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Summary For classes of symplectic and symmetric time-stepping
methods — trigonometric integrators and the Stérmer—Verlet or leap-
frog method  applied to spectral semi-discretizations of semilinear
wave equations in a weakly nonlinear setting, it is shown that energy,
momentum, and all harmonic actions are approximately preserved
over long times. For the case of interest where the CFL number is
not a small parameter, such results are outside the reach of stan-
dard backward error analysis. Here, they are instead obtained via a
modulated Fourier expansion in time.

1 Introduction

This paper is concerned with the long-time behaviour of symplec-
tic integrators applied to Hamiltonian nonlinear partial differential
equations, such as semilinear wave equations. For symplectic meth-
ods applied to Hamiltonian systems of ordinary differential equations,
the numerically observed long-time near-conservation of the total en-
ergy, and of actions in near-integrable systems, can be rigorously
proved with the help of backward error analysis. This interprets a
step of a symplectic method as the exact flow of a modified Hamilto-
nian system, up to an error which in the case of an analytic Hamil-
tonian is exponentially small in 1/(hw), where h is the small step
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size and w represents the largest frequency in a local linearization of
the system; see Benettin & Giorgilli [2], Hairer & Lubich [11], Re-
ich [16], and Chapter IX in Hairer, Lubich & Wanner [14]. When
the symplectic method is applied to a semi-discretization of a partial
differential equation, however, then the product hw corresponds to
the CFL number, which in typical computations is not small but of
size 1. In this situation, the “exponentially small” remainder terms
become of magnitude O(1), and no conclusions on the long-time be-
haviour of the method can then be drawn from the familiar backward
error analysis. Nevertheless, long-time conservation of energy, and of
momentum and actions when appropriate, is observed in numerical
computations with symplectic methods used with reasonable CFL
numbers. The present paper presents a proof of such conservation
properties in the case of semilinear wave equations in the weakly
nonlinear regime, over time scales that go far beyond linear pertur-
bation arguments. To our knowledge, the results of this paper are
the first results that rigorously prove the remarkable long-time con-
servation properties of symplectic integrators on a class of nonlinear
partial differential equations.
We consider the one-dimensional nonlinear wave equation

Ut — Ugg + pu+g(u) =0 (1)

for t > 0 and —7 < z < 7 subject to periodic boundary conditions.
We assume p > 0 and a nonlinearity g that is a smooth real function
with ¢(0) = ¢’(0) = 0. We consider small initial data: in appropriate
Sobolev norms, the initial values u(-,0) and u(-,0) are bounded by a
small parameter . Notice that by rescaling u, this assumption could
be rephrased as a O(1) initial datum but a small non-linearity.

In Section 2 we recall the exact conservation of energy and mo-
mentum and, less obvious, the near-conservation of actions over long
times ¢t < eV, where N only depends on a non-resonance condi-
tion on the frequencies, as shown by Bambusi [1] and Bourgain [3].
With the technique of modulated Fourier expansions that is central
also to the present paper, the near-conservation of actions along so-
lutions of (1) has been studied in our paper [6], and for spatial semi-
discretizations of (1) by spectral methods in [13]. After discussing the
semi-discretization in Section 3, we turn to the time discretization in
Section 4.

We consider a class of symplectic and symmetric trigonometric
integrators discussed in [14, Chap. XI1I], and the familiar Stérmer—
Verlet or leapfrog method. In Section 4 we describe the trigono-
metric methods and present numerical experiments illustrating their
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conservation properties, which appear particularly remarkable when
confronted with the behaviour of a standard explicit Runge-Kutta
method.

In Section 5 we state the main result of this paper, concerning the
long-time near-conservation of energy, momentum and actions along
numerical solutions in the full discretization. The result is proved in
Sections 6 and 7, using the technique of modulated Fourier erpan-
stons. This approach was first used for studying long-time conserva-
tion properties of numerical methods for highly oscillatory ordinary
differential equations with a single high frequency in [12], and later
extended to several frequencies in [5]; see also [14, Chap. XIII] and
further references given there. The extension of this technique to in-
finitely many frequencies, as occur in equation (1), was studied for the
analytical problem in [6], and our treatment here essentially follows
the lines of this previous work, with additional technical complica-
tions arising from the discretization.

In Section 8 we give similar long-time conservation results for the
Stormer—Verlet /leapfrog method used with step sizes in the linear
stability interval. These results follow from the previous ones by inter-
preting the leapfrog method as a trigonometric method with modified
frequencies.

We are aware of two other papers that deal with long-time energy
conservation of symplectic integrators for partial differential equa-
tions. Cano [4] also considers the nonlinear wave equation and aims
at extending the classical backward error analysis to this situation.
Long-time conservation properties are obtained under a list of un-
verified conditions formulated as conjectures. For symplectic split-
ting methods applied to the linear Schrédinger equation with a small
potential, results on long-time energy conservation are given by Du-
jardin & Faou [8].

2 The nonlinear wave equation with small data

The semilinear wave equation (1) conserves several quantities along
every solution (u(x,t),v(x,t)), with v = Ou. The total energy or
Hamiltonian, defined for 27-periodic functions u, v as

H(u,v) = — /7r (é( 4 (@) + pu?) () + U(u(m))) dr, (2)

:g .
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where the potential U(u) is such that U'(u) = g(u), and the momen-
tum

o0

™
K(u,v) = Py Opu(z)v(z)de = — Z iju_jvj (3)

_W ST
are exactly conserved along every solution (u(, t),v(- t)) of (1). Here,
u; = Fju and v; = Fjv are the Fourier coefficients in the series
u(z) = 372 uje’® and correspondingly v(z). Since we consider
only real solutions, we note that u_; =u; and v_; = v;. In terms of
the Fourier coefficients, equation (1) reads

afuj + w]zuj + Fjg(u) =0, jEZ, (4)

with the frequencies
wj=p+j°

The harmonic actions

Wi 1
5(9) = Pl + 5ol (5)
for which we note I_; = I;, are conserved for the linear wave equation,
that is, for g(u) = 0. In the semilinear equation (1), they turn out to
remain constant up to small deviations over long times for almost all
values of p > 0, when the initial data are smooth and small [1,3,6].
We recall the precise statement of this result, because this will help
to understand related assumptions for the numerical discretizations.
We work with the Sobolev space, for s > 0,

o
H* = {oe M) ol <oc},  loll = (D wluf?) "

j=—oc

where v; denote the Fourier coefficients of a 2r-periodic function v.
For the initial position and velocity we assume that for suitably large
s and small ¢,

(R0l + o 0)12) " < ©

Since the analysis of the near-conservation of actions encounters
problems with small denominators, we prepare for the formulation of
a non-resonance condition. Consider sequences of integers k = (k;)72,,
with only finitely many k¢ # 0. We denote |k| = (|k¢[);2,, and let

o0

o0 00
k
k=S Jkely  kew=3kw, wM=T[u™ (7
=0

/=0 /=0
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for real o, where we use the notation w = (w¢)72,. For j € Z, we write
() = (0,...,0,1,0,...) with the only entry at the |7]-th position.

For an arbitrary fixed integer N > 1 and for small € > 0, we
consider the set of near-resonant indices

Re={(j,k) : j € Z, k # £(j), |[k| < 2N with |w; — [k-w|| < /?}.

(8)
We impose the following non-resonance condition: there are o > 0
and a constant Cj such that

sup < m elkll/2 < cyeN 9)
(k)eR. W7 | ©

As is shown in [6], condition (9) is implied, for sufficiently large o,
by the non-resonance condition of Bambusi [1], which holds true for
almost all (w.r.t. Lebesgue measure) p in any fixed interval of positive
numbers.

Theorem 1 [6, Theorem 1] Under the non-resonance condition (9)
and assumption (6) on the initial data with s > o + 1, the estimate

> Ii(t) — I, (0
Z 5+1M§Ca for 0<t<eg N+
=0
with I,(t) = Ir(u(-,t),v(-,t)) holds with a constant C which depends
on s, N, and Cy, but is independent of € and t.

The smallness of the initial data, which implies that the non-
linearity is small compared to the linear terms, is essential for our
analysis. Since we do not impose any further restrictions on the non-
linearity, such an assumption permits to avoid blow-up in finite time.

3 Spectral semi-discretization in space

For the numerical solution of (1) we first discretize in space (method
of lines) and then in time (Section 4). Following [13], we consider
pseudo-spectral semi-discretization in space with equidistant colloca-
tion points zy = kn/M (for k = —M,...,M — 1). This yields an
approximation in form of real-valued trigonometric polynomials

M )= Y g0, oM@ = S pied (10)

lil<M l7]<M
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where the prime indicates that the first and last terms in the sum
are taken with the factor 1/2. We have p;(t) = <g;(t), and the 2M-
periodic coefficient vector ¢(t) = (g;(t)) is a solution of the 2M-
dimensional system of ordinary differential equations

d2
dt2

The matrix {2 is diagonal with entries w; for |j| < M, and Fons
denotes the discrete Fourier transform:

+2q=flg) with  f(q) = —Fonrg(Fpphq). (11

M—-1

j 2M Z wg e,

Since the components of the nonlinearity in (11) are of the form

(Fonrw)

0

fi(@) = ~5,—=V(@) with V(g o7 Z U((F5ara)k)

we are concerned with a finite-dimensional complex Hamiltonian sys-
tem with energy

1 !
Hy(g,p) =5 Y (Inil? + o2 ll?) + V(o). (12)
li|<M

which is exactly conserved along the solution (g(t), p(t)) of (11) with
p(t) = dq(t)/dt. We further consider the actions (for |j| < M) and
the momentum
1 "o
>+ %|pj|2a K(g,p) = — Z 1jq-jpj, (13)
! jl<m

»
Ii(g,p) = gjl%

where the double prime indicates that the first and last terms in the
sum are taken with the factor 1/4. The definition of these expres-
sions is motivated by the fact that they agree with the corresponding
quantities of Section 2 along the trigonometric polynomials u, vM
(with the exception of I1 s, where a factor 4 has been included to get
a unified formula). Since we are concerned with real approximations
(10), the Fourier coefficients satisfy ¢—; = g; and p_; = p;, so that
also I_; = I;.

On the space of 2M-periodic sequences ¢ = (g;) we consider the

weighted norm
" 1/2
lalls = (D" lasl?) " (14)
lj1<M
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which is defined such that it equals the H® norm of the trigonometric
polynomial with coefficients ¢;. We assume that the initial data ¢(0)
and p(0) satisfy a condition corresponding to (6):

(la@12,1 + pO)2) " < <. (15)

Theorem 2 [13, Theorems 3.1 and 3.2] Under the non-resonance
condition (9) with exponent o and the assumption (15) of small initial
data with s > o + 1, the near-conservation estimates

M
I, (t) — I,(0

=0 € for 0<t<e N
|K(t) - K

5 (0] < CteM—s1

€
Jfor actions I(t) = I;(q(t), p(t)) and momentum K (t) = K (q(t), p(t))
hold with a constant C' that depends on s, N, and Cy, but is indepen-
dent of e, M, and t.

Since the expression Zé\i o w1 I,(t) is essentially (up to the fac-
tors in the boundary terms) equal to the squared H**! x H® norm
of the solution (q(t), p(t)), Theorem 2 implies long-time spatial reg-
ularity:

1/2
(lg@Ir +IpO) "~ <e(l+Ce) for t<e™H (16)

Theorems 1 and 2 have been included as a motivation of our results.
They will not be used in the following.

4 Full discretization and numerical phenomena

We consider the class of time discretization methods studied in [14,
Chapter XIII], which gives the exact solution for linear problems (11)
with f(g) = 0, and reduces to the Stérmer—Verlet/leapfrog method
for (11) with £ = 0:

g"tt — 2cos(h2) " + ¢" 1 = KAV f(Dg™), (17)

where ¥ = ¢(h{2) and & = ¢(hf2) with filter functions ¢ and ¢
that are real-valued, bounded, even, and satisfy ¢(0) = ¢(0) = 1. A
velocity approximation p™ is obtained from

2h sinc (h§2) p" = ¢" Tt — ¢! (18)
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provided that sinc (h{2) is invertible. Here we use the notation sinc§ =
sin&/€.

For an implementation it is more convenient to work with an
equivalent one-step mapping (¢",p") — (¢"*!,p"*!), which is ob-
tained from adding and subtracting the formulas (17) and (18) and
which reads

¢"T = cos(h2)q"™ + hsinc (h2)p" + %hQ v f(Pq") (19)

p" T = —sin(h2)q" + cos(h2)p™ + %h (Lpof(éq") + Wlf(@qnﬂ)).

Here, ¥y = ¢(h{2) and ¥; = 11 (h{2), where the functions ;(§) are
defined by the relations ¢(§) = sinc (£)¥1(€) and (&) = cos(&)1(E).
These methods are symmetric for all choices of ¥ and ¢; they are
symplectic if

(&) = sinc (§) P(&) for all real &. (20)

The methods (19) with this property are precisely the mollified im-
pulse methods introduced in [9]. Interpreted as a splitting method,
they can be extended for fully non-linear problems.

Condition (20) will be assumed in the following. We note, however,
that for non-symplectic methods, the transformation of variables

" =x(h2)q",  p" = x(h2)p", (21)

turns the method (19) into a symplectic method if x can be chosen
as a positive solution of y(&)? = ¢(&) sinc (€)/v(€).

In our numerical experiments we consider the nonlinear wave equa-
tion (1) with the following data: p = 0.5, g(u) = —u?, and initial data

u(z,0) = 0.1- (%71)3(%&)2, Byu(z,0) = 0.01-% (%71) (%Hf

for —m < x < m. The spatial discretization is (11) with dimen-
sion 2M = 27. Considered as 2m-periodic functions, the initial data
u(+,0) and dyu(-,0) have a jump discontinuity in the second and first
derivative, respectively. The assumption (15) is therefore satisfied for
s < 1.5.

We first apply a standard explicit Runge Kutta method in the
variable stepsize implementation DOPRI5 of [15], with local error
tolerances Atol = 107> and Rtol = 10~*. The program chose 32735
accepted steps for the integration over the interval 0 < ¢t < 550,
which corresponds to an average stepsize h = 0.0168 and average CFL
number hwyr = 1.075. In both pictures of Figure 1 we plot the actions
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Fig. 1. Actions, total energy (upper bold line), and momentum (lower bold line)
along the numerical solution of DOPRI5, average CFL number 1.075.
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Fig. 2. Actions, total energy (upper bold line), and momentum (lower bold line)
along the numerical solution of the trigonometric integrator (19) with i) = sinc

and ¢ = 1 for the CFL number hwps = 6.4.

I; of (5), the total energy Hjs of (12), and the momentum K of (13)
along the numerical solution. The left-hand picture illustrates that
even on the short interval 0 < ¢ < 1, the actions with values below
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1072

é_ hws = 7 — 0.01 hws =7 é_hw4:7r+0.01
C ______// N
108 — — — | BT E
1074; C C
10°° w
1076 ;f—m—’_"—
P AN o A A
10_7M E E
o I T n o n Tt E"“.—’-‘I\"’._’\
0 10000 20000 1000t 20000 10000

Fig. 3. Illustration of numerical resonance; method (19) with ¢ = sinc and ¢ =1

the tolerance are not at all conserved. The right-hand picture shows
substantial drifts in all the quantities over a longer time interval.

We now consider method (19) with ¢ = sinc and ¢ = 1, which
was originally proposed in [7]. The method can also be viewed as a
special case of the impulse method used in molecular dynamics [10,
17]. We apply the method with stepsize h = 0.1 to the above problem.
The CFL number then is hwys &~ 6.4. Figure 2 illustrates that energy,
momentum and actions are very well conserved. Since the regularity
of our initial data is not very high (s < 1.5), this shows that the
regularity assumption s > o+ 1, where o = 27 already for N = 2 (c.f.
[6]) can be relaxed in concrete examples when a fixed p is considered.

In a further experiment with the same problem, we choose step-
sizes such that hws is close to 7 (Figure 3). In this situation of a
numerical resonance, the action Iy is no longer preserved, which on
longer time scales also affects the conservation of energy. The reso-
nance behaviour depends strongly on the choice of the filter functions,
cf. [14, Section XIIL.2]. For example, with ¢ = sinc and 1) = sinc 2,
a method proposed in [9], no numerical resonance is visible.

5 Main results

To get rigorous statements on the good long-time behaviour illus-
trated in Section 4, we combine the techniques of [6], where the long-
time preservation of the harmonic actions along exact solutions of
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the semilinear wave equation (1) is shown, with those of [5], where
the long-time behaviour of the numerical method (17) is studied for
oscillatory Hamiltonian systems with a fixed number of large frequen-
cies. As for spectral semi-discretizations (cf. [13]), we are interested
in results that are valid uniformly in M, where 2M is the dimension
of the spatially discretized system (11).

The analytical tool for understanding the long-time behaviour of
the numerical solution of (11) is given by a modulated Fourier ex-
pansion in time (see [14, Chapter XIII] and [6]),

gty = > Met)elker (22)

[k[<2N

approximating the numerical solution ¢" at ¢ = nh. We use the no-
tation introduced in (7), where now k; = 0 for ¢ > M, since only
the frequencies wy for 0 < ¢ < M appear in the spatial discretization
(11).

In our analysis, we must deal with small denominators (see Sec-
tion 6). To control these terms, we will use non-resonance conditions.
As soon as, for a given step size h, the inequality

‘sin(%(wj —k-w)) -sin(%(wj —i—k-w))‘ > el/2p? (w; + k-w|) (23)

is violated, we have to make an assumption on the pair of indices
(7,k). For a fixed integer N > 1, subsequently used in the trunca-
tion of the expansion (22), the set of near-resonant indices becomes,
instead of (8),

Repn={(.k): 7] <M, |k|]| < 2N, k # +(j), not satisfying (23)}.

Similar to (9), we require the following non-resonance condition: there
are o > 0 and a constant C such that

sup  —_ K2 < o N (24)
(G k)eR.,, wolK -

Notice that, in the limit A — 0, condition (23) becomes equivalent
(up to a non-zero constant factor) to }w]z—(k-w)Q} > gl/2. |wj+k-wl],
so that (24) corresponds precisely to the non-resonance condition (9)
for the semilinear wave equation.

We assume the further numerical non-resonance condition

|sin(hw;)| > hel/?  for |j| < M. (25)
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Yet another non-resonance condition, which leads to improved con-
servation estimates, reads as follows:

‘ sin(%(wj k. w)) : sm(g(wj Yk w)) ’ > ch?[p(hw;)|  (26)

for (j,k) of the form j = j; + jo and k = £(j1) £ (j2),

with a positive constant ¢ > 0. In the limit h — 0, this inequality
becomes ’w]? — (k- w)Q} > 4¢ which is automatically fulfilled for the
considered pairs (j, k).

We are now in the position to state the main result of this paper.

Theorem 3 Under the symplecticity condition (20), under the non-
resonance conditions (24) with exponent o and (25)-(26), and under
the assumption (15) of small initial data with s > o +1 for (¢°,p°) =
(¢(0),p(0)), the near-conservation estimates

|Har(q", p™) — Har (g%, p°)|

5 < (e
13
K(d".p") — K 0 .0
| (q Y ) S (q y D )| SC(E+M_S+€tM_S+1)
g
M
YW L") = 1e(d® )| _
J4 2 —
g
=0

for energy, momentum and actions hold for long times
Ogt:nhgsd\wl

with a constant C' which depends on s, N, and Cy, but is independent
of the small parameter €, the dimension 2M of the spatial discretiza-
tion, the time stepsize h, and the time t = nh. If condition (26) fails
to be satisfied, then Ce is weakened to Ce'/? in the above bounds.

In addition we obtain, by the argument of Section 6.2 in [13],
that the original Hamiltonian H of (2) along the trigonometric inter-
polation polynomials (u”(az), v”(a:)) with Fourier coefficients (qy, p?)
satisfies the long-time near-conservation estimate

|H(u",v") — H(u’,v°)]

5 <Ce for 0<nh<egNtL
€

For a non-symplectic symmetric method (19) the result remains valid
in the transformed variables (21).

The proof of Theorem 3 is given in the subsequent Sections 6
and 7. It is based on the idea of interpolating the numerical solution
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by a function where different time scales are well separated. This is
done by the ansatz (22) which is a truncated series of products of elwit
(oscillations with respect to the fast time ¢) with coefficient functions
that are smooth in the slow time 7 = et. The proof then proceeds as
follows:

— Proving existence of smooth functions zX(7) with derivatives
bounded independently of ¢ (on intervals of length e~1). This is
the technically difficult part and elaborated in Section 6. It re-
quires non-resonance conditions and a careful truncation of the
series.

— Establishing a Hamiltonian structure and the existence of formal
invariants in the differential and algebraic equations for the func-
tions 2X(7) (Sections 7.1 — 7.3).

— Proving closeness (on intervals of length e~!) of the formal invari-
ants to actions Iy, to the total energy H, and to the momentum
K (Section 7.4).

— Stretching from short to long intervals of length e~V 1 by patching
together previous results along an invariant.

6 Modulated Fourier expansion

Our principal tool for the long-time analysis of the nonlinearly per-
turbed wave equation is a short-time modulation expansion con-
structed in this section. To construct this expansion, we combine
the tools and techniques developed in [5], [6], and [13].

6.1 Statement of the result

In this section we comnsider, instead of the symplecticity condition
(20), the weaker condition

(k)| < C|sine (hwy)|  for || < M. (27)
In the following result we use the abbreviations (7) and set

(Il +1), k70
(k] =

W N =

, k=0.
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Theorem 4 Under the assumptions of Theorem & (with the symplec-
ticity assumption (20) relaxed to (27)), there exist truncated asymp-
totic expansions (with N from (24))

gty =Y ety
k|| <2N (28)

@tk —q—h)
p(t) = sinc (h£2)7! o ,

such that the numerical solution ¢™,p™ given by method (19), satisfies
lg" —@®) o1+ 6" —B(B)lls < CeV for 0<t=nh<e (20)
The truncated modulated Fourier expansion is bounded by
1G@®)]ls1+ [BO)]s < Ce for 0<t<e™ (30)
On this time interval, we further have, for |j| < M,

Gi(t) = 29 (et) et 2 D ety et 4ry L with |rfl < CE2

(31)
(If condition (26) fails to be satisfied, then the bound is ||r|/s+1 <
053/2.) The modulation functions z¥ are bounded by

K 2
> (Siel) <o )

[k[<2N

Bounds of the same type hold for any fized number of derivatives of
k

2 with respect to the slow time T = et. Moreover, the modulation
functions satisfy z:;-( = z;-‘. The constants C' are independent of ¢,
M, h, and of t < e~ 1.

The proof of this result will cover the remainder of this section. It
is organized in the same way as the proof of the analogous result for
the analytical solution in [6].

6.2 Formal modulation equations

We are looking for a truncated series (28) such that, up to a small
defect,

q(t + h) — 2cos(h£2) §(t) + G(t — h) = b2 f(Pq(t))
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with g(0) = ¢°, p(0) = p°, see (17) and (28). We insert the ansatz
(28) into this equation, expand the right-hand side into a Taylor series
around zero and compare the coefficients of ¢/®“)t We then get

(m)
g™
m!

Lk = —h%p(hw)) > (33)

m>2
3 ST lhw) A (R, )T

kl+..4+km=k j1+...4+Jjm=j mod 2M

where the right-hand side is obtained as in [13]. The prime on the
sum over ji,..., j,, indicates that with every appearance of z}-‘: with
ji = £M a factor 1/2 is included. The operator L;-‘ is given as

(Ll-‘zl-‘) (1) = eih(k"")z;-‘ (t+¢eh)—2 cos(hwj)z;-‘(T) + efih(k"")z;‘(T —¢eh)

= 4s<j>+ks<j>_kz;-‘(7) + QiSQkhEZ.;-((T) + Cgkh2822;$(7') +....
(34)

Here, s = sin(gk-w) and ¢, = cos(gk w), and the dots on z;-‘

represent derivatives with respect to the slow time 7 = et. The higher

order terms are linear combinations of the rth derivative of z}-‘ (for

r > 3) multiplied by h"e" and containing one of the factors sg or
Cok-

The first term in (34) vanishes for k = £(j), so that in this case

the dominating term becomes +2ih sin(hwj)ez';-tQ ) due to condition

(25). For k # £(j) the first term becomes dominant, if the inequality
(23) holds. Else, it is not clear which term is dominant, but then the
non-resonance condition (24) will ensure that the defect in simply
setting z;-‘ = 0 is of size O(eN¥*!) in an appropriate Sobolev-type
norm.

In addition, the initial conditions (0) = ¢" and p(0) = p” need to
be taken care of. The condition g(0) = ¢" reads

> 20 =4, (35)

Ik[<2N

and for p(0) = p°, we obtain from (28)

1

- - k ikw)h _ k¢ —i(kew)h) _, 0
2h sinc (hwj) Z <z] (eh)e ZJ( eh)e ) pj. (36)

[kl<2N
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6.3 Reverse Picard iteration

We now turn to an iterative construction of the functions zX such

that after 4N iteration steps, the defect in equations (33), (35), and
(36) is of size O(¢V*1) in the H® norm. The iteration procedure we
employ can be viewed as a Picard iteration on (33) to (36), where
we keep only the dominant terms on the left-hand side. We call it
reverse Picard iteration, because the highest appearing derivatives
do not carry the new iteration number n + 1.

Indicating by []* the nth iterate of all appearing variables z;‘
taken within the bracket, we set for k = +(j)

+2ihesy; [z'jﬂ”rll BLIDS g™
m>2

- (37)

! k! K™
kl+..+km=k ji1+...4+Jjm=j mod 2M
. n
— (CzthEQ}f;t@) + .. >:|

with the sines and cosines sy; and cy; defined after formula (34). For
k # +(j) and j that are non-resonant with (23), we set

n+1 (m) (o
43(j>+k5(j>—k {Z;(:| = [— hz?,b(hwj) Z g '( ) X (38)
m>2

m

Z Z , (;S(hwjl)z;-‘ll o (ﬁ(hwjm)z;‘:

kl+...+km=k j1+...4+jm=j mod 2M
n
— (2isawchez + enh?e?K + )],

whereas we let z;-‘ = 0 for k # £(j) in the near-resonant set R.j.

The dots indicate the remainder in (34), truncated after the eV term.
On the initial conditions we iterate by

. v n+1 n
0 +520]" = [ - Y 0] (39)
k#+(j)
and on (36) by
iw; [ 27(0) ~ 29 (0)
_ L k i(kew)h  —i(k-w)h
2h sinc (hwj) L{;ﬁ % (0) (e © ) (40)

= 3 ((Heh) — ) — ((eh) — K))een)]"

[kl<K
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In all the above formulas, it is tacitly assumed that |k|| < K := 2N
and ||k'[| < K for i = 1,...,m. In each iteration step, we thus have
+(j)

an initial value problem of first-order differential equations for z;
(for |j| < M) and algebraic equations for zk with k # +(j).

The starting iterates (n = 0) are chosen as 2 (7 k(1) =0 for k # £{j),
and z; <J>(7‘) = zj-t<j>(0) with z; <]>( 0) determined from the above

formula. . o

For real initial data we have q(lj = q? and p(lj = p(])-, and we
:;‘] "= [zﬂ " for all iterates
n and all j,k and hence gives real approximations (28).

observe that the above iteration yields [z

6.4 Rescaling and estimation of the nonlinear terms
As in [6], we will work with the more convenient rescaling

k| i
Kk w k k __ (k e k
=gy = (= g2

considered in the space H* = (H*)X = {c = (M)kex : & € H*} with

norm |||c[|? = > kek IK][2 and where the superscripts k are in the
set

K = {k = (k;)~, with integers k, : |k|| < K}
with K = 2N. The nonlinear function f = ( ka) defined as

Wl
= 20 Z

el T+ k]

——X
Z WK+ k™|

k4. .+km=k

ST ) - by, )k

J1+.-FJjm=j mod2M

g(m

expresses the nonlinearity in (33) in the rescaled variables. With the
fact that H?® is a normed algebra, the following bounds are obtained
as in [6, Section 3.5] by exploiting the connection between the 2M-

periodic sequence c¥ and the corresponding trigonometric polynomial

(ct. [13)):
> 155 <eP(llelli?) (41)

k<K
> 1A )12 <& Pu(llell?), (42)

l7|<M
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where P and P; are polynomials with coefficients bounded indepen-
dently of €, h, and M. Notice that the function ¢ is bounded.
With the different rescaling

s|k| sk
ok @)k
G=—mra: =@y =g e 9

considered in the space H' = (H')X with norm ||[¢]||? = 2 lKl|<K 12¢)12,
for j/‘;k defined as ka but with w!*l replaced by w*®, we have similar

bounds . N )
> IFEIT <eP(lle)})
|Ik|| <K

STIFED @2 < & Bl

l71<M

(44)

with other polynomials P and ﬁl.

6.5 Abstract reformulation of the iteration

For c = (c;‘) € H® with c;-‘ =0 for all k # £(j) with (j, k) € R., we
split the components of ¢ corresponding to k = +(j) and k # +(j)
and collect them in a = (a;-‘) € H’ and b= (b;‘) € H?, respectively:

a;‘: K if k = +(j), and 0 else

J 45
b;‘ = 5‘ if (23) is satisfied, and 0 else. (45)

We then have a +b = ¢ and ||a]||? + ||b]|? = |||c||*>. We now intro-
duce differential operators A, B acting on functions a(7) and b(7),
respectively:

£GY, N 1 12 2.£()
(Aa); ™ () = F2ihesy; (62” Pretd; () £ )
1 . ..
BbX(r) = —  — (9 k 227k
(Bb);(7) T5g) 150 & ( isoheb; (7) + cah”e”bj (1) + >

for (4, k) satisfying (23). These definitions are motivated by formulas
(37) and (38), and as in these formulas, the dots represent a trun-
cation after the eV terms. In terms of the nonlinear function f of
the preceding subsection, we introduce the functions F = (F}‘) and

G= (G;‘) with non-vanishing entries

+(j) I A )
£ "(a,b) = +ie sinc (hiuj) fj a+b),
G¥(a,b) = ACELIT) fX(a+b)

48 (jy 4 kS () —k
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for (j,k) satistying (23). Further we write
k k
(20)7 = (w; + k- wl) ek, (Te), = t(huwy) k.

In terms of a and b, the iterations (37) and (38) then become of the
form
atl) — R-1F(a(™ b)) — Aa(™

46
b *+D = -1 G(a™ b™) — Bb™. (46)

By (42), condition (27) gives the bound [||F|||, < Ce'/2, whereas con-
dition (25) yields [|&~'227'F||, < C. By (41) and (23), we have
the bound |||Gl|, < C. These bounds hold uniformly in e, h, M on
bounded subsets of H*. Analogous bounds are obtained for the deriva-
tives of F and G. The operators A and B are estimated as

N dl
li(Aa)()ll, < ¢S K232 | Za(r)
1=2

S

N
. d!
< 12 1-2_1-1/2
WBMﬂm_CenwﬂM+sz/€ || =)

S

The bound for A is obtained with (25), that for B uses (23) and the
trivial estimate |sox| = |sin(hk - w)| < hlk - w].

The initial value conditions (39) and (40) translate into an equa-
tion for a™*1) of the form

a1 (0) = v + Pb™(0) + Q(a + b)™ (ch) (47)

where v has the components

Gy Wi (1o 1 g
293 (e )

By assumption (15), v is bounded in H®. The operators P and @ are
given by

e
i b

w;

(Pb)j“")(O):—@ ™ (sin(w;h) £ sin((k - w)h) )
k#+(j)

. Wi _ (]
(Qe) 9 (r) = -2 Z <€1(k.w)h il (C;;(T) _ ck(O))

J o 3 . k
4iesg; k|| <K wlkl

e €I
— ek )hm (C?(—T)—C?(O)))
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For these expressions we have the bounds

lP)O)]I, < CllE~" 2b0)]l,
(Qe)Emll, < Ce sup [ =te(r)ll

—eh<7<e
with a constant C that is independent of &, h, and M, but depends
on K = 2N. For the first estimate we use |sin(w;jh)£sin((k-w)h)| <
h(w; + |k - w|), condition (27), and the Cauchy-Schwarz inequality
together with the bound (cf. Lemma 2 of [6])

Z w2kl < 0 < . (48)
k<K

Similarly, applying the mean value theorem to c(7) yields the second
estimate.
The starting iterates are a(®) (1) = v and b© (1) =0.

6.6 Bounds of the modulation functions

In view of the non-resonance conditions (23) and (25), and using the
assumption on the filter function (27), we can show by induction that
the iterates a™ and b(™ and their derivatives with respect to the
slow time 7 = et are bounded in H® for 0 < 7 <1 and n < 4N: more
precisely, the (4N)-th iterates a = a*N) and b = b(*N) satisfy

2l < €, ll2a(n)ll, < C'2, Jle~ta(n)ll, < C.

Il 12b(r)||, < C, (49)

with a constant C' independent of e, h, M, but dependent on N. We
also obtain analogous bounds for higher derivatives of a and b with
respect to 7 = et. For z;‘ = elikd Ikl c;‘ with (c;‘) = c4N) = a(4N) 4
bAN) | the bounds for a and b together yield the bound (32).

These bounds imply |[|c(7) —a(0)[[,,; < C and as in [6, Section
3.7] give, using (48), the bound (30) for ¢(¢). For the function p(t),
defined in (28), we use z;-‘(et + eh)eilkwh z;-‘(st — gh)e ikwh —
z}‘(st)Qi sin((k -w)h) + r}‘, where by the mean value theorem |r§‘| <
2ehmax_.p<r<ch \z;‘(r)| Using the condition (27), the bounds (49)
yield in a similar way also the statement (30) for the function p(t).

Using (42) and (46) we also obtain the bound, for b = b(*M),

(3 1@ amy2)” < ce.
llk[|=1
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Moreover, condition (26) ensures that
Y Y Y e
l7|<M j1ti2=j k=+(j1)£(j2)

These bounds together with (49) yield (31).
With the alternative scaling (43) we obtain the same bounds (for
T=ct<1),

2O, <€, [192am)ll, < Ce/?, @ 2b()|, <C. (50)

and again

(3 b “12)" < c=. 61)

[[kf|=1

For the function a(7) these statements follow at once from the fact

that |[aX||; = ||a¥||s. For the function b( ) one has to repeat the
argumentation from before, but one needs no longer take care of
initial values.

In addition to these bounds, we also obtain that the map

B. Cc H**' x H* - H": (u(0),v(0)) — ¢(0)

(with B. the ball of radius & centered at 0) is Lipschitz continuous
with a Lipschitz constant proportional to e 1: at t = 0,

C
82 —&ulf + 1 2(b2 —b) I} < (Ilm U1||§+1+Hv2*v1|\§)- (52)

6.7 Defects
We consider the defect 6(t) = (d; (t))‘ <l in (17) divided by h?3(hw;):

q;(t + h) — 2cos(hw;)q;(t) + q;(t — h)
h2y(hw;)

8;(t) = — [(2q(1))
where f = (f;) is given in (11) and the approximation g(t) = (g;(t))
is given by (28) with z}‘ = (z;-‘)(‘lN ) obtained after 4N iterations of
the procedure in Section 6.3. We write this defect as

sty=Y_ det) ™+ Ry (@)(1).
Ik[<NEK
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Here we have set

g(m

k kk

Z Z L G(hwi)Zk L (R, )T

kl+...4+km=k j1+...+jm=j mod 2M

which is to be considered for ||k|| < NK, and where we set z;-‘ =0
for | k| > K = 2N. The operator Ei‘ denotes the truncation of the

expansion (34) after the ¢V term. The function Ry1 collects the
remainder term of the Taylor expansion of f after IV terms, and that
due to the truncation of the series in (34) after the eV term. Using
the bound (30) for the remainder in the Taylor expansion of f and
the estimates (49) for the (N + 1)-th derivative for z;-‘(r), we have

|RN4+1(9)]|s+1 < CeNTL
We now use the bound of [6, Section 3.8] to obtain
(<0 S [kl
N S

H Z dk(et)ei(k-w)t S

[kl<NK Ik[[<NK

(54)

In he following two subsections we estimate the right-hand side of
(54) by Ce2(N+1),

6.8 Defect in the truncated and near-resonant modes

For ||k|| > K = 2N (truncated modes) and for (j,k) in the set R,

of near-resonances we have by definition z] = 0. In both situations
the defect reads

g™ (0

3 S Glhwy)ZK (b, )

kl+4...+km=k j1+...+Jjm=j mod 2M

For truncated modes we write the defect as d¥ = e[l oIkl fk and
we notice that by (49) and (41), used with NK in place of K, the
bound [||f]|? < Ce holds. We thus have

Z Z/ w‘?s‘w“(\ d;"Q _ Z Z/ w‘?s‘f}(FEQ[[k]]

k> K []<M k> K [j]<M
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and hence, since 2[k]] = |[k|| +1> K +2 =2(N + 1),

SN M < s,

k> K [j]<M

For the near-resonant modes we consider the rescaling (43), so
that d;‘ = ellkl y=slkl ]ﬂ]‘ We have |Hf|||% < Ce by (50) and (44), so
that

2(s—1)
2s 2 wj 2[k] | 2
Y WPleMd = Y g MG
(jvk)eRs,h (jvk)ERs,h
261 2[K]
<C sup J

(GReR., w D

The non-resonance condition (24) is formulated such that the supre-
mum is bounded by C2 2N+1 and hence

S wFlwkldk|? < 02N, (55)
(j7k)€RE,h

6.9 Defect in the non-resonant modes

We now assume that |k|| < K and that (j,k) satisfies the non-
resonance condition (23), so that in the scaled variables c;‘ of Section
6.4 the defect satisfies

1
el — Ik (= Lk k1 rk(e)
w € c;
J (h%ﬁ(hwj) J )
Written in terms of the components a and b of (45) we have

sinc (hw;) (_'ﬂj)
P(hwy)

4811155
Ikl gk — k] G)+k>G)—k 1k k k
wldf =¢ ( P20 (hey) (b5 + (Bb)S) + f; (a+b)>.

It should be noted that the functions in this defect are actually the
4N-th 1terates aN) and b®N) of the iteration in Section 6.3. Ex-
pressing f; J>(a+ b) and fk(a+ b) in terms of F(a,b) and G(a,b)

wjd;'t(j) = 5<j:215wj + (Aa);-tm) + fjim(a + b))
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and inserting F and G from (46) into this defect, relates it to the
increment of the iteration in the following way:

+(j +(j . +(j5)7 (4N . +(7)71 (4N+1
w;d; Uy _ 2w;a] () ([aj (J)}( ) _[aj <]>]( ))7
+() . o sinc(hwj)
o v i= tiet ———=,
J ¥ (hwj)
K| 7k k (k] (4N) k(4N+1)
w!ldf = 3] ([bﬂ —[5] )
gl £ 45(5) K5 (j)—k
h2y(hwj)
Motivated by these relations we introduce new variables

Collecting these variables into vectors and using the transformed
functions

ﬁ#(ﬁ(a’g) — o) pEG) (a~'3,3"'b)

J J J
= f;V (@ 'a+ B 'b)
o BX(hw;) e oy
k TN Ak 1 1
GJ (a? b) T wj]+ |k . (.d| G] (OL aw@ b)

— Kl f]k(a*1§ + 8 'b)
the iteration (46)-(47) becomes

"o 1R (@E b) — 42

b+ =G(a, b) — Bb™ (57)
a0 (0) =av + Pb™(0) + Qa™ (eh) + Qb (ch).

In the 1terat1on for the initial values we abbreviate P = aPp !,
Q = aQpB !, which are bounded by

I(PB)O)I, < ¢V 1IbO)]],
l(@a)(eh)lll, < Ce? sup la(r)ll,

—eh<t<eh

I@B)Emll, < Ce2  sup (|27 b,

—eh<t<ech

In an H? neighbourhood of 0 where the bounds (49) hold, the partial
derivatives of F with respect to a and b and those of G with respect to



Numerical conservation properties for nonlinear wave equations 25

b are bounded by O(e'/?), whereas the derivatives of G with respect
to a is only O(1). This is the same situation as we had for the exact
solution in [6]. As in that paper one proves

~(4N+1) ~(4N

1£2(a (1) — (M), < CeNF?
[[bUN+D () — BUN)(7)||, < CeNF2
a4V D (0) —aM (o), < VT2

These estimates yield the desired bound of the defect in the non-
resonant modes (j,k) € R ;. Combined with the corresponding es-
timates of Subsection 6.8 we obtain

< > ||w|k|dk(7)||§>1/2 <CeNtofor T<1. (58)
[ k|| <K
Consequently, the defect 6(¢) (see Subsection 6.7) satisfies
1275 e = 180)], < CNH for £ <l (59)
For the defect in the initial conditions (35) and (36) we obtain
13(0) = ¢°lls+1 + [16(0) = p°lls < V.

, we obtain

For the alternative scaling Ei{ = ws|k|z;-‘

1/2
(Z stlkldk(T)H%) <CeNfor 7 <1, (60)
IKI<F

6.10 Remainder term of the modulated Fourier expansion
We write the method (19) in the form
gt \ [ cos(h2) sin(h$2) q"
Q7 pntt ) 7 \ —sin(h$2) cos(h$2) ) \ Q27 1p”
h sin(h£2) f™
) 7 <cos(h!2)f” + frtt
where f* = Q271 f(Pq"), and we notice that ¥y is a matrix, bounded
independently of A and the dimension M. The differences Ag"

q(tn) — q" and Ap™ := p(t,) — p", where t,, := nh, satisfy the same
relation with f™ replaced by 21 (f(9q(t,)) — f(@q™)) +6(t,). Using
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the Lipschitz bound (cf. Section 4.2 in [13] on the relation between
f(q) and g(u) of (1))

1271 (F(@) = fla2) ||, = I (ar) = Flaz)ls

< Cellgr — q2fls < Cellqr — g2ls41
for q1,q2 € H*® satisfying |/¢;||s < Me, and the estimate (59) for the

defect yields
Aqg" )
S —1 n
s+1 ‘ ‘ (Q Ap s+1
h

Aqn+1
H (Q_lApn+1>
+ 5 (CelAq s + Ol A+ 1 + V).

Solving this inequality gives the estimate
[AG |41 + |27 A" [s11 < C(A +t,)eNTE for ¢, <e !

and thus completes the proof of Theorem 4.

7 Conservation properties

We now show that the system of equations determining the modu-
lation functions has almost-invariants close to the actions, the mo-
mentum and the total energy along numerical solutions given by the
full discretization (17)—(18). The proof takes up arguments of [6] for
the conservation of actions, of [13] for the conservation of momen-
tum and aspects of the space discretization, and of [14, Ch.XIII] for
the conservation of energy and for the aspects arising from the time
discretization.

7.1 The extended potential

The defect formula (53) can be rewritten as
1
h?4(hw;)
where V:}‘L{ (y) is the partial derivative with respect to y:;-‘ of the
extended potential (see [13])

LXK+ VINU(Pz) = dY, (61)

N
Uly) = Y Uly) (62)
I=——

=—N
N
U(m+1) (0) / kl km+1
ul(Y) = Z (m+ 1), Z Z y]l "'yjm+1 ’

m=2 k14 4+km+1=0 j1+--+jm+1=2MI
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where again ||k’ < 2N and |j;| < M, and U(u) is the potential in

(2)-

7.2 Invariance under group actions

The existence of almost-invariants for the system (61) turns out to
be a consequence, in the spirit of Noether’s theorem, of the invari-
ance of the extended potential under continuous group actions: for
an arbitrary real sequence p = (f7)¢>0 and for 6 € R, let

00y = (s
T(0)y = ( ”eyk)

Since the sum in the definition of U is over k! + - -+ + k™1 = 0 and
that in Uy over ji1 + -+ + jme1 = 0, we have

USuO)y) =U(y),  UT(O)y)=U(y) for O€eR.

G1<M K| <K

Differentiating these relations with respect to 0 yields

d
0:@\9202/1( WOy) = >0 > ik wykViU()
d Ikl <K |i]<M (64)
— k
0= Tl 0T = 3 > 17T So(y)
[kl|<K |jl<M

7.8 Almost-invariants of the modulation system

We now multiply (61) once with i(k - p)p(hw;)z _Jl-‘ and once with
ijo(hwj)z *], and sum over j and k with |j| < M and |k| < K.

Thanks to (64), we obtain

>0k s kI (65)

[kI<K |j|<M

>y Zi(k-u)qb(hw]) z_xdy,

[kl <K |jl<M

hw: ~kTk_k
) Z o) 12 (hw; ) 2Lz (66)
[kI<K |j|l<M

S 3 ey 2k (kST VM (@) ).

k<K |jl<M 1#0
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By the expansion (34) of the operator Zi‘ only expressions of the

following type appear for z(1) = Z;-((T) and Z(1) = z:;-‘(r) on the

left-hand side of the above equations:
Rez+@H) _ Re i(zzul) £ ED 5 1w <>>
dr

L@+ — I di (2040 2 ¢+ z<l>z<l+1>).
T

Therefore, the left-hand sides can be written as total derivatives of
functions € 7, [z|(7) and eX[z](7) which depend on z(7) and its deriva-

tives ez (1) for £ =1,..., N — 1. In this way, (65) and (66) become

—6— = > Z (k- p)p(hw;) zZKd (68)

(67)

[kl <K |j]<M
—€ - Z Z ijo(hw;) 2 ( ;-‘— ZV:;{UZ(@Z)). (69)
[kl <K |j]<M 1£0

In the following we consider the special case of u = (¢). From the
smallness of the right-hand sides in (68) and (69) we infer the follow-
ing.

Theorem 5 Under the conditions of Theorem 4 we have, for 7 <1,

M

szsﬂ ‘dq— }(7)‘ < 0Nt

‘EIC z (7')‘ < C (Nt M),

Proof The result is obtained from (68) and (69) with the arguments
of [6,13] as follows. With the bounds (50) and (60), the estimate for
the functions Jy(z] follows with the proof of Theorem 3 in [6]. With
the bound (32) and with the bounds ||z[|; < Ce and ||d|||, < CeV 1,
which follow from (32) and (58), the estimate for K[z] is obtained as
in Theorem 5.2 of [13]. O

A further almost-invariant is obtained by multiplying (61) with
the expression d)(hwj)(i(k . w)z:}‘ + 52':;-‘), summing over j and k,
and using (64):

$(h
> Z 7 ZZJJ w)2Zk ez [hk (70)

[kll<K [j]l<M

+e % (Pz) = Z Zld)(hwj) (i(k - w)z:;-‘ + séiy)d;-‘.

k<K [jl<M
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In addition to the identities (67) we also use

Re3:®) — Re % (52000 — 2Dz & gzwz(w)

Imzz2+Y = Im % (éz@” — %) 4 z0 z(l+1)) :

Therefore, the left-hand side of (70) can be written as the total deriva-
tive of a function eH|[z](7), so that (70) becomes

6%HM: Z:}jmmwmkwyj+ajmy (71)

[kl <K |j]<M

As in Theorem 5, the Cauchy-Schwarz inequality and the estimates

for z;-‘ and d;‘ then yield the following estimate.

Theorem 6 Under the conditions of Theorem 4 we have, for 7 <1,

]%HMhﬂgcﬂH.

7.4 Relationship with actions, momentum, and enerqgy

We now show that the almost-invariant 7y of the modulated Fourier
expansion is close to the corresponding harmonic action (13) of the
numerical solution,

Jg:Ig+I_g:2Ig for 0<€<M, JOZI(), JM:IM,

and that H and /C are close to the Hamiltonian Hj; and the momen-
tum K of (12) and (13), respectively.

Theorem 7 Under the conditions of Theorem 8, along the numerical
solution (¢™,p™) of (19) and the associated modulation sequence z(et),
it holds that

H|z](etn) = Hpp q”,p”) + 0(e?)
Klz](etn) = K(¢",p") + O(e) + O(e*M %)
T [2)(etn) = Jo(q", p") + Ye(tn) €3

with Zé\io wi iy (t,) < C fort, < e, All appearing constants are
independent of €, M, h, and n.



30 D. Cohen, E. Hairer, Ch. Lubich

Proof With the identities (67) we obtain from (66) that

Klz] = Z Z Q/Jhwj (k w)sinc (hk - w)|z|

[kl <K [j]<M

+2ecoK Im (z:;-‘z';-‘) + .. )

Separating the terms with k = +(j) and using the symplecticity con-
dition (20), and applying the bounds (50) and (51) to the remaining
terms, we find

_ Z,_] wj <|Z]<-j>|2 _ |Zj—<j>|2) + 0(53)‘

l71<M

In terms of the Fourier coefficients of the modulated Fourier expan-
sion g;(t) = > jw <k z;-‘(at) elk@t we have at t = t,

= 35 (fa + ) Bl - 1@ - Ge) B[) + O
lil<M

= K(q,p) + O3 + O(e*M~%)

— K(qn,pn) + 0(53) + O(&‘QM_S),

where we have used (31). The O(g2M ~*) terms come from the bound-
ary terms in the sum. The last equality is a consequence of the re-
mainder bound of Theorem 4.

Similarly, we obtain from (70) that

Z Z o(hw;) ((kw)smc(hkw)|z| )—H/{(@z),

hw
k|| <K |j|<M i)

which yields, using in addition U ($z) = O(&3),

[ . 3
Hiz) = 3 w2 (1202 + 159 2) + o),

l71<M

and shows that H[z] = Hp(¢",p") + O(e?).
The result for Jy is obtained in the same way, using in addition
Lemma 3 of [6] to estimate the remainder terms. 0O

With an identical argument to that of [6, Section 4.5], Theorems
5 and 6 together with the estimates of Theorem 4 and the Lipschitz
continuity (52) yield the statement of Theorem 3 by patching together
many intervals of length ¢!
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8 The Stérmer—Verlet/leapfrog discretization

The leapfrog discretization of (11) reads, in the two-step formulation,
T =2¢" + " =R (=22 + f(q), (72)

with the velocity approximation p™ given by
2hp" =g" - " (73)

The starting value is chosen as ¢! = ¢°+ hp? + %2 f(q°). Conservation
properties of this method will be obtained by reinterpreting it as a
trigonometric method (17) with modified frequencies @; satisfying
1-— %h%}? = cos(h@;), that is,

1

sin(% h@-) = ihwj' (74)

This is possible as long as hw; < 2.

Theorem 8 Under the stepsize restriction hwyr < ¢ < 2, under the
non-resonance conditions (24) and (26) for the modified frequencies
w; of (74), and under the assumption (15) of small initial data with
s>o+1 for (¢, p") = (q(O),p(O)), the near-conservation estimates

|Har(q™, p"™) — Hau (g%, p°)|

2
= < C(e+h7)
K(a". ") — K 0 .0
| (q s P )62 (q y P )‘ §0(6+h2+M_5+EtM_S+1)
M
I(a™. p") — I 0 ,,0
Zwﬁsfl | E(q Y )82 E(q y D )| §0(8+h2)
£=0

or energy, momentum and actions hold for long times
J 9y, g
Ogt:nhge_NH

with a constant C'" which depends on s, N, Cy, and ¢, but is indepen-
dent of e, M, h, and t.

Proof Denoting by 2 the diagonal matrix with entries &;, we intro-
duce the transformed variables

g" = sinc (h.(AZ) q", pr=p",

which are solutions to the symplectic trigonometric method (17)-(18)
with 70 = sinc and ¢ = 1. Under the stepsize restriction hwy; < ¢ < 2
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the non-resonance condition (25) is trivially satisfied for @;, and we
have
Wy S &)\j S Cw]',

where C' depends only on c. Hence, the assumption (15) of small
initial data is satisfied with the same exponent s for the weighted
norms defined with &; or w;. We can therefore apply Theorem 3 in
the transformed variables (¢",p™). With the estimate |sinc (hi;) —
1] < %h%}?, the result stated for the original variables (¢",p") then
follows. 0O

We apply the leapfrog method to the problem of Section 4 with
stepsize h = 0.3, so that the CFL number hwjy; ~ 1.92 is close to the
linear stability limit. In Figure 4 we observe oscillations with large rel-
ative amplitude proportional to hzw]z for the actions I; corresponding
to high frequencies, but no drift in actions, energy, and momentum.

10
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1078
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7

10_12 S A A A A B A AR MR SRR ARSI AR A
B A B T e e e et e

10—14 i
L | L | L |
0 100 200 300

Fig. 4. Actions, energy, and momentum along the numerical solution of the
leapfrog method, every 5th action is plotted.
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