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Abstract — The spinal cord is the main interface between tlainbtand the periphery. It notably plays a
central role in motor control, as spinal motonesrattivate skeletal muscles involved in voluntary
movements. Yet, the spinal mechanisms underlyinghamu movement generation have not been
completely elucidated. In this regard, functionahgmetic resonance imaging (fMRI) represents a
potential tool to probe spinal cord function nordaively and with high spatial resolution. Nonediss| a
thorough characterization of this approach is ktidking, currently limiting its impact. Here, waraed at
systematically quantifying to which extent fMRI caeveal spinal cord activity along the rostrocaudal
direction. We investigated changes in the bloodyexyation level dependent signal of the human calrvic
spinal cord during bimanual upper limb movementsigiwextension, wrist adduction and finger
abduction) in nineteen healthy volunteers. Priosdanning, we recorded the muscle activity assediat
with these movements in order to reconstruct therettical motor-pool output pattern using an angtom
based mapping of the electromyographic (EMG) wave$o EMG-derived spinal maps were
characterized by distinct rostrocaudal patternaatifvation, thus confirming the task-specific featiof

the different movements. Analogous activation pagievere captured using spinal cord fMRI. Finadiy,
additional fMRI dataset was acquired from a sulosahe participants (n = 6) to deploy a multivoxel
pattern analysis, which allowed successful decodingiovements. These combined results suggest that
spinal cord fMRI can be used to image rostrocaadtVation patterns reflecting the underlying aityiv

of the motoneuron pools innervating the task-relateiscles. Spinal cord fMRI offers the prospectof
novel tool to study motor processes and potentitiBir modification following neurological motor
disorders.



1 Introduction

More than a simple relay, the spinal cord playsricial role in movement generation and control
(Alstermark and Isa, 2012; Giszteral., 2012; Vahdatt al., 2015) and can be functionally affected in
neurological motor disorders, such as spinal cojury or multiple sclerosis. Yet, tools to directiynd
non-invasively investigate the nature and functiérthe underlying spinal mechanisms in humans are
still lacking.

To date, studies assessing spinal cord functiohumans have mainly relied on indirect peripheral
measurements (muscle activity or force, reflexessery tests, etc.). Notably, muscle recordingehav
been used to indirectly infer spinal activity dgrinmovements by reconstructing theoretical
spatiotemporal motoneural activation maps (i.gjnal maps’), using a combination of the acquired
electromyographic (EMG) signals with anatomical Wterlge of muscle innervation (Yakovenkbal.,
2002). These spinal maps have been extensivelytosexblore spinal motor output in healthy humans
(e.g., Cappelliniet al., 2010; Ivanenkecet al., 2005, 2013, during locomotion, Pirondigti al., 2016,
during reaching movements), or also to illustrateupted motor pathways (e.g., Grassal., 2004, in
spinal cord injured patients, Cosagal., 2015, in stroke patients). Nevertheless, thisrapie relies
solely on anatomy-based mapping of muscle outpigsthat reason, it is merely an indirect estinmatio
of the spinal cord activity and it does not fully@date the underlying mechanisms.

In this context, functional magnetic resonance img@fMRI) of the spinal cord stands as a promising
tool to directly and non-invasively investigate ragli processes involved in voluntary movements
(Wheeler-Kingshotet al., 2014). In the brain, this technique is alreadgdely deployed, to understand
motor control as well as to capture neural sigrestuf clinical conditions. Relying on the same gipie
(i.e., the blood oxygenation level dependent — BGL§&lgnal), spinal cord fMRI measures signal change
reflecting spinal neural activity, in spite of atioihal technical difficulties inherent to the regiof
interest (e.g., small structure, field inhomogeasijtphysiological noise) (Giow al., 2004). Since the
seminal work of Yoshizawa in 1996 (Yoshizaetaal., 1996), several studies have indeed confirmed the
potential of spinal cord fMRI to monitor task-reddt activity, mainly with tasks involving the upper
extremities (e.g., Backest al., 2001; Bouwmaret al., 2008; Goverst al., 2007; Madiet al., 2001;
Maieronet al., 2007; Nget al., 2008; Stroman and Ryner, 2001), but also duratiy@and passive ankle
movements (Kornelsen and Stroman, 2004, 2007).

However, technological limitations in the formerdyailable acquisition and processing methods (e.qg.,
low field strength, no correction of physiologicabise, no registration to a common template) have
initially hindered the development of this approak a matter of fact, most early studies were tgain
gualitative reports, hence limiting their potentiapplications, notably to clinical investigations
(Kornelsen and Mackey, 2010). In comparison, a feeent works have leveraged novel advanced
acquisition and processing paradigms to systenligtiaasess spinal cord activity recorded with fMRI.
For instance, these advances allowed confirmatioheorobust lateralization of the cervical sigdating
unimanual isometric contractions (Welgeel., 2016b).

Here, we aim at further investigating the organdrabf spinal cord activity during voluntary movemts,
so as to better apprehend the potentials and tion of the current spinal cord fMRI techniquese W
believe that these evaluations represent a pigteal to further develop spinal cord fMRI and pdtdiyt



extend it to clinical investigations. Specificallye want to systematically analyze cervical actoret
during different movements as regards to theiritistion in the rostrocaudal direction. Indeed, idgr
movement generation, spinal motoneurons (i.e., lan@oneurons), which are distributed over différen
spinal levels, act as an interface between uppeomearons located in the motor cortex and skeletal
muscles (Marieb and Hoehn, 2014). Thus, movemeamsining activations of different muscles should
be characterized by distinct spinal activationgrati.

So far, only one early study has investigated thtengial of fMRI to reveal these distinct rostrodal
activation patterns associated with different mogeta (Madiet al., 2001). In their study, Madi et al.
probed BOLD signal changes, in three to six subjatiring three upper limb movements (elbow flexion
wrist extension and finger abduction, thus invajyviifferent myotomes) and observed activity atsite

of muscle innervation, despite unexpected signalother spinal segments. Notwithstanding the
gualitative nature of the obtained results, thiglgtprovided a valuable insight into the potendiaiMRI

to capture the complexity of spinal cord functioaelivity in humans.

In our study, we extended this preliminary investign to a more systematic analysis of rostrocaudal
functional activity, in a larger cohort of subjecthiring distal upper limb movements (wrist extensi
wrist adduction and finger abduction). Those movwaimaevere selected to include different myotomes,
whose rostro-caudal locations vary from C5 to Td systematically explore these activation pattems,
capitalized on advances in fMRI acquisition (elggher field strength and selective field-of-view
imaging (Finsterbusch, 2013)) and processing (slg:e-wise motion correction (Cohen-Adatal.,
2009; De Leenest al., 2017), physiological noise correction (Eippetrél., 2017) and normalization to a
common template (De Leenet al., 2018)). Prior to fMRI acquisitions, muscular ait§i was also
recorded to characterize the motoneuron output g of EMG-derived spinal maps, so as to obtain
theoretical estimations of the rostrocaudal adtivest further compared to the acquired fMRI-derived
spinal maps. Finally, we complemented our analygisline with a multivariate statistical approack.(
multivoxel pattern analysis — MVPA), so as to fudlyploit the information content of distributed feahs

of spinal activity as well as to probe their preaisand stability (Pereiret al., 2009).

Our results show that BOLD activity presented dinti$ rostrocaudal cervical organization associated
the different upper limb movements, similar to tiree inferred by anatomy-based mapping. Moreover,
the subject-specific maps allowed decoding of peréml motor tasks with high accuracy, confirming the
task-specificity of BOLD spinal signals. These camall results allow highlighting the potential ofregd
cord fMRI, and pave the way towards localized obston of human spinal cord function during
disparate motor actions. We foresee that suchghtraieasures of spinal neural activity could shglak |

on mechanisms disrupting motor pathways in neurcédgonditions. This could eventually lead to the
development of new spinal biomarkers, hence comgheimg current peripheral and anatomical
approaches.



2 Methods

2.1 Participants

Nineteen right-handed healthy subjects (11 fem2@$ + 3.4 years old) were enrolled in the stiidyo
participants had to be excluded from further aredyésee 3.1). All participants gave their written
informed consent to participate, and the study badn approved by the Commission Cantonale
d’Ethique de la Recherche Genéve (CCER, Genevadz&eind, 2016-01566). All volunteers had normal
or corrected-to-normal vision and no history of mdagical disorders.

2.2 Experimental protocols

EMG and fMRI data were acquired during the samesgrental session, which was divided into two
phases (fig. 1A): (1) Phase 1, in the mock scarseking both as training and to record EMG agtjvit
(2) Phase 2, in the MRI scanner, to record spimattional activity using fMRI.

Six of the subjects (3 females, 28 + 1.7 years péatjicipated in an additional experimental ses§i@n,
Phase 3), during which only fMRI was performed,hwi protocol adapted for Multivoxel Pattern
Analysis (MVPA) (Coutanche and Thompson-Schill, 201

A. Experimental protocols

Session 1 (n=19) Session 2 (n=6)
Phase 1: EMG Phase 2: fMRI Phase 3: fMRI (MVPA)
+ 1 run per condition* . 2 runs (randomized) « 10 runs with all
+ 10 single movements per condition three conditions per
per condition . 1 task-free run run (randomized)
* For all ex ts, the conditions are wrist extension (WE), wrist adduction (WA) and finger abduction (FA)

B. Run structure

Session 1: 8 task blocks (1 condition) 4'75”

+ task + ... 4+ task +
Session 2: 9 task blocks (3/condition) 4'45"

+ Session 1: task-free run 4'15"

Figure 1 | Protocols | AOverview of the experimental recordings Schematic presentation of the structure of the.runs

2.2.1 Phase 1: EMG experiment

At the beginning of the first experimental sessitwe, different bilateral movements were presenetie
participants: wrist extension (i.e., wrist towattle top), wrist adduction (i.e., wrist towards théside,
with an ulnar deviation) and finger abduction (i.Bngers spreading with thumb adducted). These
movements were selected to include different myewmmn order to potentially elicit activations in
different spinal segments (Kendatlal., 2005). Subjects were asked to keep their fingerselaxed as
possible during the wrist movements, and to focutheir muscle activations throughout the experimen

After appropriate training (i.e., when all movenentere performed consistently by the subjects),
subjects were installed in a mock scanner (a t&alisagnet-free model of the actual MRI scanner) in



supine position, with their hands relaxed on tlieighs and the palm facing downwards. Phase 1 was
subdivided into two parts during which the subjegtre asked to perform the movements bilaterally
following two paradigms (fig. 1A — Phase 1). Thestfiparadigm was designed alslack experiment with

8 blocks of movement alternated with 9 blocks &t riéig. 1B). Each block lasted 15 seconds, with an
entire run lasting 4 minutes and 15 seconds. lotitms were displayed on a screen (fixation cress *
during the rest blocks and text indicating ‘moveimepetitions’ during the task blocks). Auditoryesu
were provided to inform the subjects of the différblocks. During the task blocks, subjects exatute
dynamic repetitions of the movements, promptedhieyauditory cues (i.e., tones at a rate of ~0.5sdz,
that 8 movements were performed per task block)jests were instructed to remain as still as pdessib
during the rest blocks. One run was done for eastement type (i.e., three runs in total, with oahe
movement type performed during each run) and tHerasf the runs was randomized across participants.
The second paradigm, instead, wasngle movement experiment where movements were executed with
only one repetition at a time (e.g., one bilatevebkt extension and back to the resting positias}ihg
approximately two seconds. For each repetition, @ach single movement), an auditory instructias w
given by the experimenter to indicate the moventgm to be performed. In total, each movement was
repeated ten times, in a pseudo-randomized maiihgs. second paradigm was specific to the EMG
experiment and not used in the MRI scanner (se@)2.2

2.2.2 Phase 2: fMRI characterization experiment

During functional acquisitions, the participantsrevinstalled in the MRI scanner in supine positibhe
experimental setup was identical to the one usedémmock scanner (visual and auditory cues) aad th
paradigm was the same as thleck experiment in Phase 1. Each subject executed two runs of each
movement, in a randomized manner (i.e., six rungotal, with only one movement type performed
during each run, in blocks, see fig. 1A — PhaseA2jask-free run (i.e., without any overt task)tbé
same duration as a task run was acquired at tHartieg of the experiment (fig. 1B). All runs (taskd
task-free) lasted 4 minutes and 15 seconds. Thouighe recordings, subjects were instructed taxrel
breathe normally and minimize motion of the neckadh and shoulders. Movement execution was
monitored using a camera. The goal of this momitpsvas to ensure that subjects were performing the
requested movement type for each run or block.htn évent of an error, the fMRI acquisition was
stopped and started again with the right movemygrst.t

2.2.3 Phase 3: fMRI multivoxel pattern analysis experitnen

In order to confirm the reliability of the fMRI deations elicited during Phase 2 and to further bagize
the task-specific characteristics of the spinalvatibn maps, an additional dataset was obtainigd 1A

— Phase 3). The experimental design was optimiae®¥/PA (i.e., many short runs including all three
movements (Coutanche and Thompson-Schill, 2012¥).086 the initial subjects participated in this
additional phase in the MRI scanner, where the stmee movements had to be performed. The
experiment was divided into ten runs, each inclgdimine blocks alternated with rest, with each
movement repeated three times in a randomized mdfige 1B). Similarly to the previous session,
movements were performed in blocks of 15 secondsndth 8 movement repetitions within each block
(i.e., ~0.5 Hz). Each run lasted 4 minutes andet®isds.



2.3 EMG acquisition and preprocessing

During Phase 1, EMG recordings were performed oartband hand muscles (biceps brachii long head,
BICL, triceps brachii long head, TRIC, brachial3RA, brachioradialis, BRAD, pronator teres, PRO,
extensor carpi radialis, EXCR, extensor carpi ulaeXCU, extensor digitorum communis, EXDC,
flexor carpi radialis, FLCR, flexor carpi ulnariSL.CU, flexor digitorum superficialis, FLDS, abducto
digiti minimi, ABDM, extensor pollicis brevis, EXRBadductor pollicis transversus, ADPT, abductor
pollicis brevis, ABPB). EMG signals were acquiresing a Noraxon Desktop DTS wireless system and
superficial Ag-AgCl electrodes (Kendall H124SG, E@{@ctrodes 30 x 24 mm) placed on the above-
mentioned muscles of the right upper limb, aftgrapriate skin preparation. EMG signals were sathple
at 1500 Hz. The quality of the EMG signals was &lguassessed throughout the recordings (e.g.enois
cross-talk between muscles, etc.). Before the éginof the experiment, a Maximum Voluntary
Contraction (MVC) test was performed for each meisdlhis test consists in isometric contractions
against resistance, repeated three times for eadtlenand alternated with breaks to prevent muscle
fatigue.

All raw EMG signals were first detrended and higs® filtered at a frequency of 50 Hz (Butterworth
filter, 7th order). Signals were then rectified dod-pass filtered at a frequency of 10 Hz (Buttertl
filter, 7th order). Finally, they were normalized the MVC value of each muscle (obtained after
preprocessing of the related EMG signals), to altmmparison between subjects and movements. All
processing steps were performed using Matlab (wess2016a and 2017b, MathWorks, Natick MA).

2.4 EMG analysis
2.4.1 EMG-based estimation of spinal activity

EMG-derived spinal maps provide an anatomy-bastah&son of the spatiotemporal activation of lower
motoneurons in the spinal cord (Yakovendtoal., 2002). They are based on a combination of EMG
recordings with knowledge of the rostrocaudal lmratof motoneurons pools innervating different
muscles, hence providing the theoretical spinatl @artput, without relying on direct imaging. Forcka
spinal segment, we used a weighted summation gbridygrocessed EMG envelopes (fig. 2A), based on
the weight coefficients summarized by Kendalhl., (2005), derived from empirical human studies, for
the spinal levels C5 to T1 (Table S1). For the bklegperiment, EMG data were first segmented into
individual repetitions (i.e., 8 repetitions for kaulock, thus 64 repetitions per movement type}.dach
movement, EMG-derived spinal maps were then conapiateeach repetition and averaged. Group spinal
maps were obtained for each movement type by aveyayer participants. In addition, the stabilitly o
the EMG-derived spinal maps across movements wi#rmatdsed for each participant by computing the
average Pearson’s correlation coefficients betvwiieer64 repetitions. In order to relate EMG-derieed
fMRI-derived activation maps, the group-level EM@&rded spinal maps obtained from the block
experiment were averaged over time and interpol@plihe interpolation) to generate one-dimensional
projections along the dimension (i.e., spinal levels). These projectimese then compared to the fMRI-
derived projections using Pearson'’s correlatiorffuments.



2.4.2 Subject-wise classification of estimated spinal snap

In order to confirm the task-specific charactecstof the rostrocaudal activations patterns deriv&dg
EMG, a classifier (Linear Discriminant Analysis, ADwas designed for each subject to discriminate
across the three movements using the EMG-derivathlsmaps from thesingle movement experiment
(i.e., ten repetitions). For thengle movement experiment, EMG-derived spinal maps were computed as
above, independently for each repetition. We usedeatures the activity of the EMG-derived spinal
maps from C5 to T1 averaged over time. The avediggards the temporal component of the EMG-
derived spinal maps, but allows comparison withfMRI-MVPA results, where beta images are used as
inputs. A three-class LDA classifier was employedn(e covariance matrix for each class), with leave-
one-movement-out cross validation, within each ectffor the sake of comparison, only the six stiisje
who performed the MVPA experiment were consider€dnfusion matrices were computed considering
all cross validation folds, to summarize the accyref the classification. In order to assess thésical
significance of those results, we performed norapatric permutation tests. Specifically, we bu@dQ
classifiers for each subject, with randomly assiglabels at each permutation fold (i.e., same &fml

all subjects within the same permutation), and adtexqb confusion matrices for each permutation and
subject. For each permutation, the mean overaliracy over subjects was calculated and th8 99
percentile of this null distribution was defineddiotain the threshold for significance (p = 0.01).

2.5 fMRI acquisition and preprocessing
2.5.1 Imaging protocol

Imaging data were acquired with a 3.0 Tesla Sienfm®mma scanner (Erlangen, Germany), equipped
with a 64-channel head (only inferior element, H@@s used) and neck coil (both anterior and pasteri
elements, NC1 and NC2, were used — i.e., 24 chghri@r the MVPA recordings, a soft cervical collar
was employed to stabilize the neck. All functiom&lquisitions were performed with a gradient-echo
echo-planar sequence, with ZOOMIit selective fidlidiew imaging (Repetition Time (TR) = 2.5 s, Echo
Time (TE) = 34 ms, FOV =48 x 144 mm, flip angl@&6°®, in-plane resolution = 1 x 1 mm, slice thiclkses
= 3 mm). A similar sequence was used by Weber afdagues (Webegt al., 2016b) and allowed to
efficiently observe spinal activation during isoneivrist movements. 32 axial slices were acquiied
each volume, covering the cervical enlargementoigeficquisition, shimming adjustments focused on
the spinal cord were carried out to optimize theynesic field homogeneity. In Session 1, 102 volumes
were acquired (scan duration of 4 minutes and t&rets), while 114 volumes were acquired for Session
2 (scan duration of 4 minutes and 45 seconds). gh-hésolution T2-weighted anatomical image,
covering C1 to T6 vertebra, was also acquired &itBPACE sequence (single slab 3D turbo spin echo
sequence with a slab selective, variable excitgtidee, TR = 1500 ms, TE = 135 ms, echo train leagt
74, flip angle = 140°, resolution = 0.4 x 0.4 x B, sagittal orientation).

All preprocessing steps were performed using théo@xCenter for fMRI of the Brain's (FMRIB)
Software Library (FSL, version 5.0) (Jenkinsaral., 2012) and the Spinal Cord Toolbox (SCT, version
3.2.1) (De Leenegt al., 2017).



2.5.2 Motion correction

As the spinal cord is a very small structure, motiorrection is a crucial step to increase the tealp
signal-to-noise ratio (tSNR). Motion correction waerformed in two steps: i) slice-wise realignmeat,
account for the articulated structure of the siiibehen-Adackt al., 2009; De Leenest al., 2017); and ii)
motion scrubbing (Powest al., 2014). For the slice realignment, all images weéseally inspected to
rule out the presence of artifacts and croppeeénmre bottom slices with insufficient signal (thember

of removed slices ranges from 3 to 8 across subgud runs). Then, the volumes of each functiamal r
were averaged and the centerline of the spinal walautomatically extracted from the resultingdgma

A cylindrical mask with a diameter of 30 mm alohdstcenterline was drawn and further used to exclud
regions outside the spinal cord from the motionrexion procedure, as those regions may move
independently from the cord. Slice-wise realignmsas performed using the mean functional image as
the target image. The amount of motion was assdsgemmputing the average absolute value of the
framewise displacement (FD), as well as the Peasmirelation coefficients between the movement
parameters and the task paradigm. Finally, all rmese aligned to the task-free run with FLIRT
(FMRIB's Linear Image Registration Tool), using degrees-of-freedom rigid-body transformations with
spline interpolation and a normalized correlatiostdunction (Jenkinsoet al., 2002). Motion scrubbing
was subsequently performed by including outlieunadés as noise regressors during the GLM analysis
(see 2.6.1). Outliers were detected with FSL's citeid tool and using DVARS (i.e., the root mean
square intensity difference of volume N to volumelNwith a box-plot cutoff (75th percentile + 1.5 x
the interquartile range) (Power al., 2014). This metric was computed within the spit@id mask (see
2.5.5). On average, two volumes per run were censitlas outliers.

2.5.3 Physiological noise correction

The close proximity of the lungs, the heart andeotisceral organs is an important source of motion
when performing spinal cord fMRI (Brookst al., 2008; Eippertet al., 2017; Pichéet al., 2009).
Moreover, cardiac activity generates a pulsatibevfin the cerebrospinal fluid (CSF) around the abin
cord, hence urging the need for physiological naisgrection. Therefore, we recorded physiological
signals during the functional acquisitions usingtetoplethysmograph and a respiratory belt (Biopac
MP150 system, California, USA). In order to enspreper synchronization, the scanner triggers were
simultaneously recorded. The physiological recagdiwere used to build slice-wise nuisance regressor
with a model-based approach derived from the RETRCH/e Image CORrection (RETROICOR)
procedure (Gloveet al., 2000). This method assumes the physiologicalga®es to be quasi-periodic,
which means that cardiac and respiratory phasebeamiquely assigned for each image. The sigmals a
then modeled using a low-order Fourier expansidrsampled at the time of image acquisition. This
technigue has been shown to be efficient for btams(Harveyet al., 2008) and spinal cord imaging
(Brooks et al., 2008; Konget al., 2012), where the inclusion of higher order tenvas found to be
beneficial.Note that 32 regressors are most commonly usedrteat for physiological noise in the spinal
cord (Konget al., 2012). Considering the relatively low number ofumes of each run (102 volumes), a
solution requiring less regressors was favorea@ssio limit the number of degrees-of-freedom, whilk
accounting for respiratory and cardiac terms a$ agefor the interaction between those processekighw
was demonstrated to be a significant source ofen¢@rookset al., 2008). As such, we used the
optimized model presented by Harwetyal. (Harveyet al., 2008) and previously employed in the spinal



cord by Tinnermanret al. (Tinnermannet al., 2017). Specifically, the physiological noise miote
(PNM) tool from FSL was used to yield 18 voxelwisgise regressors. Finally, the signal from the CSF
(mean signal in the 10% of CSF voxels whose sigagks the most) was also included as an additional
physiological noise regressor, as recommended g kioal. (2012).

2.5.4 Normalization

To allow comparison between the different movemems subjects, a two-step registration procedure
was used to register the images to a template gpacePAM50 template, De Leeneral., 2018), using
the Spinal Cord Toolbox (De Leengral., 2017); i) Anatomical-to-template: a binary maskhe spinal
cord was automatically created based on the T2heigyanatomical image. Subsequently, vertebrae
were automatically labelled after manual initialiaa of the C2-C3 vertebral disk. The spinal corasw
straightened along its centerline using the anatalriabels and non-rigid registration to the PAM50
template was performed. This step generates ammait image warped into the template space, a
template image warped into the anatomical spaceyedk as the corresponding warping fields; ii)
Functional-to-anatomical: the functional imagesevexgistered to the template in anatomical spate wi
non-rigid transformations, generating the corresipum warping fields. The warping fields from stéps
and ii) were finally concatenated to obtain thectional-to-template transformation. Mean normalized
anatomical and functional images are presenteigd.irs2B.

2.5.5 Segmentation

Segmentation of the T2-weighted anatomical image atgomatically performed using the Spinal Cord
Toolbox (De Leeneet al., 2017), generating binary masks of the spinal emrd CSF. As for functional
images, binary masks of the spinal cord and CSIe wemually drawn.

2.6 fMRI analysis

2.6.1 fMRI-based estimation of spinal activity

FMRI data analysis was carried out using FSL's fMEbpert Analysis Tool (FEAT). At the subject-
level, the preprocessed images of each run (im#tiee space, after motion correction) were sggtial
smoothed and highpass temporal filtering (sigméb:#® 4) was applied. In order to preserve anatomical
consistency, spatial smoothing was performed althreg centerline of the spinal cord, using a 3D
Gaussian kernel with a full width half maximum (F\MMof 2 x 2 x 6 mm. Using these preprocessed
time-series, a first-level statistical analysistfrsubject — within run) was carried out using HBR
Improved Linear Model (FILM) with local autocorrélan correction (Woolrictet al., 2001). The design
matrix included the explanatory variables, the phiggical noise regressors as well as the outlier
volumes for motion scrubbing (see 2.5.2). Spedlficéhe explanatory variables were defined based o
the temporal dynamics of the task (block desigmjctvwas convolved with three optimal basis funtsio
using FMRIB’s Linear Optimal Basis Set (FLOBS) (Which et al., 2004), in order to account for
differences of hemodynamic response function (HBFveen regions and subjects. The second and third
waveforms (i.e., the temporal and dispersion déviga, respectively) were orthogonalized to thetfir
waveform. For each subject and movement, the pdeanastimates corresponding to the first FLOBS
waveform (i.e., task against rest), obtained inddpatly for the two runs, were combined by passing



them up to a second level analysis (intra-subjeeicross runs), in which task-specific subject level
activation maps were obtained using a fixed-effemtslel.

Parameter estimates obtained during the secontildeadyses (i.e., subject-level) were then nornedliz
to the PAM50 template (i.e., functional-to-templansformation) and passed up to a third levelyaisa
(inter-subjects) to obtain average group activatim@ps using FMRIB'’s Local Analysis of Mixed Effects
(FLAME) stages 1 and 2 with outlier detection (W et al. 2004, 2008). Z statistic images were
thresholded using clusters determined by Z > 2aaldister-defining threshold of p < 0.01 to accdont
multiple comparisons. Recent discussions have igigteld concerns regarding the use of parametric
testing with a cluster-defining threshold largeartlp = 0.001 for whole brain fMRI (Ekluret al., 2016).
However, our approach is in agreement with recpintas cord literature (e.g., Tinnermaenal., 2017;
Weberet al., 2016a), where the smaller number of voxels dgrtae impact of the multiple comparison
problem. Furthermore, the use of FSL's FILM to eotrfor autocorrelation minimizes inflation in the
false positive rate (Fauét al., 2015). Besides, we also assessed the preserfias@fpositives using a
control analysis (see 2.6.2). Dice coefficientscéil945) between the individual movement-related
activation patterns were also computed (valuesingnfjom 0 — no similarity — to 1 — equal), so as t
assess to what extent the thresholded maps wetialgpsimilar for the different movement types.

In order to relate EMG- and fMRI-derived activatioraps, the group-level parameter estimates (ie¢a, b
maps from the third-level analysis) were maskedrder to isolate the motor and sensory componénts o
the signal (i.e., the anterior or posterior henidsprand summed over tlkeandy dimensions to generate
one-dimensional projections along th&limension. These projections were smoothed (moaiwarage
filter, window length of about one spinal level)dommarize the trends of the distributions and carexb

to the EMG-derived projections using Pearson’sadation coefficients.

2.6.2 Control analysis

In order to evaluate the presence of false positia additional control analysis was performed,
similarly to Weber et al (Webast al., 2016a, 2016b). The preprocessed timeseries afagiefree run
recorded at the beginning of the experiment weedyaad following the same procedure as the task run
(i.e., GLM where the explanatory variable was cotaegduusing the temporal dynamics — onsets and
durations — of an actual task run). Equivalentlyhte task runs, we computed a group average dotivat
map (thresholded using clusters determined by Zan@ a cluster-defining threshold of p < 0.01). For
each subject independently, we also calculateghéineentage of spatial extent (number of active lgxe
divided by the number of voxels in the region dEest; i.e., the C5 to C8 spinal levels) and trexage
Z-score of the active voxels. This was done intdmeplate space to allow comparison between subjects
Z statistic images were thresholded at Z > 2 (pG1Quncorrected). In order to compare task-fress ru
with task runs, we also computed those metricsafloruns of the experiment and averaged results ove
movement type, independently for each subject. -fimgk and task results across subjects were then
compared using two-tailed paired t-tests.

2.6.3 Multivoxel pattern analysis

For each subject, MVPA was performed to confirm tdwek-specific characteristics of the rostrocaudal
activations patterns derived using fMRI activitgndges were processed as presented in 2.5. Due to th
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small number of subjects, group activation mapsewahtained using a fixed-effects model. Z statistic
images were thresholded using clusters determigeti»2 and a cluster-defining threshold of p <00

to account for multiple comparisons. In order tesarve the information content before deploying
MVPA, the dataset was also smoothed using a 3D sEauskernel with a full width half maximum
(FWHM) of 1 x 1 x 3 mm Parameter estimates were obtained for each ring tise same GLM as
presented above (see 2.6.1) but where the exptsnadomiables were the task dynamics of the three
movements. We defined three contrasts, one for mastement type against rest. The resulting paramete
estimates (in the native space) were masked tadedhe C5 to T1 spinal levels. All voxels weredias
inputs (no feature selection) and a three-class kA&sifier similar to the EMG-classifier was emyad,
with leave-one-run-out cross validation. In ordecompare the information content of different cegi-
of-interest, classification was also performed inithpecific masks (superior and inferior levelswadl

as anterior and posterior hemicords). Confusiorrioest were computed considering all cross validgatio
folds, to summarize the accuracy of the classificatStatistical significance was computed follogvithe
same procedure as the EMG-based classification2(de®?). Finally, we also assessed the stabilitshef
LDA weight maps, by computing the Pearson’s coti@acoefficients between the LDA weights of each
fold.

3 Results

3.1 Data quality assessment

All subjects completed Phase 1 (EMG experiment) Bhdse 2 (fMRI experiment), and 6 of them
completed Phase 3 (MVPA experiment). Subjects'gsarince was monitored during each phase and the
quality of the preprocessing steps was visuallgsssd. As for EMG, data were inspected to rulehout
presence of movement artifacts. The assessmehé dfAR| data prompted the exclusion of two subjects
from further analyses (fMRI and related EMG), asitfunctional scans did not include the C8 spinal
level. A region spanning C5 to C8 spinal levels waaged in all the remaining subjects (fig. 3A). In
order to assess the impact of the different pracgsdeps, we computed the tSNR on the task-frae-ti
series, by dividing the average signal over timehzy standard deviation. The efficiency of the imoti
correction procedure was confirmed by a signifidaotease (p < 0.001, two-tailed paired t-testjhef
average tSNR (= SE) from 5.15 + 0.16 before motiorrection to 7.92 + 0.15 after motion correction
(fig. S2A). The tSNR further increased to 28.22.&M0(p < 0.001) thanks to temporal filtering andtsgd
smoothing. Overall, the motion of the spinal cards limited, as highlighted by the average absolute
value of the framewise displacement (+ SE) (ED0.106 + 0.002 mm and F& 0.143 + 0.002 mm),
and only weakly correlated with the tagpk£ 0.063 + 0.005 angl,= 0.124 + 0.004).

3.2 Rostrocaudal activation patterns captured using EMGIMRI
3.2.1 EMG-derived spinal maps

In order to estimate task-related spinal activitg, first computed EMG-derived spinal maps. Thespama
are based on anatomical mapping (fig. 2A) and ttterefore, represent the theoretical spinal aitima
patterns. As hypothesized, the spinal activatiditepas elicited by the three motor tasks (wriseagton
or WE, wrist adduction or WA and finger abductianF#\) exhibited distinct rostrocaudal organizations
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(fig. 2B). Notably, the activity shifted from higheervical segments during wrist extension to lower
spinal regions during wrist adduction and fingedwatiion. Specifically, the activity elicited by sti
extension was relatively spread out and mainlyrithisted over the C5-C7 spinal levels. This pattsrn
associated with EMG activity in the wrist extensauscles as well as in more proximal muscles, ssch a
the brachioradialis (fig. S3, Table S1). For théstvadduction, instead, the activity was mainlyueed in

C7 and C8, coinciding with EMG activity in the flmxand extensor carpi ulnaris. Finally, finger
abduction presented an activation pattern similahé one of wrist adduction, but with an actiyiigak
more focalized over C8, explained by EMG activitythe finger extensor muscles, as well as in distal
muscles such as the abductor digiti minimi (fig).S3

We evaluated the stability of the rostrocaudalgratt over repetitions (fig. 2C), which highlightexbre
variability for the maps related to wrist extens{or 0.78 £ 0.07, mean over subjects + SE) comptoe
the patterns of wrist adduction (r = 0.92 + 0.04dl §inger abduction (r = 0.97 £ 0.01).

This characterization of the estimated spinal &@gtigonfirmed that the selected movements required
distinct rostrocaudal cervical activations, andytmeere, thus, apt to explore the potential of fMRI
capturing the complexity of human spinal cord fimtl activity.
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Figure 2 | Characterization of rostrocaudal spinalactivation patterns (EMG) | A. EMG-derived spinal maps are
used to estimate the spatiotemporal activatioroafel motoneurons in the spinal cord (Yakoverkal., 2002).
The motor-pool output patterns are computed usiwgighted summation of the EMG signals from theddorded
muscles, based on knowledge about the rostrocdocktions of the motoneuron pools innervating thogescles
(see Table S1B. Group EMG-derived spinal maps for the different mments (WE = wrist extension, WA = wrist
adduction, FA = finger abduction). Spinal maps wereraged over subjects and repetitions (64 répetitof each
movement for each subject). The color bars, diguat the right of each map, represent the a piqrected peaks
of activation. Spinal levels are displayed on ykexis, andx-axis corresponds to the duration of the movemeat (
seconds).C. Correlation between the time-averaged EMG-derivpthad maps of the different movement
repetitions. Data are presented as mean over $sj&E.

3.2.2 fMRI-derived spinal maps

In order to elucidate whether spinal cord BOLD \dtti also displayed a similar task-specific
rostrocaudal organization, we computed fMRI-derivaginal maps. After preprocessing, we assessed
group level spinal activity using a GLM with mixedfects modelling. For all movements, a larger
portion of the active voxels was observed in thieor (i.e., motor) part of the spinal cord (56:42%,
mean over movements = SD, see sagittal slicesging#), while the activity was roughly distributed
evenly between left and right hemicords (47.65 8% in the right hemicord), as expected for bimanua
motor tasks. Activity was also spread out betwdengrey and white matter (33.84 + 8.5% in the grey
matter), in accordance with reports from Weber aolleagues (Webeet al., 2017). Similarly to the
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EMG-derived spinal maps, wrist extension resultedriore rostral activity than wrist adduction and
finger abduction (fig. 3B-C, Table S2). Specifigalthe activity related to wrist extension was nhain
located in the C6 spinal level (81.8% of the actiggels), while it was also the only movement dilgj
activity in the C5 spinal level (12.9% of the aetiwoxels). The main activity peak during wrist ackiton

and finger abduction, instead, was focused in @8pgctively 68.7 % and 55.4 % of the active voxels)
while the remaining activations were only foundtle C7 spinal level. The difference between these
activation patterns was also illustrated by the Diwe coefficients between them (D = 0 between WE
and WA, D = 0.04 between WE and FA and D = 0.36vbeh WA and FA).

These results highlight that the BOLD activity rake a distinct rostrocaudal cervical organization
associated with different upper limb movements,siant with the one inferred using anatomy-based

mapping.
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Figure 3 | Characterization of rostrocaudal spinalactivation patterns (fMRI) | A. Imaged regions map,
normalized to the PAM50 template (De Leeaieal., 2018). The color bar indicates the number of esttigjwith the
corresponding region included in the functional maf sagittal view of the PAM50 template is presenfor
reference. The vertebral bodies are labeled, asasahe corresponding probabilistic spinal le&adotteet al.,
2015).B. Group activation maps (mixed-effects modelling) thoe contrast task VS baseline (WE = wrist extemsio
WA = wrist adduction, FA = finger abduction). Mage thresholded at a Z-score > 2 (cluster-defitimgshold of

p < 0.01) and normalized to the PAM50 template.yGalregion from C5 to C8 is considered (imagedlin a
subjects). Central coronal views are presentedh thii2 same slice (y = 70) shown for all moveme@tslhree axial
slices (z = 765, z = 795 and z = 825, see left pame presented (right panel), overlaid on the BANemplate. For
sagittal slices, see fig. S4. S = superior, | =i, L = left, R = right, A = anterior, P = posta.
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3.2.3 The activation patterns are specific to task runs

In order to control for false positives, we empldyecontrol analysis in which the same procedutheas
one used to detect task-related activity was appiee task-free runs. At the group level, no voxel
exceeded the significance threshold when combitiiegask-free activation maps from all subjects. (fi
4A), emphasizing that task-free activity was naglized in a particular spinal level.

We then further assessed the significance of fM&ivation during task runs by comparing both the
extent and amplitude of the activity linked to takd task-free runs at the subject-level, similaoly
Weber et al. (Webest al., 2016b, 2016a). The spatial extent of the actifii:, percentage of activated
spinal cord) identified during the task runs (f4B, 8.44 + 1.16%, mean over subjects + SE) was
significantly larger (p < 0.001) than during thekdree runs (2.97 + 0.47%). Similarly, the intengif
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the activity, as illustrated by the average Z-somver the active voxels, was significantly highpr<
0.01) during the task runs (fig. 4B, 2.56 = 0.0#Brt during the task-free runs (2.38 + 0.03).

These combined results indicate that the cervarsttocaudal activation patterns imaged during task
are likely not artefactual and reflect motoneurotivity.
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Figure 4 | Control analyses | AGroup activation maps (mixed-effects modelling)tfee control analysis (task-free
runs). Maps are thresholded at a Z-score > 2 @idgfining threshold of p < 0.01) and normalizedite PAM50
template (coronal view). n.s. indicates that nanidicant activity was detected. Comparison of the percentage
spatial extent of the activity, relative to the t85C8 region of the spinal cord (left panel), andrage Z-score (right
panel) during the task-free and task runs. Eacbredlline corresponds to one subject. The blaek diorresponds
to the mean + SE. * corresponds to p < 0.01 aneb {5 < 0.001 (two-tailed paired t-test).

3.2.4 EMG- and fMRI-derived spinal maps present simitastrocaudal distributions

To further examine the similarities between thetrommudal distributions of spinal activity extradte
using EMG and fMRI and, thus, to confirm the sgeitif of spinal BOLD signal, we compared the
obtained activation patterns using their respeqiinggections along the direction. When focusing on the
anterior (i.e., motor) profiles (fig. 5), similarstributions were observed for both modalities,widsk-
related profiles shifted towards rostral or cawsfihal levels, depending on the motor task. Duvinigt
extension, the spread of activity was strongehatrostral part of the cord, while the activity idgrwrist
adduction and finger abduction was more localizedhie caudal region. The projections of activity
derived from the two modalities were significantiyrrelated (p < 0.001), as stressed by the coioelat
coefficientsp between the EMG- and fMRI-derived trends: 0.32 \aist extension, 0.90 for wrist
adduction, and 0.70 for finger abduction. These enat® to high correlations indicate similar
rostrocaudal distributions, inferred either perigltig from the EMG activity or directly from funathal
imaging of the spinal activity, and it supports tiee of fMRI to directly image spinal cord involvent
during upper limb movements. In addition, the pesfiof WA and FA, both shifted towards the caudal
side of the cord, also exhibited a high correlatietween their related EMG- and fMRI- derived pesfi
(e.g.,p = 0.96 between the fMRI-derived profile of WA atite EMG-derived profile of FA, see full
correlation matrix in fig. S5A). This is, howevém,accordance with the high correlation of 0.98nmn
the EMG-derived profiles of those two movement tyggee fig. S5C). Interestingly, the fMRI-derived
projections, when considering only the posteria. (isensory) component of the spinal activity,exsdso
highly correlated (p < 0.001) with the EMG-derivejections gwe = 0.73,pwa = 0.87 anchra = 0.43)
(fig. S5B).
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Figure 5 | Rostrocaudal distributions of activatiors | For each movement type (WE = wrist extension, VW&ist
adduction, FA= finger abduction), distributionstbé EMG- (dark line) and fMRI- (light line) derivezpinal maps
along thez direction are presented. Time-averaged-map vauesised for the projections of EMG-derived spinal
map while group parameter estimates (anterior, @omhemicord), summed over tk@ndy dimensions, are used
for the projection of fMRI-derived spinal maps. &glilevels are displayed on tRexis, andy-axis corresponds to
the projected map-values (EMG) or betas (fMRI).rBea’s correlation coefficients between the two alibigs are
respectively 0.32 (p < 0.001), 0.90 (p < 0.001) @ (p < 0.001).

3.3 Imaged rostrocaudal organization is task-specific

Both EMG- and fMRI-derived spinal maps suggest-gsécific rostrocaudal distributions of the cerVica
spinal cord activity. In order to verify this hypeisis, we used a machine learning approach thétitsxp
the information content of each motor task in thi@al maps derived from both modalities.

When using EMG-derived projections (i.e., time-aged) of the estimated spinal activity as features
(i.e., one feature for each spinal level), thesifees was able to differentiate the three classigls a high
accuracy, as emphasized by the diagonal confusatmixm(fig. 6A). The overall accuracy (95%) was
significantly higher than chance (p < 0.01, perrtiatatesting, chance level at ~33%), highlightihg t
specificity of the estimated spinal activation pats.

Furthermore, we deployed MVPA to decode the exectask based on the voxelwise spinal BOLD
activity. When using information from the whole sl cord, rostrocaudal activation patterns allowed
decode movements for all three classes with anathveccuracy of 54.5% (fig. 6B), significantly bett
than chance (p < 0.01). The stability of the LDAigl® maps over cross-validation folds was also
assessed by computing their average Pearson’slatmmecoefficients. This analysis showed a high
correlation between folds (0.87 + 0.01, mean oubjexts + SE).

In order to investigate the relative contributiohdifferent sub-regions of the cord, we performbd t
classification independently: i) for inferior andpgrior spinal levels and ii) for each hemicore.(i.
anterior and posterior) (fig. S6). Although wristdaiction and finger abduction could still be deabde
using both rostral and caudal segments, wrist sidarfailed to be detected using the inferior ragid
the cord (38.4%), emphasizing the rostral charamtehe related activation. Interestingly, movensent
could be classified efficiently using both anteremd posterior hemicords (average classificatidns o
48,4% and 51.1%, respectively), highlighting thareld influence of motor and sensory processes.
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Figure 6 | Average decoding accuracy | AEach subject performed 10 repetitions of each meve. EMG-
derived spinal maps were computed for each repeténd averaged over time to keep only the spafi@amation
(i.e., five features per sample, correspondinght® rhean activity over time in the spinal levelstir€5 to T1).
Classification was performed in each subject using-DA classifier (leave-one-movement-out crossdedion).
Confusion matrices were then averaged over subjbet®, only the six subjects who participatedhie MVPA
experiment were considered). The average accunamysubjects and conditions was 95% and signifigatiove
the chance level (p < 0.01, permutation testingnck level at ~33%). All values are reported incpetage B.
Multivoxel pattern analysis (MVPA) was performeddach subject, using data from the C5 to T1 spéeedls and
a LDA classifier (leave-one-run-out cross validajiogConfusion matrices were averaged over subjétis.average
accuracy over subjects and conditions was 54.5%samdficantly above the chance level (p < 0.0Irnpéation
testing).C. Group activation maps (of the six subjects whoipigdted in the MVPA experiment) for the contrast
task VS baseline. Maps represent the mean activiey the group (fixed-effects analysis) and aregholded at a
Z-score > 2 (cluster-defining threshold of p < WPAIl maps are normalized to the PAM50 templdde (eeneet
al., 2018). Coronal views are presented, with the sslite shown for all movements. A sagittal viewttod PAM50
template is shown as a reference, with the corredipg probabilistic spinal level. WE = wrist exters WA =
wrist adduction, FA = finger abduction. S = superle= inferior, L = left, R = right.

Finally, to validate the rostrocaudal cervical pats presented in 3.2.2, we assessed the group leve
activity elicited by the three movements during i&PA experiment (fig. 6C, Table S3). This analysis
uncovered activation maps consistent with thoseg@daduring the first experimental session (fig..3B)
Similarly, the three different task-related pattenmresented distinct spatial distributions (D =30.3
between WE and WA, D = 0.15 between WE and FA and D.19 between WA and FA). More
specifically, activation patterns related to westension were located in higher spinal levels¥8@ the
active voxels in C6, and 65.4% in C7) than the almsted by wrist adduction (45.1% in C7, 29.4% in
C8 and 23.4% in T1) or finger abduction (50% in&®l 50% in T1). These results further demonstrate
the robustness of the task-specific rostrocaudgdrization.

These combined results corroborate the hypothbatistihe measured BOLD signal actually reflects the
spinal processes underlying movement. They, thexefupport the potential of fMRI to image task-
specific rostrocaudal organization, offering ashstie prospect of a novel tool to study spinal fiomc
and its disruption in neurological conditions.

4 Discussion

Here, we hypothesized that spinal cord fMRI couddused to reliably image task-specific activity in
different cervical segments during distinct uperl movements. To address this question, we cordbine
spinal functional imaging with EMG recordings, aviged in previous studies (Magtial., 2001; Weber

16



et al., 2016b). Specifically, we exploited anatomical Wexdge of muscle innervation to infer the
contribution of each muscle to the spinal activity the different segments. Notwithstanding the
limitations inherent to the imaging of spinal cdudction, we acquired distinct task-specific rostrodal
activation patterns using fMRI, consistent with tkieeoretical maps derived from the muscular
recordings. These task-specific spinal maps allofeedh successful decoding of motor tasks. Here we
discuss our results with an emphasis on acquiséiwh processing precautions for reliable spinal IMR
BOLD signal.

4.1 Imaged cervical activation patterns have a taskiipe rostrocaudal
organization

To characterize the specificity of the activatiarttie rostrocaudal direction, we selected movemibats
allowed capitalizing on the different locations thfe motoneuron pools innervating the employed
muscles. Wrist extension, if performed with no edir ulnar deviation, should mainly be linked to
motoneuron activity in the C6-C7 spinal levels, hirist adduction and finger abduction were expéct
to elicit lower activity, in the C7-C8 and C8-T1gseents, respectively (Table S1). These task-specifi
rostrocaudal activations were first confirmed usiENIG recordings (fig. 2). Muscular activity was
mapped back onto the spinal cord using anatomitailedge of muscle innervation. As expected, the
activity shifted from rostral levels for wrist extgion to caudal regions for wrist adduction andydin
abduction. However, these maps, derived from ietlifgeripheral recordings, are solely based on
anatomical considerations and, thus, do not fuifgrin on the actual spinal cord function. Conversel
fMRI enables localized observation of spinal coetivity. Using this technique, we showed that spina
BOLD signal also reflected these task-specificvatibns patterns (fig. 3). In line with the findsgf
Madi et al. (2001), we observed higher activations for wrigteasion than for finger abduction.
Nonetheless, the detected activity was more fogabur study, possibly due to the increased field
strength, the choice of sequence (selective figldaw imaging), and to the ad hoc noise correcttaps
applied to the signal. Wrist adduction, which was performed in the study of Madi al., also elicited
the expected activity, with an activation profilbifeed towards caudal segments. For the three
movements, the activity was equally distributedaeetn the left and right hemicords and mainly lodate
in the anterior (i.e., ventral) hemicord. This msagreement with anatomical knowledge, as movements
were performed bilaterally and motoneurons are dounthe ventral horns. Despite the larger anterior
activity, significant activity was also found inetlposterior (i.e., dorsal) hemicord. As the taskststed

in performing dynamic repetitions of the movemettss is likely resulting from sensory processed an
proprioception. In parallel, a control analysis wheve applied our analysis pipeline to task-freesru
emphasized that the imaged cervical patterns wezly hot of artefactual origin (fig. 4).

In a subsequent step, we quantified the relatipnsbtween the EMG- and fMRI-derived spinal maps by
using their respective projections on tha&imension (i.e., spinal levels) and demonstratealcgous
rostrocaudal distributions of activity between tlveo modalities (fig. 5). This suggests that both
activation maps stem from the same motor-relatéthbprocesses, hence supporting the use of fMRI to
reliably and directly image task-related rostrocdwervical activity.

In order to further confirm the identified task-sjie activation patterns, we employed a machine
learning paradigm on a subset of participants, stoadecode motor tasks based on spinal activation
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maps. FMRI-derived patterns presented significacbding performances (54.5%), highlighting the task
specific information contained in the acquired BOsiDnal. Wrist extension, however, presented a towe
classification accuracy (46.7%), potentially rethte higher movement variability when executingsthi
task. This hypothesis is supported by the the@eBEMG-derived spinal maps, where a lower correfati
was observed between the activation patterns ofdifferent repetitions of this movement (fig. 2),
possibly indicating that the wrist was not congitliemoved in the expected neutral ulnoradial désra
Nevertheless, it should be emphasized that wrinsion and adduction, although involving the same
joint, could be distinguished with a significantcacacy. Interestingly, when using only the inferior
portion of the spinal cord, wrist extension tendede mistaken for wrist adduction (fig. S6A), het
supporting the rostral character of the underlyntivation.

Another compelling finding concerned the high deosgderformances obtained when using the anterior
or posterior hemicord only (48.4% and 51.1%, retpely, see fig. S6C-D). This suggests that both
motor and sensory processes were reliably caphyeinal cord fMRI and were both task-specificeTh
task-specificity of sensory information paralletsent findings from Yeganegi al. (2018). In that study,
the authors showed for the first time that eledtggological recordings of dorsal gray matter attiin
anesthetized cats allowed for successful decodifgnd limb movements. Indeed, movements not only
elicit efferent signals travelling from the ventradrns of the spinal cord to the muscles, they iigolve
afferent feedback provided by sensory receptog,(giuscles spindles, tendons or mechanoreceptors)
and going to the central nervous system, throughdibrsal horns of the spinal cord (Enoka, 2008).
Consequently, observing task-specific sensory iagtild not unexpected, as also reflected by the
significant correlations obtained between the EM@d fMRI-derived profiles, when considering the
sensory component only (see 3.2.4).

Importantly, the group activation maps resultingnirthis additional imaging session presented simila
rostrocaudal patterns as the ones derived froninikial experiment, confirming the robustness oé th
captured rostrocaudal activation patterns. Altogetthese results underscore the broad potentspioél
cord fMRI, not only to image spinal motoneuron ity but also to explore sensory and proprioceptiv
mechanisms, one aspect that cannot be probed wiithbhgral recordings, such as EMG acquisitions. To
our knowledge, our study is the first report of MVRn the spinal cord during different types of
movements (note, however, that Weber and colleagtmsously used MVPA to decode left and right
wrist flexions (Webeket al., 2016b).

4.2 Methodological challenges of spinal cord fMRI arubgible solutions

Although spinal cord fMRI relies on the same priohes as brain fMRI, it presents additional challeng
(Giove et al., 2004) and has therefore not yet received as rimiehest. First, the small cross-sectional
dimensions of the spinal cord prompt the need iigih hesolution imaging to avoid partial volume et
and to unravel the details of the structure ofrgdge Second, the spinal cord is surrounded byrdifft
tissue types, whose disparate magnetic susceptibifaffect the static magnetic field. This candléa
image artifacts, such as distortions or signal duty when standard T2*-weighted fMRI protocols are
employed. Advancements in terms of hardware (Cdtaad et al., 2011) and sequences (Finsterbustch
al., 2012) are currently being proposed in order teiath these constraints. Finally, another prominent
issue is related to the close proximity of the Einthe heart and other visceral organs, which are
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important sources of motion (Pickgal., 2009). Notably, cardiac activity generates agtilés flow in the
cerebrospinal fluid (CSF) around the spinal cord.

In our study, we employed different approacheanfata acquisition to (pre-)processing, to overcome
these limitations and get a reliable signal. Sjeadif/, prior to acquisition, shimming adjustments
focused on the cervical spinal cord were carriedtowptimize the field homogeneity in the regidn o
interest. The acquisition was performed using sekedield-of-view imaging, hence increasing imagin
speed while allowing for high spatial resolutionx(1 x 3 mm). In order to curtail the detrimentéket

of motion, we applied several processing stepsligteaent was first conducted using a slice-wise
procedure, accounting for the articulated structdrthe spinal cord (Cohen-Adatlal., 2009; De Leener

et al., 2017). Outlier volumes were then identified andiuded as confounds during the GLM analysis.
Finally, we used the physiological recordings asgglithroughout the experiment to model additional
nuisance regressors, based on the RETROICOR pnacé@loveret al., 2000), and a CSF regressor was
also included. Both approaches have been demattatimprove activation statistics (Broo#tsal.,
2008), and their impact was reflected by the ineeea tSNR observed consecutive to these processing
steps (see 3.1 and fig. S2). In addition, the GLhAlgsis was also adapted to account for potential
variations of the HRF, compared to the canonicalFH®®mmonly employed. Indeed, the temporal
properties of the spinal HRF are still unclear (@iti et al., 2008) and no solution to tackle this
limitation has so far been proposed in the contdxspinal cord fMRI. Therefore, we opted for an
approach previously used in brainstem fMRI (e.gulFet al., 2015), a field facing similar challenges in
this regard (Devonshire al., 2012) and employed a FLOBS-generated basis stetid of the canonical
HRF (Woolrichet al., 2004), so as to be less sensitive to hemodynaamiability (e.g., dispersion, delay
or shape).

Following this advanced pipeline, we were ablentage robust rostrocaudal patterns. Nevertheless so
limitations need to be acknowledged. Regardleghaftconsistent sequence of motoneuron pools across
subjects (e.g., distal arm muscles innervated lmetospinal levels than proximal muscles), individua
differences in the location of spinal levels withspect to the corresponding vertebral bodies have
previously been reported (Cadotteal., 2015). When registering subject data to a commeonplate,
these differences are not taken into account witlheat normalization algorithms, an issue which was
already raised by Webet al. (2016a, 2016b). This could hinder our ability &tett activation patterns
along the rostrocaudal direction, due to potemtimmatches between subjects. Although less pretyalen
similar issues exist in brain fMRI (Dubois and Agle$, 2016) and progresses in both fields (e.g.,
advanced algorithms or functionally-informed aligemt) could gradually overcome these difficulties.

4.3 Experimental limitations and considerations

Our paper aimed to relate EMG and fMRI activitydrder to highlight the neural origin of the signal
recorded with spinal cord fMRI. This representsrst tep in showing that this technique can sl |

on spinal motor responses. We believe that futiwrdiess could deploy similar motor-based paradigms,
infer general principles regarding human spinaldcfumctional organization. We propose hereafter a
number of experimental and technical recommendsitidrhile the structure of our experiment (i.e., two
complementary sessions to record EMG and fMRI) iseglo certain timing constraints to prevent
subjects’ fatigue, future studies focusing solelyf@IRI recordings could potentially limit the nunrbef
conditions, so as to increase the scan duratiotheonumber of runs, to further explore the praperof
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the underlying spinal signals. An additional asghat may be of interest is the variability of mment
execution. Indeed, as muscle activations were adbpned at a specific percentage of the Maximum
Voluntary Contraction, the exact output of the nmescduring the fMRI scans was not controlled.
Performing isometric tasks could help in this regaithough it may require the use of custom sglint
which need to be adapted to the movements of stteffaally, we recommend the use of a soft cetvica
collar for the functional recordings, as this hedpabilize and straighten the neck, hence particigdao
improve image quality.

4.4 Conclusion

Despite technological challenges, we captured tianis in spinal activity and revealed task-specific
rostrocaudal patterns in agreement with the anatnairrangement of motoneuron pools. These results
contribute to advance our understanding of the ntiaieof spinal cord fMRI. They demonstrate its
prospects as a reliable tool to investigate spooatl function and to further understand mechanisms
involved in motor control and neurological motoisaliders, such as spinal cord injury or multiple
sclerosis. For instance, spinal cord fMRI couldbwllexploiting information on spinal sensorimotor
function, rather than theoretical estimations sastEMG-based maps. Eventually, we foresee that such
advances in our knowledge of the spinal cord caulpport clinical decision-process and help inform
intervention procedures.
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