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I. The conceptual structure of quantum mechanics 

1) Quantum Mechanics, as we know it today, was born 
out of the need to explain a whole series of observed facts 

in atomic and molecular physics, which could not be reconciled 
with the concepts of classical physics. Among them were the 
laws of black body radiation, the specific heat of solids, 
the structure of the atoms and their interaction with radiation, 
the photoelectric and the Comptoneffect and many others. 

The various stages of development, beginning with 
Plancks bold and singularly successful hypothesis of the quanti-
zation of the radiation field oscillators, passing through the 
older form of the quantum conditions for periodic motions cul-
minated in th~ almost simultaneous discovery of matrix-mecha-
nics by Heisenberg and wave-mechanics by Schrt5dinger. It was 
soon recognized that these apparantly so different theories 
were two different aspects of one all-embracing theory, now 
called quantum mechanics. 

Dirac succeeded in formalizing the structural analogy 
between quantum mechanics and classical mechanics by exhibiting 
the correspondence between classical Poisson brackets and 
quantum commutators, thus incorporating into the theory with 
one ingenious device the older correspondence principle by 
Bohr. 

Yet, the formal analogy between classical and quantum 
mechanics was deceptive. There seemed to be a profound gulf 
which separated the two theories. It was brought to light in 
the now generally accepted probabilistic interpretation of 
the.wave function, the uncertainty relations, or the more 
general concept of complementarity introduced by Bohr. It is 
a most remarkable fact, with no parallel in the history of 
science, that although quantum mechanics has become the indis-
pensable basic theory for all of microphysics and for much 
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of macrophysics as well, its interpretation has remained a 
source of conflict from its inception in the late twenties 
until today. The epistemological questions associated with 
the so called Copenhagen interpretation are so profound and 
revolutionary that many of the founders of this theory (among 
them Einstein, de Broglie and Schr~dinger) have rejected this 
interpretation and for many thoughtfUl physicists of a more 
practical bent of mind it has remained a kind of "sceleton 
in the clauset". 

2) There have been numerous expositions of these diffi-
culties, some in the form of paradoxes, as for instance the 
paradox of Einstein, Podolsky and Rosen13), the "Schr~dinger 
cat" or "Wigner's friend",, others consisting of a more for-
mal analysis of the measuring process or the philosophical 
or mathematical discussions on hidden variables. The fact that 
these expositions often take the form of controversies with 
ideological overtones and that they have been going on for 
more than forty years and have even lately shown signs of 
increasing in volume and intensity is perhaps sufficient 
evidence that qua.~tum mechanics has left us with an enigma 
notwithstanding the profound work of Bohr and the "Copenhagen 
school". 

It is perhaps rather strange that none of the various 
proposals for a more satisfactory reinterpretation of the 
quantum mechanical formalism have led to the prediction of 
any observable consequences, nor has quantum mechanics so 
far been generalized in any physically sign_ificant manner. 
Attempts in this direction are numerous but none can be really 
considered as being successful . Thus we shall have to deal 
with the quantum mechanics as it was created in the late 
twenties a theory which has been tested by an immense variety 
of the most refined experiments of which none has given the 
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slightest indication that anything might be ~ong with it. 
We should of course not confuse the issue by pointing to 
the considerable number of unexplained facts such as the exi-
stence of elementary particles (or anything for that matter) 
their various types of interactions and their symmetry pro-
perties. All these things are outside the predictive power 
of quantum mechanics, but they do not contradict it. Indeed 
every one can be ;incorporated into the conq~ptual framework 
of the theor>Y and there is absolutely no indi~a~ion that 
quantum mechanics might not be the fundament~J, theory suffi-
ciently powerful to embrace all the facts lalown today of the 
microsystems. 

This situation is entirely different from the one be-
fore the discovery of quantum mechanics. Then an ever in-
creasing body of e~perimental facts were betng ~ccumulated 
which definitely contradicted classical physics and only the 
discovery of quantum mechanics enabled us to understand and 
predict such facts completely outside the scope of classical 
mechanics. Today there are no facts known which contradict 
any conclusions from quantum mechanics. Therefore one may well 
ask: why this concern about the foundations of quantum mecha-
nics ? 

The answer is probably that quantum mechanics has pro-
duced a revolution in the epistemology of physics that we 
have not yet been able to appreciate in all its implications. 
Almost all the conceptual structure which constituted the 
background of classical physics and hence the glory of three 
hun~red years of science were affected by the advent of quan-
tum mechanics. Such familiar concepts as the physical system, 
its state, its description in space and time, its evolution, 
causality and determinism, are all put in question or have 
acquired a new meaning. 
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Most of all, as has been particulary emphasized by 
Einstein it is the notion of "objective reality" of the 
physical world, the cornerstone of all of classical physics, 
which has become pratically obliterated in the new physics. 
Although it is not clear what exactly is meant by "physical 
reality" it is conceivable that the underlying idea of this 
term could be made precise by physics. The analysis of Ein-
stein, Podolsky and Rosen together with Bohr's reply has made 
it clear that quantum mechanics is precisely not capable of 
doing that and according to ones point of view one may find 
comfort or a source of concern in that situation. 

These two different attitudes are more or less corre-
lated with the two philosophical attitudes known as Positivism 
and Realism (in the modern sense of the term). On the whole, 
and in spite of pretensions to the contrary, physicists are 
usually more inclined to Realism than to Positivism. If we 
were positivists such a school as we are attending now would 
presumably make not much sense. Yet I would like to maintain 
that there are strictly scientific questions connected with 
the foundations of quantum mechanics which need not be related 
to any particular philosophical school of thought. It is in 
this sense that I would like to present the problems to which 
I shall address myself now. 

3)' I shall begin by making some preliminary remarks on 
Axiomatics. Over the years a considerable effort has been 
expended by various people to reconstruct quantum mechanics 
on an axiomatic basis. Since such attemps have sometimes been 
described as being not very useful in the elucidation of the 
really deep difficulties of a theory I shall first say a few 
words in defense of axiomatics. 
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In order to avoid any misconceptions one should remember 
that axiomatics in pure mathematics and in physics are not 
quite the same thing. The axiomatic of pure mathematics is 
essentially a formal scheme which must only satisfy the cri-
terion of consistency and completeness. There is no need to 
interpret the a.xioms or the undefined terms (although it must 
be admitted many axiomatic systems are motivated by such an 
interpretations). In physics the interpretation of the axioms 
and the undefined terms is an essential part in the process. 
Indeed these interpretations are the link of the formal struc-
ture (the theory properly speaking) with the observed facts. 
The axioms therefore can not be freely chosen, subject only 
to completeness and consistency, but they should be inductively 
underpinned by a considerable body of empirical data. Without 
such a support on the solid ground of experience physical 
axiomatics is sterile. The choice among possible logically 
equivalent axiom systems is therefore an important task of 
the physicist since some may be more satisfactory from the 
point of view of interpretation and justification than others. 

Next it should be observed that the purpose of axiomatics 
in physics may be formulated as three-fold: 

(i) It may be considered as a formal rendering of what 
theoretical physicist are actually doing. 

(ii) It puts in evidence the empirical foundations and 
serves to eliminate irrelevant elements in the theory. 

(iii) It gives a solid base for rigorovs mathematical de-
ductions to be made within the theory. 

A few words of explanation to each of these three points 
may be useful. Physicists very often do not know what they 
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are actually doing and equally often, what they do is diffe-
rent from what they say they are do_ing. It is perhaps quite 
satisfactory to exhibit the mysteri'es of quantum mechanics 

t ·· 

in straight forward a....~d immediately obvious corrnnon sense 
notions as Bohr has done so remarkably well, but straight-
forward and common sense notions have often ambiguous meanings, 
with the result that in spite of the apparent simplicity of 
such explanations, they may and have produced more confusion 
than would have been necessary. 

As to the second point it is perhaps well to remember 
that physical theories are usually confirmed or falsified by 
their consequences. When a theory is to be generalized or 
modified a postulational formulation is particularly useful 
since the empirical justification can be explicitly identified 
in a few well defined places and possible modifications can 
be more easily studied and surveyed. 

Finally, mathematical rigor although not always necessary 
and sometimes even harmful (if it obscures the physical con-
tent for instance) is nothing to be rejected if it can be ob-
tained with relative ease, as in a well-formulated axiomatic 
physical theory. 

These obvious advantages of axiomatics in a physical 
theory are tempered by a certain danger, which should not be 
overlooked. It is in the nature of the method that the basic 
concepts of an axiomatic have a precise meaning and a well-
defined range of validity. This range need not always coincide 
with the range of validity of the actual application of this 
concept ~ the physical reality. This point· should always be 
kept in mind especially in the discussion of the so-called 
paradoxes of quantum mechanics. 
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4) Even with these requirements on the choice of the 
axioms the axiomatics of a theory such as quantum mechanics 
may contain still much arbitrariness. One of the earliest 
attemps of an axiomatic of quantum mechanics goes back to 
Jordan, Wigner and von Neumann1 )2 ) and it was adopted and 
further developed by Sega13 ). The basic idea is to introduce 
axiomatically an algebraic structure for the algebra of all 
bounded observables. The original motivation for this axio-
matic was of course closely related to the physical interpre-
tation of these axioms as observables. However there were always 
difficulties associated with this motivation, stemming from 
the fact that additivity of non-compatible observables cannot 

............. be easily interpreta.ted in physical terms. Furthermore in the _,. 
later stages of the theory the algebra was changed from a 
Jordan-algebra with a non associative product to a C*-algebra 
with an associative product but non-Hermitian elements (which 
cannot be observables). Today Ssgal does no longer maintain 
that the elements of the algebra have anything to do with 
observables4). 

Another line of approach proved more satisfactory from 
the point of view of interpretation. It is the one initiated 
by Birkhoff and von Neumann5 ) adopted and developed in different 
varieties by Mackey,Ludwig, Pool and Piron. 

The basic structure in this system is the set of elemen-
tary propositions, interpreted as the yes-no experiments 
(called questions by Mackey and decision effect s by Ludwig) 
together with the set of all states. These concepts are rela-
tively easily interpreted in physical terms and therefore a 
good motivation for the a.xiomatics is available. However this 
advantage is obtained at the price of a weaker structure than 
an algebra. One obtains in this manner only a lattice and not 
an algebra. There is no motivation for an operation of addi-
tion. Consequently this operation is absent in the basic 
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axioms. The most interesting question is therefore, how 
this more general structure is related to conventional quan-
tum mechanics in Hilbertspace where addition of observables 
is a natural and easily defined operation. There is obvious-
ly a gap between what physicists actually do and what can 
be based on empirical inductively generalized evidence. 
Mackey6) has bridged this gap by his Axiom VII which simply 
introduces the complex Hilbertspace ad hoe because "it works", 
this means it formalizes what physicists have always done. 

Mackey indicates several possibilities of more general 
systems and he suggests that it would be interesting to have 
a thorough study of the consequences of modifying axiom VII. 

A study in this direction has been made by C. Piron7) 
who supplied additional axioms from which something very 
close to VII can be deduced. The additional axioms which are 
needed fall into two categories. One (called henceforth axiom 
(P)) concerns the weakening of the distributive law beyond 
the modular law (adopted by Birkhoff and von Neumann) and the 
other refers to the property of atomicity and the covering 
law. While the first has a satisfactory physical interpretation 
the second has resisted such an interpretation until very 
recent1y8 ). 

Several independent and apparently equivalent forms of 
the axiom (P) have been given in the literature9)lO)ll)l2 ). 

We shall here exposit briefly and in a rather condensed 
manner a somewhat different approach to the axiomatic of quan-
tum _ mechanics, incorporating the advantages · of the Birkhoff-
von Neumann-Piron system supplemented by a new characterization 
of the notion of "state" of an individual system. 

In this new conception of "state" we avoid the notion 
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of probability which was necessary in the older conception. 
If one introduces probabilities at this stage of the axio-
matics one has difficulties of avoiding the criticism of 
Einstein that a state is not the attribute of an individual 
system but merely the statistical property of a homogeneous 
ensemble of similarly prepared identical systems, thus lea-
ving open the hope that a fuller description of the indivi-
dual system might be possible in a more complete theory than 
present-day quantum mechanics. 

An additional advantage of this new concept of "state" 
stems from the fact that with it a physical interpretation 
of the second category of axioms (i.e. atomicity and the 
covering law) becomes possible and thereby a better physical 
foundation of these axioms as well as their mathematical 
consequences is obtained. 

It is not yet certain whether this new concept of state 
leads to some observable consequences. The analysis of inter-
acting quantal systems which we shall examine at the end of 
this chapter will show that quantum mechanics as we know it 
today does not give any answer concerning the evolution of 
the state of one of the subsystems. A more complete theory 
concerning this point is logically possible but not yet deve-
loped. 

5) The axiomatics of Birkhoff, von Neumann and Piron is 
based on the primitive notions of the yes-no experiments for 
a system. The underlying idea is that the measurement of a 
sufficiently large number of such experiments would be suitable 
for the determination of the general physical properties of 
the system as well as the determination of the state of the 
system after a suitable preparation. 
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The yes-no experiment will be denoted by Greek letters 
a,~, , ••• • The outcome of an experiment a will be one 
of the two values yes (1) or no (o). 

If a is a yes-no experiment, then there exists another 
one ay , measured with the same physical equipment, and such 
that if the outcome of the measurement of a is 'yes' then 
it is 'no' for a"' and vice versa. Evidently (6't ..J )v =a. 

Any yes-no experiment can be completely characterized 
by giving a description of the equipment to be used and a 
prescription how to execute the measurement. 

With this rule we can generate ne~ experiments from 
a family of given ones in the following manner. Let ai (i€ I, 
some index set) be any family of such experiments, then we 
can define a new one, denoted by ~ai by the following proce-
dure: The equipment for measuring Tf ai consists of the equip-
ment used for all of the experiments a .• The prescription for 

1 
executing the measurement lT ai consists in choosing any one 
of the equipments a. at random and recording the outcome of 

1 
its measurement as the outcome of TTai. 

It follows then very easily that 

C-rr o(; ) y 
(1) 

The.proof consists in verifying that the measurement of the 
two experiments always gives the same result with the above 
prescription. 

The yes-no experiments satisfy an equivalence relation 
which may be defined as follows: We shall say a yes-no ex-
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periment is 'true' in a particular state of the system if 
its measurement will give the result yes with certainty 
(probability one). It is a fact that certain pairs of yes-
no experiments stand with respect to each other in the re-
lation that whenever a is 'true' then ~ is 'true' too. 
We denote this relation by a<( f), and verify easily that 
it satisfies the axioms for a partial ordering, viz 

(1) a<. a 
(2) 

( 2) a < f) and ~ < t" -9 o( < r 

If two yes-no experiments a1 and a 2 satisfy the relations 
a1 < a2 and a2 < a1 then we shall say that they are equi-
valent and we write for it a1 ~ a2 • This is an equivalence 
relation, that is, it satisfies 

(1) a f'"'.J a 

( 3) a ,,.....,, s, and s ,,....., r ~ o( -..I r 

Let a be any yes-no experiment. The set of all yes-
no experiments which are equivalent to it will be denoted 

(3) 

by a = { a } and we call it a proposition. Thus more expli-
citly in a formula 

It is easy to verify that if a is 'true' in the above 
sense then any a. IV a is also 'true'. Hence we can say 

]. 

the proposition a is 'true' if and only if any and hence 

(4) 

all of its yes-no experiments are 'true'. If the proposition 
a is 'true' we shall call it a property of the system. We 

------- -
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write a c b if for all a. €. a and f3 ~ b, a < f3. If 
a.. ( i €. I, some index set) is a family of yes-no experi-

i 
ments, all of which are true, then T/ a.i 
We denote by ncii the equivalence class 
contains the yes-no experiment lTa. .• 

J. 

is true too. 
{ 1/ot i J which 

It depends only on the equivalence classes a. and 
1 

it has the properties of the greatest lower bound, that 
is 

1f-i € I 

We can define a least u12per bound by setting 

nx 
0 -C')( t 

and we can verify that it satisfies 

Utt. c b <=:=) 
t 

q. cb 
l 

(5) 

(6) 

(7). 

In particular, if l is the set of all propositions there 
exists a zero and a unit element (also called the absurd and 
the trivial proposition) defined by 

) 
T _ (} x 

Xl': ,£ 

We have thus established 

The set of all propositions of a physical system 
is a complete lattice 

(8) 

- - -~ - --- - -------- - - - _JI 
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Everything that has been said so far could have been 
applied to any physical system, classical or quantal. For 
classical mechanical systems with a phase space we can identi-
fy the propositions with the measurable subsets of phase-
space, the ordering is set-inclusion, the greatest lower 
bound is the set intersection and the least upper bound the 
set tmion. It follows that such a proposition system is re-
presented by a Boolean lattice, characterized by the distri-
butive law 

a A (b v c) = (a f' b) v (a I' c) 
and a v (b ~ c) = (a v b) /') (a v c) 

The lattices which represent quantal system do not satisfy - . 

(9) 

the distributive law. This has a profound effect on the exi-
stence of the so called complements. A complement b of a 
proposition a is defined by the properties 

a("\b= cp and a vb = I (10) 

It is a known theorem for Boolean lattices that the complement, 
if it exists, is unique. For non-Boolean lattices on the other 
hand there may exist several complements to a given element. 
It is useful to single out from all the possible complements a 
particular one which is distinguished from all the other ones 
by a physical property which we shall call compatibility. Thus 
we define: The complement b of a is a compatible complement 
if there exists a yes-no experiment a ea ·such that a~~ b. 

We denote the compatible complement with a'. All the 
physical systems known today satisfy 
Axiom C: For every proposition a € !., there exists at least 

one compatible complement a' €. L . 

I : 
I I 
:: 



-14-

Furthermore Piron has shown7) that all known systems satisfy 
also 

Axiom P: If a c b then the sublattice generated by 
(a,b,a',b') is Boolean. 

With these two axioms one can then prove that the 
correspondence a, ~t:t1 is unique and it is an orthocomplemen-
tation, that is 

a c b b' c. a' (11) 

(a')'=a. 

Furthermore the lattice ~ is weakly modular, so that 

a c. b ~ a v (a' fl b) = b 

6) Proceeding now to the notion of state, we begin by 
some heuristic remarks which tend to show that this notion 
has some general aspects which are completely analogous in 
classical and quantal physics. It is the formalisation of 
these general aspects which furnishes us the axiomatic struc-
ture of the states. 

If one analyses the statements made by physicists about 
the epistemology of physics one finds that implicitly or 
explicitly these statements presuppose a bias in favor of 
philosophical realism. This is perhaps naiv and it takes a 
considerable amount of philosophical sophistication to doubt 
a reasonable statement as it is for instance expressed by B. 
d 1Espagnat14 ) as 
Hypothesis C: Physical systems exist and have well defined 
physical properties independent of any observation of these 
properties. 
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It is rather difficult, if not impossible to say 
what the exact meaning of such a hypothesis could be. 
The best possibility for a meaningful interpretation of 
such a statement seems to me to regard it as a summary 
of a large number of inductive generalizations based on 
practically continuous and everyday experiences. 

We know of course that we cannot specify a priori 
what these physical properties may be which we can attribute 
to a physical system. The existence of the uncertainty rela-
tions has taught us to be cautious in this respect. At any 
rate the classical attributes, exemplified by the points in 
phase space are not suitable for this purpose. 

The difficulty is even more serious than that. The 
analysis made by d'Espagnat of interacting quantal systems 
has led him to the conclusion that hypothesis C is incompa-
tible with the behaviour of such quantal systems14 ). I do 
not see how one can escape this conclusion, as long as one 
adhears to the usual definition of state. But it seems 
possible to modify this definition in such a '!flay that this 
conclusion does not necessarily hold. 

In the new definition of state the basic undefined 
concept is the notion of 'true' for a proposition. We have 
in the previous section introduced this notion by saying 
that a is 'true' if and only if any and hence all of its 
yes-no experiments as a are 'true'. Although this defi-
nition sounds quite reasonable its practical application al-
ways encounters the characteristic difficulty that we can 
never be sure whether in a given state a proposition is really 
true or not unless we make a measurement of one of its experi-
ments. Such an experiment may however alter the state of the 
system in just such a way that the experiment in question 
appears as true (or not true, as the case may be) quite inde-
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pendent of the state of the system. We thus have a viscious 
circle which can only be brolcen if we postulate in accord 
with the realistic interpretation of states that in every 
physical system in a given state there exists a certain 
subset of propositions which are 'true' independent of any 
measurements on the system. We shall furthermore post~late 
that the subset of all 'true' propositions characterizes 
the state so that we may make the following 
Definition: A state of a system is the set S of all 'true' 

propositions of the system: 

s = { x I x ~ ,£, , x is 'true' J (12) 

The following remarlcs may be useful for clarifying the 
meaning of this definition 

(i) It is clear that this definition is equally 
applicable for classical and quantal systems. 
In the classical case propositions are subsets 
A of the phase space. A state is a point x 

' 0 
in phase space and the 'true' propositions are 
represented by all those subsets A which contain 
the point x • 

0 

Thus 

A is 'true' if x € A. 
0 

(ii) The absence of any probability statement makes 
it possible to attribute a state to an individual 
system and not only to a statistical ensemble. We 
shall accordingly assume that every individual system 
be it classical or quantal is always in a definite 
state. 
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(iii) The states defined here correspond to the pure 
states of ordinary quantum mechanics. We shall 
thus postulate every individual system is in a 
pure state. Mixtures do appear in quantum mechanics, 
they are represented by density matrices or by a 

. lattice theoretic probability measure, but they 
are the attributes of ensembles only and not of 
individuals. 

(iv) One should distinguish between the state of the 
system and the amount of information available 
about the state. Just as in the classical statistical 
mechanics we may think of the state as representing 
the maximal amount of information on the individual 
system. It is thus natural to assume that no two 
states s1 and s2 can be subsets of one another. 

The following properties (except (4) are consequences of these 
remarks 
( l) If x e S and x c y then y c .S. 
(2) If x,y€ S then XC1 y € S. 
( 2 ' ) If x . E S ( i e I ) then () X c: € ~ . 

l i€L 
(3) <Pt S , I~ S for every state. 
(4) For any x * ~ there exists at least one state S such 

that x ES 

Property (4) is simply a requirement that the number of 
states should be sufficiently numerous. 

From the above properties of states one can immediately 
draw the conclusion that the lattice ~must be atomicl5). 
Furthermore if there exists a certain class of measurements 
(or filters), which we have defined as ideal, then one can 
show that the lattice must satis~y tlhe covering law16 ). 
These are precisely the additional axioms which are needed 
in order to have a sufficiently strong axiomatics to give a 
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quantum mechanics in Hilbertspace (without specifying the 
nature of the field entirely; see however ref.l7)). It is 
satisfactory that with this notion of state the physical 
foundations of these axioms can be improved. 

It is instructive to compare the notion of state intro-
duced here for quantal and classical systems. The analogue 
of the classical phase space is the set of all atomic proposi-
tions. Just as we do in classical physics so here, too, could 
we introduce the notion of false propositions. Indeed a na-
tural definition would be to say a is 'false' if a' is 
'true'. But while in classical physics every proposition is 
either true or false so that the set of propositions not in 
the state s is necessarily fals there are in general many 
propositions in quantal systems which for a given state are 
neither true nor fals. The set of propositions, seen as a 
propositional calculus, behave like a non-Aristotelian iogic. 

7) States evolve in time just as they do in classical 
systems. But here, too, there is an important distinction 
between classical and quantal systems. 

There ~re three kinds of evolutions to be considered for 
a quantal system 

(a) Evolution of a closed system, 
(b) Evolution of a system in contact with a classical 

system, 
(c) Evolution of a system in contact with another quantal 

system. 

Concerning the cases (a) and (b) the situation is very 
similar to that of classical systems. The essential property 
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is that in both cases (a) and (b) the evolution is 
causal (or deterministic) in the sense that given the 
initial state then the state a certain time t later is 
entirely determined by this initial condition. In case 
(a) and in case (b) with time-independent coupling (or 
constant external forces) the evolution has even the 
group property just as in classical mechanics. 

In case (c) we encounter something new with no analogue 
in classical physics. The evolution of an individual system 
is no longer deterministic. This can be seen, for exemple, 
in ordinary quantum mechanics where time evolution of one 
of two coupled quantal system cannot be described by a 
Schr~dinger equation, a pure state is changed into a mixture 
in the course of time. Since we maintain. that an individual 
system is always in a pure state the only way we can remain 
in accord with ordinary quantum mechanics (which we assume 
sufficiently well established to serve as a norm) is to 
postulate that an individual subsystem of two coupled quan-
tal systems evolves stochastically. Of course we know (again 
from ordinary quantum mechanics) what the density matrix 
for the subsystems must be at each insta.nce of time but as 
is well kno~m, this information does not suffice to deter-
mine the probability distributions in phase space for a 
quantal system. (of. Appendix II). 

This point is related to the notion of mixtures of the 
lst and 2d kind (discussed by d'Espagnat14 )). The mixtures 
of the lst kind are those which are obtained from an ensemble 
of which every individual is in a pure state. The mixture of 
the 2d kind are obtained as the state of a subsystem of two 
coupled quantal system. Here the usual rules of quantum 
mechanics do not give us any information as to the state of 
an individual system from the ensemble. Hence this kind of 

1, 
I 
I 
I 
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mixture is of a different kind than the first. 

We may thus say the essence of our new notion of 
state is contained in the statement: Mixtures of the 2d 
kind do not exist. 

If one recalls that the conclusion of d 1Espagnat's 
critical examination of the compatibility of realism with 
quantum mechanics depends precisely on the occurence of 
mixtures of the 2d kind, one sees that this conclusion no 
longer follows if such mixtures do not exist • 

. The difficulty with this interpretation of states of 
subsystems is connected with the question that the notion 
of subsystem is itself partly ambiguous. Yet it is essen-
tial for the entire foundation not only of quantum mecha-
nics itself but of all of microphysics. From the analysis 
of interacting quantal systems it becomes clear that this 
notion can only be used in some approximate sense. Quan-
tum mechanics is based on this approximate notion, which 
for the purposes of microphysics has been found sufficient. 

The pardoxical situations which one encounters in the 
study of interacting quantal systems leave us with the sus-
picion that the notion of partial system or subsystem is 
perhaps not compatible with the structure of the quantal 
laws. 

If, on the other hand we take the view, as we have done 
so far, that states can be attributed to individual sub-
systems, then we are led to the conclusion that such states 
must envolve in general stochastically according to a law 
which is not furnished by quantum mechanics as we know it 
today. 
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Two questions arise innnediately: 

1. Is it possible to find such a law of stochastic evo-
lution for individual subsystems which is compatible with 
the known average properties of such subsystems ? 

2. Are there any observable consequences of such evo-
lution which could in principle be used to test such an 
extension of quantum mechanics~ 

It is innnediately clear that any observation which re-
fers to an individual or even a statistical ensemble of a 
subsystem can never yield an experimental effect which could 
test such a theory. The reason is that such measurements 
are expressible as expectation-values of operators which de-
pend only on the density matrix of the subsystem and that 
quantity is unchanged in any of the possible completions 
of quantum mechanics. 

Thus the only possible experiments which could effecti-
vely test such a theory are corrolation measurements of 
quantities which refer to both systems. Under these circum-
stances it becomes questio?able whether we are testing the 
state of an individual subsystem or not simply the state of 
the joint system. Since the two tests would in general yield 
different results they can be experimentally distinguished. 
We shall illustrate this in . the following section by analy-
sing the polarization correlation experiment for photons, 
an experiment which is actually feasible, and which answers 
the question that we have posed. 

8) We shall consider the simplest example of two coupled 
quantal systems, viz,two systems of spin~' and we shall 
disregard the spatial coordinates of these spins. Such a 
system, by a slight shift of interpretation also describes 
the states of polarization of a photon26 )27). Each of the 
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systems is represented by a complex Hilbertspace of dimen-
sion 2. We denote by u+ and u the normalized eigenvectors 
of the 3-component of the spin for the first system and by 
v+ and v_ the corresponding eigenvectors for the second 
system. We further suppose that the initial state of the 
system is a singlet state with total spin o represented 
by a state vector 

I -fi { ll+ 1""_ - u_ v-+ ) (13) 

Its density matrix ~'f is then given by the projection 
of rank one into the subspace which contains the vector '!/7 • 

The states of the individual system (denoted by I and 
II respectively) are then given by density matrices ~I 
and W II, where 

-Tr.l. w ) 

I and T II represent the partial trace with Here T r r 
respect to the variables of the system I or II. Thus for 
instance 

wr ~ (ur; ~) J>~ Utz. 11; ) I ~T. -r, r z. s 2. I 2. 

which shows that WI is i times the unit operator I in 
the Hilbertspace dl.I and similarly one finds that w11 

(14) 

(15) 

is the corresponding unit operator II in the Hilbert space ~ !t: 
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'I :i. 

1-- JJ. ), 

(16) 

The measurement of a;ny observable quantity A which 
refers to the state of the system I alone will yield a re-
sult which could be calculated with the density matrix WI 
In fact the expectation value (A) for A in the state WI 
isFiven by 

= T r (WI A) , 

This result is obviously independent of the distribution of 
the pure states in the ensemble represented by the density 
matrix WI. Thus with a measurement of this kind the different 
distributions can never be distingui~d from each other. The 
same is of course true for measurements of quantities B 
which refer to the system II only. 

The only kind of measurements which could possibly 
distinguish different distributions associated with the 
same density matrices WI and wII would be correlations 
between measurements of quantities in the two systems. 

One such correlation measurement would be the measurement 
of the spin in two different directions in the two systems. 

Let us introduce the following notation: 

The unit vector a in 1(3 denotes a point on the unit 
sphere~ P the projection in ~I. and Q. the projection a -a 
in ~ X associated with this direction a. In particular 
for the positive 3-direction (et=(o,o,l ) we write simply 
P and for the negative 3-direction (et=(o,o,-1)) we write 
Q. 
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The projection operator P Q represents the observable 
for the quantity "spin I is up" and 11 spin II is down". 

The probability of observing P Q in the state ~ is 
then given by ( ~, P Q 1f ) which is easily calculated to 
be 

I -x -- 2. 

The probability of observing P or Q alone on the 
other hand is given by 

( f> G 1£) = I 
2 

(17) 

(18) 

The correlation between "spin I up" and "spin II down" 
is thus given by 

'>(, x (1l, 1~ 'f) 
1.J - == -- d (_if)? f) 

which means that whenever spin I is up, spin II is down 
with probability!(and vice versa of course). All this is 
well known and we repeat it here only because we want to 
compare it with other possibilities when adopting the new 
conception of states. 

(19) 

In order to see this let us first remark that the 
particular choice of the 3-direction for such a correlation 
experiment is irrelevant for the result. If we had chosen 
another direction of quantization, we would have obtained 
the same result: Spin I in one direction a is always corre-
lated 100% with spin II in the opposite direction - a. 

Let us now analYfe this same experiment with the new 
concept of state. Every observation of spin I up on system 
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I is do be calculated under the assumption that system I 
is in a pure state, given for example by the projection 
P • The probability of measuring the spin P for this 

a 
system may thus be calculated by the usual rules of quan-
tum mechanics: 

= T r (P P), a (20) 

I If the ensemble of W is given by the probability distri-
bution !(a) on the unit sphere, then we find 

, 
:::- -2 (21) 

for the probability of measuring "spin I up". 

If angular momentum is conserved for every individual 
system then for every state of spin I in direction a there 
is associated a state of spin II in direction - a. Thus 
the quantity designated before by x is now given by 

)c -

while y is given, as before, by (21) 

( f > p 1[) 

The quantity 

l 
.2. 

(22) 

(23) 

will now assume various values depending on the probability 
distribution ~(a). We give the result for three special cases: 
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(i) Uniform distribution f (a) = 
2 

1c - 3 

I 
41' 

(ii) All spins are in the 3-direction 

in a symbolic notation, indicating that f (a) is a 
discrete measure concentrated at the points a = (o,o,l) 
and a = (o,o,-1) of the unit sphere. In this case 

"JC -1. 

(iii) All spins are in the 2-direction 

The result in this case is 

Jc =.J · 
2. 

(24) 

(25) 

. (26) 

We see in the spherically synunetrie case (i) the 
correlation K. is C:. I • The only case where it is equal to I 
is (ii) and this result is not spherically symmetrical • 

. Thus in any case there is discrepancy with the 
result (19) of ordinary quantum mechanics. The new concept 
of state should therefore be experimentally distinguishable 
from the old one. 
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The formula (22) for the correlation function of the 
two spin states bears a remarkable resemblance with the 
corresponding formula for this expression under the assump-
tion of the existence of local hidden variables28 ) although 
it must b~ born in mind that the interpretation of this 
formula is quite different. Instead of attempting to reduce 
the observed results for statistical measurements on quantal 
system to an underlying deterministic classical structure 
(hidden variables) the formula (22) has a purely quantal ori-
gin. The basic laws for microphysics are considered quantal 
and not classical. 

9) The situation that we have analysed in the preceding 
section is actually realizable and it has been the subject 
of various experimental test and theoretical discussions. 

The physical system consists of a positive and nega-
tive electron in a bound state, the positronium. The lowest 
state of this system is a 'S-state and it has a lifetime 
of T' = l.25~10-10 sec18 ). It decays into two photons whose 
polarizations are correlated in exactly the same manner as 
the spin~ discussed in the .preceding section. One expects 
therefore the corresponding polarization correlations for 
the two photons which result from the )ositronium decay. The 
effect was predicted by J.A. Wheeler19 in 1946 and measured 
by several groups of experimenters 20 )2l) 22 )29)30). 

The experiments consist in the measurement of the 
correlation of Compton scattering of the two photons in 
the azimenthal plane 1 once perpendicular and once parallel. 
The theory for this effect was worked out by several people23 ) 
21~) 
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The ratio 'R = ~.L of the counting rates in the two 
'-II 

azimenthal planes depends on the two polar angles. 

~sitronium source 

Fig. l Azimuth ( 1>) and polar angles ( I, and Oz.) for 
the correlation measurements of Compton scattering. 

c 
The maxinrum value for R = C -:..L is predicted for polar 

1> II angles B, ~ &i, ~ R2- and it has a value of R = 2.8 in this 
case. The calculation is based on the usual formula (17). In 
the new definition of state, for uniform distribution of the 
probabilities (Equ. (24) the effect would be still obser-
vable but R would have the value R = 1.8. 

The first observation by Hanna established the exi-
stence of the effect but according to this author: "Further 
experiments are needed, however, to determine whether the 
discrepancies between theoretical prediction and experimen-
tal results are merely instrumental; or due to a break-down 
of the theory. The deviations appear too lar~e to be dis-
missed as due to statistical fluctuations, especially as the 
independent results using different scatterers are all con-
sitently lower than the theoretical predictions." 

The results of Hanna are in agreement with the much 
less accurate values of Bleuler and Bradt. The most pre-

' I 
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cise measurements are those of Langhoff and of Kasday. For 
instance according to the published results of Langhoff 
R = 2.5, while the value to be expected after the geometrical 
corrections is 2.48, well within the statistical error. The 
more recent as yet unpublished results of Kasday, Wu and Ull-
man are in complete agreement with this. 

This conclusion is in agreement with that reached by 
Bohm and Aharonoff25 ) who had proposed a similar theory, 
although their motivation was different. Their conclusion was 
based on the less accurate experiments of Wu and Shalrn.ov22 ). 
The recent improved results by Langhoff and Kasday et al. 
completely confirm this conclusion. 

This value cannot be reconcilelwith the value of 
R = 1.8 which would be obtained for a spherical distribution 
of correlated spin-states (formula (22)). 

It is interesting to note that this value is also in-
compatible with any kind of hidden variable theory of the 
local kind proposed by many people, mast recently by Be1128 )3l) . 

It was proved some time ago by Jauch and Piron32 )35) 
that such hidden variables are in disagreement with the ob-
served structure of the quantal proposition system. This 
proof was free from the objections3l)34) which have been 
raised on physical grounds against the old proof of von Neu-
ma.nn.33). Neverth~less the proof was not sufficient to give 
any quantitative estimates of possible discrepancies in 
physically observable quantities. Such a quantitative test of 
the ~heory was given by Be1128 ) and Wigner36 ) in the form of 
an inequality for the correlation of certain statistical results 
in a quantal system consisting of two separated parts. 
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~a) 
It was shown by Kasday..? that the new results on the 

photon polarization correlations in the decay of positronium 
definitely violate these inequalities, and thus, at least 
in this case confirm the result by Jauch and Piron that local 
hidden variables are incompatible with the phenomena of 
microphysics. 

However these same results also rule out, as we have 
seen, the new concept of states for the subsystem of a quan-
tal system at least for a spherical distribution of the indi-
vidual pure states. Concerning this result one can make 
these remarks: 

(i) There is a certain ambiguity as to the physical 
meaning of having to do with two separated physical systems 
to each of which one can attribute a state. It is possible 
that such an identification of the individuality of a sub-
system requires a certain minimum of interaction with the 
surrounding. One reasonable hypothesis is that the subsystem 
has become identified as an independent system if the pertur-
bation that it has exerted on the surrounding has produced 
a state which is nearly orthogonal to the initial state. 
Assuming that the interaction of the photon is primarily by 
Comptonscattering then a rough calculation shows that this 
condition is satisfied when the mean angle of scattering is 
of the order a =13~ • This is the case when the photon has 
traversed from about 0 .. 1 to 1 cm of solid material. To test 
this theory it would be intersting to repeat the photon pola-
rization experiment with a variable amount of scattering 
material interposed between the source and the place of measure-
ment ·. 

(ii) A further possibility of distinguishing the two 
photons would be to measure their polarizations at different 
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times, which would amount to measuring their Compton scattering 
correlation at different distances from the source. 

(iii) A more general consideration concerns the fact 
that the evolution of the state from a (pure) state of the 
joint system to a possibly correlated and stochastically 
evolved state of two separated subsystems cannot be described 
by a Schr~dinger equation. In particular such an evolution is 
not invariant under time-reversal since a part of the corre-
lation is lost in the process. It is thus not 1.Ullikely that 
the only conditions 1.Ulder which such an evolution can be ob-
served is under the influence of some external interference 
which destroys the time reversal invariance. The possibilities 
discussed under (i) and (ii) are of this kind. There may be 
others. 

It is therefore my opinion that the question concerning 
the interpretation of states of separated subsystems is not 
yet cleared up and it would be of the utmost importance to 
develope new experimental tests to clarify this point. Since 
this is the central problem concerning the foundations of 
quantum mechanics, with repercussions for the clarification 
of the so-called paradoxes as well as the measuring process, 
it is well worth while persuing this problem further with 
new and better experiments. 
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II. The problem of measurement in quantum mechanics 

1) The problem of measurement is at the very foundation 
of any physical theory. It is a deep problem~ but only 
quantum mechanics has brought to light how deep it is. 
The central problem in the quantum theory of measurement 
is this: How can one reconcile the laws of quantum mecha-
nics with the behavior of quantal systems during the mea-
suring process ? 

At first sight it may seem strange that such a problem 
should occur at all. Nothing of the sort occurred in 
classical physics where data can be obtained by measurements 
on physical systems in complete accord with the (classical) 
laws of physics. In fact whenever a measurement disturbs 
t;he system its effect can at least in prj_nciple be calcula-
ted by these very laws of physics. 

Not so for quantal systems. Measurements on such systems 
constitute always an interference which leaves the system 
in a new state after the measurement. But unlike the classi-
cal situation this new .state can not be calculated in the 
same manner as one calculates the change of state for an 
unperturbed system. The quantal laws will give us only a 
probabilistic statement for such perturbations. This leads 
to the famous enigma known as the 11 collaps of the state 
vector". Let us begin by illustrating this phenomenon on 
some simple examples: 

(i) The spherical decay of a radioactive atom. 

Let us imagine an isolated radioactive nucleus which 
can decay and emit for instance an a-parti.cle. Let us assume 
further that the nucleus is sufficiently heavy so that it may 
be considered at rest in the center of a heavy sphere. The 
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sphere is supposed to be coated with a sensitive film 
which can detect the passage of the a particle. We 
suppose further that the nucleus is spherically symmetrical 
so that the emission is decribed by a spherically symme-
trical wave !'unction ~Cl) depending on time t. 

Fig.l. Detection of a decaying atom 

The film on the surface is developed after the decay 
has occurred and there will be one point A where the 
a-particle has excited a sensitive grain in the film. 

The difficulty in this situation is due to the fact 
that quantum dynamics seems unable to account for the way 
the spherical wave ~{tj , representing the state of the 
a-particle at time t, has disappeared and has been re-
placed by an excited state of one of the grains in the 
film together with an entirely different wave function con-
centrated near the excited grain. 

(ii) Scattering of neutrons on magnetic ions. 

Suppose a system of magnetic ions in a crystal lattice 
are all polarized in the same direction. Such a system can 
scatter neutrons in two different ways. There is a coherent 
scattering which leaves the spins of the ions as well as 
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the neutrons unchanged. There is also a spin-flip scattering 
possible. In this case a neutron exchanges its spin with 
one of the ions. This scattering is incoherent. This can 
be seen as follows: 

Suppose the wave function for the incoming polarized 
neutrons is 'fo ll+ where <f:, is the unperturbed spatial 
part of the wave function and U+ the spin vector re-
ferring to some definite state of polarization. Let ~ 
be the scattered wave from the .,. II. neutrons without spin 
flip and 1f,/ the corresponding wave with spin flip, t/> 
the total wave of the scatterer, and <f>r the total wave 
of the scatterer with the r!! neutron spin flipped. 

The entire wave function after the scattering is then 
asymptotically 

The scattering cross-section is proportional to 

I ~<fr IA+</> + f 'f',.' t(_ </>r 12. == I~ l/J.- / 2. + Z / if/ 1 '-

since lc:A., rJ>, ) =- d~ and ( c/>r, 4> } = 0 . 

Thus the spin flip term gives no interference. 
This result is in complete accord with the fact that a 
spin flip constitutes essentially a determination of 
the position of the neutron and that such a determination 
is incompatible with the interference necessary for co-
herent scattering. 

(iii) Photon interference experiment 

The typical interference experiment for photons is 
exemplified by a Michelson interferometer which may be 
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represented schematically as indicated in Fig.2. 

- ........... .--:ii:r-...,,...,T""'Pr...,,~ 1'ri k ..,- fe-~CL f n'n~ e.s vvvvvvv5" 

Fig.2. Interference experiment with photons 

The source of light 1 sends a beam onto a half-
sil vered mirror which splits the beam into two, one 
which is reflected on the mirror 3 the other on mirror 4. 
The two beams are brought to interference at 5. The inter-
ference pattern at 5 can be calculated as a fUnction of 
the path difference for the two beams. 

This is of course a classical experiment in optics 
and has, in this form, nothing to do with quantum mechanics. 
It becomes an experiment in quantum physics if one does 
this experiment with individual photons. · In order to do 
this one must reduce the intensity of the incoming light 
by adding an absorber 6 so that one can observe indivi-
dual photons. According to quantum mechanics every indi-
vidual photon should interfere with itseir37 ). In order 
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to test this point Schrt:5dinger proposed this very experi-
ment and it was carried out a few years ago by L. J3llossy 
and S~. Naray at the Hungarian Academy of Science. 

In the final version of the experiment the intensity 
of the incoming light was about 106 photons per second. 
Furthermore in order to make sure that 'c;he extension of 
the wavepacket, which carried the photon, was smaller 
than the apparatus the interferometer had arms of 14 m 
length. This required a stability of the temperature to 
10-5 degrees C, which was accomplished by placing the 
apparatus in a tunnel. The arrival of individual photons 
was registered by photo~multiplier tubes • ....... 

Janossy verified two things : Photons arrive at the mi-
nt:>r positions 3 and 4 statistically independently and the 
classical interference pattern is reproduced to the li-
mits of the accuracy of the experiment. Thus quantum 
mechanics is verified in full for this case: Photons do 
i nterfer e individually~ themselves. 

2) The three experiment described in the preceding 
section are typical examples of the quantum mechanical 
measuring process. They concern the measurement of a pro-
perty of quantal systems in a state where this property 
is not present or absent with certainty. This situation 
can only occur for quantal systems. Let us abstract from 
these examples the typical features of such a measuring 
experiment. 

All of these experiments have one feature in common. 
They all end up with something that I shall call an 
event. We shall designate by event an objectively given 
phenomenon which has occured in a physical system irre-
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spective whether such a phenomenon has been observed by 
a conscj_ous observer. In the examples under discussion 
the event is the occurrence of the latent image in a silver-
halide grain in experiment 1, the flipping of a neutron 
spin in experiment 2 and the observation of a pulse in a 
photomultiplier tube in experiment- 3. 

We shall distinguish an ~vent from a datum.The latter 
is an event magnified to the level of human perception. 
Neither the latent image of experiment 1 nor the flipping 
of the spin in experiment 2 can be directly observed by a 
human observer and in order to make the event visible it 
must eventually be followed by a magnifying device which 
raises the event to the level of a datum. In experiment 3 
the photomultiplier tube comes equipped with its own 
amplifier (the cascade that follows the individual absorp-
tion of a photon); so that the distinction between event 
and datum becomes impossible. 

It is important to realize that a measurement, inso-
far as its quantal aspect is concerned is completed when 
the event has occurred. The importance of this remarlc lies 
in the fact that it helps in understanding that conscious-
ness or other a.pthropomorphic concepts are in principle 
not involved in the measuring process. Consciousness · is 
of course always involved in the formation of a theory 
but this is so in classical as well as in quantum physics. 
The attribution of a special r8le to consciousness in 
quentum physics which somehow is made responsible for the 

7i8)-9) change of the statevector / ~ during the measuring 
process seems to be contradicted by the examples 1 and 2 
of the previous section. 
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What is significent, however, is that the Schr~dinger 
equation for the evolution of states does not describe 
events. This can be seen from the fact that events do not 
occur with certainty. For instance the silver halide 
grain which is affected in experiment 1 may be anywhere 
on the sphere and the neutron spin of experiment 2 may 
be anywhere inside the crystal. The final state in all these 
experiments are not pure states but they are mixtures. 

Under the Schr~dinger type evolution a pure state 
evolves in time t according to 1i = l{. f , where ~ 
is a one parameter continuous unitary group. Under such 
an evolution a pure state is always transformed into another 
pure state so that mixtures, as we observe then in these 
examples, can never be created or destroyed by such evo-
lutions. 

3) The Schr~dinger evolution has another property 
which is incompatible with the occurrence of events. It 
is deterministic in the sense that the initial state de-
termines the state at any later time with certainty. 
Events, however do not occur with certainty. Indeed if 
any one of the measurements described in the exemples of 
sectj_on 1 is repeated w:L th exactly the same initial con-
dition it would evidently be described by the same wave-
function fa) but it may result in a different event. In 
fact if a large number of such experiments under identical 
initial conditions are repeated one obtains a statistical 
O.istribution of such events with a probability which is 
given by the usual formulae of quantum mechanics. From 
this fact it follows again that the deterministic Schr~­
dinger evolution does not describe events. 
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l}) A further property which shows this fact is the 
irreversibility for the occurrence of events. An event, 
once it has occurred cannot be reversed in contrast 
with the Schr~dinger equation which is reverisible in 
time. This irreversibility of the events can be seen as 
follows: Suppose we have followed the evolution from 
the time t = o to the time t = T by the mathematical solu-
tion of the Schr~dinger equation and suppose further that 
at T an event has occurred. If we reverse the time by 
following this solution in the opposite direction then the 
state of the system '!Fr returns to the initial state 
since the SchrOdinger equation is invariant under time 
reversal. However if the system is truly reversable then 
the event would have to be undone and replaced by the 
initial state of the system. Suppose we persue the evo-
lution once more forward in time to the point t = T. 
Since the initial state is the same the final state should 
also be the same, but this is not in agreement with the 
fact that under the same initial condition another event 
could have occurred. 

Thus it is seen that all measuring processes which 
end up with the occurrence of an event contain an irreversible 
element. The very fact of the occurrence of an event pre-
cludes reversibility. The preceding argument shows that this 
is so precisely because the event is not determined by the 
initial condition. Only a certain probability distribution 
of various alternative events is in general determined by 
the initial condition. 

This can for instance be verified by the experiments 
1 and 2. In each of these cases the events in question 
(blackening of a silverhalide grain, or reversal of a 
ri.eutron spin) may occur at various positions with a certain 
probability distribution. 
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The irreversibility of the quantum mechanical 
measuring process has often been noted before, in parti-
cular again recently where the incompatibility of this 
fact with the Schr~dinger type evolution was emphasized1~o) _ 

There are two main possibilities of interpreting this 
basic aspect of the measuring process. 

(i) The fundamental equations of evolution are not 
exactly those of quantum mechanics for systems 
which permit the measurement of an event. 

(ii) The fundamental equations of quantum mechanics 
are correct for all systems, including those which 
are involved in a measurement, but the very process 
of measurement implies an approximation. This appro-
ximation in no way affects the precision of the 
quantities to be measured but it is precisely of 
the kind which wipes out the coherence of super-
posi tions of macroscopically distinguishable states. 

From a purely practical point of view there is little 
difference between these two points of view. Theoretically, 
however there is a difference since in the second version 
there exists at least the possibility in principle of 
accounting for the approximation by relating it to possible 
external interactions and estimating its magnitude. 

In my opinion it is the second alternative which is 
the correct one and the detailed analysis of the examples 
will tend to support this point of view. 

Before doing this I shall point to some rather general 
principles in favor of this view. 
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The persistence of a physical theory into regions 
where it has not been tested is in general a good prin-
ciple to follow, be it only for the eventual determina-
tion of the limits of such a theory. Now there are in 
fact several large systems kno'W!l which exhibit typical 
quantal features on a large scale. Such systems are for 
instance, the ferromagnet, the lasers, the superconduc-
tors. In all of these cases the unrestricted application 
of quantum mechanics has been successful so that we have 
at least some justification to assume such a validity 
for many more large systems . 

The logical situation encountered here is similar 
in some respects to that of classical thermodynamics. 
Here, too, the irreversibility of the thermodynamics 
approach to equilibrium is incompatible with the reversible 
classical equations of motions and the former, although 
rigorous in a very real but limited sense, are strictly 
speaking only approximate as exemplified by the occurrence 
of fluctuations. 

In quantal systems the larger the system, the smaller 
is the perturbation needed to wipe out the distinction 
between superpositions and mixtures that actually appear 
during a measurement process. 

In fact it has been shown by Zeh41 ) that in such 
systems even distant j_nteractions can have this effect 
so that the notion of an isolated system becomes inappli-
cable. The Schr~dinger type evolution in . such a system 
is t h en a mathematical fiction which has no real domain 
of validity any more. 
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5) In the light of the preceding discussion j_ t is 
not surprising that the occurrence of events which is 
so characteristic for the measuring process ~s a~_;·,rays 

associated with a certain macroscopic system for which 
the aforementioned approximations are valid to a very 
high degree of precision. In this connection the repro-
duction of the measuring process by a model which exhi-
bits the necessary ergodic properties to simulate the 
characteristic irreversibility is of particular interest. 
Such models were discussed by Daneri, Prosperi and 
Loinger42 ) and by L. Rosenfeld43). 

The discussion of such models shows quite convincingly 
that the measuring process is not incompatible with the 
fundamental equations of quantum mechanics. Furthermore 
the explicit use of an approximation based on the stati-
stical properties of a large system clearly exhibits the 
origin of the irreversible element in the measuring pro-
cess. 

It should be stressed, howeve1,, that the macroscopic 
part of the measuring device serves two different functior:i.s 
which should not be confused. 

The first of these functions is essential for the 
measuring process in the sense that it ~~rnishes the 
basis for the approximation which is presupposed by the 
occurrence of irreversible events. 

The second function is that of amplifying the event 
to the level of human perception, in other words, to 
change it into a datum. '1111is magnj_fying device is almost 
always needed at the end of a measuring process since im-
perceptible events are useless as measurements. But the 
amplifier is merely an adapter of the event to the level 
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of human perception and as such it is not the essential 
ingredient of the measuring apparatus. This is clearly 
illustrated by the examples 1 and 2 where the events as 
such are microscopic in scale and without further ampli-
fication could not be perceived b~r any human observer. 
Nevertheless we may consider the essential part of the 
measurement completed once the microscopic event has 
occurred so that the subsequent amplifier is not even 
mentioned in the examples~ In the third example the event 
is the emission of a few electrons on the first plate of 
a photomultiplier tube, an event which would hardly be 
accessible to human perception. Only after the cascade is 
fully developed and a macroscopic pulse is registered, 
has the event become a datum. But again the last ampli-
fying stage of the measuring device is not the essential 
ingredient of the qua.nturn mechanical measuring device. 
This essential part is terminated with the absorption of 
a single photon on the first plate of the photomultiplier 
tube an.d as such it is a microscopic event. 

This distinction of the two functions of the macros-
copic measuring device is useful for separating the anthro-
morphic aspect of the measuring process from the physical 
one. In particular we emphasize again here that conscious-
ness has no part in the essential physical ~art of the 
measuring process. 

6) Let us now analyse the three examples of measurements 
in somewhat greater detail. The experiment 1 results in 
'the precise location of the a-particle emitted from a 
centrally located source in a spherical wave. 

The first point to realize is that in such an experi-
ment the detecting grain must be localized within the de-
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sired precision of the experiment during the duraction 
fo the decay process. With this condition we can esti-
mate the mass of the sphere to which the grain must be 
rigidly attached. Let ~x be the linear dimension of 
the desired region of localisation, r the radius of 
the sphere M its mass, so that its moment of inertia 

2 is I = Mr • Starting from the uncertainty relation 

for the angular momentum uncertainty 6 L and the 
angle uncertainty 6 cp , we obtain, by assuming 

A<./ ~ '1; the inequality 

If we assume that the mean angular momentum is zero we 
must impose that the uncertainty d L is so small that 
the discplacement of the measuring grain during the decay 
time is smaller than .1 x. 

Thus we find AL= 2 
= Mr Liw J 

l1w • rt· r or 

Combining this with the previously established ine-
quality for ~ L, we find 

<< L1 x 

or 11 >> 
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Inserting numbers for a localisation at a distance 
l\x IV 10-? cm during a lifetime r =- 10 3 sec, we find 

Although this lower bound for the mass of the sphere is 
not very large compared to the usual size of macroscopic 
equipment, it is many orders of magnitude larger than the 
characteristic masses of quantal systems ( rv io- 22-10-27gr). 

We may therefore still consider the "little measuring 
device" (in this case the grain of silver halide attached 
to a massive sphere) as of very small dimension although 
very large compared to quantal systems. 

We have here a special case of a general theorem 
due to Wigner, Araki and Yanase concerning the size of the 
measuring equipment when there exists a conserved additive 
quantity44 )1J.5)1J.6 ). In this case the quantity in question 
is the total angular momentum, which is the sum of the 
angular momentum of the a-particle and that of the free-
ly moving sphere. 

A similar analysis for experiment 2 yields an ine-
quality 

where L is the linear extension of the . target to which 
the neutron spin is rigidly attached and A is the wave 
length of the neutrons which may be assumed to be of the 
order of the interatomic distance • 
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'1111.ese examples show that the measuring instrument 
must exceed a minimal size if its quantal properties 
are taken into cons1d.eration and it should perform the 
task for which it is designed. This size is usually in-
compatible with the detection of phase relations bet-
ween the alternatives which the measuring event selects 
from the various possibilities. We can see this on the 
example of experiment& / for inste.nce. The existence of 
measurable phase relations on the sphere presupposes that 

L1 L ~ "fi" and th:5.s inequality is incompatible with 

d L .:? :X r as 1 ong as 

~ t.< I r 
As we should require if the intention of the measurement 
is to localize the a-·particle on the sphere. 

7) We may formulate the preceding consideration in a 
more general mw..ner by abstracting from the examples the 
essential features and expressing them in a mathematical 
manner j_ndependent of ai1y special features of the parti-
rular examples. The essential feature of the measuring de-
vice is that by tts very construction it can admit only 
a limited class of observables. This mea.."1.s that not all 
self-adjoint operators in the Hj_lbertspace referring to 
the measuring equipment are in fact observables but only 
a very small restricted class of them. In fact the opera-
tors which are observables are in every measurement a set 
'of comnruting observables .• corresponding to the fact that 
the measurement consists in the selection by the instru-
ment of one of several classical alternatives. 
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This formulation is in complete accord with Bohr's 
contention that the measuring equipment must have the 
properties of a classical system in order to make it 
suitable for the establishment of objectj_ve and unambi-
guous events. 

Bohr has put much weight on the requirement that the 
results of experiments_,if they are to have objective vali-
dity1 must be communicable in ordinary plain language per-
haps suitably defined by the usual physical terminology 
and this requirement is guaranteed by the use of measuring 
instruments which allows a complete classical account of 

. l+r() 
their relative positions and velocities • 

Many of the commentators of Bohr 1 s fundamental a."YJ.a-

J.ysis seem to incl:lne to consider the crucial terms such 
as "classica1 11

, 
0 objectif1t, and "ambiguous", which occur 

constantly in Bohr's writings, as undefined, or rather 
undefinable,, as belonging to a different and prescienti-
fic epistemological level and therefore not accessible 
to any further analysis on the physical level. 

The renunciation of ru""ly further analysis of the 11 classical 11 

system introduces into the description of natural phenomena 
a dichotomy which cannot be exact. A classical physical 
system is,, as we lrn.ow from countles,s experiences,, merely 
a limj_ting case of a quantal system. It is a system which 
for all intents and purposes behaves in accord with the 
laws of classical physics. But these laws, as we lmow .. are 
~ot exact. Even the most ordinary classical object is a 
quantal system and its quantal aspects can be detected, pro-
vided a sufficiently refined observation is made on the 
system. This is true in particular for the measuring instru-
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ments that we use in the execution of a measurement on 
a microsystem. 

It is therefore perfectly legitimate, and even necessary~ 
to describe the interaction of the system with the measuring 
instrument in terms of quantum mechanics. But this descrip-
tion must be complemented by the specific requirements which 

• 
characterizes a "classical" measuring device. In. other words, 
if we wish to restore the unity of physical description for 
all physical phenomena., including measurements, we must 
characterize in the context of quantum mechanics the pro-
perties of a system which we want to call 11 classical 11

• 

According to the preceding analysis the classical 
system is one which has sufficiently many superselection 
rules that the resulting proposition system is Boolean. 

In this defini t5_on "classical 11 appears not as an intrin-
sic property of the system but rather as one which expresses 
a limitation of the relationships of the system with the 
surrounding physical world. Certain proposttions are ex-
cluded .• not because they could not also occur under suitable 
conditions, bv .. t rather because they do not belong to the 
complete characterization of the classical system. Only in 
so far as the measuring system is classical, in the above 
sense, can it be considered a measuring device. Measurement 
is, in agreement with Bohr's interpretation, the result 
of an interaction of the microsystem with such a classical 
apparatus. We want to emphasize here that this conception 
of a measurement on quantal systems is not an arbitrarily 
imposed restriction but ::1.t is rather an essential ingredient 
in the very formalism of quantum mechanics. Indeed as- it is 
sho1-m in the lecture of Prof. Piron an "observable" in 
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quantum mechanics when stripped of all nonessential ele-
ments is nothing else than a homomorphism between a 
classical proposition system and a subset of the quantal 
propositions. Such a homomorphism is mathematically the 
same object as a classical random variable in the theory 
of probability. If the quantal proposition systems are 
identtfied with the subspaces of a Hilbert space then the 
random variable becomes a spectral measure and via the 
spectral theorem it can be identified with a selfadjoint 
operator. 

Thus when in the usual presentations of quantum mecha-
nics an observable is represented as a selfadjoint operator 
then this formal property already implies that the measure-
ment of this observable constitutes the establishment of a 
correspondence between the classical alternatives of a 
measuring instrument and a certain subset of the proposi-
tions of the system. 

When we speak of classical alternatives of a measuring 
instrument we mean a family of mutually orthogonal projec-
tion operators Q in the Hilbert space ~h of the r 
measuring instrument. 

In the three examples cited at the beginning these pro-
jections can be identified. For instance in example (i) 
they represent the subspaces belonging to the excited states 
of the different grains · of the photographic emulsion. In 
example (ii) they are the various orthogonal states obtained 
from the spin system by the reversal of one of the spins. 
~inally in example (iii) they correspond ·to the two ortho-
gonal spaces associated with the absorption of a photon. 

8) From the foregoing discussion we conclude that a 
typical measuring process can be described according to 
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the general schema indicated in Fig.3. 

11 li Vie. '' 
7>t tAtC<n'""j 

o<e i ic.e... 

s 
t. 
I 
I 
L ______ _ 

Fig.3 A typical disposition for a measurement. 

The system S to be measured is in contact with a 
measuring device m endowed with certain properties which 
make it a classical measuring system. The latter is connec-
ted with the amplifier A which amplifies the event which 
occurs in m to the level of a datum indicated by the 
scale with the pointer. The little measuring device m to-
gether with the amplifier A constitutes the measuring 
equipment M. 

The specific properties of m which make it a measuring 
system are first of all that it is a classical system. Thus 
~t admits as observables only an orthogonal (and hence 
commuting) system of projections Q (r=l,2,.-.) and all r 
functions of this system. In general the ranges of these 
projections will be subspaces of some finite or infinite 
dimension. In order to facilitate the discussion we shall 
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assume that they are all one-dimensional. No essential 
aspect of the measuring process is lost by this assumption. 
We then denote by ;,. a unit vector in the range Q • r 

We shall assume that before the measurement the system 
m is in a state Q

0 
(state vector ~ ) which we shall 

call the "state of readiness" of m. After the measurement 
has occurred the system m will be in another state. 

For each of a certain orthogonal family P (r=l,2, · -. ) r 
of states for the system S these final states will be 
Qr with certainty. If <f,. is a unit vector in the range 
of P we conclude that the unitary evolution U of the r 
joint system S + m is such that 

Here 'fr 1 represents the state of the system S after 
the measurement is completed. 

There are two possibilities for these final states 
~/ of the system S. If we denote by P~ the projection 

of range t:f,J then either P 1 = P or P' -'- P • In the r r r-r r 
first case we speak of measurements of the lst kind and 
in the second case of measurements of the 2d kind. The 
measurements of the lSt kind are also preparations of 
states of S of such a kind that a repetition of the 
measurement immediately afterwards yielcls the result 'yes' 
for Pr with certainty. The examples that we mentioned 
at the beginning are all measurements of the lst kind. We 
shall in the following assume that we are dealing with 
such measurements so that henceforth we use cf, 1 = <fw.. and 
P' = p • r r 
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We obtain then 

For a general linear combination 

we obtain from (1) (2) and the linearity of 

The state ~ is of course the state of the joint 
system S + m. ·The reduction of this state to the sub-
systems gives, as is well known, for each of them a 
density matrix which are given respectively by 

(1) 

(2) 

(3) 

(4) 

According to the interpretation of states given in lecture 
1 each individual subsystem is in a pure state but in 
an ensemble of such individual systems the pure states 
would be distributed in such a way the .probabilities for 
all measurements are in accord with those calculated from 
the density matrix. 

Quantum Mechanics teaches us that the pure states 
which may occur for the individual classical system are 
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just precisely those which characterize the classical 
system, that is the projections Q • Thus with this r 
assumption every individual system is in one of the 
states Qr.The probability distribution which corres-
ponds to the density operator wID (4) is then unique 
since the Q 

1- r 
are pairwise orthogonal and it is given 

by 1~,\ . We have thus recovered the usual rule for 
the probability of measuring the quantity 
It is given by /ol.,.. l'" • 

p 
r 

9) From the foregoing discussion it is clear that 
the new interpretation of states of a subsystem is in 
complete agreement with the usual rules of quantum 
mechanics. Essential in this result is that the two systems 
S and m maintain their identity and in spite of the 
interaction, each remains a system of its own. 

There is another interpretation possible which pre-
cludes the spearate identification of S and m. Indeed 
we may consider S and m together as a joint classical 
system Z: with the orthogonal projections 7Ty ;. P,. Q.,. 
as observables. 

In this case the reasoning employed before, invol-
ving the new interpretation of states is not possible and 
we are at a loss t o explain in this manner the distinction 
between the pure state f' and the mixture W.:: Z /q'r/2 II,... 

The Schr~dinger evolution implies that the state 
after the measurement is 1.f. while the actual measurement 
seems to say that the final state is W. 

The solution of this paradox is due to the following 
fact: The observables of a classical system do not re-



-54-

present all selfadjoint operators but only a commuting 
subs~t of such operators. In the present case it is the -set //~ of orthogonal projections (and all functions 
thereof) which are observables. This has as a consequence 
that certain states cannot be distinguished from one 
another. They are then said to be equivalent. 

More precisely if ~ is the set of all observables, 
we say w1 and w2 are equivalent with respect to 0-if 

It is easy to see that this is an equivalence relation 
which we may write in the form 

w, tV wl.. (17) 

If W is any state then we designate by { W J the set 
of all states equivalent to W. An individual state W 
will be called a microstate and an equivalence class W 
a macrostate , 

(5) 

(6) 

The initial state L ol-r rfr®~ is a microstate as 
r 

That is, the equivalence class which well as a macrostate. 
Co11fOIi11 S 

contains it~no other microstate. But the final state 
' is not of this kind. In fact it is easy. to show that with 
respect to the system Tr;.. the two states (projection into 
1f ) and W are always equivalent so that we may write 

w c Ii;) (7) 
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Thus the two states are not distinguishable by measure-
ments from the classical system /lr • There is therefore 
no difficulty as far as the measurements are concerned 
in the difference of the description of the microstates. 
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APPENDIX I 

A mathematical model for the lattice of yes-no ex-
periments. 

The following mathematical model shows that the notion 
of randomness which is used in the text can be eliminated 
from the axiomatic. It is due to Prof. W. Reinhardt of the 
University of Colorado in Boulder. 

We denote by~ the set of all yes-no experiments and 
by L the set of all states. 

For every 
element (a,s) 

a ef_ and every s e-2 , that is every 
from the product set r >c x , there exists 

a "trial set" D5
• This set is to some extent arbitrary a 

but it may be identified with a countably infinite one. 
Let t (E D~ • For any fixed s € L' and a ~ [ there 
exists a function a : D~ ~ {o,l} . We denote it by 
a(t) and refer to it as the trial outcome in the state s. 

Let a, f3 be two elements from C . We define an 
element a • f3 by giving its 

(i) Ds = Ds x Ds 
a f3 a f3 

and its values 

(ii) 

More generally for any family 

---(I a. by 
1 

x 

domain as 

{ 1,2 ~ 

i = 1 

i = 2 

a. (i E I) we define 
1 
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Appendix I 

D s (~ D~i ) X I , t = x ti 11 of\ = 
iE.I 

(i) 

(ii) 
s 

( V "1) l t,j) = a · (t. ) f J E [' V t- e X o~. 
-) J ) ' . 

i €I 1€-I 

We further define a v by 

(i) 

(ii) a v (t) = 1-a(t) . 

We postulate the following two properties 

(II) a € c ~ o<. ,y e ~ J 

and we define 

S is 'true' for the state s if and only if 

a(t) = 1 E Ds 
a 

We have then the following 

(y o(,· ) v =- 11 o(; v 
t€i:. ie-x 

Theorem: 

Proof: verify 

The rest of the construction proceeds now as in the text. 
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APPENDIX II 

The problem is this 
satisfying thus 

Let W be a density operator, 

2 
W* = w "> 0 w <: w (2.1) -

Tr 14 - I 

Is it possible to represent w in more than one way as a 
mixture of (not necessarily orthogonal) pure states ? The 
answer is obviously yes if the operator W is degenerate. 
For the subspace spanned by the eigenvectors of a dege-
nerate eigenvalue is then of dimension larger than 1 and 
within this subspace every vector is eigenvector. Thus 
any orthogonal system of such vectors will give rise to 
a new mixture with the same density matrix. We may thus 
discuss the non-trivial case that all eigenvalues of W 
are simple. It obviously suffices to consider a two-di-
mensional space. 

In this case we have from the spectral theorem two 
orthogonal projections P1 and P2 of rank 1 and two real 
numbers 1'1 > o, A2 > o, 1'1 + A2 = 1, 1'1 -:::f: t-2 , 

such that 

(2,2) 

We wish to construct two other projections of rank 1, 

Ql and Q2 and two real numbers µ1 and. µ2 µl > o, µ2 > o, 

µl + µ2 = 1 such that 

w = µl Q.l + µ2 Q.2 (2,3) 
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It is obvious that Q1 
since the uniqueness of the 
would then imply that Q1 = 

" 

and Q2 cannot be orthogonal 
spectral resolution of W 
P1 and Q = P • 2 2 

It follows from (2.3) that the projections Q1, Q2 
must satisfy the condition 

µ ' a + µ2 al2 = Al II 
(2.4) 

µ I a + µ2 a22 = X.2 
l.1 

(2.5) where a = Tr (P Q ) rs r s 

A first condition for the possibility of a solution is thus 

./J - det (a ) rs 0 (2.6) 

A second set of conditions is obtained by the requirement 
that the solutions for µ1 and µ2 obtained from (2.4) 
must be positive. Thus we have the two diophantine 
equations 

' 1 ,\ ' ~'2.. 

1 > 0 - ....\1 A o(.u 

A1 
(2.7) 

' I ~ .. > 0 ...... 
11 c(2., A i. 

The coefficients a are subject to satisfy the property rs 

= (2.8) 

which follows from (2.5). 
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Appendix II 

These equations have in general many solutions. It 
suffices to give an example: 

= ! a J I II 

Then all the conditions are satisfied and there exist 
two projections Q1 and Q2 and two numb~rs 
and µ2 =- i , which satisfy ( 2. 3). 

I 
µl = J 
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