 ownedPlaces <− l o c a t i o n t r ,
ownedPlaces <− nametr ,
ownedVariables <− vartr ,
ownedAxiomTheorems <−axiomstr

) ,

188 Appendix C. Moving Entities Transformations

125 l o c a t i o n t r : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
name <− ’ Locat ion ’

) ,

nametr : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
130 name <− ’name ’

) ,
va r t r : COOPNModel ! ”COOPNModel : : ClassModule : : Var iab le ” (

name <− ’ vartrainname ’
) ,

135 axiomstr : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (
ownedEvent <−eventtr ,
ownedPost <− post t r ,
ownedCondition <− c ond i t i o n t r

) ,
140 event t r : COOPNModel ! ”COOPNModel : : ClassModule : : Event” (

event <− ’ setName vartrainname ’
) ,
po s t t r : COOPNModel ! ”COOPNModel : : ClassModule : : Post” (

ownedPostTerm <− postTermtr
145) ,

postTermtr : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (
exp r e s s i on <− ’name vartrainname ’

) ,
c ond i t i o n t r : COOPNModel ! ”COOPNModel : : ClassModule : : Condit ion ” (

150 ownedConditionAtom <− condi t ionatomtr
) ,
cond i t ionatomtr : COOPNModel ! ”COOPNModel : : ClassModule : : Equation” (

exp r e s s i on <− ’ (t h i s = S e l f) = true ’
) ,

155

i n t e r f a c e t r : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (
ownedInter faceClassTypes <− c l a s s t yp e t r ,
ownedInterfaceMethods <− setNametr ,
ownedInterfaceMethods <− s e tLo ca t i on t r

160) ,
c l a s s t y p e t r : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (

name <− ’ t r a i n ’
) ,
s e tLo ca t i on t r : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

165 name <− ’ s e tLoca t i on ’
) ,
setNametr : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

name <− ’ setName ’
) ,

170

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− World S t ruc ture Context −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

175 ctx : COOPNModel ! ”COOPNModel : : ContextModule : : COOPNContext” (
name <− ’CTX’ + dsml . ownedWorld . worldName ,
ownedBody <− body ,
ownedInter face <− i n t e r f a c e

) ,
180

body : COOPNModel ! ”COOPNModel : : ContextModule : : Body” (
ownedObjects <− dsml . ownedWorld . ownedSegments−>col lect (e | thisModule .

ruleWaySegmentObj (e)) ,

ownedAxiomTheorems <− axiom ,
185

C.3. Railay System DSML Transformation 189

ownedObjects <− dsml . ownedTrainEntit ies−>col lect (e | thisModule .
r u l eTra inEnt i t i e sOb j (e)) ,

ownedObjects <− dsml . ownedWorld . ownedRailwayStations−>col lect (e |
thisModule . ruleRai lWayStationObj (e)) ,

ownedAxiomTheorems <− dsml . ownedTrainEntit ies−>col lect (e | thisModule .
executeActionPlanAxiom (e)) ,

onwedBodyVariables <− c t xva r i ab l e
190

) ,
axiom : COOPNModel ! ”COOPNModel : : ContextModule : : Axiom” (

ownedRequiredEvent <− reqevent ,
ownedProvidedEvent <− providedevent

195) ,
reqevent : COOPNModel ! ”COOPNModel : : ContextModule : : RequiredEvent” (

event <− ’ initDSML ’
) ,
prov idedevent : COOPNModel ! ”COOPNModel : : ContextModule : : ProvidedEvent” (

200 ownedProvidedEventAtom <− providedeventatom
) ,
providedeventatom : COOPNModel ! ”COOPNModel : : ContextModule : : Event” (

event <− i f (dsml . ownedTrainEnt it ies . o c l I sUnde f ined ()) then
’ ’

205 else
thisModule . c reate In i tAxiom (dsml . ownedTrainEnt it ies)

endif
) ,

210 i n t e r f a c e : COOPNModel ! ”COOPNModel : : ContextModule : : I n t e r f a c e ” (
ownedInterfaceMethods <− ctxInterfaceMethodsw ,
ownedInterfaceMethods <− ctxInter faceMethods

) ,
ctxInter faceMethodsw : COOPNModel ! ”COOPNModel : : ContextModule : : Method” (

215 name <− ’ initDSML ’
) ,
c tx Inter faceMethods : COOPNModel ! ”COOPNModel : : ContextModule : : Method” (

name <− ’ executeAct ionPlan ’
) ,

220 c t xva r i ab l e : COOPNModel ! ”COOPNModel : : ContextModule : : Var iab le ” (
name <− ’ v a r t r a i n ’

)
}

225 lazy rule executeActionPlanAxiom {
from

t r a i n : DSMLRailwaySystem ! TrainEntity
to

axiom : COOPNModel ! ”COOPNModel : : ContextModule : : Axiom” (
230 ownedRequiredEvent <− reqevent ,

ownedProvidedEvent <− providedevent ,
ownedCondition <− cond i t i on

) ,
reqevent : COOPNModel ! ”COOPNModel : : ContextModule : : RequiredEvent” (

235 event <− ’ executeAct ionPlan ’ + t r a i n . name
) ,
prov idedevent : COOPNModel ! ”COOPNModel : : ContextModule : : ProvidedEvent” (

ownedProvidedEventAtom <− providedeventatom
) ,

240 providedeventatom : COOPNModel ! ”COOPNModel : : ContextModule : : Event” (
event <− i f (t r a i n . ownedActionPlan . oc l I sUnde f ined ()) then

’ ’
else i f (t r a i n . ownedActionPlan . ownedActions . o c l I sUnde f ined ()) then

’ ’

190 Appendix C. Moving Entities Transformations

245 else
thisModule . createActionPlanAxiom (t r a i n . ownedActionPlan . ownedActions ,

’ obj ’ + t r a i n . name)
endif
endif

) ,
250 cond i t i on : COOPNModel ! ”COOPNModel : : ContextModule : : Condit ion ” (

ownedConditionAtom <− condit ionatom
) ,
condit ionatom : COOPNModel ! ”COOPNModel : : ContextModule : : Equation” (

exp r e s s i on <− ’ (v a r t r a i n = ’ + t r a i n . name + ’) = true ’
255)
}

lazy rule ru l eTra inEnt i t i e sOb j {
from

260 t r a i n : DSMLRailwaySystem ! TrainEntity
to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ obj ’ + t r a i n . name

)
265

}

lazy rule ruleRai lWayStationObj {
270 from

r s : DSMLRailwaySystem ! RailWayStation
to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ ob jTra inStat ion ’ + r s . stationName

275)
}

lazy rule ruleWaySegmentObj {
280 from

ws : DSMLRailwaySystem ! WaySegment
to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ objWaySegment ’ + ws . id . t oS t r i ng ()

285)
}

C.4 Robot Entity Transformation

Listing C.4. Complete Transformation of Robot Entities to CO-OPN
−− @at lcompi ler a t l 2006
module RobotEntity ; −− Module Template
create robotsCOOPN : COOPNModel from robots : RobotEntityDSML ;

5 helper def : createActionPlanAxiom (gotoAct ions : Set (RobotEntityDSML !
GoToAction) , objname : S t r ing) : S t r ing =
i f (gotoAct ions . f i r s t () . oc l IsTypeOf (RobotEntityDSML ! PickObject)) then

’ (’ + objname + ’ . ’ + (’ p ickObject ’ + (gotoAct ions . f i r s t () . ob j e c t .
objectName . t oS t r i ng ())) + ’) ’ +

C.4. Robot Entity Transformation 191

i f (gotoAct ions . s i z e () = 1) then
10 ’ ’

else
’ . . ’ +
(thisModule . createActionPlanAxiom (gotoAct ions . exc lud ing (gotoAct ions .

f i r s t ()) , objname))
endif

15

else i f (gotoAct ions . f i r s t () . oc l IsTypeOf (RobotEntityDSML ! Star t)) then
’ (’ + objname + ’ . s t a r t ’ + ’) ’ +

i f (gotoAct ions . s i z e () = 1) then
20 ’ ’

else
’ . . ’ +
(thisModule . createActionPlanAxiom (gotoAct ions . exc lud ing (gotoAct ions .

f i r s t ()) , objname))
endif

25 else i f (gotoAct ions . f i r s t () . oc l IsTypeOf (RobotEntityDSML ! Stop)) then
’ (’ + objname + ’ . stop ’ + ’) ’ +

i f (gotoAct ions . s i z e () = 1) then
’ ’

30 else
’ . . ’ +
(thisModule . createActionPlanAxiom (gotoAct ions . exc lud ing (gotoAct ions .

f i r s t ()) , objname))
endif

else
35 ’ ’

endif
endif
endif ;

40 rule r u l e I n i t {
from

root : RobotEntityDSML ! Root
to
−−−−−−−−−−−−−−

45 −− Object −−
−−−−−−−−−−−−−−
c o opnc l a s s s t a t i on : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

name <− ’CLASSObject ’ ,
ownedBody <− bodyobj ,

50 ownedInter face <− i n t e r f a c e o b j
) ,
bodyobj : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− namesobj
) ,

55 namesobj : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
name <− ’name ’

) ,
i n t e r f a c e o b j : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (

ownedInter faceClassTypes <− c l a s s t yp e s ob j
60) ,

c l a s s t yp e s ob j : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (
name <− ’ obj ’

) ,

65 −−−−−−−−−−−−−−−−−−−−
−− Robot Ent i ty −−
−−−−−−−−−−−−−−−−−−−−

192 Appendix C. Moving Entities Transformations

c oopnc l a s s t r : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (
name <− ’CLASSRobot ’ ,

70 ownedBody <− bodyrobot ,
ownedInter face <− i n t e r f a c e r o b o t

) ,
bodyrobot : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (

ownedPlaces <− l o ca t i on robo t ,
75 ownedPlaces <− namerobot ,

ownedPlaces <− s ta t e robot ,
ownedVariables <− varrobot ,
ownedAxiomTheorems <−axiomsrobot ,
ownedAxiomTheorems <−ax iomsrobotstart ,

80 ownedAxiomTheorems <−axiomsrobotstop
) ,
l o c a t i on r obo t : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

name <− ’ Locat ion ’
) ,

85

namerobot : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
name <− ’name ’

) ,
s t a t e r obo t : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

90 name <− ’ s t a t e ’
) ,
varrobot : COOPNModel ! ”COOPNModel : : ClassModule : : Var iab le ” (

name <− ’ varrobotname ’
) ,

95 axiomsrobot : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (
name <− ’ s e t name ’ ,
ownedEvent <−eventrobot ,
ownedPost <− postrobot ,
ownedCondition <− cond i t i on robot

100

) ,
ax iomsrobot s ta r t : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (

name <− ’ s t a r t ’ ,
ownedEvent <−event robot s ta r t ,

105 ownedPost <− pos t robo t s ta r t ,
ownedPre <− pre robo t s ta r t ,
ownedCondition <− c ond i t i o n r obo t s t a r t

) ,
110 axiomsrobotstop : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (

name <− ’ s top ’ ,
ownedEvent <− eventrobotstop ,
ownedPost <− postrobotstop ,
ownedPre <− prerobotstop ,

115 ownedCondition <− cond i t i on robo t s top

) ,

eventrobot : COOPNModel ! ”COOPNModel : : ClassModule : : Event” (
120 event <− ’ setName vartrobotname ’

) ,
post robot : COOPNModel ! ”COOPNModel : : ClassModule : : Post” (

ownedPostTerm <− postTermrobot
) ,

125 postTermrobot : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (
exp r e s s i on <− ’name varrobotname ’

) ,
cond i t i on robot : COOPNModel ! ”COOPNModel : : ClassModule : : Condit ion ” (

ownedConditionAtom <− condit ionatomrobot

C.4. Robot Entity Transformation 193

130) ,
condit ionatomrobot : COOPNModel ! ”COOPNModel : : ClassModule : : Equation” (

exp r e s s i on <− ’ (t h i s = S e l f) = true ’
) ,

135 ev en t r obo t s t a r t : COOPNModel ! ”COOPNModel : : ClassModule : : Event” (
event <− ’ s t a r t ’

) ,
p o s t r obo t s t a r t : COOPNModel ! ”COOPNModel : : ClassModule : : Post” (

ownedPostTerm <− postTermrobotstart
140) ,

postTermrobotstart : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (
exp r e s s i on <− ’ s t a t e moving ’

) ,
p r e r obo t s t a r t : COOPNModel ! ”COOPNModel : : ClassModule : : Pre” (

145 ownedPreTerm <− preTermrobotstart
) ,
preTermrobotstart : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (

exp r e s s i on <− ’ s t a t e stopped ’
) ,

150 c ond i t i o n r obo t s t a r t : COOPNModel ! ”COOPNModel : : ClassModule : : Condit ion ” (
ownedConditionAtom <− cond i t i onatomrobot s ta r t

) ,
cond i t i onatomrobot s ta r t : COOPNModel ! ”COOPNModel : : ClassModule : : Equation”

(
exp r e s s i on <− ’ (t h i s = S e l f) = true ’

155) ,

eventrobots top : COOPNModel ! ”COOPNModel : : ClassModule : : Event” (
event <− ’ s top ’

160) ,
pos t robot s top : COOPNModel ! ”COOPNModel : : ClassModule : : Post” (

ownedPostTerm <− postTermrobotstop
) ,
postTermrobotstop : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (

165 exp r e s s i on <− ’ s t a t e stopped ’
) ,
p re robots top : COOPNModel ! ”COOPNModel : : ClassModule : : Pre” (

ownedPreTerm <− preTermrobotstop
) ,

170 preTermrobotstop : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (
exp r e s s i on <− ’ s t a t e moving ’

) ,
c ond i t i on robo t s top : COOPNModel ! ”COOPNModel : : ClassModule : : Condit ion ” (

ownedConditionAtom <− condi t ionatomrobotstop
175) ,

condi t ionatomrobotstop : COOPNModel ! ”COOPNModel : : ClassModule : : Equation” (
exp r e s s i on <− ’ (t h i s = S e l f) = true ’

) ,

180

i n t e r f a c e r o b o t : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (
ownedInter faceClassTypes <− c l a s s type robot ,
ownedInterfaceMethods <− setNamerobot ,
ownedInterfaceMethods <− p i ckob j ec t robot ,

185 ownedInterfaceMethods <− s ta r t robo t ,
ownedInterfaceMethods <− s toprobot

) ,
c l a s s t yp e r obo t : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (

name <− ’ robot ’
190) ,

194 Appendix C. Moving Entities Transformations

p i ckob j e c t r obo t : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
name <− ’ p ickObject ’

) ,
setNamerobot : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

195 name <− ’ setName ’
) ,
s t a r t r obo t : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

name <− ’ s t a r t ’
) ,

200 s toprobot : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
name <− ’ s top ’

) ,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
205 −− Dummy Context to c rea t e Objects−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ctx : COOPNModel ! ”COOPNModel : : ContextModule : : COOPNContext” (

name <− ’CTXRoot ’ ,
ownedBody <− body ,

210 ownedInter face <− i n t e r f a c e
) ,

body : COOPNModel ! ”COOPNModel : : ContextModule : : Body” (
ownedObjects <− root . ownedRobotEntities−>col lect (e | thisModule .

ru l eRobotEnt i t i e sObj (e)) ,
215 ownedObjects <− root . ownedObjects−>col lect (e | thisModule .

ru leObjectsObj (e)) ,
ownedAxiomTheorems <− root . ownedRobotEntities−>col lect (e | thisModule .

executeActionPlanAxiom (e)) ,
onwedBodyVariables <− c t xva r i ab l e

) ,
i n t e r f a c e : COOPNModel ! ”COOPNModel : : ContextModule : : I n t e r f a c e ” (

220 ownedInterfaceMethods <− ctxInter faceMethods
) ,
c tx Inter faceMethods : COOPNModel ! ”COOPNModel : : ContextModule : : Method” (

name <− ’ executeAct ionPlan ’
) ,

225 c t xva r i ab l e : COOPNModel ! ”COOPNModel : : ContextModule : : Var iab le ” (
name <− ’ varrobot ’

)
}

230 lazy rule executeActionPlanAxiom {
from

robot : RobotEntityDSML ! RobotEntity
to

axiom : COOPNModel ! ”COOPNModel : : ContextModule : : Axiom” (
235 name <− ’ execute ac t i on plan ’ ,

ownedRequiredEvent <− reqevent ,
ownedProvidedEvent <− providedevent ,
ownedCondition <− cond i t i on

) ,
240 reqevent : COOPNModel ! ”COOPNModel : : ContextModule : : RequiredEvent” (

event <− ’ executeAct ionPlan ’ + robot . name
) ,
providedevent : COOPNModel ! ”COOPNModel : : ContextModule : : ProvidedEvent” (

ownedProvidedEventAtom <− providedeventatom
245) ,

providedeventatom : COOPNModel ! ”COOPNModel : : ContextModule : : Event” (
event <− i f (robot . ownedActionPlan . oc l I sUnde f ined ()) then

’ ’
else i f (robot . ownedActionPlan . ownedActions . o c l I sUnde f ined ()) then

C.5. Robot System DSML Transformation 195

250 ’ ’
else

thisModule . createActionPlanAxiom (robot . ownedActionPlan . ownedActions ,
’ obj ’ + robot . name)

endif
endif

255) ,
c ond i t i on : COOPNModel ! ”COOPNModel : : ContextModule : : Condit ion ” (

ownedConditionAtom <− condit ionatom
) ,
condit ionatom : COOPNModel ! ”COOPNModel : : ContextModule : : Equation” (

260 exp r e s s i on <− ’ (varrobot = ’ + robot . name + ’) = true ’
)

}

lazy rule ru l eRobotEnt i t i e sObj {
265 from

robot : RobotEntityDSML ! RobotEntity
to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ obj ’ + robot . name

270)
}

lazy rule ru leObjectsObj {
from

275 o : RobotEntityDSML ! Obj
to

obj : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− ’ objObject ’ + o . objectName

)
280 }

C.5 Robot System DSML Transformation

Listing C.5. Complete Transformation of Robot System DSML to CO-OPN
−− @at lcompi ler a t l 2006

196 Appendix C. Moving Entities Transformations

Appendix D

COSPEL Transformations

Listing D.1. Generic COSPEL ATL Transformation
−− @at lcompi ler a t l 2006

2 module ControlSystemGenDSMLTransformation ; −− Module Template
create dvmCOOPN : COOPNModel from dvm : GenericCospel , c f c : COOPNModel ;

4

rule i n i t {
6 from

c : COOPNModel !COOPNPackage ,
8 system : Gener icCospel ! System

to
10 coopnpackage : COOPNModel !COOPNPackage(

name <− system . name ,
12 ownedModules <− system . ownedTypes−>col lect (e | thisModule . ruleType (c , e

)) ,
ownedModules <− system . ownedObjects−>col lect (e | thisModule . ru l eObjec t

(e , c))
14)
}

16

lazy rule ruleType {
18 from

c : COOPNModel !COOPNPackage ,
20 t : Gener icCospel ! Type

22 to
coopnc la s s : COOPNModel ! ”COOPNModel : : ClassModule : : COOPNClass” (

24 name <− t . name ,
ownedBody <− body ,

26 ownedInter face <− i n t e r f a c e
) ,

28 −−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−− I n t e r f a c e −−−−−−−

30 i n t e r f a c e : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (
ownedInter faceUses <− Set{ ’ Natura l s ’ , ’ Booleans ’ , ’ S t r i n g s ’}−>col lect

(e | thisModule . ruleStandardUsesCLASS (e , c)) ,
32 ownedInterfaceMethods <− t . fsm . ownedTransit ions−>col lect (e |

thisModule . ruleInMethodsCLASS (e)) ,
ownedInterfaceMethods <− t . ownedEvents−>col lect (e | thisModule .

ruleInEventMethodsCLASS (e)) ,
34 ownedInter faceClassTypes <− c l a s s t yp e

197

198 Appendix D. COSPEL Transformations

36) ,
c l a s s t yp e : COOPNModel ! ”COOPNModel : : ClassModule : : ClassType” (

38 name <− t . name . toLower ()
) ,

40 −−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−− Body −−−−−−−−−

42 body : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (
ownedPlaces <− t . fsm . ownedStates−>col lect (e | thisModule . r u l e I nP l a c e s (

e)) ,
44 ownedPlaces <− thisModule . ruleGeometry (c , t . geometry) ,

ownedAxiomTheorems <− t . fsm . ownedTransit ions−>col lect (e | thisModule .
ruleInAxioms (e)) ,

46 ownedAxiomTheorems <− t . ownedEvents−>col lect (e | thisModule .
ruleInEventAxioms (e)) ,

ownedPlaces <− thisModule . ru leCoordinatesX ((t . ownedBySystem .
ownedObjects−>any (o | o . type = t)) . ownedCoordinates . ownedX) ,

48 ownedPlaces <− thisModule . ru leCoordinatesY ((t . ownedBySystem .
ownedObjects−>any (o | o . type = t)) . ownedCoordinates . ownedY) ,

ownedPlaces <− thisModule . ru l eCoord inatesZ ((t . ownedBySystem .
ownedObjects−>any (o | o . type = t)) . ownedCoordinates . ownedZ) ,

50 owned In i t i a l <− i n i t i a l
) ,

52 i n i t i a l : COOPNModel ! ”COOPNModel : : ClassModule : : I n i t i a l ” (
ownedInit ia lTerms <− t . fsm . f i n d I n i t i a l s ()−>col lect (e | thisModule .

ruleInTerms (e))
54)
}

56

lazy rule ruleInEventMethodsCLASS{
58 from

e : Gener icCospel ! Event
60 to

m : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
62 name <− e . name

)
64 }

66 lazy rule ruleInEventAxioms{
from

68 e : Gener icCospel ! Event
to

70 a : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (
ownedEvent <− ev

72) ,
ev : COOPNModel ! ”COOPNModel : : ClassModule : : Event” (

74 event <− e . name
)

76 }

78 lazy rule ruleInMethodsCLASS{
from

80 t : Gener icCospel ! Trans i t i on
to

82 m : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (
name <− t . name

84)
}

86

lazy rule ruleInMethodsCTX{
88 from

t : Gener icCospel ! Trans i t i on
90 to

199

m : COOPNModel ! ”COOPNModel : : ContextModule : : Method” (
92 name <− t . name

)
94 }

96 lazy rule r u l e I nP l a c e s {
from

98 s : Gener icCospel ! State

100 to
p : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

102 name <− s . name

104)
}

106

lazy rule ruleInTerms {
108 from

s : Gener icCospel ! State
110 to

t : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (
112 exp r e s s i on <− s . name + ’ @’

)
114 }

116 lazy rule ruleInAxioms {
from t : Gener icCospel ! Trans i t i on

118

to
120 a : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (

name <−t . name ,
122 ownedPre <− pre ,

ownedPost <− post ,
124 ownedEvent <− e

) ,
126 pre : COOPNModel ! ”COOPNModel : : ClassModule : : Pre” (

ownedPreTerm <− preterm
128) ,

preterm : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (
130 exp r e s s i on <− t . source . name + ’ @’

) ,
132 post : COOPNModel ! ”COOPNModel : : ClassModule : : Post” (

ownedPostTerm <− postterm
134) ,

postterm : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (
136 exp r e s s i on <− t . t a r g e t . name + ’ @’

) ,
138 e : COOPNModel ! ”COOPNModel : : ClassModule : : Event” (

event <− t . name
140)
}

142

lazy rule ruleStandardUsesCLASS{
144 from

s : Str ing ,
146 c : COOPNModel !COOPNPackage

to
148 u : COOPNModel ! ”COOPNModel : : ClassModule : : Use” (

name <− s ,
150 usedModuleForClass <− c . getADT(s)

)
152

200 Appendix D. COSPEL Transformations

}
154

lazy rule ruleStandardUsesCTX{
156 from

s : Str ing ,
158 c : COOPNModel !COOPNPackage

to
160 u : COOPNModel ! ”COOPNModel : : ContextModule : : Use” (

name <− s ,
162 usedModuleForContext <− c . getADT(s)

)
164 }
−−−−−−−−−−−−−−−−−−−

166 −−− geometry −−−−−−
−−−−−−−−−−−−−−−−−−−

168 lazy rule ruleGeometry {
from

170 c : COOPNModel !COOPNPackage ,
geometry : Gener icCospel ! Geometry

172 to
geomplace : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (

174 name <− geometry .URL,
ownedPlaceTypeElements <− inPlaceType

176) ,

178 inPlaceType : COOPNModel ! ”COOPNModel : : ClassModule : : TypeElement” (
typeElementType <− c . getADT(’ S t r i ng s ’) . ownedInter face .

ownedInter faceSort s−> f i r s t ()
180)
}

182 −−−−−−−−−−−−−−−−−−
−−−− Object −−−−−−−

184 −−−−−−−−−−−−−−−−−−
lazy rule ru l eObjec t {

186 from
obj : Gener icCospel ! Object ,

188 c : COOPNModel !COOPNPackage
to

190 ctx : COOPNModel ! ”COOPNModel : : ContextModule : : COOPNContext” (
name <− ’CTX’ + obj . name ,

192 ownedBody <− body ,
ownedInter face <− i n t e r f a c e

194) ,
−−−−−−−−−−−−−−−−−−−−−−−−−

196 −−−−−−−−−− Body −−−−−−−−−
body : COOPNModel ! ”COOPNModel : : ContextModule : : Body” (

198 ownedObjects <− i nObjec t s
) ,

200 i nObjec t s : COOPNModel ! ”COOPNModel : : ContextModule : : Object ” (
name <− obj . name

202) ,
−−−−−−−−−−−−−−−−−−−−−−−−−

204 −−−−−−− I n t e r f a c e −−−−−−−
i n t e r f a c e : COOPNModel ! ”COOPNModel : : ContextModule : : I n t e r f a c e ” (

206 ownedInter faceUses <− Set{ ’ Natura l s ’ , ’ Booleans ’ , ’ S t r i n g s ’}−>col lect
(e | thisModule . ruleStandardUsesCTX (e , c)) ,

ownedInterfaceMethods <− obj . ownedBySystem . ownedTypes−>any (t | t = obj
. type) . fsm . ownedTransit ions−>col lect (e | thisModule .
ruleInMethodsCTX (e))

208)
}

210 −−−−−−−−−−−−−−−−−−−−−−−

201

−−− cooed ina tes −−−−−−−
212 −−−−−−−−−−−−−−−−−−−−−−−

lazy rule ru leCoordinatesY {
214 from

c : Gener icCospel ! y
216 to

coordy : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
218 name <− ’ y ’

)
220 }

222 lazy rule ru leCoordinatesX {
from

224 c : Gener icCospel ! x
to

226 coordx : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
name <− ’ x ’

228)
}

230

lazy rule ru leCoord inatesZ {
232 from

c : Gener icCospel ! z
234 to

coordz : COOPNModel ! ”COOPNModel : : ClassModule : : Place ” (
236 name <− ’ z ’

)
238 }

240 helper context Gener icCospel ! Type def : f indGeometry () : Gener icCospel !
Geometry =

s e l f . geometry ;
242

244 helper context Gener icCospel !FSM def : f i n d I n i t i a l s () : Set (Gener icCospel !
State) =

s e l f . ownedStates−>s e l e c t (s | s . i s I n i t i a l=true) ;
246

248 helper context COOPNModel !COOPNPackage def : getADT(nameADT : St r ing) :
COOPNModel !COOPNADT =
s e l f . ownedModules−>any (m |

250 m. name = nameADT and m. oclIsTypeOf (COOPNModel !COOPNADT)
) ;

252

helper context COOPNModel ! COOPNClass def : getTypeFromClass () : COOPNModel !
ClassType =

254 s e l f . ownedInter face . ownedInter faceClass−> f i r s t () ;

256 helper context COOPNModel !COOPNPackage def : getAllADT () : OrderedSet (
COOPNModel ! ”COOPNModel : : ADTModule”) =

s e l f . packageContainsModules−>i t e r a t e (m ; e lements : OrderedSet (
COOPNModel ! ”COOPNModel : : ADTModule”) =

258 OrderedSet {} |
i f (m. oclIsTypeOf (COOPNModel ! ”COOPNModel : : ADTModule”))

260 then
e lements . append (m)

262 else
true

264 endif
) ;

202 Appendix D. COSPEL Transformations

Listing D.2. Event Model ATL Transformation

−−@at lcompi ler a t l 2006
2 module EventModelTransformation ; −− Module Template

create coopn : COOPNModel from eventModel : EventModel ;
4

rule i n i t {
6 from

root : EventModel ! Root
8 to

i n t e r f a c e : COOPNModel ! ”COOPNModel : : ClassModule : : I n t e r f a c e ” (
10 ownedInterfaceMethods <− root . ownedEvents−>col lect (e | thisModule .

ruleInEventMethods (e))
) ,

12 body : COOPNModel ! ”COOPNModel : : ClassModule : : Body” (
ownedAxiomTheorems <− root . ownedEvents−>col lect (e | e . createAxioms ())

14)
}

16

−− ru l e f o r event s
18 lazy rule ruleInEventMethods {

from
20 e : EventModel ! Event

to
22 m : COOPNModel ! ”COOPNModel : : ClassModule : : Method” (

name <− e . name
24)
}

26

−− I t e r a t e over cond i t i ons f o r c r ea t i ng axioms
28 helper context EventModel ! Event def : createAxioms () : Set (COOPNModel ! ”

COOPNModel : : ClassModule : : Axiom”) =
s e l f . ownedConditions−>col lect (c | thisModule . ru leInCondit ionAxioms (c)) ;

30

32 −− Rules f o r c r ea t i ng axioms from cond i t i ons

34 lazy rule ruleInCondit ionAxioms { −−t h i s i s f o r cond i t i ons with no t r i g g e r e d
event s and t r a n s i t i o n s

from
36 c : EventModel ! Condit ion

to
38 a : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (

ownedPre <− pre ,
40 ownedPost <− post ,

ownedEvent <− event
42) ,

event : COOPNModel ! ”COOPNModel : : ClassModule : : Event” (
44 event <− c . ownedByEvent . name

) ,
46 pre : COOPNModel ! ”COOPNModel : : ClassModule : : Pre” (

ownedPreTerm <− preterm
48) ,

preterm : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (
50 exp r e s s i on <− c . p r e cond i t i on

) ,
52 post : COOPNModel ! ”COOPNModel : : ClassModule : : Post” (

ownedPostTerm <− postterm
54) ,

postterm : COOPNModel ! ”COOPNModel : : ClassModule : : Term” (
56 exp r e s s i on <− c . po s t cond i t i on

)

203

58 }

60 lazy rule axiomsWithTransitionOrEvent extends ruleInCondit ionAxioms { −−t h i s
i s f o r cond i t i ons with t r a n s i t i o n s only or Event Only

from
62 c : EventModel ! Condit ion (

not (c . t r a n s i t i o n . oc l I sUnde f ined () and c . t r i gge rEvent . o c l I sUnde f ined ()
) −− they are NOT both undef ined

64 and (c . t r a n s i t i o n . oc l I sUnde f ined () or c . t r i gge rEvent . o c l I sUnde f ined ())
−− and one o f them i s undef ined

)
66 to

a : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (
68 ownedSynchronization <− synchron i za t i on

) ,
70 synchron i za t i on : COOPNModel ! ”COOPNModel : : ClassModule : : Synchron izat ion ” (

synchro <−
72 i f (c . t r i gge rEvent . o c l I sUnde f ined ())

then
74 c . t r a n s i t i o n . name

else
76 c . t r i gge rEvent . name

endif
78)
}

80

lazy rule axiomsWithTransitionAndEvent extends ruleInCondit ionAxioms { −−
t h i s i s f o r cond i t i ons with both t r a n s i t i o n and Event

82 from
c : EventModel ! Condit ion (

84 not (c . t r a n s i t i o n . oc l I sUnde f ined () or c . t r i gge rEvent . o c l I sUnde f ined ())
−− they are both de f ined

)
86 to

a : COOPNModel ! ”COOPNModel : : ClassModule : : Axiom” (
88 ownedSynchronization <− synchron i za t i on

) ,
90 synchron i za t i on : COOPNModel ! ”COOPNModel : : ClassModule : : Synchron izat ion ” (

synchro <− c . t r a n s i t i o n . name+’ // ’+c . t r i gge rEvent . name
92)
}

204 Appendix D. COSPEL Transformations

Appendix E

Thesis Presentation

205

Luis Pedro
University of Geneva

A Systematic Language Engineering
Approach for Prototyping Domain

Specific Modelling Languages

Luis Pedro January 23, 2009

Project

2

Luis Pedro January 23, 2009

Model

3 Luis Pedro January 23, 2009

Prototype

4

Luis Pedro January 23, 2009

Build

5 Luis Pedro January 23, 2009

Build

5

Luis Pedro January 23, 2009 6

Analysis/
Requirements

Luis Pedro January 23, 2009 7

Model

Luis Pedro January 23, 2009 8

Prototype

Luis Pedro January 23, 2009 9

Implementation

Luis Pedro January 23, 2009 10 Luis Pedro January 23, 2009

Requirements

10

Luis Pedro January 23, 2009

ModelRequirements

10 Luis Pedro January 23, 2009

ModelRequirements Prototype

10

Luis Pedro January 23, 2009

ModelRequirements Prototype Implementation

10 Luis Pedro January 23, 2009

Language Engineering?

11

Luis Pedro January 23, 2009

A language that is used will be changed.
 - Meir M. Lehman

12 Luis Pedro January 23, 2009

Language
Model

ImplementationRequirements Prototype

13

Luis Pedro January 23, 2009

What Language?

14 Luis Pedro January 23, 2009 14

Luis Pedro January 23, 2009

Domain Specific Language
14 Luis Pedro January 23, 2009 15

Luis Pedro January 23, 2009

Complexity

15 Luis Pedro January 23, 2009

Diversity

Complexity

15

Luis Pedro January 23, 2009

Diversity

Complexity

Evolution

15 Luis Pedro January 23, 2009

Abstraction through rich concepts
helps to manage complexity 16

Luis Pedro January 23, 2009

Integration of multiple languages
helps to manage diversity Luis Pedro January 23, 2009

Flexible and modular languages
help managing evolution 18

Luis Pedro January 23, 2009

Goals and Motivation

19 Luis Pedro January 23, 2009

Goals and Motivation

19

Luis Pedro January 23, 2009

Goals and Motivation

Re-use for Faster Language Development

19 Luis Pedro January 23, 2009

Goals and Motivation
Re-use for Faster Language Development

Modularity

19

Luis Pedro January 23, 2009

Goals and Motivation
Re-use for Faster Language Development

Modularity

Manage Language Complexity

19 Luis Pedro January 23, 2009

Goals and Motivation
Re-use for Faster Language Development

Modularity

Manage Language Complexity

Incremental DSML development

19

Luis Pedro January 23, 2009

Goals and Motivation
Re-use for Faster Language Development

Modularity

Manage Language Complexity

Incremental DSML development

19 Luis Pedro January 23, 2009

State of The Art

20

Luis Pedro January 23, 2009 Luis Pedro January 23, 2009

State of The Art: Methodologies

Luis Pedro January 23, 2009 Luis Pedro January 23, 2009

Metamodelling

Luis Pedro January 23, 2009

MetamodellingMOF and ECore

Luis Pedro January 23, 2009

Metamodelling

Model Transformation

MOF and ECore

Luis Pedro January 23, 2009

Metamodelling

Model Transformation

MOF and ECore

QVT

Luis Pedro January 23, 2009

Metamodelling

Model Transformation

Metamodel Composition

MOF and ECore

QVT

Luis Pedro January 23, 2009

Metamodelling

Model Transformation

Metamodel Composition

MOF and ECore

QVT

Model Extension

Luis Pedro January 23, 2009

Metamodelling

Model Transformation

Metamodel Composition

Semantics Enrichment

MOF and ECore

QVT

Model Extension

Luis Pedro January 23, 2009

Metamodelling

Model Transformation

Metamodel Composition

Semantics Enrichment

MOF and ECore

QVT

Model Extension

Semantics Anchoring

Luis Pedro January 23, 2009

Metamodelling

Model Transformation

Metamodel Composition

Semantics Enrichment

MOF and ECore

QVT

Model Extension

Transformation Composition

Semantics Anchoring

Luis Pedro January 23, 2009 Luis Pedro January 23, 2009

State of The Art: Tools

Luis Pedro January 23, 2009 Luis Pedro January 23, 2009

Language evolution

Luis Pedro January 23, 2009

Language evolution

Luis Pedro January 23, 2009

Language evolution

Verification

Luis Pedro January 23, 2009

Language evolution

Verification

Luis Pedro January 23, 2009

Language evolution

Verification

Graphical Mapping

Luis Pedro January 23, 2009

Language evolution

Verification

Graphical Mapping

Luis Pedro January 23, 2009

Language evolution

Verification

Graphical Mapping

Transformation

Luis Pedro January 23, 2009

Language evolution

Verification

Graphical Mapping

Transformation

Luis Pedro January 23, 2009

Language evolution

Verification

Graphical Mapping

Transformation

Composition

Luis Pedro January 23, 2009

Language evolution

Verification

Graphical Mapping

Transformation

Composition

Luis Pedro January 23, 2009

Composition

23

Luis Pedro January 23, 2009 24 Luis Pedro January 23, 2009

Disjoint Union

24

Luis Pedro January 23, 2009

Disjoint Union

Merge (Union)

24 Luis Pedro January 23, 2009

Disjoint Union

Merge (Union)

Association

Aggregation

Inheritance

24

Luis Pedro January 23, 2009

Disjoint Union

Merge (Union)

Association

Aggregation

Inheritance

Parameterization

24 Luis Pedro January 23, 2009

Domain Concept

25

Luis Pedro January 23, 2009

Domain Concept

+

Metamodel

25

Transformation

Luis Pedro January 23, 2009

Domain Concept

A semantic block capturing
domain knowledge

+

Metamodel

25

Transformation

Luis Pedro January 23, 2009 26 Luis Pedro January 23, 2009 26

Domain Concepts

Luis Pedro January 23, 2009 26

uses

Domain Concepts

Luis Pedro January 23, 2009 26

Composition

uses

Domain Concepts

Luis Pedro January 23, 2009 26

D
SM

L

Composition

uses

Domain Concepts

Luis Pedro January 23, 2009 26

Transformed DSML

Semantic
Mapping

D
SM

L

Composition

uses

Domain Concepts

Luis Pedro January 23, 2009

Semantics, Prototyping and Animation

27 Luis Pedro January 23, 2009

Chosen Platform for Semantic Mapping:
CO-OPN Builder

Semantics, Prototyping and Animation

27

Luis Pedro January 23, 2009

Chosen Platform for Semantic Mapping:
CO-OPN Builder

Semantics, Prototyping and Animation

Validation Animation
Test Case

Generation
Java Prototype

Generation

27 Luis Pedro January 23, 2009 28

fp formal parameter

ep effective parameter

Luis Pedro January 23, 2009 28

fp formal parameter

ep effective parameter

(Substitutes)
fp ep

metamodel
ϕ

Before Parameterization

mm

Luis Pedro January 23, 2009 28

fp formal parameter

ep effective parameter

(Substitutes)
fp ep

metamodel
ϕ

ep

Before Parameterization

After Parameterization

mm

mm’

Luis Pedro January 23, 2009

Metamodel Composition
mm′ = mm[fp

ϕ←− ep, Ffp]

29 Luis Pedro January 23, 2009

Metamodel Composition
mm′ = mm[fp

ϕ←− ep, Ffp]

fp is the formal parameter

29

Luis Pedro January 23, 2009

Metamodel Composition
mm′ = mm[fp

ϕ←− ep, Ffp]

fp is the formal parameter

ep is the effective parameter

29 Luis Pedro January 23, 2009

Metamodel Composition
mm′ = mm[fp

ϕ←− ep, Ffp]

fp is the formal parameter

ep is the effective parameter

! is a total function creating a map between
elements of fp and ep

29

Luis Pedro January 23, 2009 30

Moving Entity DSML Metamodel

Luis Pedro January 23, 2009 31

Train Entity DSML Metamodel

ϕ = {〈MovingEntity, T rainEntity〉
〈JunctionPoint, RaiwayStation〉}

Luis Pedro January 23, 2009 31

Train Entity DSML Metamodel

ϕ = {〈MovingEntity, T rainEntity〉
〈JunctionPoint, RaiwayStation〉}

Luis Pedro January 23, 2009 32

Robot Entity DSML Metamodel

ϕ = {〈MovingEntity, RobotEntity〉
〈JunctionPoint, Object〉}

Luis Pedro January 23, 2009 32

Robot Entity DSML Metamodel

ϕ = {〈MovingEntity, RobotEntity〉
〈JunctionPoint, Object〉} Luis Pedro January 23, 2009

Transformation

33

Luis Pedro January 23, 2009

Transformation

Semantics Mapping

33 Luis Pedro January 23, 2009

Transformation

Semantics Mapping

Set of Rules Describing a Transformation

33

Luis Pedro January 23, 2009

Transformation

Semantics Mapping

Set of Rules Describing a Transformation

Model Transformation Language

33 Luis Pedro January 23, 2009

Trmm′ = Trmm[Trfp
ϕ,ψ←−− Trep]

Transformation Composition

Metamodel Composition

mm′ = mm[fp
ϕ←− ep, Ffp]

34

Luis Pedro January 23, 2009

Trmm′ = Trmm[Trfp
ϕ,ψ←−− Trep]

Transformation Composition

Trfp template transformation for fp

Metamodel Composition

mm′ = mm[fp
ϕ←− ep, Ffp]

34 Luis Pedro January 23, 2009

Trmm′ = Trmm[Trfp
ϕ,ψ←−− Trep]

Transformation Composition

Trfp template transformation for fp

Trep template transformation for ep

Metamodel Composition

mm′ = mm[fp
ϕ←− ep, Ffp]

34

Luis Pedro January 23, 2009

Trmm′ = Trmm[Trfp
ϕ,ψ←−− Trep]

Transformation Composition

Trfp template transformation for fp

Trep template transformation for ep

!: Dom(Trfp) ! Dom(Trep)

Metamodel Composition

mm′ = mm[fp
ϕ←− ep, Ffp]

34 Luis Pedro January 23, 2009

Trmm′ = Trmm[Trfp
ϕ,ψ←−− Trep]

Transformation Composition

Trfp template transformation for fp

Trep template transformation for ep

!: Dom(Trfp) ! Dom(Trep)

": Cod(Trfp) ! Cod(Trep)

Metamodel Composition

mm′ = mm[fp
ϕ←− ep, Ffp]

34

Luis Pedro January 23, 2009

What Happens to Transformations

35 Luis Pedro January 23, 2009

Transformation Element is a Leaf

36

Luis Pedro January 23, 2009

Transformation Element is a Leaf

36 Luis Pedro January 23, 2009

Transformation Element is a Leaf

Trfp1

Trfp2

...

Trfpn

Trep1

Trep2

...

Trepn

Trmm Trep

36

Luis Pedro January 23, 2009

Transformation Element is a Leaf

Trfp1

...

Trfpn

Trep1

Trep2

...

Trepn

...

Trfpn

Trmm Trep

36 Luis Pedro January 23, 2009

Transformation Element is a Leaf

Trfp1 Trep1

Trep2

...

Trepn

...

Trfpn

Trmm Trep

36

Luis Pedro January 23, 2009

Transformation Element is a Leaf

Trfp1

Trep1

Trep2

...

Trepn

...

Trfpn

Trfp
ϕ,ψ←−− Trep

ψ(Trfp2, T rep)

36 Luis Pedro January 23, 2009 37

Transformation Element is a Leaf

rule ruleJunctionPoint {
 from
 jp : MovingEntity!JunctionPoint
 to
 cl : COOPNMetaModel!COOPNClass(...)
}

rule ruleMovingEntity {
 from
 me : MovingEntity!MovingEntity
 to
 cl : COOPNMetaModel!COOPNClass(...)
}

rule ruleRailWayStation {
 from
 rs : TrainEntity!RailWayStation
 to
 cl : COOPNMetaModel!COOPNClass,
 pl: COOPNMetaModel!"COOPNClass!Place"
 (. . .)
}

(. . .)

ψ = {〈Trfp, T rTrainEntity〉)

ep = TrTrainEntityTrfp

Luis Pedro January 23, 2009

General Case

38 Luis Pedro January 23, 2009

General Case

38

Luis Pedro January 23, 2009

Trfp1

Trfp2

...

Trfpn

Trep1

Trep2

...

Trepn

Trmm Trep

General Case

38 Luis Pedro January 23, 2009

Trfp1

Trfp2

...

Trfpn

Trep1

Trep2

...

Trepn

Trmm Trep

General Case

Trfp|TF {
}TE

}Trep − TE

38

Luis Pedro January 23, 2009

Trfp1

Trfp2 Trep2

...

Trepn

...

Trfpn

Trmm Trep

General Case

Trfp|TF { }Trep − TE

38 Luis Pedro January 23, 2009

Trfp1

Trfp2

Trep2

...

Trepn

...

Trfpn

General Case

Trfp
ϕ,ψ←−− Trep

ψ(〈Trfp, (Trep − TE) ∪ (Trfp|TF)〉)

Trfp|TF {

Trep − TE }
38

Luis Pedro January 23, 2009 39

General Case

rule ruleJunctionPoint {
 from
 jp : MovingEntity!JunctionPoint
 to
 cl : COOPNMetaModel!COOPNClass(...)
}

rule ruleTrainEntity {
 from
 tr : TrainEntity!TrainEntity
 to
 cl : COOPNMetaModel!COOPNClass(...)
}

rule ruleActionPlan {

 (. . .)

}

rule ruleGoToAction {

 (. . .)

}

ψ(〈Trfp, (Trep − TE) ∪ (Trfp|TF)〉)

Tr1
fp Tr1

ep

Tr2
ep

Tr3
ep

{ }
}
}

{ } TETrfp|TF

} Trep − TE

ep = TrTrainEntityTrfp

Luis Pedro January 23, 2009 40

Luis Pedro January 23, 2009

CoPsy

40 Luis Pedro January 23, 2009

CoPsy

Compositional Platform for
Domain Specific Modelling Languages Prototyping

40

Luis Pedro January 23, 2009 42 Luis Pedro January 23, 2009

Modular

Incremental

Re-use of Concepts

DSML Development

42

Luis Pedro January 23, 2009

Modular

Incremental

Re-use of Concepts

Fast Prototyping

DSML Development

DSML Validation

Animation

42 Luis Pedro January 23, 2009

Modular

Incremental

DSML Semantics

Re-use of Concepts

Fast Prototyping

DSML Development

DSML Validation

Animation

42

Luis Pedro January 23, 2009 43 Luis Pedro January 23, 2009 43

Luis Pedro January 23, 2009

Properties Check

43 Luis Pedro January 23, 2009

Properties Check

Semantics Preservation

43

Luis Pedro January 23, 2009

Versioning and Traceability

Properties Check

Semantics Preservation

43 Luis Pedro January 23, 2009

Versioning and Traceability

Properties Check

Semantics Preservation

Graphical Extensions

43

Luis Pedro January 23, 2009

Versioning and Traceability

Properties Check

Semantics Preservation

Graphical Extensions

Integration with other DSML
environments

43 Luis Pedro January 23, 2009

f(x)

ϕ
a⇔ b

Σω
≤

⋃

1≤i≤n

(SΞi
, SΞi

)

∪
⋃

1≤i≤n

{
{true, false} :→ Bool

}

〈v, si〉

44

Luis Pedro January 23, 2009

f(x)

ϕ
a⇔ b

Σω
≤

⋃

1≤i≤n

(SΞi
, SΞi

)

∪
⋃

1≤i≤n

{
{true, false} :→ Bool

}

〈v, si〉

44 45

45

(Pedro, Risoldi, Amaral, Barroca, & Buchs, 2009) Composing Visual Syntax for Domain Specific Languages Prototyping, Human-Computer
Interaction 2009

(Pedro, Amaral, & Buchs, 2008) Foundations for a Domain Specific Modeling Language Prototyping Environment: A compositional approach, in
Proceedings of the 8th OOPSLA ACM-SIGPLAN Workshop on Domain-Specific Modeling (DSM), October 2008;

(Pedro, Lucio, & Buchs, 2007) System Prototype and Verification Using Metamodel-Based Transformations, in IEEE Distributed Systems
Online, 2007;

(Pedro, Buchs, & Lucio, 2007) Model and Metamodel Semantics Enrichment Using Transformations and Domain Composition, in Rapid
Integration of Software Engineering techniques 2007 (to be published);

(Pedro, Lucio, & Buchs, 2006a) Principles for System Prototype and Verification Using Metamodel Based Transformations,
in Proceedings of IEEE International Workshop on Rapid System Prototyping, 2006;

(A. Chen, Buchs, Lucio, Pedro, & Risoldi, 2006) Modeling Distributed Systems using Concurrent Object Oriented Petri
Nets, in Proceedings of the Fourth International Workshop on Modelling of Objects, Components and Agents, 2006

(Pedro, Lucio, & Buchs, 2006b) Prototyping Domain Specific Languages With CO-OPN, in Proceedings of Springer-Verlag
Rapid Integration of Software Engineering techniques, 2005;

(Pedro, 2008) Metamodeling with Eclipse, Centre Universitaire D!Informatique, Universitè de Genève, 2008;

Technical Reports

Articles

(Pedro, 2006) UML2 to CO-OPN transformation: State Machines and Class Diagrams, Centre Universitaire D!Informatique,
Universitè de Genève, 2006;

46

Author Index

Abdelwalhed, S., 23, 207
Akehurst, D. H., 12, 205
Amaral, V., 136, 165, 210, 211

Barbero, M., 21, 205
Barroca, B., 165, 210, 211
Bast, W., 12, 209
Bazargan, K., 211
BELAUNDE, M., 208
BESNARD, H., 208
Bezivin, J., 2, 21, 23, 205
Bézivin, J., 22, 209
ATLAS Group, 17, 68, 69, 103, 205
Eclipse Project, 12, 37, 205
ikv++ technologies, 17, 205
Institute for Software Integrated Sys-

tems, Vanderbilt University,
18, 205

MetaCase Consulting, 29, 205
Object Management Group, 9–12,

17, 19, 28, 37, 68, 205, 206
SMV Group, 136, 206
Triskell team, 12, 206
Biberstein, O., 50, 206
Bichler, L., 28, 206
Booch, G., 2, 9, 206, 207
Borland, 13, 207
Buchs, D., 50, 66, 136, 165, 166,

206, 207, 210, 211
Budinsky, F., 10, 12, 29, 37, 207

Caporuscio, M., 23, 207
Chachkov, S., 101, 207

Chen, A., 50, 166, 207
Chen, K., 23, 207
Clark, T., 2, 207
Combemale, B., 12, 207
Cook, S., 4, 13, 29, 208
Corporation, C., 13, 208
Crégut, X., 207
Cretton, F., 211
Czarnecki, K., 16, 208

Deursen, A. van, 27, 208
Dingel, J., 19, 212
Diskin, Z., 19, 212
Drey, Z., 12, 17, 208
DUPE, G., 17, 208

Ehrig, K., 16, 208
Eisenecker, U. W., 16, 208
Ellersick, R., 10, 207
Emerson, M., 18, 19, 208

Faucher, C., 12, 208
Fleurey, F., 12, 208

Geib, J.-M., 28, 209
Gerber, A., 10, 28, 208
Gray, J., 21, 205
Greenfield, J., 4, 208
Grose, T. J., 10, 207
Guelfi, N., 50, 66, 206, 207
Guerra, E., 208
GUILLARD, F., 208

IBM, 13, 208

241

242 AUTHOR INDEX

Inverardi, P., 23, 207

Jackson, E., 23, 207
Jackson, E. K., 4, 209
Jacobson, I., 2, 9, 207, 209
Jones, G., 29, 208
Jouault, F., 17, 21–23, 205, 209

Karsai, G., 17, 210
Karsai, G. N. G., 17, 19, 209
Kelly, S., 27, 209
Kent, S., 4, 29, 208
Kleppe, A., 12, 209, 212
Klint, P., 27, 208
Kosayba, B., 28, 209
Koskimies, K., 14, 211
Kozaczynski, W., 14, 16, 211
Kurtev, I., 17, 209

Ladd, D. A., 27, 209
Lara, J. de, 28, 208, 211
Lawley, M., 28, 208
Ledeczi, A., 17–19, 209, 210
Lengyel, L., 208
Levendovszky, T., 208
Lucio, L., 50, 165, 166, 207, 210
Luoma, J., 27, 209

Mahé, V., 12, 208
Maroti, M., 17, 18, 209
Marvie, R., 22, 28, 209
Maurel, C., 207
Merks, E., 10, 207
Microsoft, 12, 209
Migeon, F., 207
Moss, A., 16, 210
Muller, H., 16, 210

Nordstrom, G., 17, 210

OLIVERES, V., 208

Palies, J., 23, 205

Pantel, M., 207
Patrascoiu, O., 12, 205
Pedro, L., 50, 165, 166, 207, 210
Pelliccione, P., 23, 207
PERRUCHON, R., 208
Pierantonio, A., 23, 207
Prange, U., 208

Ramming, J. C., 27, 209
Raymond, K., 10, 208
Risoldi, M., 50, 136, 165, 166, 207,

210, 211
Rougemaille, S., 207
Rozenberg, G., 15, 211
Rumbaugh, J., 9, 207
Ruscio, D. D., 23, 207

Sakkinen, M., 14, 211
Sammut, P., 2, 207
Selonen, P., 14, 211
Sendall, S., 14, 16, 211
Short, K., 4, 208
Software, I. O., 13, 211
Software Integrated Systems, I. for,

23, 28, 211
Sommerville, I., 2, 211
Steinberg, D., 10, 207
Sun, 12, 211
Sztipanovits, J., 4, 17–19, 23, 207–

210

Thibault, S., 27, 211
Tolvanen, J.-P., 27, 209

Vangheluwe, H., 28, 211
Visser, J., 27, 208
Vojtisek, D., 12, 208
Volgyesi, P., 17, 18, 209

Warmer, J., 12, 209, 212
Willans, J., 2, 207
Wils, A. C., 29, 208

AUTHOR INDEX 243

Zito, A., 19, 212

244 AUTHOR INDEX

References

Akehurst, D. H., & Patrascoiu, O. (2004). Ocl 2.0 - implementing the
standard for multiple metamodels. Electr. Notes Theor. Comput. Sci.,
102 , 21-41.

Barbero, M., Jouault, F., Gray, J., & Bezivin, J. (2007). A prac-
tical approach to model extension. In D. H. Akehurst, R. Vo-
gel, & R. F. Paige (Eds.), Ecmda-fa (Vol. 4530, p. 32-42).
Springer. Available from http://dblp.uni-trier.de/db/conf/

ecmdafa/ecmdafa2007.html#BarberoJGB07

Bezivin, J. (2005). On the unification power of models. Software and Sys-
tem Modeling , 4 (2), 171-188. Available from http://dx.doi.org/

10.1007/s10270-005-0079-0

Bezivin, J., Jouault, F., & Palies, J. (2005). Towards model trans-
formation design patterns. In Proceedings of the first european
workshop on model transformation (ewmt 2005). Rennes, France.
Available from http://www.sciences.univ-nantes.fr/lina/atl/

www/papers/DesignPatterns05.pdf

ATLAS Group. (2006, February). Atl user manual (Tech. Rep.). Nantes,
France: LINA & INRIA.

ATLAS Group. (2007). Atlas transformation language. (http://www
.eclipse.org/m2m/atl/)

Eclipse Project. (2008). Eclipse modeling framework project. Available from
http://www.eclipse.org/modeling/emf/

ikv++ technologies. (2008). medini qvt. (http://projects.ikv.de/qvt)

Institute for Software Integrated Systems, Vanderbilt University. (n.d.).
Gme 2000 and metagme 2000. (http://www.isis.vanderbilt.edu/
projects/gme)

MetaCase Consulting. (2008). Metaedit+. (http://www.metacase.com)

Object Management Group. (2002a, April). Meta-Object Facility spec-
ification (Tech. Rep.). OMG. (http://www.omg.org/technology/
documents/formal/mof.htm)

Object Management Group. (2002b, October). Omg/rfp/qvt mof 2.0

245

http://dblp.uni-trier.de/db/conf/ecmdafa/ecmdafa2007.html#BarberoJGB07
http://dblp.uni-trier.de/db/conf/ecmdafa/ecmdafa2007.html#BarberoJGB07
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1007/s10270-005-0079-0
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/DesignPatterns05.pdf
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/DesignPatterns05.pdf
http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/modeling/emf/
http://projects.ikv.de/qvt
http://www.isis.vanderbilt.edu/projects/gme
http://www.isis.vanderbilt.edu/projects/gme
http://www.metacase.com
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm

246 References

query/views/transformations rfp (Tech. Rep.). Needham, Mas-
sachusetts, USA: OMG.

Object Management Group. (2003, June). Mda guide version 1.0.1 (Tech.
Rep.). OMG.

Object Management Group. (2004). Uml profile for enterprise distributed
object computing.

Object Management Group. (2005, August). Unified Modeling Language
version 2.0. (http://www.omg.org/technology/documents/formal/
uml.htm)

Object Management Group. (2006, May). Object constraint language speci-
fication, version 2.0 (Tech. Rep.). OMG.

Object Management Group. (2007a, January). Meta-Object Facility 2.0 core
specification (Tech. Rep.). OMG. (http://www.omg.org/cgi-bin/
doc?formal/2006-01-01)

Object Management Group. (2007b, December). Mof qvt final adopted spec-
ification (Tech. Rep.). OMG. (http://www.omg.org/cgi-bin/apps/
doc?ptc/05-11-01.pdf)

Object Management Group. (2007c, January). Omg/mof meta object facility
(mof) 1.4. final adopted specification document (Tech. Rep.). OMG.
(http://www.omg.org/docs/formal/02-04-03.pdf)

Object Management Group. (2007d, March). Uml 2.0 superstructure speci-
fication - version 2.1.1 (Tech. Rep.). OMG. Available from http://

www.omg.org/cgi-bin/doc?formal/07-02-03

SMV Group. (2008). Batic3s: Building adaptive three-dimensional inter-
faces for critical complex control systems. (http://smv.unige.ch/
tiki-index.php?page=BATICS)

Triskell team. (2008). Kermeta - breathe life into your metamodels. Available
from http://www.kermeta.org/

Biberstein, O. (1997). Co-opn/2: An object-oriented formalism for the speci-
fication of concurrent systems. Unpublished doctoral dissertation, Uni-
versity of Geneva.

Biberstein, O., Buchs, D., & Guelfi, N. (1997). CO-OPN/2: A concurrent
object-oriented formalism. In Proc. second ifip conf. on formal methods
for open object-based distributed systems (fmoods), canterbury, uk, july
21-23 1997 (pp. 57–72). Chapman and Hall, Lo.

Bichler, L. (2003, October). Tool support for generating implementations
of mof-based modeling languages. In Proceedings of the 3th oopsla
workshop on domain-specific modeling. Anahiem, California: ACM
Press.

Booch, G. (2004). Object-oriented analysis and design with applications (3rd
ed.). Redwood City, CA, USA: Addison Wesley Longman Publishing

http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf
http://www.omg.org/docs/formal/02-04-03.pdf
http://www.omg.org/cgi-bin/doc?formal/07-02-03
http://www.omg.org/cgi-bin/doc?formal/07-02-03
http://smv.unige.ch/tiki-index.php?page=BATICS
http://smv.unige.ch/tiki-index.php?page=BATICS
http://www.kermeta.org/

References 247

Co., Inc.
Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling lan-

guage user guide. Redwood City, CA, USA: Addison Wesley Longman
Publishing Co., Inc.

Borland. (n.d.). Borland R© together - visual modeling for software architec-
ture design. Available from http://www.borland.com/us/products/

together/index.html (http://www.borland.com/us/products/
together/index.html)

Buchs, D., & Guelfi, N. (1991). A concurrent object oriented petri nets
approach for system specification. In 12th international conference
on application and theory of petri nets (p. 432-454). Gjern, Denmar:
Springer.

Buchs, D., & Guelfi, N. (2000, july). A formal specification framework for
object-oriented distributed systems. IEEE Transactions on Software
Engineering , 26 (7), 635-652.

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., & Grose, T. J. (2004).
Eclipse modeling framework (E. Gamma, L. Nackman, & J. Wiegand,
Eds.). Addison Wesley. Available from http://www.eclipse.org/

emf/

Caporuscio, M., Ruscio, D. D., Inverardi, P., Pelliccione, P., & Pierantonio,
A. (2005, June). Engineering mda into compositional reasoning for
analyzing middleware-based applications. In Second european workshop
on software architecture (ewsa 2005). Pisa, Italy.

Chachkov, S. (2004). Generation of object-oriented programs from co-opn
specifications. Unpublished doctoral dissertation, Ecole Polytechnique
Federal de Lausanne.

Chen, A., Buchs, D., Lucio, L., Pedro, L., & Risoldi, M. (2006). Modeling
distributed systems using concurrent object oriented petri nets. In
Fourth international workshop on modelling of objects, components and
agents. Turku, Finland.

Chen, K., Sztipanovits, J., Abdelwalhed, S., & Jackson, E. (2005, November
July-October). Semantic anchoring with model transformations. In
Model driven architecture (Vol. 3748 / 2005). Springer Berlin / Heidel-
berg.

Clark, T., Sammut, P., & Willans, J. (2008). Applied metamodelling - a
foundation for language driven development (Second ed.; Ceteva, Ed.).
CETEVA. (http://www.ceteva.com/book.html)

Combemale, B., Rougemaille, S., Crégut, X., Migeon, F., Pantel, M., Maurel,
C., et al. (2006). Towards rigorous metamodeling. In L. F. Pires
& S. Hammoudi (Eds.), Model-driven enterprise information systems
(p. 5-14). Paphos, Cyprus: INSTICC Press.

http://www.borland.com/us/products/together/index.html
http://www.borland.com/us/products/together/index.html
http://www.borland.com/us/products/together/index.html
http://www.borland.com/us/products/together/index.html
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.ceteva.com/book.html

248 References

Cook, S. (2000, unknown). The UML Family: Profiles, Prefaces and Pack-
ages. In S. K. A Evans & B. Selic (Eds.), Uml2000 conference proceed-
ings. LNCS 1939. Available from http://www.cs.ukc.ac.uk/pubs/

2000/1255

Cook, S., Jones, G., Kent, S., & Wils, A. C. (2007). Domain-specific devel-
opment with visual studio dsl tools (A.-W. Professional, Ed.). Addison-
Wesley Professional.

Corporation, C. (2007). Optimalj. (http://www.compuware.com/products/
optimalj/)

Czarnecki, K., & Eisenecker, U. W. (2000). Generative programming: meth-
ods, tools, and applications. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co.

Deursen, A. van, Klint, P., & Visser, J. (2000). Domain-
specific languages: An annotated bibliography. SIGPLAN Notices ,
35 (6), 26-36. Available from citeseer.csail.mit.edu/article/

vandeursen00domainspecific.html

Drey, Z., Faucher, C., Fleurey, F., Mahé, V., & Vojtisek, D. (2008, January).
Kermeta language - reference manual [Computer software manual].

DUPE, G., BELAUNDE, M., PERRUCHON, R., BESNARD, H., GUIL-
LARD, F., & OLIVERES, V. (n.d.). Smartqvt. (http://smartqvt
.elibel.tm.fr/)

Ehrig, K., Guerra, E., Lara, J. de, Lengyel, L., Levendovszky, T., Prange, U.,
et al. (2005). Model transformation by graph transformation: A com-
parative study. In J.-M. Bruel (Ed.), Mtip 2005, international workshop
on model transformations in practice (satellite event of models 2005).
Montego Bay, Jamaica: Springer. Available from http://www.inf.mit

.bme.hu/FTSRG/Publications/varro/2005/mtip05.pdf

Emerson, M., & Sztipanovits, J. (2006, October). Techniques for metamodel
composition. In Oopsla - 6th workshop on domain specific modeling
(p. 123-139). Portland, Oregon: ACM Press. Available from http://

chess.eecs.berkeley.edu/pubs/289.html

Gerber, A., & Lawley, M. (2004). Generating model-specific editors for mda.
In Proceedings of the 4th oopsla workshop on domain-specific modeling.
Vancouver, British Columbia, Canada: ACM Press.

Gerber, A., & Raymond, K. (2003). Mof to emf: there and back again. In
eclipse ’03: Proceedings of the 2003 oopsla workshop on eclipse tech-
nology exchange (pp. 60–64). New York, NY, USA: ACM Press.

Greenfield, J., Short, K., Cook, S., & Kent, S. (2004). Software factories:
Assembling applications with patterns, models, frameworks, and tools.
Wiley. Paperback.

IBM. (2007). Ibm model transformation framework. (http://www

http://www.cs.ukc.ac.uk/pubs/2000/1255
http://www.cs.ukc.ac.uk/pubs/2000/1255
http://www.compuware.com/products/optimalj/
http://www.compuware.com/products/optimalj/
citeseer.csail.mit.edu/article/vandeursen00domainspecific.html
citeseer.csail.mit.edu/article/vandeursen00domainspecific.html
http://smartqvt.elibel.tm.fr/
http://smartqvt.elibel.tm.fr/
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2005/mtip05.pdf
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2005/mtip05.pdf
http://chess.eecs.berkeley.edu/pubs/289.html
http://chess.eecs.berkeley.edu/pubs/289.html
http://www.alphaworks.ibm.com/tech/mtf

References 249

.alphaworks.ibm.com/tech/mtf)
Jackson, E. K., & Sztipanovits, J. (2006, October). Towards a formal founda-

tion for domain specific modeling languages. In W. Y. Sang Lyul Min
(Ed.), Proceedings of the sixth acm international conference on em-
bedded software (emsoft 06) (p. 53-63). Seoul, Korea: ACM Press.
Available from http://chess.eecs.berkeley.edu/pubs/286.html

Jacobson, I. (2004). Object-oriented software engineering: A use case driven
approach. Redwood City, CA, USA: Addison Wesley Longman Pub-
lishing Co., Inc.

Jouault, F., & Bézivin, J. (2006). Km3: A dsl for metamodel specification.
In Fmoods (p. 171-185).

Jouault, F., & Kurtev, I. (2006). Transforming models with
atl. In J.-M. Bruel (Ed.), Models satellite events (p. 128-
138). Montego Bay, Jamaica: Springer. Available from
http://sosym.dcs.kcl.ac.uk/events/mtip/submissions/

jouault kurtev transforming models with atl.pdf

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA explained. the model
driven architecture: Practice and promise. Addison-Wesley.

Kosayba, B., Marvie, R., & Geib, J.-M. (2004). Model driven production
of domain-specific modeling tools. In Proceedings of the 4th oopsla
workshop on domain-specific modeling. Vancouver, British Columbia,
Canada: ACM Press.

Ladd, D. A., & Ramming, J. C. (1994). Two application languages in
software production. In Proc. of the 19994 usenix symposium on very
high level languages(vhll) (p. 169-177). Santa Fe, NM.

Ledeczi, A., Karsai, G. N. G., Volgyesi, P., & Maroti, M. (2001, September).
On metamodel composition. In Control applications, 2001. (cca ’01).
proceedings of the 2001 ieee international conference on (pp. 756–760).
Mexico City, Mexico: IEEE Computer Society. Available from http://

dx.doi.org/10.1109%2FCCA.2001.973959

Ledeczi, A., Maroti, M., & Volgyesi, P. (2001). The generic modeling en-
vironment (Tech. Rep.). Institute for Software Integrated Systems,
Vanderbilt University.

Luoma, J., Kelly, S., & Tolvanen, J.-P. (2004, October). Defining domain-
specific languages: Collected experiences. In Proceedings of the 4th
oopsla workshop on domain-specific modeling. Vancouver, British
Columbia, Canada: ACM Press.

Marvie, R. (2004). A transformation composition framework for model
driven engineering (Tech. Rep. No. 2004-10). Lille, France: Labora-
toire dÍnformatique Fondamentale de Lille.

Microsoft. (n.d.). Microsoft .net. (http://www.microsoft.com/net/)

http://www.alphaworks.ibm.com/tech/mtf
http://www.alphaworks.ibm.com/tech/mtf
http://chess.eecs.berkeley.edu/pubs/286.html
http://sosym.dcs.kcl.ac.uk/events/mtip/submissions/jouault_kurtev__transforming_models_with_atl.pdf
http://sosym.dcs.kcl.ac.uk/events/mtip/submissions/jouault_kurtev__transforming_models_with_atl.pdf
http://dx.doi.org/10.1109%2FCCA.2001.973959
http://dx.doi.org/10.1109%2FCCA.2001.973959
http://www.microsoft.com/net/

250 References

Moss, A., & Muller, H. (2005, September). Efficient code generation for a do-
main specific language. In Generative programming and component en-
gineering (p. 47-62). Tallinn, Estonia: Springer Verlag. Available from
http://www.cs.bris.ac.uk/Publications/Papers/2000404.pdf

Nordstrom, G., Sztipanovits, J., Karsai, G., & Ledeczi, A. (1999). Metamod-
eling - rapid design and evolution of domain-specific modeling environ-
ments. In Ecbs (p. 68-74). Los Alamitos, CA, USA: IEEE Computer
Society.

Pedro, L. (2006, September). UML2 to CO-OPN transformation: State
machines and class diagrams (Tech. Rep.). Centre Universitaire
D’Informatique, Université de Genève. (http://smv.unige.ch/tiki
-download file.php?fileId=683)

Pedro, L. (2008, May). Metamodeling with eclipse (Tech. Rep.). Centre
Universitaire D’Informatique, Université de Genève.

Pedro, L., Amaral, V., & Buchs, D. (2008, October). Foundations for a
domain specific modeling language prototyping environmen: A com-
positional approach. In Proc. 8th oopsla acm-sigplan workshop on
domain-specific modeling (dsm). University of Jyvaskylan. (http://
www.dsmforum.org/events/DSM08/)

Pedro, L., Buchs, D., & Lucio, L. (2007). Model and metamodel semantics en-
richment using transformations and domain composition. In N. Guelfi
(Ed.), Rise 2007.

Pedro, L., Lucio, L., & Buchs, D. (2006a). Principles for system prototype
and verification using metamodel based transformations. In Ieee in-
ternational workshop on rapid system prototyping (p. 10-17). Crete,
Greece: IEEE Computer Society.

Pedro, L., Lucio, L., & Buchs, D. (2006b). Prototyping Domain Specific
Languages with CO-OPN. In Rapid integration of software engineering
techniques (Vol. LNCS 3943). Springer-Verlag.

Pedro, L., Lucio, L., & Buchs, D. (2007). System proto-
type and verification using metamodel-based transforma-
tions. IEEE Distributed Systems Online, 8 (4). (art. no.
0704-o4001, http://dsonline.computer.org/portal/site/

dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/

index.jsp?&pName=dso level1&path=dsonline/2007/

04&file=o4001.xml&xsl=article.xsl&;jsessionid=

HGXLCh5sx9rbmBQTnMRQlj5bzfTdL1vWKQwh6nDWmG0yCnJy29gL

!1539871550)
Pedro, L., Risoldi, M., Buchs, D., Barroca, B., & Amaral, V. (2009). Com-

posing visual syntax for domain specific languages. In J. A. Jacko (Ed.),
Hci (2) (Vol. 5611, p. 889-898). Springer.

http://www.cs.bris.ac.uk/Publications/Papers/2000404.pdf
http://smv.unige.ch/tiki-download_file.php?fileId=683
http://smv.unige.ch/tiki-download_file.php?fileId=683
http://www.dsmforum.org/events/DSM08/
http://www.dsmforum.org/events/DSM08/
http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/2007/04&file=o4001.xml&xsl=article.xsl&;jsessionid=HGXLCh5sx9rbmBQTnMRQlj5bzfTdL1vWKQwh6nDWmG0yCnJy29gL!1539871550
http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/2007/04&file=o4001.xml&xsl=article.xsl&;jsessionid=HGXLCh5sx9rbmBQTnMRQlj5bzfTdL1vWKQwh6nDWmG0yCnJy29gL!1539871550
http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/2007/04&file=o4001.xml&xsl=article.xsl&;jsessionid=HGXLCh5sx9rbmBQTnMRQlj5bzfTdL1vWKQwh6nDWmG0yCnJy29gL!1539871550
http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/2007/04&file=o4001.xml&xsl=article.xsl&;jsessionid=HGXLCh5sx9rbmBQTnMRQlj5bzfTdL1vWKQwh6nDWmG0yCnJy29gL!1539871550
http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/2007/04&file=o4001.xml&xsl=article.xsl&;jsessionid=HGXLCh5sx9rbmBQTnMRQlj5bzfTdL1vWKQwh6nDWmG0yCnJy29gL!1539871550
http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/2007/04&file=o4001.xml&xsl=article.xsl&;jsessionid=HGXLCh5sx9rbmBQTnMRQlj5bzfTdL1vWKQwh6nDWmG0yCnJy29gL!1539871550

References 251

Risoldi, M., & Amaral, V. (2007). Towards a formal, model-based framework
for control systems interaction prototyping. In N. Guelfi & D. Buchs
(Eds.), Rapid integration of software engineering techniques (Vol. 4401,
p. 144-159). Geneva, Switzerland: Springer-Verlag.

Risoldi, M., Amaral, V., Barroca, B., Bazargan, K., Buchs, D., Cretton, F.,
et al. (2009, to appear). A language and a methodology for prototyp-
ing user interfaces for control systems. In D. Lalanne, M. Stolze, &
J. Kohlas (Eds.), Human machine interaction. Springer-Verlag.

Risoldi, M., & Buchs, D. (2007, September). A domain specific language
and methodology for control systems gui specification, verification and
prototyping. In 2007 ieee symposium on visual languages and human-
centric computing (vl/hcc 2007) (p. 179-182). USA: IEEE Computer
Society.

Rozenberg, G. (Ed.). (1997). Handbook of graph grammars and computing
by graph transformation: volume i. foundations. River Edge, NJ, USA:
World Scientific Publishing Co., Inc.

Selonen, P., Koskimies, K., & Sakkinen, M. (2001). How to make apples
from oranges in uml. In Hicss ’01: Proceedings of the 34th annual
hawaii international conference on system sciences (hicss-34)-volume
3 (p. 3054). Washington, DC, USA: IEEE Computer Society.

Sendall, S. (2003). Combining generative and graph transformation tech-
niques for model transformation: An effective alliance? In Oopsla 03
workshop - generative techniques in the context of mda.

Sendall, S., & Kozaczynski, W. (2003). Model transformation: The heart
and soul of model-driven software development. IEEE Software, 20 (5),
42-45.

Software, I. O. (2007). Arcstyler web site, interactive objects software.
(http://www.arcstyler.com/)

Software Integrated Systems, I. for. (2005). Gme 5 user’s manual [Computer
software manual].

Sommerville, I. (1995). Software engineering (5th ed.). Redwood City, CA,
USA: Addison Wesley Longman Publishing Co., Inc.

Sun. (2008). Java platform, enterprise edition. (http://java.sun.com/
javaee/)

Thibault, S. (1998). Domain-specific languages: Conception, implementa-
tion and application. Unpublished doctoral dissertation, University of
Rennes.

Vangheluwe, H., & Lara, J. de. (2004). Domain-specifc visual modelling in
atom3. In J. P.Tolvanen, J. Sprinkle, & M. Rossi (Eds.), Proceedings
of the 4th oopsla workshop on domain-specific modeling. Vancouver,
Canada: University of Jyväskylä.

http://www.arcstyler.com/
http://java.sun.com/javaee/
http://java.sun.com/javaee/

252 References

Warmer, J., & Kleppe, A. (2003). The Object Constraint Language, Getting
Your Models Ready For MDA (2nd ed.). Boston, MA, USA: Addison
Wesley.

Zito, A., Diskin, Z., & Dingel, J. (2006). Package merge in uml 2: Practice
vs. theory? In Models (p. 185-199).

	Acknowledgements
	Sommaire
	Abstract
	Introduction
	Context
	Domain Specific Modelling Languages
	Motivation
	Contribution
	Document Organisation

	State of the Art: Methodologies
	Unified Modeling Language
	Meta-Modeling
	Model Driven Architecture (MDA)
	Model Transformations
	Query / Views / Transformations
	Meta-Model Composition
	Package Merge
	Model Extension
	Transformation Composition
	Semantic Anchoring
	Summary
	Merging New and Old Ideas

	State of the Art: Tools
	Domain Specific Modelling Languages
	Domain Specific Languages Development Environments
	Generic Modeling Environment (GME)
	Atom3
	EMF/GMF
	MetaEdit+
	Microsoft DSL Tools

	Summary

	Model Structure Formalisation
	ECore Formalism
	Metamodels Formalisation
	Metamodel example

	Models formalisation
	Model Example

	Summary

	Tools For Domain Composition
	Transformation of Domain Concepts
	CO-OPN as Target Formalism
	Algebraic Abstract Data Type Module
	Class Module
	Context Module
	Sub-typing and Inheritance in CO-OPN

	ATL as Transformation Language and Engine
	Structure of ATL Module
	ATL Data Types
	ATL Example

	Summary

	Providing Semantics for Domain Models
	General Approach
	Metamodel Parameterization
	Metamodel Parameterization Example
	Models Composition

	Transformation Definition
	Parameterized Transformations
	DSML Definition
	Transformation Composition in Action
	Railway System DSML Transformation Composition

	Target Languages

	CoPsy Environment
	Problem Analysis
	CoPsy Implementation
	CoPsy Metamodel

	Defining a CoPsy Specification
	Specification of Metamodel Composition
	Specification of Transformation Composition
	Specification of Models

	CoPsy Behaviour
	Composition of Metamodels
	Models Composition
	Transformation Composition Algorithm
	Transformation Execution

	Case Studies
	Moving Entities
	Generic Moving Entities Transformation
	The Railway System DSML
	The Robot System DSML

	Control Systems DSML
	Generic Cospel DSML
	Event Model extension of Cospel
	Hierarchical Model Extension of Cospel
	Geometry Model extension of Cospel

	Multi-Flavours Petri Nets
	Generic Petri Nets
	Standard Petri Nets
	Colored Petri Nets
	Algebraic Petri Nets

	Comparison Between Case Studies
	Summary

	Conclusions
	Discussion
	Possibilities for Future Work
	Outcome

	Acronyms
	CO-OPN Example Specifications
	CO-OPN Booleans ADT
	CO-OPN Machine Class
	CO-OPN Machine Context Specification

	Moving Entities Transformations
	Generic Moving Entities DSML Transformation
	Train Entity Transformation
	Railay System DSML Transformation
	Robot Entity Transformation
	Robot System DSML Transformation

	COSPEL Transformations
	Thesis Presentation
	References

