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Abstract
Purpose Low-dose CT protocols are widely used for emergency imaging, follow-ups, and attenuation correction in hybrid 
PET/CT and SPECT/CT imaging. However, low-dose CT images often suffer from reduced quality depending on acquisition 
and patient attenuation parameters. Deep learning (DL)-based organ segmentation models are typically trained on high-
quality images, with limited dedicated models for noisy CT images. This study aimed to develop a DL pipeline for organ 
segmentation on ultra-low-dose CT images.
Materials and methods 274 CT raw datasets were reconstructed using Siemens ReconCT software with ADMIRE iterative 
algorithm, generating full-dose (FD-CT) and simulated low-dose (LD-CT) images at 1%, 2%, 5%, and 10% of the original 
tube current. Existing FD-nnU-Net models segmented 22 organs on FD-CT images, serving as reference masks for training 
new LD-nnU-Net models using LD-CT images. Three models were trained for bony tissue (6 organs), soft-tissue (15 organs), 
and body contour segmentation. The segmented masks from LD-CT were compared to FD-CT as standard of reference. 
External datasets with actual LD-CT images were also segmented and compared.
Results FD-nnU-Net performance declined with reduced radiation dose, especially below 10% (5 mAs). LD-nnU-Net 
achieved average Dice scores of 0.937 ± 0.049 (bony tissues), 0.905 ± 0.117 (soft-tissues), and 0.984 ± 0.023 (body contour). 
LD models outperformed FD models on external datasets.
Conclusion Conventional FD-nnU-Net models performed poorly on LD-CT images. Dedicated LD-nnU-Net models dem-
onstrated superior performance across cross-validation and external evaluations, enabling accurate segmentation of ultra-
low-dose CT images. The trained models are available on our GitHub page.
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Introduction

Artificial intelligence (AI) has shown a promising poten-
tial in facilitating a variety of tasks in medical imaging, 
particularly in image segmentation, including both normal 
and abnormal tissue delineation [1–3]. Organ segmenta-
tion has a vital role in quantitative imaging, kinetic mod-
eling and personalized dosimetry in diagnostic and thera-
nostic radiology [4–10]. Numerous recent studies focused 
on deep learning (DL)-based organ segmentation of CT 
images, using both local and publicly available datasets 
[11–14]. Some of these studies reported promising results 
[2, 15–18] and have been adopted by other research groups 
for different tasks [19–21]. The nnU-Net [22] pipeline has 
shown highly robust performance, and most recent studies 
have employed this model to implement their solutions.

Despite its undeniable diagnostic potential and ver-
satile applications, concerns about the radiation dose 
persist, as CT is still considered as a high-dose medical 
imaging modality [23, 24]. Low-dose (LD) CT imaging 
is commonly used in emergency imaging, on radiation-
sensitive groups, such as pediatrics and pregnant patients, 
in total-body imaging for patient follow-ups, and primar-
ily in hybrid imaging in CT-based attenuation correction 
(CTAC) on hybrid SPECT/CT and PET/CT scanners 
[25–28]. In addition, whole-body LD-CT is well estab-
lished and recommended in international guidelines for 
multiple myeloma screening based on consensus reports 
from the International Myeloma Working Group [29]. 
Lowering the radiation dose can be achieved by optimizing 
CT acquisition parameters, such as lowering tube potential 
(kVp), reducing the tube current (mAs), increasing the 
pitch, and using sparse acquisition techniques [30]. These 
adjustments change the noise and contrast patterns in CT 
images, potentially generating artifacts, such as streak and 
beam hardening artifacts, in the reconstructed CT images. 
However, ultra-low-dose CTAC proved to be sufficient for 
attenuation correction in both PET and SPECT imaging 
[26, 31]. In dynamic PET and SPECT protocols, where 
emission data acquisition might be prolonged, poten-
tially increasing the likelihood of patient movement, 
multiple CT scans might be needed for attenuation cor-
rection and anatomical localization. Multiple time-point 
SPECT imaging is common in theranostics, and dynamic 
3D reconstruction has become recently possible with the 
introduction of multi-pinhole SPECT cameras [32]. Most 
of these repeated CT acquisitions could be acquired at 
lower radiation doses to address concerns related to poten-
tial radiation hazards and radiation carcinogenic effects. 
Selfridge et al. [33] acquired 5 mAs (tube current × tube 
rotation time) CT scans for repeated scans in addition to 
a higher-dose semi-diagnostic scan at one time point. The 

segmentation masks from the first high-dose CT could be 
less useful for the following dynamic PET and SPECT 
acquisitions because of voluntary and involuntary mis-
matches between the scans. This fact leverages the need 
for a reliable segmentation model on low-dose and ultra-
low-dose images.

Cevora et al. evaluated the performance of deep learning-
based organ segmentation models and reported that the per-
formance depended on gender, image characteristics, and 
dataset origin, including scanner type, acquisition and recon-
struction parameters, as well as patient population features 
[34]. Tsanda et al. [35] reported a minor reduction of 3% of 
the Dice score on models developed by Wasserthal et al. [17] 
when applied on LD-CT images where the tube current was 
reduced to 20% of the original diagnostic contrast enhanced 
CTs [35]. They simulated diagnostic LD-CT images with 
almost 80 mAs, which is similar to values reported for rou-
tine semi-diagnostic PET/CT and SPECT/CT acquisitions 
[36]. This shows that available DL-based segmentation 
models work adequately on semi-diagnostic CT images with 
minimal drop in performance. However, the effectiveness of 
available DL organ segmentation models needs to be vali-
dated for ultra-low-dose CT images.

To the best of our knowledge there is a deficit of auto-
mated segmentation models dedicated for low-dose or ultra-
low-dose CT images, and as such, studies evaluating the per-
formance of DL segmentation models on ultra-low-dose CT 
images are lacking. The usefulness of DL models on non-
contrast enhanced low-dose and ultra-low-dose CT images, 
especially ultra-low-dose CTAC images may be questioned. 
We recently developed an nnU-Net multiple organ segmen-
tation model using a large training dataset (> 4000 images), 
including adult and pediatric cases [2]. This study aimed to 
investigate the performance of these models on ultra-low-
dose CT images using realistic CT images and to develop 
a dedicated nnU-Net pipeline for image segmentation in 
LD-CT scanning scenarios.

Methods and materials

Patients’ population and CT protocols

A total of 274 raw CT scans (projections) from 212 separate 
patients were collected from three Siemens scanners located 
at the Nuclear Medicine and Radiology Departments of 
Geneva University Hospital, Geneva, Switzerland. Siemens 
ReconCT software is a certified version of Siemens (Sie-
mens AG, Germany) research CT reconstruction tool. This 
software allows adding scanner-specific noise to raw projec-
tions at each kVp, thus generating sinograms corresponding 
to lower tube current acquisitions. It should be noted that 
this scanner-specific noise is different from adding Poisson 
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or Gaussian noise and is measured according to phantom 
calibration results. ReconCT software has a command line 
interface (CLI) for reconstructing simulated low tube cur-
rent CT images, from 99 to 1% of the original acquisition 
tube current. The raw data were reconstructed using Sie-
mens CLI with ADMIRE reconstruction algorithm, 1 mm 
slice thickness, a 50 cm field-of-view, and 512 × 512-pixel 
size resulting in 0.97 mm pixel dimension on axial slices, 
i.e., 0.97 × 0.97 × 1  mm3 voxel spacing. CT raw data were 
reconstructed once with the standard full-dose sinograms 
(FD-CT) and once with the scanner-specific noise added to 
sinograms prior to reconstruction corresponding to tube cur-
rents of 50%, 30%, 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2%, 
and 1% of the original acquisition. We denote the different 
dose levels as LD-CT-X%, where X represents the percent-
age of dose level reduction. For the dose levels lower than 
10%, the ultra-low-dose option as well as electrical noise 
was activated in the software configuration file; the rest of 
parameters remain unchanged.

Details about the algorithm used by Siemens ReconCT 
application are described in Stierstorfer et al. [37].Over-
all, 21 organs were delineated on reference FD-CT images 
using pretrained nnU-Net models (FD-nnU-Net) [2]. The 
organs included the clavicles, femoral heads, hips, sacrum, 
rib cage, and vertebrae, adrenal glands (AG), aorta, brain, 
colon, eyeballs, gall bladder (GB), kidneys, liver, lungs, 
pancreas, erector spinae, small bowel, spleen, stomach, 
urinary bladder (UB), and heart. The segmentations were 
co-registered to LD-CT images as the reconstruction param-
eters and location information were similar. The segmenta-
tion masks generated on FD-CT images were considered as 
reference masks for training new segmentation models. The 
demographic information of the included patients is sum-
marized in Table 1. Information about the validation of the 
low-dose CT simulation process is presented in supplemen-
tary Tables 1 and 2.

Benchmarking the performance on simulated 
low‑dose CT data

The FD-nnU-Net models were tested on all reconstructed 
CT images, including FD-CT and LD-CTs from 1 to 50% 
(11 cohorts of low-dose CT images) to delineate 21 defined 
organs. The model performance was evaluated in terms of 
well-established image segmentation metrics by comparing 
the predicted segmentation masks from LD-CT images to 
the reference masks generated from FD-CT images. Seg-
mentation metrics including Dice coefficient, Jaccard, mean 
surface distance (MSD, mm), Hausdorff distance (HD, mm), 
and segment volume change (VD, mL) was calculated. This 
step was performed to assess the robustness of the nnU-Net 
trained model on a large dataset by simulating reduced CT 

image quality through lowering tube currents in low-dose 
and ultra-low-dose CT (ULD-CT) images. In addition, pub-
licly available models, known as MOOSE1 [5], were infer-
enced on all dose levels using the same approach as our 
FD-nnU-Net models. MOOSE segmentations generated on 
FD-CT images were considered as the reference segmenta-
tion mask to benchmark its performance drop when shifting 
from a high-dose image to a low-dose image.

Training the ULDCT segmentation models

According to the drop pattern in the segmentation per-
formance of FD-nnU-Net models on ULD-CT images for 
different organs calculated in the former step, three image 
cohorts including LD-CT-1%, LD-CT-2%, and LD-CT-
5% were used to train new nnU-Net segmentation models. 
The FD-CT generated masks using FD-nnU-Net model 
were considered as standard of reference segmentation. 
The training dataset was augmented using a realistic data 
augmentation approach by reconstructing images using two 
different algorithms implemented on Siemens CT scanner, 
namely ADMIRE and Filtered Back Projection (FBP), at 
slice thicknesses of 1 and 2 mm. This resulted in 12 samples 
per patient, from three dose levels (1%, 2%, and 5%) × two 
reconstruction algorithms (ADMIRE and FBP) × two slice 
thickness (1- and 2- mm).

In total, 21 organs categorized in two groups, namely 
bony structures (six organs including clavicles, femoral 
heads, hips, sacrum, rib cage, and vertebrae) and soft-tissue 
organs (15 organs including adrenal glands, aorta, brain, 
colon, eyeballs, GB, kidneys, liver, lungs, pancreas, erector 
spinae, small bowel, spleen, stomach, UB, and heart), were 
used to train two different models for two different tasks. We 
have developed an analytical image processing algorithm for 
segmenting body contours on CT images used in previous 
studies [9, 38, 39]. The algorithm consists of multiple 2D 
and 3D object detection tools using shape properties and 
Hounsfield unit (HU) values of the detected objects, hole fill-
ing, and removal of objects under the patient’s bed or smaller 
than a certain size. Reliable performance was achieved on 
FD-CT images. However, its response was inconsistent on 
LD-CT-X% images due to increased noise and changes in 
HU values. We defined the third task as segmenting the body 
contour on LD-CT images using the same group of datasets. 
The body contour mask is useful for calculation of water-
equivalent diameter or other applications requiring patient 
size and attenuation parameters as well as cropping to fore-
ground for accelerated DL inference.

nnU-Net training pipeline automatically selects the 
patch size, normalization values and network architecture 

1 https:// github. com/ ENHAN CE- PET/ MOOSE.

https://github.com/ENHANCE-PET/MOOSE
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according to image and segmentation characteristics. We 
separated bony structures from soft-tissues to allow the 
nnU-Net self-configuration algorithm to select the optimized 
hyperparameters specifically for each task. Three nnU-Net 
models were trained for bony organs (LD-nnU-Net task #1), 
soft-tissue organs (LD-nnU-Net task #2), and body contour 
(LD-nnU-Net task #3) using 274 × 12 image/segmentation 
pairs. nnU-Net version 2 using the default configuration for 
3D high-resolution (3d_highres) training was used, includ-
ing an initial learning rate of 1e-2, reduced each epoch with 
a decay of 3e-5, and cross-entropy loss function. The train-
ing length was extended from the default 1000 epochs to 
2000 epochs to improve accuracy. Manual data split with 
fivefold cross-validation was implemented to ensure that all 
LD-CT-1%, LD-CT-2%, and LD-CT-5% with various recon-
struction algorithms were in either the training or test set in 
each fold, preventing overfitting. In other words, with the 
fivefold data split, 80% of data were used for training and 
20% for testing in each fold. The same image segmentation 
evaluation metrics used in the previous step were calculated 
for the models trained in fivefold cross-validation approach. 
Figure 1 presents the steps followed in this study whereas 
Fig. 2 depicts coronal images reconstructed using different 
radiation dose levels.

External evaluation

To evaluate the models’ performance on external, unseen 
data, we validated our model on three local databases as well 
as two publicly available low-dose CT datasets, as described 
below. For the sake of reducing evaluation time, we selected 
a limited number of images from each database and con-
ducted the visual inspection.

1. Dataset #1: Total-body CT images referred to our depart-
ment for multiple myeloma indication. These images 
were acquired with 50 mA fixed tube current, a rotation 
time of 0.5 s (25 mAs), and 100 kVp, and reconstructed 
using a 50 cm field-of-view. The dataset included 34 CT 
images, 10 of these images were selected randomly.

2. Dataset #2: Chest and abdomen images of patients 
referred for ruling out Covid-19 during the pandemic. 
These images were acquired using tube current modula-
tion, with a tube current of 20 to 50 mA and a rotation 
time of 0.5 s. This dataset consisted of 41 images, where 
10 CT images were selected randomly.

3. Dataset #3: Chest CT images acquired for attenuation 
correction of cardiac SPECT images, referred to a pri-
vate nuclear medicine center. The images were acquired 
using modulated tube currents from 10 to 40 mA. The 
dataset included 32 CT images where 10 of them were 
selected randomly.

4. Dataset #4: healthy whole-body PET/CT samples from 
Selfridge et al. study [33] acquired at 140 kVp and ref-
erence tube current of 5 mAs. This dataset corresponds 
to 20% dose level of our simulated dataset. It utilized 
a reference mAs of 5 mAs, which is calibrated for a 
patient with attenuation equivalent to a 20 cm round 
spherical phantom, i.e., higher tube current was applied 
for body parts with a water-equivalent diameter greater 
than 20 cm. The original published dataset included 30 
images, of which 10 randomly selected cases were used 
in this study. It should be noted that while DL-generated 
segmentations provided by the authors were matched to 
standard-dose CT images acquired at 90 min, they are 
not co-registered with the low-dose CT images acquired 
at other time points.

5. Dataset #5: Chest and abdomen images from Grand 
Challenge 2016, shared by McCollough et al. [25]. The 
training dataset includes 10 pairs of standard-dose and 
simulated low-dose CT images. We included 5 images 
from the training dataset, which included both standard-
dose and simulated low-dose images corresponding to 
one-quarter of the original radiation dose, with low-dose 
tube currents around 60 mA. These low-dose datasets 
were generated by adding Poisson noise to raw projec-
tion data and reconstructing the simulated noisy projec-
tions.

A total of 21 organs were delineated on these total-body 
images using both FD-nnU-Net and LD-nnU-Net models, 
and the segmentations were visualized using an open-source 
image visualization software. The images were visualized 
using commercial ITK-Snap software to visually compare 
segmentation masks generated by FD-nnU-Net and LD-
nnU-Net models. Two publicly available models, namely 
MOOSE and models developed by Wasserthal et al. [17], 
known as TotalSegmentator,2 were used to segment the same 
organs on external datasets. The segmentation masks gener-
ated by these two public models compared with FD-nnU-Net 
and LD-nnU-Net models’ output. The segmentation masks 
of paired organs were unified, for example if they generate 
two separate segmentation masks for left and right clavicle, 
we considered both as a single organ for comparison with 
our models.

Statistical evaluation

First, Kolmogorov Smirnov (KS) test was used to test the 
normality of data distributions. Then, according to results of 
KS test, Spearman correlation test was used seeking for cor-
relation between the FD-nnU-Net performance on simulated 

2 https:// github. com/ wasse rth/ Total Segme ntator

https://github.com/wasserth/TotalSegmentator
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Fig.1  Steps followed in this study. The blue lines show inference of models whereas the red lines show training steps
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low-dose and ultra-low-dose CT images with patients and 
acquisition parameters of patients’ including weight, size, 
BMI, and acquisition kVp. The Wilcoxon test was used to 
compare the performance of LD-nnU-Net models on images 
with different reconstructions, slice thickness, and dose lev-
els in fivefold cross-validation data split. Two-tailed P-val-
ues less than 0.05 were considered as statistically significant.

Results

Benchmarking performance on low‑dose CT data

This section describes the pattern of changes observed in 
the FD-nnU-Net segmentation models when tested on low-
dose images. It aims to understand the model’s limitations 
and estimate the reduction in segmentation accuracy across 
different dose levels. Figure 3 shows the drop in the Dice 
coefficient observed on the plots for all organs generated 
by using low-dose images as input to FD-nnU-Net mod-
els. Table 2 summarizes the mean and standard deviations 
of Dice metric for the mentioned configuration. The most 
significant decline in performance in terms of Dice metric 
was seen in eyeballs, with Dice < 0.10 on ULDCT images. 

This was followed by gall bladder and adrenal gland organs. 
While some organs, including those with high objective con-
trast, such as lungs and hips, were the least affected by dose 
level reduction. Using a 50% dose reduction resulted in Dice 
factors lower than 0.90 for the eyeballs, adrenal glands, gall 
bladder and brain. In contrast, the rest of organ segmen-
tations had Dice > 0.90. The behavior of nnU-Net organ 
segmentation when changing dose levels is summarized in 
supplementary Table 3 for other segmentation metric such 
as MSD, HD and volume differences. In contrast, a more 
severe drop in the performance for MOOSE segmentation 
models inferenced on the simulated low-dose images was 
noticed (Fig. 3). For some organs, such as the adrenal gland, 
the Dice coefficient dropped to less than 0.70 even on 50% 
dose level CT images. The less severe drops were observed 
for the lungs, while a Dice coefficient of less than 0.80 was 
observed on 50% dose level CT images, reaching Dice less 
than 0.50 for the majority of organs when the dose level was 
less than 15% of the original standard-dose CT.

Supplementary Fig. 3 shows the number of segments with 
a Dice coefficient of less than 0.05, as well as the number 
of empty predicted segmentations where a specific organ is 
present in the reference segmentation mask, but FD-nnU-
Net models predicted all voxels as zero in the predicted 

Fig. 2  Example of low-dose CT images at different dose levels showing the pattern of noise in lower-dose simulated images. The same window-
ing of 600 Hus and level equal to zero was used for all images
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segmentation mask. The greatest number of empty seg-
mentations and very low Dice values were observed for gall 
bladder and eyeballs. As the dose level increases, the number 
of images with Dice < 0.05 and empty predicted segmenta-
tion decreases for all organs. Supplementary Table 4 shows 
detailed information about these evaluations.

Supplementary Figs. 1 and 2 show the heatmaps of the 
Spearman test P-values for each organ included in task #1 
and #2, respectively.

Fig. 3  Plots showing the pattern of the Dice coefficient as a function 
of the dose level. The lines show the organ number summarized in 
the legend for simple visualization. The top row shows the Dice coef-
ficient for our FD-nnU-Net whereas the button row shows the perfor-

mance of MOOSE. The upper right image is the magnified version of 
changes in our FD-nnU-Net behavior for readability. The figure leg-
end provides the meaning of line colors
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ULDCT segmentation

An average Dice of 0.937 ± 0.049, 0.905 ± 0.117, and 
0.984 ± 0.023 was achieved in the fivefold cross-validation 
data split for tasks #1, #2, and #3, respectively. Table 3 sum-
marizes overall performance metrics of the LD-nnU-Net 
models for all three tasks using fivefold cross-validation data 

split. It should be noted that the segmentation performance 
was consistent over changes of reconstruction algorithm 
(FBP vs ADMIRE), dose level (1%, 2%, and 5%) and slice 
thickness (1 and 2 mm) according to the P-value of Wil-
coxon test, which was >  > 0.05 for all comparisons.

The highest Dice values were achieved for body, lungs, 
liver, vertebrae, and heart, while the lowest Dice values were 

Table 3  Overall performance of LD-nnU-Net models in fivefold cross-validation. mean ± SD (minimum–maximum)

Task Segment–subtype Dice coefficient Jaccard distance Mean Surface Distance Volume Difference

Task #1 Clavicles 0.941 ± 0.042 (0.596–0.983) 0.891 ± 0.064 (0.424- 0.966) 1.226 ± 5.526 (0.037–
58.115)

0.900 ± 5.078 (− 8.403–
57.250)

Femoral Heads 0.956 ± 0.046 (0.500–0.991) 0.919 ± 0.069 (0.334–0.982) 2.436 ± 8.312 (0.058–
70.065)

4.602 ± 52.710 (− 177.872–
771.979)

Hips 0.947 ± 0.056 (0.045–0.980) 0.902 ± 0.063 (0.023–0.960) 0.460 ± 1.636 (0.106–
31.924)

1.533 ± 5.009 (− 9.004–
34.431)

Ribs 0.943 ± 0.021 (0.840–0.976) 0.893 ± 0.036 (0.723–0.953) 0.343 ± 0.419 (0.095–3.302) 0.73 ± 14.257 (− 28.813–
97.916)

Sacrum 0.888 ± 0.04 (0.766–0.960) 0.801 ± 0.065 (0.620–0.923) 0.349 ± 0.362 (0.064–4.622) 5.011 ± 7.432 (− 14.421–
58.785)

Vertebrae 0.965 ± 0.045 (0.105–0.987) 0.935 ± 0.05 (0.055–0.975) 0.390 ± 2.231 (0.060–
44.072)

− 4.378 ± 35.060 
(− 675.512–25.810)

Task #2 AG 0.701 ± 0.129 (0.069–0.903) 0.554 ± 0.141 (0.036–0.823) 1.289 ± 1.781 (0.274–
20.803)

0.250 ± 1.090 (− 3.772–
4.124)

Aorta 0.948 ± 0.030 (0.653–0.981) 0.902 ± 0.050 (0.485–0.962) 0.480 ± 0.411 (0.114–6.356) − 0.010 ± 10.869 
(− 132.371–27.194)

Brain 0.948 ± 0.136 (0.048–0.994) 0.922 ± 0.163 (0.024–0.989) 2.873 ± 9.156 (0.109–
53.546)

− 6.352 ± 91.536 
(− 1055.833–497.010)

Colon 0.911 ± 0.060 (0.472–0.979) 0.841 ± 0.088 (0.309–0.959) 1.243 ± 1.116 (0.102–
11.813)

− 3.227 ± 38.880 
(− 198.931–199.265)

Eyeballs 0.864 ± 0.129 (0.150–0.954) 0.777 ± 0.145 (0.081–0.911) 1.111 ± 2.160 (0.232–
14.726)

0.706 ± 2.949 (− 3.937–
15.450)

GB 0.794 ± 0.201 (0.034–0.975) 0.695 ± 0.222 (0.017–0.950) 2.133 ± 3.937 (0.194–
57.010)

0.167 ± 5.971 (− 33.752–
28.901)

Kidneys 0.934 ± 0.064 (0.418–0.989) 0.882 ± 0.091 (0.264–0.977) 0.859 ± 2.53 (0.091–39.908) − 0.047 ± 14.634 
(− 174.193–60.743)

Liver 0.966 ± 0.054 (0.123–0.991) 0.939 ± 0.067 (0.066–0.982) 1.355 ± 5.794 (0.166–
122.374)

17.562 ± 72.206 
(− 414.515–904.794)

Lungs 0.986 ± 0.047 (0.09–0.996) 0.974 ± 0.054 (0.047–0.993) 0.682 ± 8.151 (0.057–
190.525)

1.018 ± 17.058 (− 108.727–
51.277)

Pancreas 0.838 ± 0.107 (0.074–0.959) 0.733 ± 0.136 (0.039–0.921) 1.438 ± 1.707 (0.256–
17.747)

0.476 ± 6.622 (− 30.031–
36.549)

Erec− r Spinae 0.939 ± 0.019 (0.720–0.970) 0.886 ± 0.031 (0.563–0.942) 0.686 ± 0.232 (0.299–3.062) − 2.733 ± 18.957 (− 161.4–
58.876)

Small Bowel 0.874 ± 0.111 (0.082–0.979) 0.789 ± 0.138 (0.043–0.959) 1.464 ± 1.959 (0.11–26.555) − 1.534 ± 42.004 
(− 180.399–178.74)

Spleen 0.937 ± 0.098 (0.062–0.990) 0.893 ± 0.123 (0.032–0.981) 1.188 ± 3.58 (0.103–50.982) 4.302 ± 59.446 (− 931.292–
448.654)

Stomach 0.935 ± 0.058 (0.435–0.983) 0.882 ± 0.085 (0.278–0.966) 1.002 ± 1.544 (0.192–15.57) − 1.258 ± 40.859 
(− 649.098–103.585)

UB 0.917 ± 0.068 (0.450–0.986) 0.854 ± 0.101 (0.291–0.973) 1.281 ± 2.069 (0.192–
21.373)

1.421 ± 18.858 (− 74.136–
201.738)

Heart 0.965 ± 0.028 (0.419–0.984) 0.933 ± 0.039 (0.265–0.968) 2.824 ± 7.874 (0.302–
57.468)

− 1.683 ± 32.332 
(− 503.181–108.438)

Task #3 Body 0.984 ± 0.023 (0.867–0.999) 0.97 ± 0.042 (0.766–0.999) 2.861 ± 4.63 (0.029–23.573) − 805.536 ± 2717.645 
(− 17,809.644–1894.78)



733La radiologia medica (2025) 130:723–739 

observed for the adrenal glands. Figure 4 shows the box plot 
of Dice coefficients for the fivefold cross-validation.

Figure 5 presents examples of organs segmented by LD-
nnU-Net models on 1% dose level CT images, compared to 
the output of FD-nnU-Net models. As presented in Fig. 5, 
the LD-nnU-Net models outperformed the available methods 
trained on standard-dose CTs, named FD-nnU-Net models.

External evaluation

Supplementary Fig. 4 shows axial slices of images from 
external datasets showing the superiority of LD-nnU-Net 
model over FD versions. Supplementary Figs. 5 to 8 present 
examples of the aforementioned CT image for dataset #1 and 
#5, respectively. The high-resolution images are presented 
in editable format.

Dataset #5 was the only dataset providing co-registered 
standard-dose and low-dose CT images, with the low-dose 
corresponding to one-quarter (¼) the original standard-dose 
CT images. As a result, head-to-head comparisons were not 
possible for all images. Datasets #1 to #3 were only avail-
able in low-dose acquisitions, while dataset #4 included 
both high- and low-dose CT images, but they were not co-
registered. After visual assessment, the performance of both 
FD and LD nnU-Net models was acceptable and the same 
applies to datasets #4 and #5. However, there were differ-
ences between these two models on datasets of #1, #2, and 
#3. Both LD and FD models did not perform well on dataset 
#3, which contained ultra-low-dose CT images with lower 
kVp and presented severe streak artifacts. However, the LD 
models outperformed the FD models.

The most frequent underperformance was observed in 
the segmentation of the gall bladder, aorta, adrenal glands, 
kidneys, and small bowel, which was consistent with the 
results of the previous step from testing FD-nnU-Net 
models on simulated low-dose CT images. The number of 
images with at least one organ segmented with errors by 
FD-nnU-Net but improved by LD-nnU-Net was 7/10,8/10, 
10/10, 1/10, and 0/5 for datasets #1 to #5, respectively. 
This underperformance was more significant in patients 
with higher body habitus, arms down position, and when 
fixed tube current protocols were used. The fixed tube cur-
rent mode means lower tube current for larger body sizes 
compared to modulated tube current acquisitions.

Figure 6 compares the segmentation outputs of our FD-
nnU-Net, LD-nnU-Net, MOOSE and TotalSegmentator 
on an example from external datasets of #1, #2, #4, and 
#4. Our FD-nnU-Net models significantly outperformed 
the two publicly available models, while the LD-nnU-
Net models provide even better results than FD models. 
In depth comparison of our LD-nnU-Net models with 
MOOSE for all cases belonging to datasets #1, #2, #3, and 
#5 is presented in the supplementary material. The image 
id in the public dataset of #4 is presented on the supple-
mentary images, which can be used for tracing the images.

Supplementary Fig. 9 shows an example of segmen-
tation output for task #3 on a challenging case with the 
external object outside the patient’s body. While this could 
be problematic for analytic image processing algorithms 
that rely on object detection, the deep learning LD-nnU-
Net model achieved promising results.

Fig. 4  Box plot of Dice coefficients for the different segmented organs for fivefold cross-validation. The training was done on dose levels of 1%, 
2%, and 5%
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Discussion

CT is the largest contributor to medical radiation dose to 
the public [40]. Various strategies were devised to reduce 
the CT radiation dose while maintaining acceptable image 

quality. However, CT images acquired with ultra-low-dose 
procedures suffer from multiple artifacts due to photon dep-
rivation, beam hardening and low quantum mottle. Ultra-
low-dose imaging is more common for SPECT and PET 
attenuation and scatter correction, especially in dynamic 

Fig. 5  Representative segmentation examples of two FD and LD models tested on a 1% dose level CT image



735La radiologia medica (2025) 130:723–739 

imaging and repeated scans. Accurate automated organ seg-
mentation from LDCT images is critical for image quan-
tification, radiomics studies, dosimetry evaluation, as well 
as kinetic modeling. However, available DL-based CT seg-
mentation models bear inherent limitations when applied 
to populations different from the training data [34], such as 
ultra-low-dose images presenting with severe noise patterns.

CT dose reduction has been a focus during the last 
two decades [41]. Low-dose imaging is commonly used 
for SPECT and PET attenuation and scatter correction, 
particularly in dynamic imaging and repeated scans. 
Studies have demonstrated that even ultra-low-dose CT 
images are sufficient for attenuation correction in PET and 
SPECT imaging [26, 27, 42]. Recent deep learning models 
trained on high-dose CT mages are robust against changes 
in reconstruction algorithms, scanners, and the presence 
or absence of contrast media in the patients’ body. How-
ever, organ segmentation on low-dose CT images remains 

a challenge due to the reduced performance of standard 
deep learning approaches, which are typically trained on 
high-dose CT images, as shown in Fig. 3. Multiple time-
point imaging is a standard practice in nuclear medicine 
and personalized dosimetry, such as in dynamic modeling 
and theranostics for 177Lu treatments, where multiple CT 
images are acquired after radiotracer injection. External 
datasets #3 and #4 serve as a good example of low-dose 
CT images acquired using a low-dose protocol for SPCET 
and PET imaging, respectively. Another key application 
of low-dose imaging is total-body imaging for multiple 
myeloma follow-up [29], which was the primary indication 
for external dataset #1. Additionally, low-dose imaging 
is particularly recommended during pregnancy to mini-
mize radiation risks to the embryo or fetus, given their 
heightened sensitivity to radiation [43]. Dataset #2 illus-
trates this application. Organ segmentation plays a critical 
role in applications like image quantification, parametric 

Fig. 6  Segmentations generated by four models on four examples 
from datasets of #1 to #4 showing the excellent performance of our 
models on low-dose and ultra-low-dose CT images and the poor per-
formance of other available models on low-dose CT images while 
showing good performance on high-dose CT images. Color guide: 
AG: Blue, Aorta: Bright Red, Brain: Teal, Clavicle: Golden Yel-
low, Colon: Aqua Green, Eyeballs: Burgundy, FH: Muted Red, GB: 
Bright Blue, Sacrum: Mustard Yellow, Hips: Bright Yellow, Kidneys: 

Sky Blue, Liver: Crimson Red, Lungs: Orange, Pancreas: Emerald 
Green, Erectus Spinae: Dark Teal, Ribs: Olive Green, Small Bowel: 
Magenta, Spleen: Fuchsia, Stomach: Royal Blue, UB: Violet, Verte-
brae: Light Pink, Heart: Pale Blue. Dataset #4 example image id is 
body-cts-001 in the uExplorer dataset. It should be mentioned that 
MOOSE segmentations of the vertebrae, hips, and sacrum are not 
included due to technical issues during inference
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modeling, personalized dosimetry, radiomic studies, and 
outcome prediction. Accurate segmentation ensures con-
sistency in these workflows, enabling precise treatment 
planning and evaluation of therapeutic outcomes. In these 
scenarios, access to reliable organ segmentation tools is 
crucial. Organ segmentation tool dedicated for low-dose 
CT images could help bridge the gap in segmentation per-
formance across varying dose levels. A robust segmenta-
tion framework applicable to these clinical contexts can 
significantly reduce intra- and inter-observer variability, 
streamline workflows, and save time, ultimately enhancing 
patient care and safety.

To the best of our knowledge, there is a lack of dedi-
cated automated models for low-dose CT organ segmen-
tation. We utilized previously trained nnU-Net models 
trained using a large dataset comprising both adult and 
pediatric images collected from extensive public sources 
and local datasets available to segment multiple organs. 
Unfortunately, we did not have access to paired, co-reg-
istered CT images of the same patients without patient 
motion, across different dose levels and reconstruction 
parameters. To do so, we used simulated datasets created 
using Siemens ReconCT software through adding scanner-
specific noise to projection data and generated low-dose 
images through reconstruction. The same approach was 
adopted in previous studies [44–46]. Besides, we validated 
scanner-specific noise simulation method by scanning a 
cylindrical CATPHAN phantom as described in the sup-
plementary material. In this study, we first evaluated the 
performance of state-of-the-art nnU-Net models, trained 
on the most extensive publicly available dataset for multi-
ple organ segmentation (FD-nnU-Net), on simulated low-
dose CT images across different dose levels. The drop in 
performance was evaluated using different metrics, includ-
ing the Dice coefficient, Jaccard index, surface distances, 
and changes in organs volume.

According to our results, testing FD-nnU-Net models on 
different dose levels showed a performance drop after a cer-
tain magnitude of tube current reduction. This drop varies 
depending on the organ being delineated, which is related 
to factors, such as organ’s shape, contrast with surrounding 
tissues, texture, and organs’ size. These patterns of perfor-
mance drop were consistent for the included segmentation 
metrics, except for organ volume difference, which varies 
depending on organ size. There was a significant relationship 
between the performance drop and patient characteristics, 
such as age, height (size), weight, BMI and the kVp of the 
scan, particularly for organs, such as the adrenal glands and 
heart. According to the drop in performance calculated in 
the first step, which was significant on ultra-low-dose CT 
images, we concluded developing a new dedicated nnU-Net 
model for organ segmentation on noisy CT images. Network 
architecture and nnU-Net selected hyperparameters as well 

as the trained models and inference instructions are provided 
in the lab’s GitHub page.

Three tasks were defined to leverage the strengths of the 
self-configurating nnU-Net training pipeline: bony organ 
segmentation, soft-tissue organ segmentation, and body 
contour segmentation. The results were outstanding on 
fivefold cross-validation, showing excellent performance 
on very low-dose images where the FD-nnU-Net models 
performed poorly. Besides, we tested our models on three 
local and two publicly available external datasets to evalu-
ate and ensure the robustness and generalizability of our 
proposed dedicated LD-nnU-Net models. We tested both 
FD and LD models on external datasets to fairly compare 
the benefits of using ultra-low-dose dedicated CT segmen-
tation models. Consistent with performance drop observed 
on simulated low-dose CT images, the LD-nnU-Net mod-
els outperformed the FD-nnU-NET models, especially on 
lower-dose CT images, such as those with fixed tube currents 
for corpulent patients. This superiority was more evident for 
organs included in task #2, which contains soft-tissue organs 
and organs with lower objective contrast, such as gall blad-
der, while it was less pronounced for bony structures and 
lungs. However, for very low-dose images, such as those in 
external dataset #3, errors in bony structures segmented by 
FD models were addressed by using LD models. The arms 
positioned beside the trunk can cause beam hardening and 
photo-deprivation causing artifacts on low-dose CT images, 
especially for lower kVps. These artifacts caused abdominal 
segmentation errors in dataset #1. Nevertheless, for datasets 
#4 and #5, which contained higher-dose CT images, both 
FD-nnU-Net and LD-nnU-Net models produced similarly 
acceptable output. We used terms of low-dose and ultra-
low-dose for CTs with tube currents around 50 mAs and 
lower than 15 mAs, respectively. However, depending on the 
specific tasks those terms could refer to different dose levels.

The nnU-Net default augmentation employs conventional 
transformation techniques, such as image flipping, to create 
more robust models. However, these transformations cannot 
replicate the variability in images resulting from different 
reconstruction parameters, convolution kernels, and algo-
rithms, although image patterns can change with changing 
the reconstruction [2, 3]. By leveraging access to raw pro-
jection data and Siemens reconstruction software, we incor-
porated four types of images: ADMIRE with 1 mm slice 
thickness, ADMIRE with 2 mm slice thickness, FBP with 
1 mm slice thickness, and FBP with 2 mm slice thickness.

We have compared our developed models with two pub-
licly available and widely used organ segmentation models 
developed using nnU-NET pipeline. Regarding the perfor-
mance drop in organ delineation on the simulated low-dose 
and ultra-low-dose CT images, our previously developed 
FD-nnU-Net model showed a less severe reduction in 
terms of Dice coefficient on low-dose images compared 
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to MOOSE models (Fig. 3). All four models were com-
pared on our FD and LD nnU-Net models, MOOSE, and 
TotalSegmentator models based on nnU-NET with mini-
mal amendment to the default configuration (e.g., number 
of epochs), so that the main difference in performance 
observed among these models is related to the training 
dataset. We included a large number of versatile training 
data for previously developed FD-nnU-Net models and 
used realistic low-dose and ultra-low-dose CT images for 
training our LD-nnU-Net and included meaningful data 
augmentation to have a more robust algorithm. Iterative 
reconstruction algorithms, such as Siemens ADMIRE can 
provide better image quality compared to conventional 
FBP methods, especially on low-dose CT images. How-
ever, they are not widely available or common in clinical 
practice. Hence, we included FBP augmentation in our 
training dataset to ensure the generalizability of our mod-
els. It should be noted that MOOSE and TotalSegmentator 
disabled default flipping and mirroring of nnU-Net pipe-
line as they aimed to segment left and right organs sepa-
rately. We included five external test sets from different 
low-dose CT imaging scenarios, including hybrid imaging 
for SPECT and PET, CT imaging of pregnant patients, 
serial total-body CT imaging and simulated low-dose 
images from previous studies. Our models showed sig-
nificantly improved results compared to the other two pub-
licly available models. Although we did not have access 
to the ground truth manual segmentation on the external 
datasets, the visual assessment of images shown in Fig. 6 
demonstrates the excellent performance of our models 
where the other two models detected only a few organs. 
Supplementary figures of 5 to 8 show that our models out-
performed MOOSE in all included cases in the external 
dataset and the performance was consistent among the dif-
ferent cases. In addition, we shared our trained models and 
inference instruction publicly (https:// github. com/ Yazda 
nSali mi/ Organ- Segme ntati on), to allow further validation 
of the findings.

Our study inherently bears few limitations. First, although 
we had a good amount of training data, including 274 CT 
images, a larger dataset would be better suited for deep 
learning tasks. In addition, all of them were acquired on Sie-
mens scanners as Siemens reconstruction software was used 
to reconstruct the data. Secondly, we did not have access to 
reference segmentation masks on the external test datasets, 
which precluded quantitative assessment. However, we visu-
alized all segmentations and compared our models’ output 
with publicly available organ segmentation models. Finally, 
we used simulated low-dose CT images as we did not have 
access to paired high-dose and low-dose CT images. Yet, 
excellent performance of our models on external test sets 
showed that the simulated data through scanner-specific cali-
bration was realistic for training the segmentation models.

Conclusion

We evaluated the behavior of deep learning-based CT 
organ segmentation models on ultra-low-dose CT images 
and concluded that there is a drop in the performance of 
those models trained on conventional CT images depend-
ing on the dose level and organ type. We trained new nnU-
Net models dedicated to low-dose and ultra-low-dose CT 
images organ segmentation and tested them during cross-
validation and external validation on five external datasets 
from other centers, reporting similar performance. These 
dedicated LD-nnU-Net models published for the first time 
can be used for automated segmentation on low-dose CT 
images for various indications.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11547- 025- 01989-x.
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