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Confidence level solutions for stochastic programming

Yu. Nesterov∗, J.-Ph.Vial†

January, 2000

Abstract

We propose an alternative approach to stochastic programming based on Monte-
Carlo sampling and stochastic gradient optimization. The procedure is by essence
probabilistic and the computed solution is a random variable. The associated ob-
jective value is doubly random, since it depends on two outcomes: the event in the
stochastic program and the randomized algorithm. We propose a solution concept
in which the probability that the randomized algorithm produces a solution with an
expected objective value departing from the optimal one by more than ε is small
enough. We derive complexity bounds for this process. We show that by repeating
the basic process on independent sample, one can significantly sharpen the complex-
ity bounds.

Keywords: Stochastic programming, Stochastic subgradient, Complexity esti-
mate.

1 Introduction

The handling general probability distributions in stochastic programming is a del-
icate issue. Indeed, one cannot, in general, compute exact expectations, and thus
one cannot make direct use of standard optimization techniques. Therefore, the first
step is often to construct finite distributions, close enough to the original one. The
initial problem is then replaced by a computationally tractable approximation. This
approach raises issues on the quality of the computed solutions and on the com-
putational effort to achieve a given level of optimality with respect to the original
problem.

Sampling offers an alternative to deal with continuous distributions. Assuming
that samples can be generated by some Monte-Carlo technique, one generates a
sample of given size and compute a candidate solution with respect to that sample
[4, 5, 9, 12, 14]. Statistical estimation theory is then used to study the convergence of
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the candidate solution towards the optimal set and to construct confidence intervals
[6, 3, 10, 12, 13]. This literature provides limit theorems and ways of constructing
confidence intervals. However, it remains silent on the computational effort that is
required to reach a satisfactory solution.

The aim of this paper is to bridge the present gap. To this end, we propose an
approach based on Monte-Carlo sampling and stochastic gradient optimization. We
introduce a new solution concept; ε-optimal solutions with a certain confidence level.
We propose a stochastic gradient algorithm [4] to compute a solution to this problem,
and we give a complexity bound on the number of iterations.

Let us first elaborate on the new solution concept. The stochastic gradient proce-
dure is by essence probabilistic; hence, the computed solution is a random variable. If
the decision maker implements the computed solution, the objective function, which
is an expectation, may sometime fall short of the optimum. Therefore, the quality of
the solution must be assessed in probabilistic terms. A reasonable requirement is that
the probability of departure from the optimum be close enough to zero. With this
solution concept we are able to derive complexity bounds on the number of iterations
required to achieved a certain level of precision.

In order to make the above statement more precise, let Ξ be a probability space
endowed with a probability measure, and let Q be subset of Rn. We are given a cost
function f : Q× Ξ 7→ R. This mapping defines a family of random variables f(x, ξ)
on Ξ. We assume that the expectation in ξ, Eξ(f(x, ξ)) is well-defined for all x ∈ Q.
Our problem of interest is the stochastic optimization problem:

min
x
{φ(x) ≡ Eξ(f(x, ξ)) : x ∈ Q}. (1)

We always assume that the problem (1) is solvable. Denote by x∗ one of its solutions
and φ∗ = φ(x∗). By Vφ we denote the variation of the function φ(x) on Q:

Vφ = max{φ(x)− φ∗ : x ∈ Q}.

We assume that Vφ <∞.
In the rest of the paper, we shall make the following additional assumptions:

1. Q is bounded and closed convex set, and we can fix some point x0 ∈ Q such
that ‖ x− x0 ‖≤ R for all x ∈ Q.

2. The function f(x, ξ) is convex in x for any ξ ∈ Ξ.

(In the sequel, it might be easier to think of ξ as the outcome of a random variable
ξ̃, but this is not necessary.)

Under the above assumptions, the function φ(x) is convex. Since exact minimiza-
tion is usually not possible, we should replace problem (1) with

Find x ∈ Q : φ(x)− φ∗ ≤ ε, (2)

where ε is positive and small enough. We argue that (2) is not satisfactory. In-
deed, computing the exact value of φ(x) may not be numerically possible, even when
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the distribution of ξ is known.1 The standard deterministic notion of approximate
solution to problem (1) becomes useless; clearly, we need an alternative definition,
allowing comparisons of different solutions in a reasonable computational time.

In search of a suitable relaxation, we observe that no solution concept can ex-
clude failures in actual implementation. This is the very nature of decision under
uncertainty not to have full control over the consequences of a given decision. In this
context, there is no reason to require that the computed solution be the result of
some deterministic process. A randomized computational scheme would be equally
acceptable, if the solution meets some probabilistic criterion. To fix ideas, let x̃ be
the random solution of some randomized algorithm. Decision theory recommends
that the solution satisfies

Generate x̃ ∈ Q : Ex̃(φ(x̃))− φ∗ ≤ ε. (3)

Unfortunately, there is no much difference between (2) and (3), since both are defined
with respect to expectations that cannot be computed exactly.

Our suggestion is to relax (3), and propose solutions that yield near optimal
expected objective function values, with a probability close enough to one. In other
terms, we substitute to the expectation over x̃ the weaker requirement of a suitable
confidence level. The formal definition is as follows.

Definition 1 A random variable x̃ is called an (ε, β)-solution to the problem (1), if

Prob (φ(x̃)− φ∗ ≥ ε) ≤ 1− β.

We call β the confidence level of the solution.

Note that solutions with confidence level β = 1 correspond to the deterministic
solutions in the sense (2). A solution with β close enough to one may be acceptable to
the decision-maker; but can it be computed? Indeed, the concept of (ε, β)-solutions
also involves the expectation φ(x̃) (there, x̃ is considered as deterministic) and we
argued earlier that this quantity cannot be computed easily. Fortunately enough, this
difficulty can be overcome. In the paper, we shall prove that the proposed alteration
of the standard definition of optimality introduces enough flexibility to make our
computational goal achievable.

Finally, we discuss the opportunity of replacing an extensive randomized com-
putational scheme with several parallel shorter implementations. We interpret this
approach as putting at work several independent experts simultaneously. Each com-
putes a solution via a randomized scheme and their output is averaged. Complexity-
wise, this pooling process may be advantageous.

Since the approximation of continuous distributions is at the heart of practical
implementations of stochastic programming, there exists a substantial literature on
that topic. For extensive discussions, we refer to survey paper by Wets [16] and
the books of Birge and Louveaux [1] and Higle and Sen [7]. We already mentioned

1Complexity-wise, the computation of an approximation of φ(x) for a given x may already be very
hard. Indeed, if Ξ ⊂ Rm, computing φ̂, such that | φ̂− φ(x) |≤ ε̂, may involve up to O

(
1
ε̂m

)
computations

of f(x, ξ) at different ξ ∈ Ξ.
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[6, 3, 10, 12, 13] for the analysis of statistical convergence of sampling methods for
stochastic programs. Let us also mention the concept of importance sampling of
Infanger [9]. The idea of working with randomized algorithms in stochastic program-
ming is not new. The stochastic gradient algorithm goes back to Ermoliev [4]. More
recently, Higle and Sen [5, 6] proposed an optimization scheme, in which scenarios are
drawn at random sequentially. None of the quoted contributions includes complexity
estimates.

The paper is organized as follows. In Section 2, we propose Monte-Carlo schemes
to compute expectations. Assuming the existence of a randomized algorithm with
known complexity, we resort to a standard probability result to estimate the proba-
bility in (1). We introduce the expert pooling process and formulate the associated
probability result. In Section 3, we discuss a stochastic gradient scheme for general
convex function and analyze its complexity. The output of the method differs from
the standard stochastic subgradient, since we take the average of the sequence of
iterates and not the last iterate. In Section 4, we specialize the randomized algo-
rithm to strongly convex functions. In the last section, we discuss possible tradeoff
between randomized optimization on large samples with few experts, and smaller
samples with many experts.

2 Two-stage stochastic minimization

The solution procedure we propose involves several phases. We present them under
separate subsections.

2.1 Cost evaluation

First of all, let us check what we can do with the values of the objective function of
our problem. In what follows we assume that there is a known Monte-Carlo scheme
to generate sequences of outcomes {ξt}Tt=1 of independent random experiments. If
the sample size T grows, we have, for any x ∈ Q and ε̂ > 0,

pr

(
| 1
T

T∑
t=1

f(x, ξt)− φ(x) |≥ ε̂
)
→ 0.

From a computational point of view, the above statement is very weak: for multi-
dimensional ξ the problem of approximating the value φ(x) at a particular x may
turn out to be very hard indeed. However, when f(x, ξ) is uniformly bounded in ξ,
we can use a stronger convergence result to devise a fully polynomial time scheme for
estimating φ(x). To this end, we resort to a standard theorem in probability theory
[8].

Theorem 1 Let Z1, . . . , ZK be independent random variables with same expectation
µ > 0 and pr(0 ≤ Zj ≤ V ) = 1, j = 1, . . . ,K. Then, for

Z̄K =
Z1 + . . .+ ZK

K
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we have
pr(Z̄K ≥ µ+ ε̂) ≤ e−2Kε̂2/V 2

.

The above theorem can be used to estimate the complexity of the following
scheme.

Cost production

1. Generate the sequence of random values ξt, t = 1, . . . T.

2. Compute φ̂ = 1
T

T∑
t=1

f(x, ξt).
(4)

Lemma 1 Let us choose T = V 2

2ε̂2
ln 2

1−β , where

V = max{f(x1, ξ1)− f(x2, ξ2) : x1, x2 ∈ Q, ξ1, ξ2 ∈ Ξ}.

Then, the outcome φ̂ of process (4) satisfies

Pr
(
| φ̂− φ(x) |≥ ε̂

)
≤ 1− β.

Proof:
Let f = infx,ξ f(x, ξ). Define the random variables Z(ξ) = f(x, ξ) − f and W (ξ) =
V − Z(ξ). Clearly, 0 ≤ Z(ξ) ≤ V (resp. 0 ≤ W (ξ) ≤ V ) and µ = E(Z) = φ(x) − f
(resp. E(W ) = µ′ = V − µ). Note that

pr(| Z̄K − µ |≥ ε̂) = pr(Z̄K − µ ≥ ε̂) + pr(Z̄K − µ ≤ −ε̂),
= pr(Z̄K − µ ≥ ε̂) + pr(W̄K − µ′ ≥ ε̂).

By applying Theorem 1 to Z and W , and using our choice of T , we get

pr
(
| φ̂− φ(x) |≥ ε̄

)
≤ 2e−2T ε̄2/(LR)2

= 1− β.

4

2.2 Stochastic optimization

In the previous subsection we just showed that, at any x we can find an estimate
for φ(x), which is valid with arbitrary a priori given probability. However, it is quite
difficult to use this observation directly for devising a numerical scheme, which solves
the problem (1).

Instead, we propose a stochastic optimization process to compute a strategy x,
with the property that its cost is a good approximation for the optimal value of
the problem with a high probability. It may look as if this objective should be
very difficult to achieve, since the computation of φ(x) for a fixed x is already an
issue. Actually our process bypasses the computation of the value function; rather, it
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directly estimates a near optimal strategy. Then, the expected cost associated with
this strategy is estimated in a final stage via Lemma 1.

The computation of a near-optimal strategy is done via two Monte-Carlo com-
putational schemes. The first scheme is a strategy improvement procedure based
on a randomized version of a deterministic minimization scheme. This scheme can
be thought of as a random learning experiment performed by an expert. Based on
the observation of successive outcomes, the expert adapts his/her strategy using his
personal experience. The second scheme consists of pooling the information from
a group of experts having performed similar experiments on independent random
sequences.

2.2.1 The learning process of an expert

Let us fix a priori the number of steps N > 1 and consider an arbitrary iterative
deterministic process M for solving the following problem:

min{f(x) : x ∈ Q}.

Such schemes usually generate a sequence of test points {xk}Nk=0. The next test
point is formed on the basis of some information Ik, received from the oracle at the
previous test points. Denote O(f(·), x) the data, related to the function f(·), which
is reported by the oracle at point x. Formally, the scheme M with a given starting
point x0 can be seen in the following way:

0. Initialization. Set I0 = ∅.
1. Iterations.(k = 0, . . . , N − 1)

Set Ik+1 = Ik
⋃O(f(·), xk).

Compute xk+1 on the basis of Ik+1.
2. Generate the output x̄ =M(x0) on the basis of IN .

The randomized variant for the scheme M can be written as follows:

Individual learning process M̃

0. Initialization. Set I0 = ∅.
1. Iterations.(k = 0, . . . , N − 1)

Generate randomly a single ξk in accordance
with the distribution of ξ.
Set Ik+1 = Ik

⋃O(f(·, ξk), xk).
Compute xk+1 on the basis of Ik+1.

2. Generate the output x̄ = M̃(x0) on the basis of IN .

(5)

Clearly, x̄ = M̃(x0) can be seen as a realization of some random variable. Later
on we will see that for a randomized variant of deterministic minimization scheme
we can prove the following inequality:

E(φ(x̄))− φ∗ ≤ κM(N), (6)
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where κM(N)→ 0 as N →∞. Other reasonable deterministic schemes may possibly
satisfy (6). The next theorem applies to them.

Theorem 2 Assume (6). Process (5) produces an (ε, β)-solution when N satisfies

κM(N) ≤ ε(1− β)Vφ.

Proof:
Let ψ(x̄) = E(φ(x̄))− φ∗. Since ψ(x̄) ≥ 0, then for T > 0

Ex̄[ψ(x̄)] ≥ TPr(φ(x̄) ≥ T ).

Letting T = εVφ and using (6) yield the result. 4

2.2.2 Pooling information from the experts

The idea of the second stage process is to accumulate the outcomes of many decision-
makers confronted to different realizations of the stochastic process M̃(x0). This idea
naturally comes from the inequality (6) where we see that such average experience
gives us a strategy close enough to an optimal one. To this end, we need just to repeat
several times the same process in order to see the different realization of M̃(x0).

Let us formalize now the above mentioned aggregation process. We fix the number
of expert decision-makers K ≥ 1.

Pooling experience process for M̃(x0)

1. Compute the strategy x̄j for the expert j as a realization
of the learning process M̃(x0), j = 1, . . . ,K.

2. Compute the aggregate strategy x̂ = 1
K

K∑
j=1

x̄j .

(7)

Lemma 2 Assume (6). The quality of the outcome x̂ of process (7) is described by
the following inequality:

pr
(
φ(x̂)− φ∗ ≥ κM(N) + δ

)
≤ e−2K

(
δ
Vφ

)2

.

Proof:

Since φ(x̂) ≤ 1
K

K∑
j=1

φ(x̄j), then

pr
(
φ(x̂)− φ∗ ≥ κM(N) + δ

)
≤ pr

 1
K

K∑
j=1

φ(x̄j)− φ∗ ≥ κM(N) + δ

 .
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Consider the random variable Z = φ(x̄)− φ∗. Then, from our assumptions we have
that Z is bounded:

0 ≤ Z ≤ Vφ.
Denote µ = E(φ(x̄))− φ∗. Clearly, E(Z) = µ. Thus, from Theorem 1 and Corollary
1, we have from (6)

e
−2K

(
δ
Vφ

)2

≥ pr
(
Z̄K ≥ µ+ δ

)
= pr

(
Z̄K ≥ E(φ(x̄))− φ∗ + δ

)
≥ pr

 1
K

K∑
j=1

φ(x̄j)− φ∗ ≥ κM(N) + δ

 .
4

In the following statement we give a complexity estimate for the process (7) in
the relative scale.

Theorem 3 Assume (6) and let N and K be as follows:

N = κ−1
M
(

1
2 ε̄ Vφ

)
, K =

2
ε̄2

ln
1

1− β . (8)

The point x̂ generated by the process (7) satisfies

pr
(
φ(x̂)− φ∗ ≥ ε̄ Vφ

)
≤ 1− β.

The total number of computations of calls of oracle O(f(·, ξ), x) does not exceed

M =
2κ−1
M(1

2 ε̄Vφ)
ε̄2

ln
1

1− β .

Proof:
Indeed, taking N and K as in (8) and δ = 1

2 ε̄ Vφ, we immediately get the result. Note
that M = K ·N . 4

Thus, x̂, the output of the algorithm (7), can be generated in fully polynomial
time. However, this process does not yield information about the value φ(x̂). To
estimate this value, we must use the cost prediction scheme (4). From Lemma 1 the
required sample size is

T =
1

2ε̄2

(
V

Vφ

)2

ln
2

1− β .

We can see, that the parameter T in process (4) is close to the parameter K in
process (7) only if V/(Vφ) is close to one. The interesting feature of the process (7)
is that the number of experts K depends only on the accuracy parameters ε̄ and β.
We see also that it is much easier to increase the probability of a good answer rather
than increase the quality of the answer.
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3 Stochastic minimization for nonsmooth fun-

ctions

In this section we consider the problem (1) with nonsmooth functions f(x, ξ). We
assume that the Euclidean norm of stochastic subgradients g ∈ ∂xf(x, ξ) is uniformly
bounded on Q× Ξ by some constant L.

Let us fix a priori the number of steps N > 1 in the learning scheme, and choose
a finite sequence of step sizes {hk}N−1

k=0 . Denote by πQ(x) the Euclidean projection
of the point x onto Q. Consider the following deterministic subgradient scheme:

SG :


xk+1 = πQ(xk − hkgk), gk ∈ ∂f(xk), k = 0, . . . , N − 1.

x̄ =
N−1∑
k=0

hkxk/
N−1∑
k=0

hk.
(9)

In accordance to the results of Section 2, we need to show that the expected value of
the objective function at point x̄, generated by the randomized version S̃G of method
(9), is good enough.

Lemma 3 The random strategy x̄ = S̃G(x0) satisfies the following relation:

E(φ(x̄))− φ∗ ≤
R2+L2

N−1∑
k=0

h2
k

2
N−1∑
k=0

hk

. (10)

Proof:
Let x∗ be an optimal solution (φ(x∗) = φ∗). Define rk =‖ x∗ − xk ‖. Since xk+1 is
the projection of xk − hkgk over Q, it is closer to any point of Q. Thus

rk+1 ≤‖ xk − hkgk − x∗ ‖ .

Expanding the right-hand side, we get

r2
k+1 ≤ r2

k − 2hk〈gk, xk − x∗〉+ h2
k ‖ gk ‖2 . (11)

Each point xk, 1 ≤ k ≤ N , in the process (5) can be seen as a realization of a random
variable. Thus, for k being fixed, the value r2

k =‖ xk − x∗ ‖2 is also a realization of
some random variable. Let us estimate its expectation. In view of (11), we have

E(r2
k+1) ≤ E(r2

k)− 2hkE(〈gk, xk − x∗〉) + h2
kE(‖ gk ‖2),

≤ E(r2
k)− 2hk(E(f(xk, ξk))− φ(x∗)) + h2

kL
2,

≤ E(r2
k)− 2hk(E(φ(xk))− φ(x∗)) + h2

kL
2.

In the second inequality we take the expectations on both sides of the convexity
inequality 〈gk, xk − x∗〉 ≥ f(xk, ξk) − f(x∗, ξk). In the last inequality we replaced
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E(f(xk, ξk)) by E(φ(xk)), since ξk is independent of xk. Summing the above in-
equalities for k = 0, . . . , N − 1, and using the convexity of φ, we get:

r2
0 + L2

N−1∑
k=0

h2
k ≥ 2

N−1∑
k=0

hk(E(φ(xk))− φ(x∗))

≥ 2 ·
(
N−1∑
k=0

hk

)
· (E(φ(x̄))− φ∗).

The result follows immediately. 4

To ensure that the right-hand side of (10) goes to zero, one has make some
assumption on the step-sizes hk. The standard assumption is

hk > 0, hk → 0, and
N−1∑
k=0

hk →∞ as N →∞.

Since the number of steps in process S̃G is fixed, we can make the alternative choice
of fixed step sizes of same length h. In order to simplify the presentation, let us
assume that the constants R and L are known. Then the best choice of the step h is
as follows:

h = R
L
√
N
.

Under that step-size strategy, we have the following simple bound.

Corollary 1 The expected value of the cost associated with

x̄ = S̃G(x0)

satisfies:

E(φ(x̄))− φ∗ ≤ LR√
N
≡ κSG(N).

In the case when L and R are not known, we can take h = γ√
N

with some positive γ.
In view of Lemma 3, this choice also ensures the right-hand side of inequality (10)
to be of the order of O(1/

√
N). Note that in both cases with constant step-sizes hk

the rule for generating x̄ becomes very simple:

x̄ =
1
N

N−1∑
k=0

xk. (12)

Now we can give the complexity results for the aggregation process (7) as applied
to the process S̃G(x0).

Theorem 4 Let the parameters N , K and hk be as follows:

N =
(

2
ε̄

)2
·
(
LR
Vφ

)2
, K = 2

ε̄2
ln 1

1−β ,

hk = R
L
√
N
, k = 0, . . . , N − 1.

(13)
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The point x̂ generated by (7) from S̃G(x0) satisfies the inequality

pr
(
φ(x̂)− φ∗ ≥ ε̄ Vφ

)
≤ 1− β.

The total number of computations of g ∈ ∂xf(x, ξ) does not exceed

M = 1
2

(
2
ε̄

)4

·
(
LR

Vφ

)2

ln
1

1− β .

Proof:
Since κ−1

SG(τ) = (LR/τ)2, the result immediately follows from Theorem 3. 4

Note that the choice of parameters, recommended by (13), leads to

hk =
ε̄ Vφ
2L2

, k = 0, . . . , N − 1.

4 Stochastic minimization for strongly convex

functions

When in problem (1) the functions f(x, ξ) have better properties than just being
convex, we can expect that our problem becomes easier. Indeed, many properties of
f(x, ξ), like differentiability, type of smoothness, strong convexity, are inherited by
φ(x). Unfortunately, since we are obliged to use for minimization the randomized
versions of deterministic schemes, almost none of the above mentioned properties can
really help. In this section we analyze the situation when the functions f(x, ξ) are
strongly convex.

Lemma 4 Let the functions f(x, ξ) are uniformly strongly convex:

f(y, ξ) ≥ f(x, ξ) + 〈g, y − x〉+ 1
2λ ‖ y − x ‖

2

for any x, y ∈ Q, g ∈ ∂xf(x, ξ) and ξ ∈ Ξ. Then the function φ(x) is also strongly
convex.

The proof is straightforward.
Consider the following deterministic gradient scheme. Let us choose the step-size

parameter h > 0 and σ ∈ (0, 1).

SG1 :


xk+1 = πQ(xk − hgk), gk ∈ ∂xf(xk), k = 0, . . . , N − 1.

x̄ = 1−σ
1−σN

N−1∑
k=0

σN−1−kxk.
(14)

Note, that the point x̄ in this scheme can be updated recursively:

x̄0 = x0, γ = 1−σ
1−σN ,

x̄k = γxk + (1− γ)x̄k−1, k = 1, . . . , N − 1,

x̄ = x̄N−1.
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It is clear, that this scheme becomes SG as σ → 1.
We need to show that the expected value of the objective function at point x̄,

generated by the randomized version S̃G1 of method (14), is close to φ∗.

Lemma 5 Let us assume that the functions f(x, ξ) are uniformly strongly convex in
x with some constant λ > 0 and the Euclidean norm of subgradients of these functions
is uniformly bounded on Q by some constant L.

Let us choose in the process S̃G1

h =
2
λN

ln
(

1 +
λR

2L

√
N

)
, σ = 1− λh.

Then the random variable x̄ = S̃G1(x0) satisfies the following relation:

E(φ(x̄))− φ∗ ≤ 2L2

λN ln
(
1 + λR

2L

√
N
)
. (15)

Proof:
Consider the random values r2

k =‖ xk − x∗ ‖2. In view of (11) we have:

E(r2
k+1) ≤ E(r2

k)− 2hE(〈gk, xk − x∗〉) + h2E(‖ gk ‖2)

≤ E(r2
k)− 2hE(f(xk, ξk)− f(x∗, ξk) + λ

2 r
2
k) + h2L2

= (1− λh)E(r2
k)− 2h(E(φ(xk))− φ∗) + h2L2.

In view of the choice of the parameters in S̃G1, σ ∈ (0, 1). Summing up the above
inequalities for k = 0, ..., N − 1, we get the following:

2h
N−1∑
k=0

σN−1−k(E(φ(xk))− φ∗) ≤ σNR2 + h2L2
N−1∑
k=0

σN−1−k.

Since
N−1∑
k=0

σN−1−k = 1−σN
1−σ , we obtain

E(φ(x̄))− φ∗ ≤ 1−σ
1−σN

N−1∑
k=0

σN−1−k(E(φ(xk))− φ∗)

≤ R2

2h ·
(1−σ)σN

1−σN + h
2L

2 = 1
2

[
λR2 · σN

1−σN + hL2
]

≤ 1
2

[
λR2

eλhN−1
+ hL2

]
= 1

2

[
λR2

(1+λR
2L

√
N)2−1

+ hL2

]

≤ hL2 = 2L2

λN ln
(
1 + λR

2L

√
N
)
.

(In the next to last step we used inequality 2ξ2

(1+ξ)2−1
≤ ln(1 + ξ) with ξ = λR

2L

√
N .)

4
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Note that the right-hand side of the inequality (15) tends to LR√
N

as λ→ 0.
We can now apply Theorem 3. We see that in the case of λ large enough, we can

significantly reduce the length of the learning process:

N ≈ 1
ε̄

ln
1
ε̄
.

5 Conclusion

Stochastic programming involves the computation of expected values. In the case of
general distributions, the expectations cannot be computed exactly, and δ-approximation
in an m-dimensional space may require O(1/δm) operations. Consequently, one can-
not expect good complexity estimates for general stochastic programming.

To overcome this difficulty, we introduced the new concept of (ε, β)-solution with
the property that their associated expected objective value is ε-close (in relative
terms) to the optimal value with a probability, or confidence level, as least equal to
(1 − β). We showed that an (ε, β)-solution can be constructed by means of Monte-
Carlo sampling. We propose a mechanism which simulates a learning process of a
so-called expert. To improve the confidence level, we suggest to repeat the learning
process on independent samples. The outcomes of the individual experts are averaged
to form the (ε, β)-solution. We called this process “pooling the experts”.

The complexity estimates are the length N of the individual learning process, the
number K of experts and the total number M = K ·N of calls to the oracle. Using
a stochastic gradient process we obtain values that are reported on Table 1.

Single Expert Pool of Experts

Number of experts K 1 2
ε2

ln 1
1−β

Length of process N 1
ε2(1−β)2

(
LR
Vφ

)2
4
ε2

(
LR
Vφ

)2

Computational effort M 1
ε2(1−β)2

(
LR
Vφ

)2
8
ε4

ln 1
1−β

(
LR
Vφ

)2

Table 1: Complexity estimates with subgradient optimization

We note first that the complexity estimates are independent of the dimension of
the underlying space. In view of the effort to compute m-dimensional integrals, our
procedure is computationally reasonable. We also note that the number of experts
is independent of the problem instance. Since the the learning processes can be fully
distributed on parallel processors, the pooling scheme appears to be attractive.

The comparison between solution with a single expert and a pool of experts re-
veals that the pool is particularly efficient when a high level of confidence is required.
Dividing (1 − β) by a fixed number, say 10, requires adding a constant number of
experts, while the single expert must extend his/her learning process by the multi-
plicative factor 100. This suggests that averaging the experience of a large population
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of young people improves reliability much more than letting a single expert refine
and refine his/her experience. Note that we do not need too smart experts: their
confidence level is only one half. We leave it to the reader to give any generality to
this assertion.

The learning scheme is based on stochastic subgradient optimization. The scheme
applies to general convex functions f(·, ξ). In the stochastic scheme one cannot
exploit special properties such as differentiability. However, strong convexity helps
in reducing the length of the learning process: O(1/ε) instead of O(1/ε2).

A natural area of application for our method is, as in [5], the class of two-stage
linear programming with recourse [2, 15]. For problem of this class one can construct
elements of the subgradient to f(x, ξ). Under suitable assumptions, the feasible set
may be bounded by some constant R the Lipschitz constant L and the variation of φ
can possibly be estimated from the special structure of the recourse problem. Then
the length of the learning process and the number of experts could be determined a
priori to fit the objective of the user.
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