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Abstract: There are various definitions of the concept of complexity in Quantum Field
Theory as well as for finite quantum systems. For several of them there are conjectured
holographic bulk duals. In this work we establish an entry in the AdS/CFT dictionary for
one such class of complexity, namely Krylov or K-complexity. For this purpose we work
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gravity, namely the length of the two-sided wormhole. We do this by showing that the
Krylov basis elements, which are eigenstates of the Krylov complexity operator, are mapped
to length eigenstates in the bulk theory by subjecting K-complexity to the bulk-boundary
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1 Introduction

Notions of quantum complexity are of interest not only in the field of quantum computing
but also in the field of quantum gravity, via the framework of the holographic duality or,
more specifically, the AdS/CFT correspondence [1, 2]. Any notion of quantum complexity
is expected to have a very specific time evolution profile and to evolve for very long time
scales (exponential in the number of degrees of freedom). Similar time evolution profiles
have been found for certain diffeomorphism-invariant quantities of gravity in AdS space.
In the spirit of the AdS/CFT correspondence, a conjecture has emerged [3–5], namely that
quantum complexity is dual (in the sense of the holographic duality) to diffeomorphism-
invariant quantities such as the volume of the wormhole in two-sided AdS space.

One particular definition of complexity in quantum systems is circuit complexity. Cir-
cuit complexity of a quantum state is defined as the minimal number of local unitary
operations (known as “gates”) a quantum computer would need to apply to some reference
state in order to create that state, up to some chosen precision set by a tolerance param-
eter. Analogously, circuit complexity can be defined for the operators themselves. The
complexity of a given operator would be the minimal number of local unitary operators
whose composition equals the given operator to within the chosen tolerance parameter.

In a chaotic system the circuit complexity of a state evolves in the following manner:
up to time scales of order the Hilbert space dimension, complexity grows, including a
long period of linear growth (this was proven in [6]), and then, for a finite Hilbert space,
complexity saturates at a value of order the Hilbert space dimension. After saturation,
for a finite Hilbert space, at even larger time scales the value of complexity is expected to
undergo endless Sisyphean Poincaré recurrences visiting again and again initial complexity
values.

A concrete notion of complexity which requires neither the introduction of a particular
set of local unitary operations available to a quantum computer nor a choice of tolerance
parameter, and under which the time evolution of complexity (for states evolving under
a chaotic Hamiltonian) resembles the time-dependent profile described above, would be a
candidate for holographic complexity. Such a candidate should be naturally defined on the
quantum mechanical boundary as well as in the quantum gravity bulk, preferably relating
the complexity evolution of a state on the boundary to some invariant observable’s time
evolution in the bulk.

Krylov complexity, first defined in [7] for operators evolving in time in the thermody-
namic limit and later shown to satisfy the expected profile for operator quantum complexity
at all time scales in [8, 9] in a finite system, is naturally defined for any quantum system
without external (human) input. Originally defined for an operator evolving in time under
a Hamiltonian in the Heisenberg picture, it was then defined also for states evolving under
a Hamiltonian according to the Schrödinger equation [10]. By its definition, Krylov com-
plexity is bounded from above by the state/operator Hilbert space dimension and indeed
can be seen to saturate in [9] in the case of operators, while for infinite Hilbert spaces it
does not saturate in general.

There have been several suggestions for the entry in the AdS/CFT dictionary for
quantum complexity. In this work we find a precise one-to-one correspondence between
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Krylov complexity in a 1-dimensional quantum mechanical boundary and a specific bulk
observable in a 2-dimensional quantum gravity theory. In particular, Krylov complexity of
the thermofield double state (at infinite temperature) in the boundary theory, which is a
particular limit of double-scaled SYK, becomes equivalent to wormhole length in the bulk
theory, which is 2-sided AdS2 Jackiw-Teitelboim gravity [11, 12].

Previous works on the subject include [13] which computed operator growth in SYK via
Krylov complexity and compared it with the complexity=volume formulation in JT gravity;
it was shown that the two have similar qualitative behaviours in time. The work [14]
studied the expected behaviour of K-complexity in low-dimensional gravity theories via
relationships with random matrix theory.

This paper is organised as follows: in section 2 we review all the needed background
for double-scaled SYK (DSSYK) and for Jackiw-Teitelboim (JT) gravity, and how they
are related. In section 3 we quickly review the Krylov construction for states, introducing
the Lanczos coefficients and the Krylov basis as well as the definition of state Krylov
complexity (K-complexity). We then identify the Lanczos coefficients and Krylov basis in
DSSYK and discuss the results for Krylov complexity in DSSYK. In section 4 we present
the main results of this work: we study Krylov complexity in the regime of DSSYK in
which it is dual to JT gravity, and establish the correspondence of this quantity with the
bulk wormhole length, adequately matching the parameters on either side of the duality.
Finally, in section 5 we summarize our results and discuss their interpretation and their
impact on the understanding of higher dimensional cases.

2 Background

In this section we review the current state of knowledge for the double-scaled Sachdev-Ye-
Kitaev (DSSYK) model and chord diagrams [15, 16], the phase space of JT gravity [17],
and the equivalence between DSSYK (at a specific limit) and JT gravity [18]. While the
material in this section largely reviews results from the literature, it exposes the main
ingredients necessary to match boundary Krylov complexity to its bulk counterpart.

2.1 Double-scaled SYK

The Sachdev-Ye-Kitaev (SYK) model [19, 20] is a strongly interacting, many-body quantum
system described by all-to-all interactions between Majorana fermions ψi with 1 ≤ i ≤
N which satisfy {ψi, ψj} = 2δij , grouped into p-body interactions ψi1ψi2 . . . ψip through
random couplings Ji1i2...ip in the form of the Hamiltonian

HSY K = ip/2 ∑
1≤i1<i2<···<ip≤N

Ji1i2...ip ψi1ψi2 . . . ψip . (2.1)

The random couplings Ji1i2...ip are usually taken from a Gaussian distribution with zero
mean ⟨Ji1i2...ip⟩ = 0 and an appropriate non-zero variance. The model (2.1) has been
extensively studied for fixed p and N , and at large N , as well as in the large p and large N
limit (see e.g. [21–24]). We will follow [15] and take both N and p to infinity while keeping

– 2 –



J
H
E
P
0
8
(
2
0
2
3
)
2
1
3

Untangling

Figure 1. Untangling a chord diagram.

the ratio 2p2/N fixed, a limit known as double-scaled SYK (or DSSYK), introducing the
ratio parameter λ:

λ ≡ 2p2

N
, (2.2)

and we will take the variance ⟨J2
i1i2...ip

⟩ to be

⟨J2
i1i2...ip

⟩ = 1
λ

(
N

p

)−1

J2 . (2.3)

As discussed in appendix A, double-scaled SYK with this choice of coupling variance is,
for small values of λ, compatible with the results for SYK where N and p are large and
independent respecting the hierarchy 1 ≪ p≪ N , which was studied in [22].

In [15] it was shown that in the limit where N and p go to infinity while keeping λ

fixed, the ensemble averaged moments

M2k ≡ ⟨Tr(H2k) ⟩ (2.4)

of the Hamiltonian (2.1) are given by a sum over chord diagrams. Chord diagrams repre-
sent pairwise Wick contractions among the couplings Ji1...ip of the different Hamiltonians
in the product inside the trace (2.4), which make the collective indices of the correspond-
ing monomials ψI ≡ ψi1ψi2 . . . ψip coincide. For the 2k-th moment, there are 2k paired
monomials in each trace. To find the value of such a chord diagram, it needs to be “un-
tangled” to a configuration where all contracted pairs are sitting one beside the other (see
figure 1). Once this is achieved, using the fact that ψ2

I = ip for p even (it will be assumed
that p is even), one obtains a total phase of ikp coming from all the monomials squared,
which exactly cancels the overall phase coming from the ip/2 factor in the normalization of
each Hamiltonian (2.1). Additionally, the system size dependence coming from the sum-
mation over the indices is mitigated by the binomial in the variance normalization (2.3),
yielding bounded results in the double-scaling limit. Therefore, the contribution of a given
Wick contraction (i.e. a given chord diagram) boils down to the overall sign obtained after
commuting the Majorana monomials through each other inside the trace until those with
coincident indices are consecutive. In the double-scaling limit, it is found [15] that the
overall effect of such a commutation is captured by a multiplicative factor q ≡ e−λ. The
number of such commutations required to untangle a chord diagram is exactly the number
of intersections of chords, and hence one is left with a simple rule for evaluating moments
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i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

Figure 2. “Cutting open” a chord diagram [15]. The cut-open chord diagram can be thought of as
a process in which one starts with zero open chords and ends with zero open chords, while chords
are created and annihilated in between.

via chord diagrams:

M2k = J2k

λk

∑
chord diagrams

with k chords

qnumber of intersections . (2.5)

To evaluate the r.h.s. , it is useful to “cut open” each chord diagram and think of the process
of constructing it as a transition from a state |0⟩ with zero chords back to a state with
zero chords, through a process of creating k chords and eventually annihilating them all.
An auxiliary Hilbert space {|0⟩, |1⟩, |2⟩, . . . , |n⟩}, which represents states with 0, 1, 2, . . . , n
open chords, can now be introduced. An open chord is a chord that emanated from a given
Hamiltonian insertion but which has not yet been closed by reaching another Hamiltonian
insertion: figure 2 depicts a chord diagram of six Hamiltonian insertions interpreted as a
transition from zero open chords back to zero open chords through six intermediary steps
(Hamiltonian insertions); if we look, for instance, at the step i = 4, we note that there are
two open chords. In the transition from |0⟩ back to |0⟩, chords can be ‘created’ |l⟩ 7→ |l+1⟩
and ‘annihilated’ |l⟩ 7→ |l − 1⟩ at each step.

All possible chord diagrams with i steps (i.e. i Hamiltonian insertions) are represented
by a state |ψ(i)⟩ in the Hilbert space. We define such a state through its coordinates over
the chord basis,

|ψ(i)⟩ =
∑
l≥0

ψ
(i)
l |l⟩ . (2.6)

The coordinates ψ(i)
l are defined to be the sum over all chord diagrams of i steps with l open

chords, where each diagram is weighted by q to the power of the number of intersections
featured in it; that is, all diagrams with i steps and l open chords are represented by a
state in the Hilbert space which is proportional to |l⟩, with projection ψ

(i)
l , such that the

sum of all diagrams of a fixed number of steps is represented by the linear combination
|ψ(i)⟩ given in (2.6). The coordinates ψ(i)

l satisfy the following recurrence relation:

ψ
(i+1)
l = J√

λ
ψ

(i)
l−1 + J√

λ
(1 + q + · · · + ql)ψ(i)

l+1 , (2.7)

where the first term represents the possibility that a chord was created in the transition
from step i to step i + 1, and the second term represents the possibility that a chord was
annihilated in that transition. In the case in which the chord is annihilated at step i + 1,
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there must have been l + 1 open chords at step i so that we are left with l open chords
at step i + 1, and therefore the chord, in getting annihilated, can intersect up to l other
open chords, and in each case the diagram would get multiplied by q to the number of
such intersections. The term 1 + q+ . . .+ ql in (2.7) accounts therefore for all the possible
ways to close a chord in the step i + 1. This recursion (2.7) can be written concisely in a
basis-independent way as

|ψ(i+1)⟩ = T |ψ(i)⟩ , (2.8)

where, in coordinates over the {|l⟩} basis, the transfer matrix T takes the form:

T
∗= J√

λ



0 1−q
1−q 0 0 . . .

1 0 1−q2

1−q 0 . . .

0 1 0 1−q3

1−q . . .

0 0 1 0 . . .
...

...
...

... . . .


, (2.9)

where the asterisk above the equality sign denotes that this is an expression in coordinates
over a particular basis. At the first step i = 0 there are no open chords and therefore
|ψ(0)⟩ = |0⟩. Thus,

|ψ(i)⟩ = T i|0⟩ . (2.10)

Since at each step we either create or annihilate a chord, to make a chord diagram with
exactly k chords we would need to apply the operator T 2k times, creating k chords and
annihilating k chords. The final state is |ψ(2k)⟩ = T 2k|0⟩, and thus

M2k = ⟨0|T 2k |0⟩ = ⟨0|ψ(2k)⟩ = ψ
(2k)
0 . (2.11)

In view of this, T can be interpreted as an effective Hamiltonian of DSSYK. In (2.9) we
give its expression in coordinates over the chord basis {|l⟩}∞l=0, where it is represented by a
non-symmetric matrix. In [15, 16] it was pointed out that there exists a diagonal similarity
transformation that brings T into a tridiagonal, symmetric form. Furthermore, in [18] this
transformation is explained in terms of the chord inner product defined in that article (and
which was necessary to define in order to have an actual Hilbert space): according to such
an inner product, the states {|l⟩} are orthogonal to each other, but they are not normalized
(except for |0⟩). The similarity transformation amounts to re-normalizing these states so
that they form an orthonormal basis. By a slight abuse of notation, from now on {|l⟩}
will denote the normalized fixed chord number states, i.e. ⟨l|l′⟩ = δl,l′ . In this orthonormal
basis, T takes the form [15, 18]:

T
∗= J√

λ



0
√

1−q
1−q 0 0 . . .√

1−q
1−q 0

√
1−q2

1−q 0 . . .

0
√

1−q2

1−q 0
√

1−q3

1−q . . .

0 0
√

1−q3

1−q 0 . . .
...

...
...

... . . .


. (2.12)
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Algebraically, T can be written as:

T = J√
λ

(
α+ α†

)
, (2.13)

where
α =

∑
l≥0

√
[l + 1]q |l⟩⟨l + 1| , (2.14)

and where we have defined the q-number (or basic number) as:

[l]q ≡ 1 − ql

1 − q
=

l−1∑
k=0

qk . (2.15)

In fact, the ladder operators α, α†, together with the chord number operator

l̂ =
∑
l≥0

l|l⟩⟨l| , (2.16)

form the algebra of a q-deformed oscillator [25]:

[α, α†]q ≡ αα† − qα†α = 1
[l̂, α†] = α†

[l̂, α] = −α
(2.17)

whose representation over the |l⟩ basis satisfies

l̂|l⟩ = l|l⟩, α†|l⟩ =
√

[l + 1]q|l + 1⟩, α|l⟩ =
√

[l]q|l − 1⟩ . (2.18)

This algebra reduces to the usual oscillator algebra (the Heisenberg-Weyl algebra) in the
limit q → 1, since:

(i) [A,B]q
q→1−→ [A,B]

(ii) [l]q
q→1−→ l.

From (2.12), the eigensystem equation for the components of the eigenvectors of T ,
ψl(E) = ⟨l|E⟩, is given by:

E ψl(E) = J√
λ(1 − q)

(√
1 − ql+1 ψl+1(E) +

√
1 − ql ψl−1(E)

)
(2.19)

In [15, 16], it was shown that the eigenvalues are a function of a continuous variable θ:

E(θ) = 2J cos θ√
λ(1 − q)

, 0 ≤ θ ≤ π , (2.20)

and the normalized eigenvectors are given by

ψl(µ) =
√

(q; q)∞|(e2iθ; q)∞| Hl(µ|q)√
2π(q; q)l

, µ = cos θ (2.21)
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where (a; q)n ≡
∏n−1

k=0(1−aqk) is the q-Pochhammer symbol1 and Hl(µ|q) are the q-Hermite
polynomials. Since

ψ0(µ) =

√
(q; q)∞

2π |(e2iθ; q)∞| , (2.22)

ψl(µ) can be written as

ψl(µ) = ψ0(µ)Hl(µ|q)√
(q; q)l

, µ = cos θ . (2.23)

See appendix C for a detailed review of the derivation of these results.

2.2 Phase space of JT gravity

We now turn to review some background on JT gravity and in particular its phase space,
following [17, 26, 27]. This theory is dual to the low-energy regime of DSSYK, as we shall
review in section 2.3.

JT gravity is a 2-dimensional gravity theory with no propagating bulk degrees of
freedom. Its action involves the metric gµν and the dilaton field Φ and is given by

SJT =
∫
M
d2x

√
−g
[
Φ0R+ Φ(R+ 2/l2AdS)

]
+ 2

∫
∂M

dx
√
γ
[
Φ0K + Φ(K − 1/lAdS)

]
(2.24)

where γµν is the induced metric on the boundary, K is the extrinsic curvature of the
boundary and lAdS is a length scale of the 2-dimensional spacetime which turns out to be
2-dimensional Anti-de Sitter (AdS2). This length is related to the cosmological constant.
The terms involving the constant Φ0 are topological in nature and will not affect our
discussion at the classical level. The boundary conditions

ds2∣∣
∂M = −dt

2
b

ϵ2
(2.25)

Φ
∣∣
∂M = ϕb

ϵ
(2.26)

fix the induced metric γµν , with tb the time on the boundary, and fix the dilaton field Φ
to a positive constant ϕb at the boundary. In the large volume limit we have ϵ → 0, i.e. ϵ
plays the role of a boundary regulator.

Variation of the action (2.24) gives the following equations of motion:

0 = R+ 2/l2AdS (2.27)
0 = (∇µ∇ν − gµν/l

2
AdS)Φ . (2.28)

The first equation of motion R = −2/l2AdS tells us that the metric should have constant
negative curvature, or in other words, it is described by AdS2. A metric for AdS2 can
be constructed via an embedding in a 3-dimensional Minkowski spacetime with two time
directions and one space direction:

ds2 = −dT 2
1 − dT 2

2 + dX2. (2.29)
1https://en.wikipedia.org/wiki/Q-Pochhammer_symbol.
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X

T2

T1

Figure 3. Left: the surface −T 2
1 − T 2

2 + X2 = −l2AdS embedded in 3-dimensional space. The
wormhole length is represented by the red line, and the boundaries are represented by blue lines.
The yellow dots represent the anchoring points at the boundary, between which the wormhole
length is computed. The yellow lines represent the Schwarzschild horizon and the areas colored
yellow represent the regions covered by the Schwarzschild coordinates. Right: schematic Penrose
diagram of the same geometry.

AdS2 is the induced geometry on the hypersurface

−T 2
1 − T 2

2 +X2 = −l2AdS, (2.30)

which has boundaries at X → ±∞, see figure 3. A set of global coordinates which cover
the whole space is:

T1 = lAdS
√
x2 + 1 cos τ

T2 = lAdS
√
x2 + 1 sin τ

X = lAdS x

(2.31)

with 0 ≤ τ < 2π and −∞ < x < ∞. Plugging these coordinates into (2.29) provides an
AdS2 metric on the surface (2.30):

ds2/l2AdS = −(1 + x2)dτ2 + 1
1 + x2dx

2 . (2.32)

Allowing τ ∈ R in (2.32) yields the universal cover of AdS2. Turning to the second equation
of motion, (2.28), its solution is given in the embedding coordinates (T1, T2, X) by Φ =
AT1 + BT2 + CX [17, 28]. The unique solution, modulo SO(1, 2) rotations in embedding
space, which respects the boundary condition (2.26), namely that Φ has the same (positive)
value on both boundaries, can be expressed as Φ ∝ T1 [17]. That is:

Φ(x, τ) = Φh

√
1 + x2 cos τ . (2.33)

Another set of coordinates, with a well-defined time on the boundary, is given by the
Schwarzschild coordinates

T1 = lAdS r/rs

T2 = lAdS

√
(r/rs)2 − 1 sinh(rst/l

2
AdS)

X = lAdS

√
(r/rs)2 − 1 cosh(rst/l

2
AdS) ,

(2.34)
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with r > rs and −∞ < t < ∞. These coordinates do not cover the whole space, as shown
in figure 3. The induced metric in Schwarzschild coordinates is given by

ds2 = −r
2 − r2

s

l2AdS
dt2 + l2AdS

r2 − r2
s

dr2 . (2.35)

The solution to (2.28) with boundary condition (2.26) acquires a simple form in terms of
the Schwarzschild coordinates:

Φ(r, t) = ϕb r/lAdS . (2.36)

Note that when r = rs, the two coordinate sets (2.31), (2.34) give the relationship 1 =√
1 + x2 cos τ which from (2.33) means that at r = rs we have Φ = Φh. On the other hand,

from (2.36) we have at r = rs that Φ = ϕbrs/lAdS. We thus have the relationship

rs = lAdS
Φh

ϕb
. (2.37)

At the boundary, r = lAdS/ϵ and so the metric (2.35) and dilaton (2.36) become

ds2∣∣
boundary = −dt

2

ϵ2
(1 − ϵ2(rs/lAdS)2) (2.38)

Φ
∣∣
boundary = ϕb/ϵ (2.39)

which from the boundary conditions (2.25), (2.26) shows that the Schwarzschild time t

becomes the boundary time when ϵ → 0. At the boundary, the relationship between τ

and t can be worked out by considering the relationship between the two sets of coordi-
nates (2.31), (2.34):

(
r

rs

1
cos τ

)2
− 1 =

[(
r

rs

)2
− 1

]
cosh2(rst/l

2
AdS) . (2.40)

On the boundary r = lAdS
ϵ , and in the limit ϵ→ 0 the relationship between the global time

τ and the boundary time tb is found to be

cos τ = 1
cosh(rstb/l

2
AdS) . (2.41)

2.2.1 The length of the wormhole and its canonical conjugate

In [17] it was shown that the phase space coordinates of JT gravity consist of: geodesic
distance between the two boundaries, at a time slice defined by boundary time; and its
canonical conjugate. The geodesic distance between two points on the two asymptotic
boundaries of AdS2 can be identified as the length of a (Lorentzian) wormhole, see figure 3.
In order to compute it for a given boundary time tb, we need the metric (2.32) and to set
τ = const. We also need the value of x at the boundary points labeled by time tb. Again,
the relationship between the two sets of coordinates (2.31), (2.34) gives

x =
√

(r/rs)2 − 1 cosh(rst/l
2
AdS) . (2.42)
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At the boundary r = lAdS/ϵ so setting t = tb in the above equation and taking ϵ→ 0 gives

xb = lAdS
ϵ rs

cosh(rstb/l
2
AdS) . (2.43)

The wormhole length is then

l/lAdS =
∫ xb

−xb

dx√
1 + x2

= 2 arcsinh(xb) = 2 log
(
xb +

√
x2

b + 1
)

(2.44)

= 2 log
(2lAdS
ϵ rs

cosh(rstb/l
2
AdS)

)
+O(ϵ) . (2.45)

Using rs = lAdSΦh/ϕb from (2.37), the above result can be expressed as

l/lAdS = 2 log
(2ϕb

ϵ

)
+ 2 log

[ 1
Φh

cosh
( Φh

lAdS ϕb
tb

)]
+O(ϵ) . (2.46)

The first term is infinite in the limit ϵ → 0 (since in the large volume limit the boundary
of AdS is at infinity), and this result needs to be renormalized. The renormalized length
of the wormhole is given by

l̃/lAdS = l − 2 log
(2ϕb

ϵ

)
= 2 log

[
cosh

( Φh

lAdS ϕb
tb

)]
− 2 log Φh . (2.47)

In terms of the value of the Hamiltonian (or energy) on the boundary [17]:

H = 2Φ2
h

lAdS ϕb
= E, (2.48)

result (2.47) becomes:

l̃/lAdS = 2 log
[
cosh

(√
E

2lAdS ϕb
tb

)]
− log

(
lAdSEϕb

2

)
. (2.49)

Together with the canonical conjugate of l̃, given by [17]

P lAdS =
√

2lAdSEϕb tanh
(√

E

2lAdS ϕb
tb

)
, (2.50)

the Hamiltonian of JT gravity takes the form [17]

H = 1
lAdS ϕb

(
l2AdS P

2

2 + 2e−l̃/lAdS

)
. (2.51)

This Hamiltonian is written in terms of a two-sided2 phase space variable l̃ and its conjugate
momentum, and thus the quantum description of the system will consist of a Hilbert
space spanned by the eigenfunctions of this two-sided length. This Hilbert space is not
factorizable as a product of other Hilbert spaces describing the degrees of freedom of each
side separately, as was discussed in [17].

2We call l̃ a two-sided length because it joins the two disconnected (and regularized) boundaries of AdS2.
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2.3 Bulk Hilbert space

This section reviews how the chord Hilbert space of DSSYK can be understood equivalently
as the bulk Hilbert space of JT gravity. The guiding principle in [18] is the following: in a
given chord diagram, it is possible to identify a left and a right region by arbitrarily choosing
two points on the circumference that will separate them; such points are identified with
(Euclidean) future and past infinity, and one can define a constant (Euclidean) time slice
by a line whose anchoring points are on different regions: the state on such a slice is
given by the number of open chords intersecting it (defined in a unique way [18]). This is
nothing but a re-interpretation of the discussion around (2.6), but the picture is now very
reminiscent of the non-factorizable, two-sided Hilbert space of JT gravity reviewed in the
preceding section. The connection can be made even more explicit by showing that the
effective DSSYK Hamiltonian becomes, in the suitable limit, the Liouville Hamiltonian of
JT gravity [15, 18], where the length operator is in fact proportional to the chord number
operator. We review this below.

We will now denote the chord basis by {|n⟩}∞n=0. The effective Hamiltonian of the
averaged theory for DSSYK, given by (2.13), may be written as:

T = J√
λ

(
α+ α†

)
= J√

λ(1 − q)

(
D
√

1 − qn̂ +
√

1 − qn̂D†
)
, (2.52)

where α, α† are the ladder operators of the q-deformed harmonic oscillator and n̂|n⟩ = n|n⟩,
while D† is a non-normalized version of the creation operator, which therefore acts as a
unit-displacement operator on the semi-infinite ordered chord basis:

D†|n⟩ = |n+ 1⟩, D|n⟩ = |n− 1⟩, D|0⟩ = 0. (2.53)

On this chain, n̂ plays the role of a position operator. Despite the inherent discreteness of
the semi-infinite lattice at hand, it is possible to define a conjugate canonical momentum
p for n̂ as the generator of translations:3

D† ≡ e−ip. (2.54)

Observing (2.54) we note that the discreteness of the lattice manifests itself in the fact
that only displacements of unit length in n-space are allowed. A continuum limit would
be achieved by allowing displacements of arbitrary length ∆n, of the form e−i ∆n p. In this
limit we would have that p = −i∂n.

Before proceeding further, it is convenient to redefine the position variable so that it
acquires dimensions of length and also so that it is well-behaved in the small-λ limit that
we shall shortly take. Introducing a fundamental length scale lf about which we don’t need

3If the discrete lattice had a finite length K, its Hilbert space would be finite and therefore it would
be impossible to fulfill the canonical commutation relation [n̂, p] = i, but we would still call p a canonical
momentum in the sense that it satisfies (2.54). Taking the suitable limit K → ∞ one recovers the semi-
infinite and discrete lattice and, restricted to a physically relevant domain, the commutator [n, p] does tend
to i, as explained in detail in [29, 30].

– 11 –
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to be specific,4 we define a new length variable l as:

l = lfλn, (2.55)

whose conjugate canonical momentum is therefore k = p
lf λ , becoming k = −i∂l in the

continuum limit. With this all, the Hamiltonian becomes:

T = J√
λ(1 − q)

(
eiλlf k

√
1 − e

− l
lf +

√
1 − e

− l
lf e−iλlf k

)
. (2.56)

The spectrum of this Hamiltonian is bounded (for λ > 0) and symmetric about zero, as
can be seen in (2.20), so we shall do the harmless replacement T → −T that ensures that
the ground state corresponds to the minimal momentum k [18]. This choice is arbitrary
at this point but will be important later on, as it will ensure that the triple-scaled Hamil-
tonian is bounded from below. Let us write the explicit form of the Hamiltonian after the
replacement T 7→ −T ≡ T̃ :

T̃ = − J√
λ(1 − q)

(
eiλlf k

√
1 − e

− l
lf +

√
1 − e

− l
lf e−iλlf k

)
. (2.57)

We can now take the remaining limit that brings us to the so-called triple-scaling limit.
It is a small-λ limit in which l is taken to be accordingly large, as follows:5

λ→ 0, l → ∞,
e
− l

lf

(2λ)2 ≡ e
− l̃

lf fixed. (2.58)

The last condition in (2.58) can be rewritten as:

l̃

lf
= l

lf
− 2 log

( 1
2λ

)
. (2.59)

We shall call l̃ the renormalized length.6 In this triple-scaled limit, the Hamiltonian (2.57)
becomes:7

T̃ − E0 = 2λJ
(
l2fk

2

2 + 2e−
l̃

lf

)
+ O

(
λ2
)
, (2.60)

where E0 = −2J
λ is a constant energy shift. The moral of this triple-scaling is now clear: we

are zooming in near the ground state E0 of the Hamiltonian (2.57), and in this regime it
takes the form of the Hamiltonian of Liouville quantum mechanics, whose spectral density is
proportional to sinh(2π

√
E) [31], which is in turn the Hamiltonian describing the dynamics

4It will eventually become the AdS length. It is not a parameter of the DSSYK theory, so one may
equivalently say that chord number is related to bulk length normalized by AdS units.

5Our definition of the triple-scaling limit differs by a factor of 2 from that in [18]. See appendix B for a
discussion on this choice, which eventually does not imply any fundamental modification of the bulk theory.

6It will become the actual renormalized bulk length eventually.
7This can be shown in the continuum limit, using k = −i∂l, it still holds for the discrete, semi-infinite

chain using the commutation relation [l, k] = i, which is satisfied within the relevant physical domain as
argued in [29, 30].
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of the single pair of phase space variables of JT gravity, as seen in (2.51). This establishes
the correspondence between triple-scaled SYK and JT gravity: their Hilbert spaces are
identified and the Hamiltonian generating dynamics is the same. Incidentally, we note
that instances of DSSYK with different values of λ and J may collapse, in the triple-
scaling limit, onto the same Liouville Hamiltonian if their product λJ is equal, since this
is the only parameter controlling the Liouville Hamiltonian (2.60), and hence the gravity
dual. In other words, the following parameter identification connects Hamiltonians (2.51)
and (2.60):

lf = lAdS, 2λJ = 1
lAdSϕb

. (2.61)

We will come back to these identifications in section 4, where boundary K-complexity is
matched to the corresponding bulk length computation.

3 Krylov complexity and chords

In this section we quickly review the definition of Krylov complexity and then provide
exact results for it in DSSYK. Although the double-scaling limit of SYK is not the limit
of SYK which corresponds directly to JT gravity, we study K-complexity in this limit as a
warm-up and as an interesting result in itself which has not been studied before.

Krylov complexity measures the spreading of states or operators in a quantum system
under Hamiltonian time evolution, over a special ordered basis (sometimes called the Krylov
chain) adapted to the state/operator’s time evolution. Here, we will focus on the definition
of K-complexity for states. Given an initial state |0⟩ at t = 0, its time evolution generated
by the Hamiltonian H in the Schrödinger picture is given by

|ϕ(t)⟩ = e−iHt|0⟩ =
∞∑

n=0

(−it)k

k! Hk|0⟩ (3.1)

written as a linear combination over the basis {|0⟩, H|0⟩, H2|0⟩, . . . }. The survival ampli-
tude, which is the overlap of the time-evolving state with the state at t = 0 (also known
as fidelity), is given by

⟨0|ϕ(t)⟩ = ⟨0|e−iHt|0⟩ =
∞∑

n=0

(−it)k

k! ⟨0|Hk|0⟩ ≡
∞∑

n=0

(−it)k

k! Mk (3.2)

where we define the moments Mk ≡ ⟨0|Hk|0⟩. If the survival probability ⟨0|ϕ(t)⟩ is an even
function of t then all odd moments M2k+1 are zero. This, in particular, is the case for the
effective Hamiltonian of DSSYK with the initial state being the zero-chord state |0⟩.

The Krylov basis is obtained via the Lanczos algorithm which is essentially a Gram-
Schmidt orthonormalization procedure over the basis {|0⟩, H|0⟩, H2|0⟩, . . . }. For an even
survival probability function (with odd moments being zero) the Lanczos algorithm takes
the form:8

8In the general case, where odd moments are not necessarily zero, the Lanczos algorithm is a little more
involved. See e.g. https://en.wikipedia.org/wiki/Lanczos_algorithm.
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1. |A1⟩ = H|0⟩, compute b1 = |A1|, if b1 = 0 stop. Otherwise define |1⟩ = |A1⟩/b1.

2. For n ≥ 1: |An+1⟩ = H|n⟩ − bn|n − 1⟩, compute bn+1 = |An+1|, if bn+1 = 0 stop.
Otherwise define |n+ 1⟩ = |An+1⟩/bn+1.

Here it was assumed that the initial state |0⟩ is normalized. In this way the ordered Krylov
basis (or Krylov chain) {|n⟩}K−1

n=0 is constructed and the Lanczos coefficients {bn}K−1
n=1 are

defined, where K is the dimension of the Krylov space. K can be infinite if the original
Hilbert space has infinite dimension, and must be finite otherwise. By construction, the
Krylov basis vectors form an orthonormal basis, satisfying ⟨m|n⟩ = δmn. In the Krylov
basis, the Hamiltonian acquires the following tridiagonal form determined by the Lanczos
coefficients:

H|n⟩ = bn+1|n+ 1⟩ + bn|n− 1⟩ . (3.3)

The Lanczos coefficients can be determined from the moments of the survival ampli-
tude (3.2), via the iterative procedure [32]:

M
(n)
2k = M

(n−1)
2k

b2
n−1

−
M

(n−2)
2k−2
b2

n−2
, n = 1, 2, . . . , L k = n, n+ 1, . . . , L

b2
n = M

(n)
2n (3.4)

where M (0)
2k ≡ M2k as well as M (−1)

2k = 0 and b−1 = 1 = b0. Using this algorithm, the first
L Lanczos coefficients can be determined from the moments M2k with k = 0, . . . , L.

The time-evolving state can now be expanded over the Krylov basis:

|ϕ(t)⟩ =
K−1∑
n=0

ϕn(t)|n⟩ (3.5)

where ϕn(t) ≡ ⟨n|ϕ(t)⟩ can be thought of as a “wavefunction” spreading over the ordered
Krylov basis with initial condition ϕn(t = 0) = ⟨n|0⟩ = δn0. From unitarity of the time
evolution, the norm is preserved, i.e. ∑K−1

n=0 |ϕn(t)|2 = 1 for all t. Note that ϕ0(t) is the
survival probability defined in (3.2).

A ‘position’ operator, n̂, over the ordered Krylov basis can be defined as

n̂ =
K−1∑
n=0

n |n⟩⟨n|, (3.6)

and Krylov complexity is then defined as the expectation value of n̂ as a function of time,
or equivalently, the average position of the wavefunction |ϕ(t)⟩ over the ordered Krylov
basis:

CK(t) = ⟨n̂(t)⟩ = ⟨ϕ(t)|n̂|ϕ(t)⟩ =
K−1∑
n=0

n |ϕn(t)|2 . (3.7)

From (3.3) we can obtain a recurrence relation for the eigenvectors of H, H|E⟩ = E|E⟩,
since the components of each eigenvector |E⟩ over the Krylov basis, defined as ψn(E) ≡
⟨n|E⟩, satisfy:

E ψn(E) = bn+1ψn+1(E) + bnψn−1(E) . (3.8)
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The components of the eigenvectors of H over the Krylov basis are useful in the determi-
nation of the wavefunctions ϕn(t), and if known, together with the eigenvalues of H, they
provide the following closed-form expression for the wavefunction as a function of time:

ϕn(t) ≡ ⟨n|ϕ(t)⟩ = ⟨n|e−iHt|0⟩ =
∑
E

e−iEt⟨n|E⟩⟨E|0⟩ =
∑
E

e−iEt ψn(E)ψ∗
0(E) . (3.9)

3.1 Lanczos coefficients in DSSYK

Observing the steps leading to the expression of the effective Hamiltonian in coordinates
over the basis of fixed chord number states, given in matrix form in (2.12), the connection
to Lanczos coefficients is argued as follows. The fixed chord number states {|n⟩} are an
orthonormal set of linear combinations of states with up to n Hamiltonian insertions Tn|0⟩;
and using them as a basis, they bring the transfer matrix (or effective Hamiltonian) to a
tridiagonal form. They thus turn out to be Krylov basis elements, with the matrix elements
of the symmetric, tridiagonal T giving the Lanczos coefficients:

bn = J

√
[n]q
λ

= J

√
1 − qn

λ(1 − q) . (3.10)

Consequently, the chord number operator n̂, which gives the position in the chord number
basis, gives equivalently the position in the Krylov basis, so it is the K-complexity operator.

There is certainly more than one orthonormal basis that can bring the effective Hamil-
tonian T to tridiagonal form. However, given a seed state |0⟩, there is a unique (up to
global phases) orthonormal basis {|n⟩} such that the state |n⟩ is a linear combination of
{T k|0⟩}n

k=0, as can be shown inductively. Such a basis can therefore be identified, up
to global phases, with the Krylov basis adapted to the state |0⟩ and the Hamiltonian T ,
which can be built efficiently through the Lanczos algorithm and brings the Hamiltonian
to tridiagonal form with real entries. The fact that the matrix expression (2.12) for the
effective Hamiltonian in the fixed chord number basis has positive entries indicates that
such a basis coincides exactly with the Krylov basis (i.e. they do not differ even by a global
phase). This argument proves that the fixed chord number states are Krylov elements and
therefore that the entries of the tridiagonal version of T in (2.12) are the Lanczos coeffi-
cients. In addition, we can perform a non-trivial check of the fact that the sequence (3.10)
is actually the Lanczos coefficients sequence by taking the moments M2k computed via
chord-diagram combinatorics and showing that the usual transformation (3.4) will indeed
yield a sequence of Lanczos coefficients in agreement with expression (3.10). Using chord
diagrams, we compute explicitly the first three even moments:

M2 = J2

λ

M4 = J4

λ2 (2 + q)

M6 = J6

λ3 (5 + 6q + 3q2 + q3)

(3.11)

where M6 involves evaluating the 15 chord diagrams shown in figure 4. With this, we can
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Figure 4. The 15 chord diagrams contributing to M6: the top row shows chord diagrams with
zero intersections (5 diagrams), the second row shows chord diagrams with 1 intersection (6
diagrams), the third row shows diagrams with 2 intersections (3 diagrams) and the fourth row
shows the only chord diagram with 3 intersections. These numbers correspond to the calculation
of M6 in (3.11).

apply the recursion method (3.4):

b2
1 = M2 = J2

λ
= J2

λ
[1]q

b2
2 = M4

M2
−M2 =

J4

λ2 (2 + q)
J2

λ

− J2

λ
= J2

λ
(1 + q) = J2

λ
[2]q

b2
3 =

M6
M2

−M4
M4
M2

−M2
− M4
M2

= (. . .) = J2

λ
(1 + q + q2) = J2

λ
[3]q .

(3.12)

Equations (3.12) illustrate that the Lanczos coefficients (3.10) are consistent with the
Hamiltonian moments (3.11).

3.1.1 State dependence of the Lanczos coefficients

An important discussion is in order: what initial state are these Lanczos coefficients being
computed for? They are the Lanczos coefficients associated to the evolution under the
effective Hamiltonian T of the initial state |0⟩, given by the state

|ϕ(t)⟩ = e−itT |0⟩, (3.13)

as the moments to which the coefficients (3.10) are in one-to-one correspondence are the
coefficients of the Taylor series of the survival amplitude of (3.13):

⟨0|e−itT |0⟩ =
+∞∑
k=0

(−it)2k

(2k)! M2k, (3.14)

where the moments M2k are given in (2.11).
Furthermore, the state |0⟩ that seeds the evolution can be thought of as an effective

version of the infinite-temperature thermofield “double” state in the ensemble-averaged
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theory, and the survival amplitude (3.14) is in fact the ensemble-averaged analytic contin-
uation of the partition function, which is itself known to give the survival amplitude of the
thermofield double state [10, 33]. We shall now elaborate on this. The ensemble-averaged
analytic continuation of the partition function, evaluated at infinite temperature, reads:

⟨Z(β + it)⟩|β=0 =
〈
Tr
[
e−itH

]〉
. (3.15)

Now, one can check that the trace in (3.15) can be rewritten as the expectation value
of the evolution operator in a certain state |Ω⟩, as follows:

Tr
[
e−itH

]
= ⟨Ω|e−itH |Ω⟩, |Ω⟩ ≡ 1√

N
∑
E

|E⟩, (3.16)

where N → ∞ denotes the Hilbert space dimension, and the factor 1/
√
N is required for

consistency with the convention Tr[1] = 1, ensuring normalization of the state |Ω⟩. By
inspection, we note that this state is an “unconventional” version of the infinite-temperature
thermofield “double” state, in the sense that it does not belong to the tensor product of
two identical Hilbert spaces but rather to the only Hilbert space available in the problem.
This feature will be consistent with the bulk interpretation of this Hilbert space as the
non-factorizable two-sided Hilbert space of JT gravity [17], as discussed in [18].

Finally, taking the ensemble average amounts to replacing the non-averaged Hamilto-
nian H by the effective Hamiltonian T , and the state |Ω⟩ by the zero-chord state |0⟩:〈

Tr[e−itH ]
〉

=
〈
⟨Ω|e−itH |Ω⟩

〉
= ⟨0|e−itT |0⟩, (3.17)

which connects, as promised, the averaged analytic continuation of the partition func-
tion (3.15) to the survival amplitude (3.14) and provides the justification for considering
the zero-chord state |0⟩ as an effective version of the infinite-temperature thermofield “dou-
ble” state in the averaged theory.

3.1.2 Regimes of the Lanczos sequence

In order to better understand the different regimes of K-complexity as a function of time, it
will be useful to analyze the regimes that can be identified in the Lanczos sequence (3.10).
At this point, we recall that q = e−λ = e−

2p2
N . For λ > 0 we have 0 < q < 1 and

the Lanczos coefficients bn in (3.10) are bounded. They have a horizontal asymptote at
b∞ = J√

λ(1−q)
> 0. In the limit λ → +∞ (i.e. q → 0) the Lanczos sequence is constant

bn ∼ J√
λ
→ 0, while in the limit λ → 0 we have q → 1 and the Lanczos coefficients grow

indefinitely as bn ∼ J
√

n
λ . The limit λ → 0 is of particular importance since in [18] the

connection to gravity is done in a triple scaling limit in which λ≪ 1 (i.e. q → 1).
In order to identify regimes in the Lanczos sequence, the above analysis needs to be

performed more carefully. The arguments above have considered limits of λ keeping n fixed,
whereas below we shall study the behavior of the bn sequence given a fixed parameter λ > 0
for n either sufficiently big or small compared to λ.
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Inspecting (3.10) we note that, given 0 < q < 1, for sufficiently large n, the factor qn

will be small and therefore we can use the approximation:

bn ≈ J√
λ(1 − q)

(
1 − qn

2

)
, for large n. (3.18)

Conversely, if |n log(q)| is sufficiently small, we can approximate 1− qn = 1− e−n log(1/q) ≈
n log(1/q) = λn > 0 (for n > 0), so that:

bn ≈ J

√
n

1 − q
, for small n. (3.19)

We can estimate the critical value n∗(q) that marks the transition between the
regimes (3.19) and (3.18) by taking the value of n for which n log(1/q) becomes of or-
der 1, which yields:

n∗(q) ≈
1

log
(

1
q

) = 1
λ
. (3.20)

Summarizing, we have found that the Lanczos coefficients start growing as ∝
√
n before

n∗(q), after which they saturate at a horizontal asymptote following ∝ 1 − qn

2 :

bn =


J

√
n

1 − q
, n ≲

1
λ

J√
λ(1 − q)

(
1 − qn

2

)
, n ≳

1
λ

(3.21)

Note that limq→1− n∗(q) = limλ→0+ n∗(q(λ)) = +∞, consistent with the fact that when
q → 1 we have bn ∝

√
n, i.e. only the square-root behavior is featured. Additionally,

inspecting (3.20) we realize that for λ > 1 (or, equivalently, q < e−1 ≈ 0.37) the transition
value of n is n∗ < 1, which implies that the first regime in (3.21) will not be visible at all in
the actual Lanczos sequence, since strictly speaking n ∈ N. In the cases of interest for us
we will need to consider both regimes, as the connection to gravity occurs in a limit where
λ is small. Figure 5 depicts several Lanczos sequences for different values of q, and figure 6
shows the different regimes in the Lanczos sequence for a particular value of q close to 1,
together with the q-dependence of the transition value n∗(q).

For reference, we can rewrite (3.21) for small λ (i.e. q close to 1):

bn ≈


J

√
n

λ
, n ≲

1
λ

J

λ

(
1 − e−nλ

2

)
, n ≳

1
λ

(3.22)

where the corrections are subleading in an expansion in powers of
√
λ.

3.2 K-complexity regimes in DSSYK

The regimes of the Lanczos coefficients (3.21) allow us to distinguish different regimes in
the growth of K-complexity. The initial condition of the wave packet is ϕn(0) = δn0, where
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Figure 5. Lanczos coefficients in DSSYK for different values of q, denoted bn ≡ b(n, q). Left:
linear scale along both axes, focusing at small values of n. Right: log-log plot. In this scale, the
initial linear shape is compatible with a square-root behavior of bn; figure 6 illustrates this in more
detail.
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Figure 6. Left: Lanczos coefficients of DSSYK for λ = 0.01 (i.e. q ≈ 0.99005), together with the
limiting regimes for small and large n. Right: transition value n∗(q) as a function of q (in blue).
The constant n∗ = 1 has been marked in orange, for reference. Note the logarithmic scale along
the vertical axis. In particular, we note that n∗(q) has a vertical asymptote at q = 1, implying that
in the limit q → 1, which is of interest in this paper, there will be a clear separation of scales in the
Lanczos sequence.

ϕn(t) are the coordinates of the state |ϕ(t)⟩, defined in (3.13), over the Krylov basis (i.e.
the basis of fixed-chord-number states); see (3.9) for the precise definition. Therefore, at
sufficiently early times, the state wave packet only probes the first regime of (3.21), where
the Lanczos coefficients exhibit a square-root behavior. Following [10, 34] we can recycle
the results for the Heisenberg-Weyl algebra. Namely, the Hamiltonian is given by

T = γ
(
a+ a†

)
, (3.23)

where γ = J√
1−q

= J√
1−e−λ

and a, a† act over the Krylov basis as ladder operators of a
simple bosonic harmonic oscillator, satisfying the usual algebra

[a, a†] = 1, (3.24)

i.e. in this regime the q-deformation of the algebra (2.17) is not important as long as we
restrict to the subspace of states {|n⟩ / n ≲ n∗(q)}. Using the Baker-Campbell-Hausdorff
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formula and the simple commutation relation (3.24), the exact wave function ϕn(t) is
computed in [34], as this is nothing but the evolution along a one-parameter family of
coherent states:

ϕn(t) = e−
γ2t2

2
(−iγt)n

√
n!

. (3.25)

The result (3.25) for the Krylov space wave function can equivalently be obtained using the
spectral decomposition of the tridiagonal Hamiltonian. Using this method, in section 3.4
we shall derive a formal expression for the wave functions ϕn(t) at arbitrary q and show
that it reduces to (3.25) in the q → 1 limit in section 3.4.1. Likewise, in appendix E we
present an independent diagonalization of the tridiagonal Hamiltonian at q = 1.

From this wave function K-complexity is given by:

CK(t) =
+∞∑
n=0

n|ϕn(t)|2 = γ2 t2 = (tJ)2

1 − q
= (tJ)2

1 − e−λ
. (3.26)

For small λ, we can approximate (3.26) as CK(t) ≈ (tJ)2

λ , up to subleading corrections in
a λ-expansion.

We can use CK(t) as an estimate for the position of the peak of the coherent packet
ϕn(t). Thus, the packet will start to probe the second region of (3.21), where the Lanczos
coefficients approach a horizontal asymptote, when CK(t) becomes of the order of n∗(q).
We therefore define a transition time scale t∗(q) by the relation

CK

(
t∗(q)

)
= n∗(q), (3.27)

giving

t∗(q) = 1
J

√√√√ 1 − q

log
(

1
q

) = 1
J

√
1 − e−λ

λ
, (3.28)

which behaves as t∗ ≈ J−1 for small λ. We note that, as λ goes to zero, the transition
value for n goes to infinity, since n∗ = 1

λ . On the other hand, K-complexity at early times,
CK(t) ∼ 1

λ(tJ)2, has an accordingly increasing growth rate, so that the λ-dependence
cancels out in the expression of the transition time t∗, which is only controlled by J−1.

Well after t∗(q) the wave packet probes a region where the Lanczos coefficients are
effectively constant, bn ≈ b∞ ≡ J√

λ(1−q)
. According to [8], the wave functions ϕn(t) in this

case are given by Bessel functions, the position of whose front-most peak evolves in time as
∼ 2b∞ t. Using the peak position as an estimate for K-complexity, we obtain in this case:

CK(t) ≈ 2 tJ√
λ(1 − q)

. (3.29)

In summary:

CK(t) =


(tJ)2

1−q , t ≲ t∗(q)
2 tJ√
λ(1−q)

+ c(λ) , t≫ t∗(q)
. (3.30)
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Figure 7. K-complexity regimes in DSSYK. The plots compare the exact CK(t) computed numeri-
cally (in blue) with the early (green) and late (red) time regimes described in (3.30). The numerical
computation imposed an artificial cutoff K = 5000 in the length of the Lanczos sequence, but the
plot only depicts a time range during which the wave packet doesn’t yet probe the right edge of
the artificially finite Krylov chain, hence not featuring spurious finite-size effects. Left: linear scale
on both axes. Note that the curve for the late-time approximation is parallel to the exact result
but it doesn’t exactly overlap with it; this is because of the lack of knowledge of the constant c(λ)
in (3.30), which in the case of this plot was chosen to make the early- and late-time regimes match
at t = t∗(q). Right: logarithmic scale along the horizontal axis. This allows us to note the good
agreement at early times between the exact result and the corresponding approximation. Addition-
ally, the logarithmic scale washes away the effect of the constant c, and the red and blue curves do
overlap at late times, confirming the expected linear growth of CK(t) at times well after t∗(q).

where c(λ) is some λ-dependent constant that should, strictly speaking, be there in order
to ensure the matching of the two regimes. For small λ this becomes:

CK(t) ≈


(tJ)2

λ , t ≲ 1
J

2 tJ
λ + c(λ) , t≫ 1

J

. (3.31)

Figure 7 depicts the different regimes of K-complexity, compared with the numerical result,
for a value of q close to 1.

3.3 Continuum approximation to K-complexity in DSSYK

In this section we obtain an analytic expression for the K-complexity of the infinite-
temperature thermofield “double” state in DSSYK (i.e. the zero-chord-number state) mak-
ing use of a continuum approximation of Krylov space. Generically, the approximation
developed in [8], reviewed in appendix D, consists of promoting n to a continuous variable
in a way such that the recursion relation describing the evolution of the wave function
ϕn(t) becomes a differential equation which is, at leading order, a chiral wave equation
with a velocity field given by v(n) ≡ 2bn. As a result of this equation, the wave packet
propagation is ballistic and one can estimate the value of K-complexity by the position of
the peak of the wave function, which behaves as a point particle propagating through the
above-mentioned velocity field v(n). As reviewed in appendix D, for a finite Krylov space of
dimension K, this continuum approximation is controlled by the small parameter ε = 1

K−1 ,
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but it turns out that, due to some divisions by ε in intermediate steps of the discussion,
the applicability of this approximation in the strict thermodynamic limit K → ∞ is not
well under control, even if strictly speaking ε = 0 in that limit.

In the particular model at hand in this article, however, the parameter λ in (2.2) can
be used to control the continuum approximation even in the K → ∞ limit, as we shall
argue here. Inspecting the expression of the Lanczos coefficients (3.10) we note that we
can define a dimensionless position variable as x ≡ λn in such a way that its spacing goes
to zero when λ → 0, becoming a continuous variable. More precisely, a continuum limit
for the Krylov space of DSSYK can be defined as the limit in which λ → 0, n → ∞ with
x = λn fixed. In this limit, the Lanczos coefficients adopt the limiting form of a continuous
function of x:

bn = J

√
1 − e−λn

λ(1 − q) −→ J

λ

√
1 − e−x + O(λ0) ≡ b(x). (3.32)

As in the argument reviewed in appendix D, the starting point for studying this continuum
limit is the recursion relation satisfied by the wave function. Defining a real φn(t) such
that ϕn(t) = inφn(t), we have that (3.3) and (3.5) imply the recursion:

φ̇n(t) = bnφn−1(t) − bn+1φn+1(t). (3.33)

Since in the above-mentioned λ → 0 limit the Lanczos coefficients bn are given by a
continuous function loosely denoted by b(x), we can assume that the wave functions φn(t)
are also described by a continuous function f(t, x) such that φn(t) = f(t, nλ). With this,
the recursion (3.33) reads:

∂tf(t, x) = b(x)f(t, x− λ) − b(x+ λ)f(t, x+ λ). (3.34)

Expanding in powers of λ we find:

∂tf(t, x) = −v(x)∂xf(t, x) − v′(x)
2 f(t, x) + O(λ), (3.35)

which at leading order becomes a first-order wave equation for f(t, x) with velocity field
v(x) ≡ 2λb(x). Thanks to the fact that b(x) scales like 1

λ in (3.32), the velocity field v(x)
is of order λ0:

v(x) = 2λb(x) = 2J
√

1 − e−x + O(λ) λ→0−→ 2J
√

1 − e−x. (3.36)

In order to manipulate (3.35) further, we change the position variable to y such that
x = 0 ⇒ y = 0 and dy = dx

v(x) . This, together with the wave function redefinition

g(t, y) ≡
√
v (x(y))f (t, x(y)) , (3.37)

yields the equation
(∂t + ∂y) g(t, y) = 0 + O(λ). (3.38)

Equation (3.38) becomes exact for λ = 0. This reasoning is analogous to the analysis in
appendix D, where the small parameter is ε = 1

K−1 instead of λ; however, in that case
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redefinitions like (3.37) and dy = dx
v(x) turn out to be problematic because they imply

multiplication or division by zero when ε = 0, which does not occur in the present case
because v(x) remains finite in the λ→ 0 limit.

The initial condition ϕn(t) = δn0 on the Krylov chain translates, in the continuum
limit, into f(0, x) = δ(x), and therefore g(0, y) is also proportional to δ(y). We note that,
given an initial condition g(0, y) ≡ g0(y), the solution of (3.38) simply propagates the
initial condition as g(t, y) = g0(y − t), and hence in our case we have g(t, y) ∝ δ(y − t).
Consequently, the position expectation value of the wave packet, which gives K-complexity
(up to the factor λ used to define x = λn in the continuum limit) is simply given by the
position of the peak xp(t), which behaves as a point particle evolving in time following the
velocity field v(x):

t =
∫ yp(t)

0
dy =

∫ xp(t)

0

dx

v(x) . (3.39)

This approximation can therefore be thought of as a classical approximation where the
evolution of the wave packet is replaced by the propagation in x-space of a point particle.
In fact, it is possible to show that the relation ẋ = v(x) = 2J

√
1 − e−x is a classical solution

of the equation of motion generated by a Hamiltonian with an exponential potential:

H ′ ≡ E0 + 2λJ
(
l2fk

2

2 + 2
(2λ)2 e

− l
lf

)
, (3.40)

where we have written x as l
lf

. H ′ is a Liouville Hamiltonian, but it is not quite equal to
the effective Hamiltonian T̃ of DSSYK given in (2.57) at small λ. This is a manifestation
of the fact that these two Hamiltonians are only classically equivalent. The classical limit9

of (2.57) is:

T̃class = −2J
λ

cos(λlfk)
√

1 − e
− l

lf + subleading , (3.41)

and one can verify that Hamiltonians (3.40) and (3.41) yield the same Euler-Lagrange
equation of motion ẍ = 2J2e−x, which produces the above-mentioned trajectory v(x) upon
choosing the initial conditions x(0) = 0 and ẋ(0) = 0. However, the two Hamiltonians
differ at the quantum level. In order to retrieve a (quantum) Liouville Hamiltonian from
DSSYK it is necessary, as described in section 2.3, to take a triple-scaling limit in which λ

is taken to be small but l
lf

= λn is taken to be sufficiently large such that e
−l/lf

(2λ)2 = e−l̃/lf

is fixed, in order to remain close to the ground state of the system. We will revisit this in
section 4, where we will compute K-complexity in the regime in which DSSYK is dual to
JT gravity.

We now resume the computation of K-complexity in the continuous λ → 0 limit of
DSSYK. Since formally x = λn and v(x) = 2λb(x), we can use (3.39) and give an approx-
imation for K-complexity in DSSYK where we just promote n to be a continuous variable
and keep λ fixed: ∫ np(t)

0

dn

v(n) = t, v(n) ≡ 2bn = 2J
√

1 − qn

λ(1 − q) . (3.42)

9As discussed in [18], the classical limit is defined as the limit in which λ → 0 and λk is held fixed. In
this way, [l, k] = i but [l, λk] = iλ → 0.
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The integral (3.42) can be performed analytically, yielding an implicit equation for np(t):

tJ =
√

1 − q

λ
arctanh

√
1 − qnp(t), (3.43)

which can be solved for np(t). We reach:

CK(t) ≈ np(t) = 2
λ

log
{

cosh
[
tJ

√
λ

1 − q

]}
. (3.44)

This approximation to K-complexity, which results from promoting n (instead of x = λn)
to a continuous variable, is expected to be good at small λ, which is when the continuum
limit (for the variable x) applies. The numerical analysis presented below confirms this
expectation.

In section 4 we will recover this functional behavior of K-complexity from a grav-
ity computation, being more specific about the bulk-boundary matching. Furthermore,
expression (3.44) recovers exactly the early- and late-time regimes identified in (3.30):

• At early times, using cosh(x) = 1 + x2

2 + O(x4) and log(1 + x) = x+ O(x2), we find

CK(t) ≈ 2
λ

log
{

1 + (tJ)2 λ

2(1 − q)

}
≈ (tJ)2

1 − q
, (3.45)

which matches perfectly the first line in (3.30).

• At late times we just make use of the asymptotic behavior of cosh x ∼ ex

2 , giving

CK(t) ≈ 2
λ

log
{

1
2 exp

[
tJ

√
λ

1 − q

]}
= 2 tJ√

λ(1 − q)
− 2 log 2

λ
, (3.46)

which also agrees with the second line of (3.30) and even provides an estimate for the
constant c(λ).

Finally, the transition time between (3.45) and (3.46) can be estimated as the value of t
for which the argument of the cosh in (3.44) becomes of order 1. This yields

t∗(q) ≈
1
J

√
1 − q

λ
, (3.47)

which agrees with our previous estimate (3.28), and therefore it also behaves as t∗ ∼ J−1

for small λ.
The fact that the regimes (3.45) and (3.46) match (3.30) is a non-trivial check, since the

analysis leading to (3.30) did not assume the continuum approximation: it was achieved
by analysing separately the different sectors of the Lanczos sequence and using known
solutions for the discrete recurrence relation for such cases. We elaborate on this below:

• At early times t < t∗(q), both the continuum approximation and the exact discrete
result derived using the Heisenberg-Weyl algebra yield CK(t) ≈ (tJ)2

1−q . We may intu-
itively understand this agreement by noting that the continuum approximation can
be seen as the classical propagation of a point particle in Krylov space, while the
discrete result consists of the propagation of coherent states, which are known to
behave semiclassically.

– 24 –



J
H
E
P
0
8
(
2
0
2
3
)
2
1
3

• At late times t ≫ t∗(q) the exact, discrete solution for ϕn(t) consists of Bessel func-
tions, see appendix E.1, whose front-most peak propagates in n-space at a constant
velocity equal to 2b∞ = 2J√

λ(1−q)
. Approximating K-complexity by the position of

this peak yields the estimate CK(t) ≈ 2 tJ√
λ(1−q)

, which agrees with the point-particle
propagation from the continuum approximation at late times. However, such ballistic
approximation does not always accurately apply to the discrete, exact solution, which
features a wave packet that develops a tail as it propagates through Krylov space.

Numerics show that the continuum (and therefore ballistic) approximation is better
the closer q is to 1, as illustrated in figures 8, 9 and 10: we studied the values q =
0.99005, 0.74082, 0.3, for which the continuum approximation induces errors of around
0.1%, 3% and 10%, respectively. In fact, the exact solution for the discrete problem with
constant Lanczos coefficients bn = b yields CK(t) = 16

3π bt + o(t) ≈ 1.7 bt + o(t), as shown
in (E.9). An approximation estimating CK(t) from the position of the front-most peak
of the wave packet would give, even in the discrete case, CK(t) ∼ 2bt, resulting in a
relative deviation (at late times) of 2− 16

3π
16
3π

≈ 0.18. In figure 11 we observe that the relative
deviation between the continuum approximation and the numerical result for K-complexity
at q = 0.01 tends precisely to this value, confirming that the error is (mainly) due to
the ballistic approximation, which misses the development of a tail behind the wavefront
that the exact discrete solution features. In all numerical computations we artificially
truncated the Krylov chain, giving it a finite dimension K = 5000: time-dependent results
are therefore only reliable during the time interval in which the wave-packet does not yet
probe this artificial edge of Krylov space, and this is the time range to which the above-
mentioned plots are restricted.

For reference, we can rewrite (3.44) for small λ (i.e. q close to 1):

CK(t) ≈ 2
λ

log {cosh (tJ)} , (3.48)

which in turn recovers the early- and late-time regimes listed in (3.31). We emphasize
that this result is valid strictly in double-scaled SYK (and with small λ). In evaluating
this result we have not yet taken the triple-scaling limit (2.58), for which taking λ to be
small is not enough. The derivation of K-complexity in the triple-scaling limit is deferred
to section 4.

Understood as a classical description, the results of this continuum approximation of
Krylov space can be useful for the gravity interpretation: [18] discusses that, since chord
number (which we now understand as K-complexity) is a discrete quantity, it provides a
discretized, or quantized, version of the bulk length. At this point, we propose to make the
converse argument and claim that this continuum approximation of Krylov space should
match gravity results obtained from a classical, geometric description. We will provide
further evidence in favor of this point of view in section 4. A further argument in favor
of interpreting the continuum approximation (3.48) as a classical description of Krylov
space dynamics consists in noting, as we have explained, that it coincides with the classical
trajectory generated by the Hamiltonian (3.40).
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Figure 8. Comparison between the exact CK(t) computed numerically and the continuum approx-
imation (3.44) for DSSYK with λ = 0.01 (q ≈ 0.99005), i.e. the same value as in figure 7. The
agreement is excellent. Top left: linear scale along both axes. Top right: logarithmic scale along
the horizontal axis. Bottom: normalized deviation as a function of time.

3.4 Exact formal results for K-complexity in DSSYK

In this section we will present the formal result for Krylov complexity in DSSYK as a
function of q, following the prescription for the wavefunctions in (3.9). We will use the
results for the eigenvectors and eigenvalues of the effective Hamiltonian T (shown at the
end of section 2.1) directly in (3.9). The sum over energies will be replaced by an integral
over θ, as discussed in [15, 16] and reviewed after equation (C.5) in appendix C. Thus:

ϕn(t) =
∫ π

0
dθ e−itE(cos θ) ψn(cos θ)ψ0(cos θ) (3.49)

=
∫ π

0

dθ

2π e
−2iJt cos θ√

λ(1−q)
(q; q)∞√

(q; q)n
|(e2iθ; q)∞|2Hn(cos θ|q). (3.50)

In the second line we used the expressions (2.20), (2.22) and (2.23) for the eigenvalues and
eigenvectors of T . The small λ limit, q → 1, of this expression is discussed in section 3.4.1.
Exact results for the wavefunctions for q = 0 and for q = 1 are given in appendix E.
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Figure 9. Continuum approximation vs exact (numerical) CK(t) for λ = 0.3 (i.e. q ≈ 0.74082).

Figure 10. Continuum approximation vs exact (numerical) CK(t) for λ ≈ 1.20397 (i.e. q = 0.3).
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Figure 11. Left: exact CK(t) computed numerically for λ ≈ 4.61 (i.e. q = 0.01), when the
Lanczos sequence (3.10) becomes very close to a constant bn ≈ J√

λ
, vs the result of the continuum

approximation. Right: logarithmic scale along the horizontal axis. Bottom: relative deviation.
Its long-time average is ∼ 0.177, very close to the value expected for the relative deviation of the
ballistic estimate with respect to the exact result in the discrete analysis.

It can be checked that the wavefunction is normalized, i.e. ∑∞
n=0 |ϕn(t)|2 = 1, as

follows:

∞∑
n=0

|ϕn(t)|2 = [(q; q)∞]2
∫ π

0

dθ

2π

∫ π

0

dϕ

2πe
− 2iJt√

λ(1−q)
(cos θ−cos ϕ)

|(e2iθ; q)∞|2|(e2iϕ; q)∞|2

×
∞∑

n=0

1
(q; q)n

Hn(cos θ|q)Hn(cosϕ|q) = (q; q)∞
2π

∫ π

0
dθ |(e2iθ; q)∞|2 = 1

where (C.20) was used in the second equality and (C.23) with n = m = 0 was used in the
final equality.

We are now ready to write down a formal expression for K-complexity in double-scaled
SYK as a function of q = e−λ:

CK(t) =
∞∑

n=0
n|ϕn(t)|2 = [(q; q)∞]2

∫ π

0

dθ

2π

∫ π

0

dϕ

2πe
− 2iJt√

λ(1−q)
(cos θ−cos ϕ)

|(e2iθ; q)∞|2|(e2iϕ; q)∞|2

×
∞∑

n=0

n

(q; q)n
Hn(cos θ|q)Hn(cosϕ|q) . (3.51)
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3.4.1 The q → 1 limit

In the q → 1 limit we can reproduce the result (3.25) by carefully taking the λ → 0 limit
in the general expression for the wavefunction (3.50). We begin by finding expressions10

for (x; q)∞ and (q; q)∞ for q = e−λ in the limit λ→ 0, as well as for H(cos θ|q) and (q; q)n:

(x; q)∞ ≈ exp
[
− 1
λ

Li2(x) + 1
2 log(1 − x) +O(λ)

]
(3.52)

(q; q)∞ ≈
√

2π
λ

exp
[
−π

2

6λ + λ

24 +O(λ2)
]

(3.53)

(q; q)n ≈ n!λn (3.54)
H(cos θ; q) ≈ 2n cosn(θ) . (3.55)

From the first identity above we find that for q = e−λ in the limit λ→ 0,

|(e2iθ; q)∞|2 = (e2iθ; q)∞(e−2iθ; q)∞ ≈
√

1 − e2iθ
√

1 − e−2iθ e−
1
λ

[Li2(e2iθ)+Li2(e−2iθ)]

= 2| sin θ| e−
1
λ

[Li2(e2iθ)+Li2(e−2iθ)] . (3.56)

Plugging these expansions into (3.50) while keeping only first order terms in λ and
expanding

√
1 − q ≈

√
λ, we have:

ϕn(t) ≈ 2
√

2π
λ

2n

√
n!λn

∫ π

0

dθ

2πe
− 1

λ

[
π2
6 +Li2(e2iθ)+Li2(e−2iθ)+2itJ cos θ

]
| sin θ| cosn(θ). (3.57)

To proceed we will use the identity11

Li2(e2iθ) + Li2(e−2iθ) = π2

3 − 2πθ + 2θ2 (3.58)

which gives us − 1
λ [π2/2 − 2πθ+ 2θ2] = − 2

λ(θ− π/2)2 in the exponential term. We change
variables to x = θ − π/2 to get

ϕn(t) ≈ 2
√

1
2πλ

2n

√
n!λn

∫ π/2

−π/2
dx e−

2
λ

(x2−itJ sin x)| cosx|(− sin x)n . (3.59)

For λ→ 0, and tJ ≪ 1, the main contribution to this integral is for |x| ≪ 1, hence we
expand sin(x) ≈ x and cosx ≈ 1:

ϕn(t) ≈
√

2
πλ

2n

√
n!λn

∫ π/2

−π/2
dx e−

2
λ

(x2−2itJx)(−x)n . (3.60)

Completing the square, we find another Gaussian integral:

ϕn(t) ≈
√

2
πλ

(−2)n

√
n!λn

e−
(tJ)2

2λ

∫ π/2

−π/2
dx e−

2
λ (x− itJ

2 )2
xn . (3.61)

10See https://mathworld.wolfram.com/q-PochhammerSymbol.html.
11See for example https://dlmf.nist.gov/25.12.
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Using a saddle-point approximation for λ → 0, we set x ≈ itJ
2 and perform the Gaussian

integral:

ϕn(t) ≈
√

2
πλ

(−2)n

√
n!λn

e−
(tJ)2

2λ

√
πλ

2

(
itJ

2

)n

= e−
(tJ)2

2λ
(−itJ/

√
λ)n

√
n!

, (3.62)

arriving at the result (3.25) which is indeed expected for λ→ 0 and tJ ≪ 1. Interestingly,
this analysis agrees with our previous estimate (3.47) and tells us that in the limit q → 1
the transition time remains finite, limq→1− t∗(q) = J−1, and hence the Heisenberg-Weyl
result still only applies at early times.

4 Bulk wormhole length and Krylov complexity

We have now assembled all the ingredients necessary to carry out the main task we set
ourselves in this work: giving a precise match of bulk and boundary Krylov complexity in
the context of DSSYK. Let’s recall the two main building blocks for the argument:

• In section 2.3 we reviewed the identification between the bulk JT Hilbert space and
the boundary Hilbert space of double-scaled SYK, whose dynamics in the triple-
scaling limit are generated by the Liouville Hamiltonian. From this identification one
concludes that fixed chord-number states are bulk length eigenstates.

• In section 3 we showed that fixed chord-number states are equal to the Krylov ba-
sis elements associated to the zero chord-number state (or the infinite-temperature
thermofield “double” state).

Putting these two items together it follows that the Krylov basis elements are bulk
length eigenstates. Therefore, the position expectation value on the Krylov chain (i.e., K-
complexity, as expressed in (3.7) via the position operator (3.6)) gives the length expectation
value. This establishes the correspondence between K-complexity and two-sided bulk length.

In order to be more specific, we need to go to the regime of DSSYK in which its
Hamiltonian becomes that of JT gravity. We argued in section 3.3 that only taking the
continuous λ→ 0 limit is not sufficient for this, because in that case the DSSYK Hamilto-
nian is only classically equivalent to a Liouville Hamiltonian. As reviewed in section 2.3,
in order to find a quantum Liouville Hamiltonian as some limiting form of the full DSSYK
Hamiltonian, it is necessary to perform a triple-scaling limit (2.58) that effectively zooms
in near the ground state of the spectrum. In terms of the regularized length l̃ defined in
this limit, the resulting Hamiltonian is (2.60), which we restate here:

T̃ = E0 + 2λJ
(
l2fk

2

2 + 2e−
l̃

lf

)
+ O

(
λ2
)
. (4.1)

Incidentally, we note that (4.1) can be reached as the result of applying the triple-scaling
limit to (3.40). In this procedure, the regularized length introduced through the triple-
scaling limit becomes necessary in order to get a well-behaved limiting Hamiltonian in
which kinetic and potential terms appear at the same order. For the sake of clarity, figure 12
depicts a diagram relating the various limiting forms of the Hamiltonian discussed in this
paper.
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Figure 12. Diagram relating the various limiting forms of the Hamiltonian studied in this paper.
The top left expression gives the effective Hamiltonian for the averaged theory of DSSYK, written
in (2.57). Its classical limit is the top right equation, stated in (3.41). As explained in section 3.3,
this Hamiltonian yields the same Euler-Lagrange equation of motion as the Liouville Hamiltonian
depicted in the bottom right block and presented in (3.40). As indicated by the yellow arrow, this
Hamiltonian is relevant because the continuous analysis of the DSSYK Hamiltonian presented in 3.3
yields a position expectation value that follows a classical trajectory generated by this bottom-right
Liouville Hamiltonian. Finally, the bottom left box contains the triple-scaled Hamiltonian (2.60):
a Liouville Hamiltonian to which the full DSSYK Hamiltonian reduces in the triple-scaling limit.
This limit has the effect of zooming in near the ground state, and therefore this is an effective low-
energy Hamiltonian. This is the regime where DSSYK is dual to JT gravity. More technically, the
introduction of the regularized position variable is required in order to obtain potential and kinetic
terms of the same order in a λ-expansion, as outlined by the horizontal arrow at the bottom of the
diagram. For simplicity and despite the notational abuse, in this figure k denotes the (dimensionless)
conjugate momentum of x.

In short, in this section we will perform a K-complexity calculation analogous to that in
section 3.3, specialized to the regime of DSSYK in which it becomes dual to JT gravity. For
this, let’s first argue that it is still possible to relate the evolution of regularized length to
K-complexity in the triple-scaled system. Eigenstates of l̃ can be regarded as the continuum
version of position eigenstates on a lattice with labels ñ such that l̃

lf
= λñ. We note that

ñ differs from n in a λ-dependent shift, necessary to zoom in near the ground state of the
original n-lattice. Via an argument analogous to that in section 3.1.1 relating the infinite-
temperature thermofield “double” state of the full Hamiltonian to the |n = 0⟩ state in the
averaged theory, we can associate the infinite-temperature thermofield “double” state of the
low-energy Hamiltonian to the |ñ = 0⟩ state in the averaged theory. Finally, from the fact
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that ̂̃llf = λ̂̃n holds as an operator identity, taking expectation value on both sides yields the

relation l̃(t)
lf

= λC̃K(t), between bulk regularized length in JT and the K-complexity C̃K(t)
of the infinite-temperature thermofield double state of triple-scaled SYK in the averaged
theory.

We can elaborate further on K-complexity from the point of view of the ñ-lattice. Its
Lanczos coefficients are obtained by performing the triple-scaling protocol on (3.10):

bñ = J

λ

√
1 − (2λ)2qñ + O(λ0) = b− 2λJqñ + O(λ2), (4.2)

where the constant b = J
λ + O(λ0) is related to the ground-state energy. We note that

qñ = e−λñ is fixed in the triple-scaling limit in such a way that λñ ≡ l̃
lf

does not scale with
λ. In this limit, the variable l̃ becomes continuous; however, the analysis of the recurrence
equation in Krylov space in this continuum limit is slightly different from the case in
section 3.3: here, one does not reach the conclusion that 2λb(x̃) (where x̃ ≡ l̃

lf
) plays the

role of a velocity, because the orders of the λ-expansion of b(x̃) get mixed with those coming
from the displacement operator. Instead, it can be checked that the differential equation
that this continuous analysis yields is nothing but the Schrödinger equation dictated by
the triple-scaled Hamiltonian (4.1), consistently. Furthermore, the small-λ prefactor of
this Hamiltonian allows for a classical approximation in which the expectation value of l̃ is
given by the solution to the equation of motion dictated by the Liouville Hamiltonian (4.1)
derived on the boundary. We perform such a classical evaluation using the initial conditions
l̃(0)
lAdS

= x̃0, ˙̃
l(0) = 0 and, setting lf = lAdS as announced in (2.61), we reach:

λC̃K(t) = l̃(t)
lAdS

= x̃0 + 2 log
{

cosh
(
2λJe−x̃0/2 t

)}
, (4.3)

which is a solution with energy12

E = 4λJe−x̃0 . (4.4)

For fixed x̃0, this is consistent with the fact that the Hamiltonian (4.1) describes config-
urations that constitute excitations of energies of order λ, i.e. close to the ground state.
This allows us to rewrite (4.3) as:

λC̃K(t) = l̃(t)
lAdS

= 2 log
{

cosh
(
t
√
EλJ

)}
− log

(
E

4λJ

)
. (4.5)

Recalling that the identification between the bulk JT Hamiltonian (2.51) and the triple-
scaled boundary Hamiltonian (4.1) reviewed in section 2.3 implies 2λJ = 1

lAdSϕb
, as stated

in (2.61), we have that (4.5) reads:

λC̃K(t) = l̃(t)
lAdS

= 2 log
{

cosh
(
t

√
E

2lAdSϕb

)}
− log

(
lAdSEϕb

2

)
, (4.6)

which coincides exactly with the gravity computation of the regularized length (2.49).
12For the sake of notational simplicity, we define the energy E as the difference between the total energy

and the ground-state energy, i.e. E ≡ ⟨T̃ ⟩ − E0, where T̃ is given in (4.1).
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To summarize, we have succeeded in demonstrating a direct match between the cal-
culated bulk length (2.49) and the boundary K-complexity in the triple-scaled limit (4.5).
This precise match is expressed in (4.6) after making the appropriate identification between
bulk and boundary parameters.

4.1 Some remarks on the bulk-boundary matching

We can elaborate further on the role of the initial condition x̃0 in the bulk. Comparing the
expression for the configuration energy (4.4) with that in the gravity computation (2.48),
we find that:

x̃0 = −2 log Φh . (4.7)

That is: from the bulk point of view, the choice of Φh amounts to the choice of a coordinate
patch adapted to an accelerated (Rindler) observer in the boundary [28, 35] that sees the
bulk as a black hole whose horizon lies at the locus where the dilaton takes the value
Φh. From the perspective of the triple-scaled Hamiltonian derived from the boundary
theory, this is equivalent to choosing the initial condition for the solution of the equation of
motion. The relation between such an initial condition and the dilaton field at the horizon
is precisely (4.7). In particular, the K-complexity of the infinite-temperature thermofield
“double” state starts at zero when t = 0, corresponding to the choice Φh = 1.

To summarize, in this section we have revisited the need to perform a triple-scaling
limit in order to find a (quantum) Liouville Hamiltonian near the ground state of DSSYK,
hence retrieving the regime in which the bulk theory is described by JT gravity. This
limit defines a notion of regularized length in terms of which the Krylov problem can be
posed in a manner analogous to that in section 3, where we studied DSSYK away from
the triple-scaling limit. Making use of the bulk/boundary Hilbert space identification re-
viewed in section 2.3, we were able to identify the K-complexity of the infinite-temperature
thermofield “double” state of the triple-scaled Hamiltonian with the expectation value of
bulk regularized length, which we could evaluate classically thanks to the smallness of
λ, which plays the role of an ℏ parameter controlling the semiclassical expansion. This
correspondence is summarized in (4.5), where the excitation energy is given by

E = 2Φ2
h

lAdSϕb
= 4λJe−x̃0 . (4.8)

Plugging this result into either (4.5) or (4.6) one recovers (2.47).
For completeness, we may now elaborate on the features of the emergent bulk de-

scribed by the triple-scaled SYK Hamiltonian, together with the accelerated observer patch
specified by the initial condition x̃0. This discussion is based on the parameter identifi-
cations (2.61) and (4.7). The bulk consists of a black hole with a horizon radius given
by13 (2.37):

rs = Φh

ϕb
L = 2λJL2e−x̃0/2 . (4.9)

13Since lf = lAdS, we shall avoid notational cluttering by simply denoting this length scale by L.
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Similarly, the black hole temperature can be computed through [27]:

TBH = rs

2πL2 = λJ

π
e−x̃0/2 . (4.10)

For the particular case of the infinite-temperature thermofield “double” state of triple-
scaled SYK, we have x̃0 = 0 and therefore TBH = λJ

π , that is, a temperature of order
λ. This is consistent with the fact that it is the infinite temperature thermofield “double”
state of the low-energy Hamiltonian, rather than that of the full DSSYK Hamiltonian, with
respect to which it is actually a low-temperature state because it zooms in near the ground
state of the system.

As we have stressed, neither rs nor TBH are a property of global AdS2, but of the
coordinates adapted to an observer that sees a horizon in the same way that a Rindler
observer in flat space would perceive a horizon due to its acceleration.14 Accordingly, the
bulk theory (2.60) is solely controlled by the parameters L and 2λJ , while the choice of
a patch (specified by Φh) is equivalent to the choice of the initial condition x̃0 for the
equation of motion of (4.1).

5 Summary and discussion

The main result of this work is a precise match between the (renormalized) wormhole
length in JT gravity (2.49) and Krylov complexity in the triple-scaling limit of SYK (4.5),
for the infinite temperature TFD state. To achieve this we related the fixed-chord-number
states in DSSYK to Krylov basis elements and used the fact that Krylov complexity is
the expectation value of the position operator on the Krylov chain. We then used the
result of [18] that in the triple-scaled limit of DSSYK, fixed-chord-number states are fixed
wormhole length states in JT gravity. Together with the identification of fixed-chord-
number states as Krylov basis elements, this provides a direct match between K-complexity
— or the expectation value of position — in the triple-scaling limit, and the wormhole
length in JT gravity. We now provide a more detailed summary and some discussion of
our conclusions.

5.1 Results for DSSYK

We began by establishing that the fixed chord-number states, in terms of which the Hilbert
space of DSSYK can be constructed, are nothing but the Krylov basis elements for the ef-
fective Hamiltonian of the averaged theory and for the infinite-temperature thermofield
“double” state, understood as the linear combination with equal weights of all the eigen-
states of the theory. The associated sequence of Lanczos coefficients was read off the matrix
elements of the effective Hamiltonian expressed in coordinates over the chord basis, and
they were used to compute the K-complexity profile as a function of time following vari-
ous procedures involving increasingly higher levels of sophistication and detail, which we
summarize below.

14They may be understood as an actual black hole radius and temperature whenever the 2-dimensional
gravity setup comes from the near-horizon limit of a higher dimensional near-extremal black hole [27, 36].
In such a case, Φh can also be understood as a measure of the black hole entropy.
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In a first approach, we used the different regimes (in n-space) of the Lanczos coeffi-
cients in order to estimate the K-complexity profile in its different time regimes. These
regimes are defined as the intervals of time during which the wave packet defined over
Krylov space remains mostly contained within the corresponding region where the Lanczos
coefficients take a particular limiting form. We found that the bn sequence of the infinite-
temperature thermofield “double” state transitions from a square-root growth, bn ∼

√
n,

to saturation at a plateau in n-space, which implied a K-complexity profile that transi-
tions from quadratic growth at early times to linear growth at times greater than J−1, the
inverse of the DSSYK coupling strength. We did not obtain a saturation of K-complexity
at late times as, due to the fact that we are studying the double-scaled SYK, the system
is already in the thermodynamic limit, where the Hilbert space has infinite-dimension:
K-complexity saturation is a non-perturbative effect that appears at finite late times that
are exponentially large in the number of degrees of freedom [8, 9], and therefore this time
scale gets pushed away to infinity in the limit under consideration. Note that in this limit
the spectrum of the effective Hamiltonian is continuous. Even for finite systems with a
continuous spectrum non-perturbative behaviors require a case-by-case consideration: in
some cases the behavior associated with the discreteness of the spectrum survives (e.g. in
averaged but finite SYK the plateau behavior persists in the spectral form factor), while
calculating a two-point function in a black hole background [37, 38] yields a result that
tends asymptotically to zero as a function of time.

A further refinement consists in using a continuum approximation to Krylov space
dynamics in order to obtain a smooth function CK(t) for the K-complexity profile. As a
result of this approximation, the evolution of the wave packet in Krylov space was reduced
to the propagation of a point particle driven by a space-dependent velocity field whose
profile is given by the (continuous limit of the) Lanczos coefficients. We found that CK(t)
grows in time following a log-cosh functional form that recovers the quadratic- and linear-
growth behaviors in the corresponding regimes, consistent with the previous analysis. The
accuracy of this continuum approximation is determined by λ, the “ ’t Hooft coupling” in
DSSYK, which was found to play the role of an ℏ-like parameter controlling the semiclassical
expansion.

We also provided a formal expression of K-complexity obtained by introducing a res-
olution of the identity in the definition of the Krylov space wave packet in terms of the
spectral decomposition of the effective Hamiltonian of DSSYK. (The spectral decomposi-
tion of DSSYK was worked out in [15, 16].) The resulting expression involves integrals
and sums of q-deformed special functions. We analyzed the exact analytical complexity
profile for specific limits of the ’t Hooft coupling of DSSYK, λ → ∞ and λ → 0, verifying
that it reduces to the expected K-complexity profiles for a flat Lanczos sequence and for a
sequence dictated by the Heisenberg-Weyl algebra, respectively.

5.2 Boundary-bulk correspondence

As argued in [18], taking a controlled small-λ limit in double-scaled SYK (the so-called
triple-scaling limit), one zooms in near the ground state of the system. In this limit, where
one expects dynamics to be governed by the Schwarzian action [22], one finds, consistently,
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that the Hamiltonian takes the form of a Liouville Hamiltonian, which is the ADM Hamil-
tonian of JT gravity [17]. [18] exploited this further and noted that the Hilbert spaces of
JT and DSSYK can be identified in such a way that fixed chord-number states are bulk
length eigenstates. We combined this with our result on chord states being Krylov basis
elements associated to the infinite-temperature thermofield double (TFD) state, and con-
cluded that Krylov elements are, in turn, bulk length eigenstates. Therefore, K-complexity
agrees quantitatively with bulk length through the relation (4.6), which matches the K-
complexity of the TFD state of the triple-scaled Hamiltonian to the time evolution of bulk
regularized length, previously computed in [17]. This matching was established upon a
consistent identification of parameters in the bulk and boundary theories given in (2.61)
and (4.7). The log-cosh behavior previously obtained for CK(t) is responsible for the well-
known log-cosh growth of bulk length in the unperturbed geometry, which we matched
including numerical pre-factors. From the bulk point of view, it is natural to argue that
the lack of late-time saturation of the length as a function of time is due to the absence
of (doubly) non-perturbative contributions of higher-genus, which lead to the plateau be-
haviour of the spectral form factor [39, 40] and correlation functions [41], as we are only
considering the disk topology;15 this is consistent with the fact that the boundary theory is
considered in the thermodynamic limit. For finite-size systems, the K-complexity late-time
saturation value for the TFD state can be related to the late-time plateau of the spectral
form factor, as proposed in [10] and explored further in [43]. It is worth noting, at this
point, that the growth of the bulk length in a back-reacted geometry in the presence of a
matter shock wave may be studied by computing the K-complexity of an operator insertion
in DSSYK.16

5.3 Discussion

The agreement between the DSSYK Hamiltonian and JT gravity occurs in the triple-
scaling limit (which implies a small value of λ) because this is the regime in which the
SYK Hamiltonian takes a Liouville form. In this regime, the theories are dual to each
other, both classically and quantum-mechanically. In this work we were able to explore
this duality by a semiclassical computation of both K-complexity on the boundary and the
geometric description in the bulk. We expect that quantum corrections will still match by
construction, since both the Hilbert spaces and the Hamiltonians are identified [15, 18]. On
top of this, going away from the small-λ limit in DSSYK would amplify the corrections at
higher orders in λ in the effective Hamiltonian (2.60). Hence, the gravity theory gradually
deviates from JT towards the arbitrary-λ Hamiltonian (2.57). It would be interesting to
explore this in future work.

In this work we have focused on Krylov complexity for the infinite temperature TFD
state. An important future direction is to explore other states, in DSSYK as well as in the
triple-scaling limit. A class of such states are the thermal states.

15See for example [42] for a bulk computation of a notion of bulk volume associated to complexity which
does saturate at late times due to contributions of non-trivial topology.

16We thank E. Witten for this suggestion. Work in progress.
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The calculations in this work provide an explicit matching between K-complexity and
bulk length in an instance of lower-dimensional holography. It is legitimate to wonder how
generic this is, and what lessons may be extracted for higher dimensions. We advocate for
an optimistic point of view and claim that this low-dimensional model may be reductionist
for some aspects but not for the ones of interest: we investigated the relation between
K-complexity and bulk length, using a model of holography where the gravity theory
possesses a phase space consisting exclusively of the two-sided length variable (and its con-
jugate momentum); in this sense, the model is the simplest it can be while still preserving
the ingredients relevant for the question at hand. Furthermore, some higher-dimensional
scenarios involving near-extremal black holes may be reduced to a two-dimensional gravity
problem when analysed in the near-horizon regime (see e.g. [36] and references therein),
which would make direct contact with JT gravity and therefore with our results. It would
be interesting to work this out in detail. Another avenue to explore K-complexity in higher
dimensional scenarios may consist of studying black hole microstates in microcanonical
windows at fixed energy, whose Hilbert space dimension will be finite if the theory is de-
fined on a compact manifold; the finiteness of such a Hilbert subspace should allow us to
probe non-perturbative effects such as the saturation of complexity [14].
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A Coupling variance choices

For reference, this appendix discusses the relation between the various choices of SYK
coupling variance in the literature. Different choices are suitable depending on the specific
limit in which the system is studied, as they will produce bounded results for observables
such as expectation values of operators and correlation functions.

In [22], the SYK model is studied analytically at large N , first at fixed p and later on
at also large p. The Hamiltonian in that article is:

H(1) = ip/2 ∑
1≤i1<...<ip≤N

J
(1)
i1...ip

χi1 . . . χip , (A.1)

where the Majoranas are normalized such that they square to 1
21, that is:

{χi, χj} = δij . (A.2)
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For the sake of studying the model in the large-N limit at fixed p, the coupling variance
used in [22] is 〈(

J
(1)
i1...ip

)2
〉

= (p− 1)!J2

Np−1 . (A.3)

When [22] turns to studying SYK at large N and large p, the Hamiltonian keeps the
same structure,

H(2) = ip/2 ∑
1≤i1<...<ip≤N

J
(2)
i1...ip

χi1 . . . χip , (A.4)

but the coupling variance is chosen to have an extra p-dependent scaling to get a more
uniform limit: 〈(

J
(2)
i1...ip

)2
〉

= 2p−1(p− 1)!
pNp−1 J2. (A.5)

The origin of the 2p−1 factor is related to the normalization of the Majoranas (A.2): since
they square to 1

21, they will give an additional suppression of 2−p every time a Wick
contraction pairs two Hamiltonians inside of a trace, which needs to be compensated by
the coupling variance in order to obtain finite results in the large q limit. More explicitly,
redefining the Majoranas as

χi = 1√
2
ψi, (A.6)

we obtain operators ψi that are normalized in a way such that they square to one:

{ψi, ψj} = 2δij . (A.7)

In terms of these operators, the Hamiltonian (A.4) reads:

H(2) = ip/2 ∑
1≤i1<...<ip≤N

J
(2)
i1...ip

2−
p
2ψi1 . . . ψip ≡ ip/2 ∑

1≤i1<...<ip≤N

J̃ (2)
i1...ipψi1 . . . ψip , (A.8)

so that the effective coupling strength variance gets modified to〈(
J̃ (2)

i1...ip

)2〉
=
〈(
J

(2)
i1...ip

)2
〉

2−p = (p− 1)!
2pNp−1J

2. (A.9)

When turning to double-scaled SYK, extensively studied in [15], it is more enlightening
to work with normalized Majoranas ψi satisfying (A.7) since, as mentioned in section 2.1,
the monomials ψI , where I denotes a collective index i1 . . . ip, square to a phase, and
therefore the combinatorial factor coming from the sum in the Hamiltonian can be directly
compensated by the normalization of the coupling strength in order to yield bounded
moments of the Hamiltonian. The Hamiltonian in [15] is:

H(3) = ip/2 ∑
1≤i1<...<ip≤N

J
(3)
i1...ip

ψi1 . . . ψip , (A.10)

and the coupling strength variance is given by
〈(
J

(3)
i1...ip

)2
〉

=
(
N

p

)−1

J2. (A.11)
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As an example, this normalization ensures that
〈

Tr
[(
H(3)

)2
]〉

= J2, even at finite and
independent N and p.

In the current article, we are interested in double-scaled SYK but we don’t use the
coupling strength variance (A.11). Instead, we follow [18, 44] and use a variance which,
when taken in the double-scaling limit, has an asymptotic behavior that makes contact
with (A.9) in a way about which we shall be precise below. Our Hamiltonian is:

H = ip/2 ∑
1≤i1<...<ip≤N

Ji1...ipψi1 . . . ψip . (A.12)

We study this system in the double-scaling limit, taking N and p to infinity keeping the
ratio

λ = 2p2

N
(A.13)

fixed. Given λ, the coupling strength variance is chosen to be:
〈
J2

i1...ip

〉
= 1
λ

(
N

p

)−1

J2. (A.14)

To compare with (A.9), we can perform an asymptotic analysis already within the double-
scaling limit. That is, we take (A.14) and implicitly assume everywhere that N ≡ N(p) =
2p2

λ . Then, for large p we find the asymptotic behavior:

〈
J2

i1...ip

〉
= 1
λ

(
N(p)
p

)−1

J2 ∼ eλ/4

2p
(p− 1)!
N(p)p−1J

2 = (p− 1)!
2pN(p)p−1J

2 + O(λ). (A.15)

Where f(p) ∼ g(p) ↔ limp→+∞
f(p)
g(p) = 1. This means that, in the double-scaling limit, the

variance (A.14) is equivalent to the choice (A.9) upon the additional assumption of small
λ, which is precisely the regime on which papers like [18, 44] focus, since it zooms in near
the ground state of SYK and yields the Liouville Hamiltonian which makes contact with
Schwarzian dynamics and hence with an AdS bulk dual.

In view of this, the small-λ regime of DSSYK can be seen as a controlled way to
approach large-N and large-p SYK with the hierarchy 1 ≪ p ≪ N , as also discussed
in [45].

B A note on the triple-scaling limit

A priori, there is a whole family of triple scaling limits that one can take, which applied
to the Hamiltonian (2.57) yield Liouville-like Hamiltonians with a different relative weight
between the kinetic term and the potential term. The family of limits is parametrized by
some a ∈ R as follows:

λ→ 0, l → ∞, (aλ)−2e
− l

lf = e
− l̃

lf fixed. (B.1)

Applied to (2.57), this limit yields:

T̃ − E0 = 2λJ
(
l2fk

2

2 + a2

2 e
− l̃

lf

)
+ O

(
λ2
)
. (B.2)
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However, all the Hamiltonians in the family (B.2) are equivalent in the sense that they only
differ by a finite translation of the length variable. Their density of states is therefore the
same and the eigenfunctions of one Hamiltonian in the family can be obtained from those
of any other by just a shift. In our work, we choose a = 2 (instead of the a = 1 convention
in [18]) because in this case the resulting triple-scaled Hamiltonian makes contact with
the form of the Liouville Hamiltonian for JT gravity written explicitly in [17], restated
in (2.51). Nevertheless, we stress that, since all the Hamiltonians in the family (B.2) are
equivalent in the sense that we have just explained, changing a in the definition of the
triple-scaling limit (B.1) will not modify the gravity theory fundamentally. This ambiguity
in the definition of l̃ may be seen as related to the choice of regularization scheme for the
boundary divergence from the bulk perspective.

C Eigenvalues and eigenvectors of the effective Hamiltonian

The discussion in this appendix closely follows [15, 16] and is presented for the sake of
completeness.

The symmetric version of T given in (2.12) satisfies, in the chord basis,

T |l⟩ = J√
λ(1 − q)

(√
1 − ql+1 |l + 1⟩ +

√
1 − ql |l − 1⟩

)
. (C.1)

To find the eigenvalues of T we write down the eigensystem equation for the components
of the eigenvectors of T , ψl(E) = ⟨l|E⟩:

E ψl(E) = J√
λ(1 − q)

(√
1 − ql+1 ψl+1(E) +

√
1 − ql ψl−1(E)

)
(C.2)

We note that E is required to be independent of the position label l as (C.2) is an eigenvalue
problem; therefore, assuming there are no bound states, we can take the large l limit of the
above relation where T becomes a tridiagonal Toeplitz17 matrix with eigensystem equation

E ψl(E) = J√
λ(1 − q)

(ψl+1(E) + ψl−1(E)) . (C.3)

The eigenvalues of such an L-dimensional tridiagonal Toeplitz matrix are given by:

Ek = 2J√
λ(1 − q)

cos
(

kπ

L+ 1

)
, k = 1, . . . , L . (C.4)

When L is large the argument of the cosine, θ = kπ
L+1 , becomes a continuous variable

between 0 and π and the spectrum has values between Emin = − 2J
λ
√

1−q
and Emax = 2J

λ
√

1−q
.

The eigenvalues are then a function of the continuous variable θ:18

E(θ) = 2J cos θ√
λ(1 − q)

, 0 ≤ θ ≤ π . (C.5)

17A Toeplitz matrix is a matrix with equal entries along the diagonals. For the tridiagonal case its
eigenvalues are well known, see e.g. https://de.wikipedia.org/wiki/Tridiagonal-Toeplitz-Matrix.

18When l becomes continuous, θ can be interpreted as momentum.
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Note that as L → ∞, the variable θ becomes continuous in a uniform way and thus
summing over eigenvalues ∑L

k=1 becomes
∫ π

0 dθ with uniform density ρ(θ) = 1. This fact
will be important for later results.

To find the eigenvectors, we go back to (C.2) using the result (C.5) and defining
for convenience µ = cos θ (we will use vl instead of ψl, reserving the latter to the final
normalized result):

2µ vl(µ) =
√

1 − ql+1 vl+1(µ) +
√

1 − ql vl−1(µ) . (C.6)

This equation can be identified once vl(µ) is redefined as follows

vl(µ) = ṽl(µ)√
(q; q)l

(C.7)

where (a; q)n ≡
∏n−1

k=0(1 − aqk) is the q-Pochhammer symbol.19 Plugging this redefinition
into (C.6) and multiplying both sides of the equation by

√
(q; q)l gives:

2µṽl(µ) = (1 − ql)ṽl−1(µ) + ṽl+1(µ) (C.8)

which now can be identified as the recurrence relation for the q-Hermite polynomials (see
appendix C.1), hence the solution to (C.6) is

vl(µ) = Hl(µ|q)√
(q; q)l

, µ = cos(θ) . (C.9)

Using the identity (C.20) and the fact that 0 ≤ θ ≤ π, it can be shown that the norm
squared of these eigenvectors is given by

∞∑
l=0

|vl(µ)|2 =
∞∑

l=0

Hl(µ|q)Hl(µ|q)
(q; q)l

= 2π
|(e2iθ; q)∞|2(q; q)∞

(C.10)

and the normalized eigenvector is given by

ψl(µ) =
√

(q; q)∞|(e2iθ; q)∞| Hl(µ|q)√
2π(q; q)l

, µ = cos θ . (C.11)

We note that

ψ0(µ) =
√

(q; q)∞|(e2iθ; q)∞| H0(µ|q)√
2π(q; q)0

=

√
(q; q)∞

2π |(e2iθ; q)∞| (C.12)

where we used H0(x|q) = 1 and (q; q)0 = 1. We thus can write

ψl(µ) = ψ0(µ)Hl(µ|q)√
(q; q)l

, µ = cos θ. (C.13)

The orthogonality relations for these eigenvectors are shown in appendix C.3.
19https://en.wikipedia.org/wiki/Q-Pochhammer_symbol.
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C.1 q-Hermite polynomials

The q-Hermite polynomial is defined as20

Hn(cos θ|q) = einθ
2ϕ0

[q−n, 0
−

; q, qne−2iθ
]

(C.14)

where 2ϕ0 is a q-hypergeometric function, defined by21

jϕk

[a1, a2, . . . , aj

b1, b2, . . . , bk
; q, z

]
=

∞∑
n=0

(a1; q)n (a2; q)n . . . (aj ; q)n

(b1; q)n (b2; q)n . . . (bk; q)n

[
(−1)nqn(n−1)/2

]1+k−j zn

(q; q)n
.

(C.15)
Using this definition we have

Hn(cos θ|q) =
∞∑

k=0

(q−n; q)k

(q; q)k
(−1)kqnk− k(k−1)

2 ei(n−2k)θ (C.16)

Now note that, (q−n; q)k = (1−q−n)(1−q−n+1)(1−q−n+2) . . . (1−q−n+k−1) so for k = n+1
we have (q−n; q)n+1 = (1 − q−n)(1 − q−n+1)(1 − q−n+2) . . . (1 − 1) = 0. We thus find that
for (q−n; q)k>n+2 = 0 and the sum becomes truncated at k = n:

Hn(cos θ|q) =
n∑

k=0

(q−n; q)k

(q; q)k
(−1)kqnk− k(k−1)

2 ei(n−2k)θ . (C.17)

From this expression we can get another useful expression for Hn(cos θ|q), as follows:

(q−n; q)k = (1 − q−n)(1 − q−n+1)(1 − q−n+2) . . . (1 − q−n+k−1)
= (−1)k(q−n − 1)(q−n+1 − 1)(q−n+2 − 1) . . . (q−n+k−1 − 1)
= (−1)k q−n(1 − qn) q−n+1(1 − qn+1)) . . . q−n+k−1(1 − qn−k+1)

= (−1)k q−nk+ k(k−1)
2

(q; q)n

(q; q)n−k

and thus, another expression for the q-Hermite polynomial is

Hn(cos θ|q) =
n∑

k=0

(q; q)n

(q; q)k (q; q)n−k
ei(n−2k)θ . (C.18)

C.2 Orthogonality relations

A useful identity for q-Hermite polynomials with x = cos θ, y = cosϕ (see for exam-
ple [46]) is:

∞∑
l=0

Hl(x|q)Hl(y|q)
tl

(q; q)l
= (t2; q)∞

(tei(θ+ϕ); q)∞(tei(θ−ϕ); q)∞(te−i(θ−ϕ); q)∞(te−i(θ+ϕ); q)∞
,

(C.19)
20https://en.wikipedia.org/wiki/Continuous_q-Hermite_polynomials.
21https://en.wikipedia.org/wiki/Basic_hypergeometric_series.
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which for t = 1 and x = y is exactly the needed identity. Noting that
(tei(θ+ϕ); q)∞(te−i(θ+ϕ); q)∞ = ∏∞

k=0(1− tei(θ+ϕ)qk)(1− te−i(θ+ϕ)qk) = |(tei(θ+ϕ); q)∞|2 and
similarly for ei(θ−ϕ), we have:

(t2;q)∞
|(tei(θ+ϕ);q)∞|2|(tei(θ−ϕ);q)∞|2

= (1−t2)(qt2;q)∞
|1−tei(θ+ϕ)|2|1−tei(θ−ϕ)|2|(qtei(θ+ϕ);q)∞|2|(qtei(θ−ϕ);q)∞|2

,

where it is made clear that for t = 1 the expression vanishes for all θ, ϕ except for θ = ±ϕ.
Taking t = 1 − ϵ, in the limit ϵ→ 0 θ → ϕ we have

|1 − tei(θ−ϕ)|2 = 1 − t[ei(θ−ϕ) + e−i(θ−ϕ)] + t2

= 1 − t[1 + i(θ − ϕ) − (θ − ϕ)2

2 + 1 − i(θ − ϕ) − (θ − ϕ)2

2 + . . . ] + t2

= 1 − (1 − ϵ)[2 − (θ − ϕ)2 +O((θ − ϕ)4)] + (1 − ϵ)2

= ϵ2 + (θ − ϕ)2 +O(ϵ(θ − ϕ)2) + . . .

and thus
(1 − t2)(qt2; q)∞

|1 − tei(θ+ϕ)|2|1 − tei(θ−ϕ)|2|(qtei(θ+ϕ); q)∞|2|(qtei(θ−ϕ); q)∞|2

→ 2ϵ
ϵ2 + (θ − ϕ)2

(q; q)∞
|(e2iθ; q)∞|2|(q; q)∞|2

.

In the limit ϵ→ 0, the first term is recognized as a delta function δ(t) = limϵ→0
1
π

ϵ
ϵ2+t2 and

taking into account also the possibility θ → −ϕ it is found that
∞∑

l=0

Hl(x|q)Hl(y|q)
(q; q)l

= 2π[δ(θ − ϕ) + δ(θ + ϕ)]
|(e2iθ; q)∞|2(q; q)∞

. (C.20)

C.3 Orthogonality of the eigenvectors of DSSYK

In this appendix we show that the eigenvectors (C.13) satisfy orthogonality relations in
energy and in chord number. Firstly we check orthogonality in energy:

∞∑
l=0

ψl(cos θ)ψl(cosϕ) = (q; q)∞
2π |(e2iθ; q)∞|2

∞∑
l=0

Hl(cos θ|q)Hl(cosϕ|q)
(q; q)l

= δ(θ − ϕ) , (C.21)

where we used the result (C.20) together with the knowledge that both θ and ϕ get values
between 0 and π. Secondly, we check orthogonality in chord number:∫ π

0
dθ ψn(cos θ)ψm(cos θ) = (q; q)∞√

(q; q)n(q; q)m

∫ π

0

dθ

2π |(e
2iθ; q)∞|2Hn(cos θ|q)Hm(cos θ|q) .

(C.22)
To compute this we need the following identity:∫ π

0

dθ

2π |(e
2iθ; q)∞|2Hn(cos θ|q)Hm(cos θ|q) = (q; q)n

(q; q)∞
δnm , (C.23)

which gives immediately ∫ π

0
dθ ψn(cos θ)ψm(cos θ) = δnm . (C.24)
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D Continuum approximation of Krylov space

This section provides a derivation of the continuum approximation of Krylov space de-
veloped in [8] in order to understand better its applicability and its relation to ballistic
propagation.

In the case in which there are no diagonal Lanczos coefficients, an = 0, it is useful to
redefine the wavefunctions as

ϕn(t) = inφn(t), (D.1)

so that φn(t) ∈ R, satisfying the recurrence relation:

φ̇n(t) = bnφn−1(t) − bn+1φn+1(t), (D.2)

for all n = 0, . . . ,K − 1 and with initial condition φn(0) = δn,0. Note that, for the sake
of rigor, we start by considering a finite Krylov space of dimension K; we shall eventually
consider the limit of large K. For consistency, b0 ≡ 0 and φ−1(t) ≡ 0.

We will start by performing some exact manipulations that amount to rewriting (D.2)
in a more suggestive form. Since Krylov space is discrete, position is labelled by n =
0, . . . ,K − 1 and the lattice spacing is constant and equal to 1. Thus, strictly speaking, it
does not go to zero in any sense. In order to make a continuum limit possible, we use a
change of variables ξ = n

K−1 ≡ εn, where we identify the small parameter ε = 1
K−1 . As

a result, position in Krylov space is denoted by a rescaled variable ξ which takes discrete
values contained in the interval [0, 1]:

ξ ∈
{

n

K − 1 , n = 0, 1, . . . ,K − 1
}

=
{
εn, n = 0, 1, . . . , 1

ε

}
. (D.3)

The spacing between the allowed values of ξ is ε = 1
K−1 , and we note that in the limit

K → +∞ they accumulate to ξ ∈ [0, 1], hence yielding a continuum limit. But let’s still
keep K fixed.

An important technicality has to be considered before passing to the continuum limit.
We need to assume that the Lanczos coefficients bn are given by the evaluation at discrete
values of the domain of a certain smooth function that we loosely denote b(n). This has
to be assumed, since analytic continuation cannot be invoked because for it to apply one
needs to have a function defined over at least an interval, not a discrete domain. Our
Lanczos coefficients for DSSYK (3.10) certainly satisfy this assumption, but there are
examples in the literature of Lanczos sequences that do not fulfill it: the works [47–49]
have studied systems where the Lanczos sequence shows staggering, the even and odd
coefficients following different profiles. For such systems, the Lanczos sequence does not
have a well-defined continuum limit.

Upon the previous variable rescaling, we have:

bn = b(n) = b
(
(K − 1)ξ

)
=: w(ξ), (D.4)

where we have introduced the function w, defined over the rescaled compact domain (D.3).
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Having assumed that the Lanczos coefficients bn are given by evaluating a smooth
function b(x) at discrete values x = n, it is now justified to make the same assumption for
φn(t) = φ(t, n). Then again, upon the variable rescaling:

φn(t) = φ(t, n) = φ
(
t, (K − 1)ξ

)
=: f(t, ξ), (D.5)

where the domain for the second variable of f is (D.3). We can now rewrite (D.2) as:

∂tf(t, ξ) = w(ξ)f(t, ξ − ε) − w(ξ + ε)f(t, ξ + ε). (D.6)

We emphasize that (D.6) is an exact rewriting of the recurrence (D.2), with ε = 1
K−1 . A

solution f(t, ξ) of (D.6) gives a solution for (D.2) by evaluating φn(t) = f(t, n
K−1).

Expanding (D.6), which we can do since we have assumed that w(ξ) is smooth and we
have argued that f(t, ξ) can also be taken to be so, we arrive at

∂tf(t, ξ) + v(ξ)∂ξf(t, ξ) + 1
2v

′(ξ)f(t, ξ) = O(ε2), (D.7)

where we have defined v(ξ) := 2εw(ξ). The leading term of (D.7) is a chiral wave equation
with velocity field v(ξ) and mass term 1

2v
′(ξ)f(t, ξ). This equation can be solved using a

change of variables ξ 7→ χ such that χ = 0 when ξ = 0 and dξ
v(ξ) = dχ. Since v(ξ) is of order

ε, this change of variables unwraps the compact domain of ξ and has again a non-compact
domain, but the discussion about the compact domain was technically necessary in order to
explain in what sense there is a continuum limit, and why ε = 1

K−1 controls the deviation
from it. Introducing additionally the function

g(t, χ) :=
√
v(ξ(χ))f(t, ξ(χ)), (D.8)

equation (D.6) simplifies further into:

(∂t + ∂χ) g(t, χ) = O(ε5/2), (D.9)

where we remind that ε = 1
K−1 . In the limit K → ∞ equation (D.9) becomes exactly

a chiral wave equation with unit velocity for the wave function g with coordinates t, χ.
However, this does not imply that the continuum approximation of Krylov space becomes
exact and indistinguishable from the discrete problem in the large-K limit: the intermediate
steps of rescaling n to a compact domain ξ = εn fail strictly speaking when ε = 0, and the
continuum approximation need not apply in general. It may be applicable for propagating
wave packets whose typical length scale is larger than the lattice spacing, but in our cases
of interest the initial condition for the discrete wave packet is φn(t = 0) = δn0, which
therefore probes the discreteness of the Krylov chain at early times.

Interestingly, studying (D.9) we note that this continuum approximation behaves as
a classical limit, because it results in ballistic propagation, as we shall explain. Given an
initial condition g(0, χ) = g0(χ), which in our case will be proportional to a delta function
centered at χ = 0, the generic solution of (D.9) simply propagates this packet to the right,
without spreading it:

g(t, χ) = g0(χ− t). (D.10)
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Since the packet g(t, χ) is a propagating delta function, K-complexity coincides with the
position of its peak, which propagates at velocity 1 in χ-space. Undoing the change of
variables:

t =
∫ χ(t)

0
dχ =

∫ ξ(t)

0

dξ

v(ξ) , (D.11)

and using v(ξ) = 2εw(ξ) = 2εb(ξ/ε), together with ξ = εn, we reach the equation:22

t =
∫ n(t)

0

dn

2b(n) , (D.12)

which can be used as an estimate for the position of the peak n(t) in n-space, in an
approximation in which n is directly promoted to be a continuous variable.

We remark that the continuum approximation gives ballistic propagation as an output,
rather than it being an additional, independent assumption. In this sense, this approx-
imation can be thought of as a classical approximation, because the propagation of the
wave packet has turned into the problem of the propagation of a localized particle with
well-defined position that travels driven by a velocity field 2b(n) in n-space.

E Wavefunctions and Krylov complexity for specific values of q

In this appendix we evaluate the exact wavefunctions, ϕn(t), for q = 0 and for q = 1. For
q = 0 we can use the result (3.50) by plugging q = 0 directly into the equation. For q = 1
we start from the eigensystem equation with Lanczos coefficients bn ∼

√
n and find the

eigenvectors in order to compute ϕn(t). The analysis of q → 1 is done in the main text.

E.1 Exact wavefunctions and K-complexity for q = 0

For q → 0 the Lanczos coefficients are given by bn ∼ J√
λ
≡ b (→ 0) for all n = 0, 1, 2, . . . .

When the tridiagonal matrix with these Lanczos coefficients above and below the diagonal
is a Liouvillian, the result for ϕn(t) was found in [8] to be

ϕn(t) = inφn(t) = in
(n+ 1)
bt

Jn+1(2bt) , (E.1)

whereas in our case (dynamics in the Schrödinger picture) we need to replace t→ −t. We
can arrive at this result from (3.50) by setting q = 0:

(0; 0)∞ =
∞∏

k=0
(1 − 0 · 0k) = 1 = (0; 0)n (E.2)

(e2iθ; 0)∞ = 1 − e2iθ ⇒ |(e2iθ; 0)∞|2 = 4 sin2 θ (E.3)

Hn(cos θ|0) =
n∑

k=0

(0; 0)n

(0; 0)k(0; 0)n−k
ei(n−2k)θ =

n∑
k=0

ei(n−2k)θ = sin[(1 + n)θ]
sin θ , (E.4)

22We thank José Barbón for pointing out this expression to us.
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where we used (C.18) to evaluate Hn(cos θ|0). Plugging all this into (3.50) we have

ϕn(t) = 2
π

∫ π

0
dθe−2ibt cos θ sin θ sin[(1 + n)θ]

= 1
π

∫ π

0
dθ e−2ibt cos θ cos(n θ) − 1

π

∫ π

0
dθ e−2ibt cos θ cos[(n+ 2) θ]

= inJn(−2bt) + in+2Jn+2(−2bt) = in
[
Jn(−2bt) + Jn+2(−2bt)

]
= in

(n+ 1)
(−bt) Jn+1(−2bt) , (E.5)

where in the second line we used the trigonometric identity sinα sin β = 1
2 [cos(α − β) −

cos(α + β)], in the third line we used one of the integral representations of the Bessel
function of the first kind23 Jn(z) = i−n

π

∫ π
0 dθ e

iz cos θ cos(nθ), and in the fourth line we used
the Bessel function identity24 Jn(z) + Jn+2(z) = 2(n+1)

z Jn+1(z). We managed to recover
the result (E.1) with t→ −t as required.

With the wavefunction given by (E.5) the result for Krylov complexity can be evaluated
exactly as follows:

CK(t) =
∞∑

n=0
n|ϕn(t)|2 = 1

(bt)2

∞∑
n=0

n(n+ 1)2J2
n+1(−2bt) = 1

(bt)2

∞∑
n=1

(n− 1)n2J2
n(2bt)

= 16
3 (bt)2[J2

0 (2bt) + J2
1 (2bt)] + J2

0 (2bt) + 1
3J

2
1 (2bt) − 8

3btJ0(2bt)J1(2bt) − 1. (E.6)

Using the asymptotic forms of J0 and J1,

J0(x) ≈
√

2
πx

cos(x− 1/4π) , (E.7)

J1(x) ≈
√

2
πx

sin(x− 1/4π) , (E.8)

gives

CK(t) ≈ 16
3πbt+ 4

3π cos(4bt) − 1 +O(1/t) , (E.9)

which is linear in t for large t.

E.2 Exact wavefunctions for q = 1

For q → 1 the Lanczos coefficients are given by bn ∼ J
√

n
λ , and the eigensystem equation

is T |v(E)⟩ = E|v(E)⟩. Re-defining the energy variable as E = J√
λ
ε, the equation can be

written component-wise as

ε vl(ε) =
√
l vl−1(ε) +

√
l + 1 vl+1(ε) . (E.10)

In a similar manner to the general q case, we redefine the eigenvector components as

vl(ε) = ṽl(ε)√
l!
, (E.11)

23https://dlmf.nist.gov/10.9.
24https://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/17/01/01/.
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which leads to the equation

ε ṽl(ε) = l ṽl−1(ε) + ṽl+1(ε) . (E.12)

This equation is solved by the (regular) Hermite polynomials given by Hen(x) =
2−n/2Hn(x/

√
2). We thus have

vl(ε) = Hel
(ε)√
l!

= 1
2l/2

√
l!
Hl

(
ε√
2

)
. (E.13)

As in the q-Hermite case, we will use Hermite identities to normalize the eigenvectors.
∞∑

l=0
vl(ε1)vl(ε2) =

∞∑
l=0

Hl(ε1/
√

2)Hl(ε2/
√

2)
2l l! =

√
2πe

ε2
1
2 δ(ε1 − ε2), (E.14)

where we used the identity:25 ∑∞
n=0

Hn(x)Hn(y)
2n n! =

√
πe

1
2 (x2+y2)δ(x− y) with x = y = ε/

√
2

(using δ((ε1 − ε2)/
√

2) =
√

2δ(ε1 − ε2)). The normalized eigenvectors are then given by

ψl(ε) = 1
(2π)1/42l/2

√
l!
e−ε2/4Hl

(
ε√
2

)
. (E.15)

This result can be used directly to find the result (3.25) for the wavefunction in the case
q = 1:

ϕl(t) =
∫ ∞

−∞
dε e

−i J√
λ

tε
ψl(ε)ψ0(ε) = 1√

2π 2l/2
√
l!

∫ ∞

−∞
dε e

−i J√
λ

tε
e−

ε2
2 Hl

(
ε√
2

)
(E.16)

= e−
(γt)2

2
(−i γt)l

√
l!

, (E.17)

where γ = J√
λ

. Here, the identity26 ∫∞
−∞ dx e−(z−x)2

Hn(x) = 2n√πzn, was used. We have
also assumed that the density of states is flat in ε; this has not been proved here, but it can
be checked a posteriori by noting that the orthonormal eigenvectors (E.15) indeed satisfy
the completeness relation with respect to the flat measure dε.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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