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a b s t r a c t

Major depressive disorder (MDD) is associated with alterations in brain function that might be useful for
therapy evaluation. The current study aimed to identify predictors for therapy improvement and to track
functional brain changes during therapy. Twenty-one drug-free patients with MDD underwent func-
tional MRI twice during performance of an emotional perception task: once before and once after 4
weeks of antidepressant treatment (mirtazapine or venlafaxine). Twelve healthy controls were investi-
gated once with the same methods. A significant difference between groups was a relative greater
activation of the right dorsolateral prefrontal cortex (dlPFC) in the patients vs. controls. Before treatment,
patients responding better to pharmacological treatment showed greater activation in the dorsomedial
PFC (dmPFC), posterior cingulate cortex (pCC) and superior frontal gyrus (SFG) when viewing of negative
emotional pictures was compared with the resting condition. Activations in the caudate nucleus and
insula contrasted for emotional compared to neutral stimuli were also associated with successful
treatment. Responders had also significantly higher levels of activation, compared to non-responders, in
a range of other brain regions. Brain activation related to treatment success might be related to altered
self-referential processes and a differential response to external emotional stimuli, suggesting differences
in the processing of emotionally salient stimuli between those who are likely to respond to pharma-
cological treatment and those who will not. The present investigation suggests the pCC, dmPFC, SFG,
caudate nucleus and insula may have a key role as a biological marker for treatment response and
predictor for therapeutic success.

� 2011 Elsevier Ltd. All rights reserved.

Introduction

Although effective antidepressant therapies are available, up to
20% of patients with major depressive disorder (MDD) develop
a chronic depression that is resistant to therapy (Ustun & Sartorius,
1995). The biological underpinnings of MDD remain unclear and
until now only a few studies identified clinical and biological
markers that predict the response to a specific therapy (e.g.,
Leuchter et al., 2009a, 2009b).

Functional magnetic resonance imaging (fMRI) studies consis-
tently implicate altered brain activity in certain brain regions of

patients with MDD in response to negative emotional stimuli (e.g.,
sad facial expressions), which appears to be associated with
impairments in emotional perception, experience and regulation
(Davidson & Irwin, 1999; Frodl et al., 2007; Fu et al., 2004;
Surguladze et al., 2005). In contrast to healthy individuals, patients
with MDD showed increased amygdala activity in response to
a variety of negative emotional stimuli, including masked fearful
faces (Sheline et al., 2001), sad faces (Fu et al., 2004) and sad pictures
(Anand et al., 2005). Furthermore, patients with MDD shown sad
facial expressions exhibit increased responses in the right fusiform
gyrus, left putamen and left parahippocampal gyrus compared to
healthy controls (Surguladze et al., 2005). The stronger neural
response to negative emotional stimuli is often interpreted as an
attentional bias to negative emotional stimuli in MDD (Surguladze
et al., 2005; Harmer et al. 2009).
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Impairments in emotional regulation in MDD may be attribut-
able to altered activity in the hippocampus, anterior cingulate
cortex (ACC) and prefrontal cortex (PFC), areas involved in the
effortful and conscious regulation of affective states (Phan et al.,
2002; Phan et al., 2004; Phillips et al., 2003; Frodl et al., 2010).
Furthermore, the altered activation in the subcallosal cingulate (BA
25), an area often associated with the subjective feeling of sadness
(Phan et al., 2002; Phan et al., 2004) but also with regulation of
emotional behavior and stress response, might reflect a MDD-
specific tendency to experience emotional negative stimuli even
stronger and to have more difficulty regulating negative emotions
effectively.

Interestingly, the neural correlates of emotional processing in
MDD may have predictive value in determining which patients will
respond to treatment. The subgenual ACC (sgACC)may be relevant in
determining biomarkers for treatment response. Differential metab-
olism in the sgACC predicts response to antidepressant treatment
(Mayberg,1997;Wu et al.,1999), an observation, which has led to the
utilization of this area as a target for deep brain stimulation in
chronically treatment-resistant depression (Mayberg et al., 2005).
Moreover, effective antidepressant treatmenthasbeenknownto lead
to a reduction in activity in sgACC (e.g., Drevets et al., 2002), a region
whose activity is tightly coupled with depression severity (Drevets
et al., 1999, 2002, 2008). Furthermore, resting-state fMRI has
demonstrated that functional connectivity of sgACCand thalamus are
significantly increased inMDDpatients, compared tohealthycontrols
(Greicius et al., 2009). Other regions are also interesting with respect
to treatment response. Decreased metabolism in the insular cortex
was found by Mayberg et al. (1999) and Kennedy et al. (2001) to be
associatedwithpost-treatmentresponsiveness inpatientswithMDD.
In addition, such functional alterations are not limited to the use of
psychotropic medications for the treatment of MDD. Response to
cognitive behavioral therapy (CBT) has been linked to metabolic
increases in hippocampus and pCC (BA 24) and decreases in dorsal
(BA 9/46), ventral (BA 47/11), and medial (BA 9/10/11) frontal cortex
(Goldappleetal., 2004).Moreover, amygdalahyperactivationandACC
hypo-activation during fMRI predicted response to CBT (Siegle et al.,
2006, Fu et al., 2004).

Moreover, decreases in glucose metabolism in ventral regions of
the PFC (Brody et al., 1999; Kennedy et al., 2001) and increases in
the temporal cortex (Buchsbaum et al., 1997; Brody et al., 1999)
have been previously associated with the response to selective
serotonin reuptake inhibitors (SSRIs). Pre- vs. post-treatment
changes in the ventrolateral prefrontal and temporal cortex,
posterior cingulate (BA 29) and putamen have also been reported
with non-SSRI antidepressant pharmacotherapy (Davies et al.,
2003; Goldapple et al., 2004; Martin et al., 2001). Furthermore,
the caudate nucleus is discussed to be a trait marker of depression
vulnerability and caudate activation is elevated even in recovered
depressed patients (Norburry et al., 2010).

The aim of the present study was to investigate differences in
neural activation during perception of negative emotional stimuli
between responders and non-responders in an antidepressant trial
and associations between neural activation and treatment response
(at the time of the first fMRI scan). Moreover, we aimed to inves-
tigate differences between drug-free patients with MDD in
comparison to a healthy control group. We were also interested in
the changes associatedwith pharmacological treatment in patients.
To this end, whereas the control group was imaged only once,
patients with MDD underwent functional imaging twice: once in
a drug-free state (time ¼ t1) and four weeks after the start of an
open label trial (time ¼ t2). Thus, allowing for the determination of
changes in brain activation patterns attributable to or associated
with treatment success (i.e. responders vs. non-responders), as
determined using the Hamilton Depression Rating Scale (HDRS;

Hamilton, 1960). We expected to see cingulate cortex, caudate
nucleus, insular and amygdala activation associated with treatment
improvement as previous studies have already shown. Further-
more, we expected activation of regions associated with emotional
recognition and regulation (amygdala, ACC, dorsomedial PFC,
fusiform gyrus) to be associated with processing of emotional faces.

Methods and materials

Participants

Twenty-one patients with MDD were recruited from the
Department of Psychiatry of the Ludwig-Maximilian University,
Munich (see Table 1). Psychiatric diagnoses were based on DSM-IV
criteria, and were determined using the structured clinical inter-
view for DSM-IV and the consensus of at least two psychiatrists. All
patients were antidepressant free at the time of recruitment.
Eleven patients had never received antidepressant medication
before and came to the clinical service as new patients; the
remaining patients (N ¼ 10) had received antidepressant medica-
tion during a previous episode, but not within the year before the
fMRI investigation (a period during which they were in remission).
Patients were randomly assigned to 4 weeks’ treatment with mir-
tazapine or venlafaxine. Mirtazapine is a noradrenergic and specific
serotonergic antidepressant (NaSSA) with a profile of a2-, 5-HT2A-,
5-HT2B-, 5-HT3- and histamine 1- (H1-) receptor antagonism
(Haddjeri et al., 1996; De Boer et al., 1994; De Boer, 1996; Devoto
et al., 2004). The primary effect of venlafaxine, which is a sero-
tonin and noradrenalin reuptake inhibitor (SNRI), is to elevate
extracellular serotonin (5-HT) and noradrenalin levels by inhibiting
their reuptake to pre-synaptic sites. Venlafaxine blocks 5-HT
transporters (5-HTT), particularly in subcortical regions (Meyer
et al., 2004). The clinical team chose daily doses within the range
of 30 to 45 mg for mirtazapine and 150 to 300 mg for venlafaxine
on the basis of each patient’s symptoms. With regard to concurrent
medication, 12 (7 of those patients that received mirtazapine
(N ¼ 9), and 5 of those patients that received venlafaxine (N ¼ 12))
of the patients were concurrently prescribed benzodiazepines (i.e.
lorazepam; mean ¼ 1.25 mg, SD ¼ 0.89 mg of daily). Side effects of
medication resulting in patient withdrawal were not reported.
Severity of depression was determined using the HDRS, which was
conducted at baseline (t1) and then after 7, 14, 21, and 28 days of
treatment. Response was defined as a reduction in the HDRS score
by more than 50% after 28 days of treatment. Blinding: the rater for
psychopathology and also the scientist who analyzed the data were
blind for the diagnosis.

Twelve healthy individuals, matched to patients for age, gender,
and handedness were recruited as control participants. For all
participants, a structured interview was used to assess medical
history and exclusion criteria. Exclusion criteria for all participants

Table 1
Demographic characteristics of the 12 healthy controls and the 21 patients.

Healthy controls
(N ¼ 12)

Patients
(N ¼ 21)

Statistics

Age (years) 35.83 (11.38) 41.52 (9.76) NS
Gender (female/male) 4/8 7/14 NS
Weight (kg) 70.17 (11.73) 76.33 (13.08) NS
HDRS 21.29 (5.42)
HDRS decrease (%) 46.44 (20.99)
Illness duration (months) 54.45 (60.98)
Number of episodes

(first, recurrent)
11/10

Notes: HDRS ¼ Hamilton Depression Rating Scale at measuring time 1. Means and
standard deviations (in brackets) are given.
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included: previous head injury with loss of consciousness; cortisol
medication in the medical history; previous alcohol or substance
abuse; previous neurological diseases; age under 18 or over 65;
pregnancy; and co-morbidity with other mental or neurological
illnesses or with personality disorders; previous electroconvulsive
therapy; and any other contraindications for MRI. In addition,
neither the healthy controls nor their first-degree relatives had
ahistoryof neurological ormental illness. All participantswere right
handed, as determined by the Edinburgh Inventory (Oldfield, 1971).

After an extensive description of the study, written informed
consent was obtained from all study participants. The study
protocol was approved by the local ethics committee of the Lud-
wig-Maximilian University and prepared in accordance to the
ethical standards of the Declaration of Helsinki.

Stimuli paradigm

There were 30 different exemplars of each stimulus category.
Facial stimuli were photographs of different adults portraying sad
facial expressions taken from a standardized database (Gur et al.,
2002). The neutral stimuli were photographs of houses in
Munich. The stimuli were presented in a block design, with each
block consisting of 6 examples of each picture category. Five blocks
with sad facial expressions, 5 blocks with houses and 6 control
blocks (baseline condition) were shown. Each picture was pre-
sented for 5.3 seconds on the screen with no stimulus interval.
During the control blocks subjects were required to focus on
a fixation cross. In total the experiment lasted 8.48 minutes.

Procedure

Participants were asked to passively view two different types of
pictures, i.e. sad faces and houses. During the trial, there were no
major adverse effects reported to the clinical consultants.

Image acquisition

Functional images were acquired on a 3T MRT-Scanner (Signa
HDx, GEHealthcare,Milwaukee,USA), using a T2*-weighted gradient
echo-planar imaging sequence (TR ¼ 2100 ms, TE ¼ 35 ms, flip
angle¼ 90�, matrix¼ 64� 64, FOV¼ 256� 256mm). One functional
run of 244 contiguous volumeswas acquired. Volumes comprised 37
axial slicesof 4mmthickness, covering thewholebrain slices (3�3�
4mm3)were positioned parallel to the axial plane defined by the line
between anterior and posterior commissure.

fMRI data analysis

Datawere analyzed using Statistical Parametric Mapping (SPM5,
Wellcome Institute of Cognitive Neurology; www.fil.ion.ucl.ac.uk/
spm/). The following preliminary preprocessing steps were carried

out: removal of the first 5 volumes because of T1 equilibration
effects; realignment of all volumes from the 6th scan to correct for
subject motion (exclusion criteria: more than 3 mm); co-registra-
tion of the functional and structural data sets; spatial normalizing
into a standard stereotactic space, using a template from the Mon-
treal Neurological Institute (MNI); and smoothing of the data with
an 8 mm Gaussian Kernel.

With regard to statistical inference, a general linear model was
used to calculate statistical parametric maps (Friston et al., 1994).
Initial analysis of the fMRI data of all 34 subjects at t1 considered
the brain regions that were involved in the following contrasts: (1)
houses > baseline; (2) faces > baseline; (3), houses > faces; and (4)
faces > houses. Only those volumes greater than 15 voxels were
considered to be significant in order to avoid presenting irrelevant
results.

This analysis was followed by group comparisons (patients vs.
controls) using a t-test at t1 for all four contrasts, and which
included gender and age were entered as co-variates in the SPM
analysis. Subsequently, patient-only analysis of fMRI data at t1,
including the percentage changes in HDRS score between t2 and t1
as regressors, was carried out in order to determine potential
biomarkers for treatment success at t1. Finally, a 2 � 2 ANOVA was
computed for patients, for each contrast in order to ascertain the
interaction of time (t1 vs. t2) and treatment success (responders
(N ¼ 10) vs. non-responders (N ¼ 11)).

Statistical significance for differences in activation attributable
to condition and for the regression analysis was based on
a threshold of p < .05 (FWE, cluster voxel-level corrected; primary
threshold p < .001). For a priori primary regions of interest like
insula, caudate nucleus, amygdala and ACC we also considered
p < .001 uncorrected to be relevant. Differences between patients
and controls and the ANCOVAwere subject to a statistical threshold
of p < .001 uncorrected. The anatomic localization of significant
clusters was identified using the SPM Automated Anatomic
Labeling (AAL) toolbox (Tzourio-Mazoyer et al., 2002).

Results

There were no significant differences in age, gender or weight
between the patients with MDD and healthy controls (see Table 1).
The group of responders (N ¼ 10, M ¼ 20.80, SD ¼ 3.16) and non-
responders (N ¼ 11, M ¼ 21.73, SD ¼ 7.03) did not differ on their
Hamilton scores at t1 (F(1, 20)¼.15, p¼ .71). TheHamilton scores at t1
were not correlated to the percental change in the Hamilton scores
(r(21)¼.02, p ¼ .94) indicating that treatment success was not
dependent on the pre-treatment Hamilton scores. However,
responders (M ¼ �62.50, SD ¼ 11.77) showed a stronger percental
decrease in the Hamilton scores (%) than non-responders
(M ¼ �31.90, SD ¼ 16.20, F(1,20)¼24.06, p < .001). The responders
show a stronger decrease in the Hamilton scores between t1 and t2
(t(9)¼15.95, p< .001) than the non-responders (t(10)¼4.91, p< .01).

Table 2
Brain regions showing activations in the emotional processing task (all participants; N ¼ 33). FWE corrected (p < .05) for multiple comparisons.

Volume Cluster p corrected Region p FWE corrected p uncorrected T-Value MNI
coordinates x y z

Faces > Baseline 1317 0.002 L dmPFC 0.015 0.023 5.65 �8 8 56
3145 0.000 L þ R inferior occiptial gyrus 0.000 0.000 8.72 �12 �98 �10

Houses > Baseline 4866 0.001 R Sulcus occipitalis superior 0.000 0.004 7.31 20 �100 8
Faces > Houses 1389 0.003 R dmPFC 0.007 0.028 5.97 8 14 70
Houses > Faces 1123 0.005 R Precuneus 0.002 0.004 6.5 6 �34 46

4399 0.000 L fusiform gyrus 0.000 0.000 8.44 �24 �44 �16
866 0.012 R middle occipital/angular gyrus 0.002 0.004 6.42 38 �82 32
1218 0.005 L middle occipital gyrus 0.014 0.016 5.68 �26�88 30
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Responders (M¼ 65.40, SD¼ 70.82) and non-responders (M¼ 43.50,
SD¼ 50.67) did not differ in illness duration inmonths (F(1, 20)¼.63,
p ¼ .44).

Imaging results

Stimuli condition contrasts over patients with MDD and controls
The analysis of the stimuli conditions over patients with MDD

and controls revealed that, in comparison to the baseline condition,
viewing faces was associated with greater activation in the bilateral
inferior occipital gyri and the left dorsomedial prefrontal cortex
(dmPFC; see Table 2). There were fewer differences between the
houses stimuli and the baseline condition. Only one cluster in the
right superior occipital sulcus, an area involved in visual processing,
was more active in response to house stimuli. With regard to the
comparison of negative to neutral stimuli, activation in the right
dmPFC was greater for faces, compared to houses, whereas acti-
vation in the left fusiform gyrus, bilateral middle occipital gyrus
and right precuneus e areas associated with visual processing e

were greater in response to houses in contrast to faces.

Patients vs. controls
Second level analysis including gender and age as co-variates

revealed that patients with MDD exhibited greater activation in the
right dorsolateral prefrontal cortex (dlPFC, T-value: 3.9, MNI coor-
dinates: 22 28 60, volume: 40 voxels) than controls, but only when
viewing negative emotional faces.

Patients only: percentage change of depression severity (treatment
response; percental decrease of the HDRS scores)

There were significant negative and positive correlations
between changes in depression severity and neural activation,
across contrasts in a widespread selection of regions (see Table 3).

Faces > baseline. Following correction for multiple comparisons
(p < .05, FWE corrected, cluster level), the negative association
between activation and severity score remained significant for the
faces> baseline contrast in left dmPFC, right superior frontal gyrus,
left posterior cingulate cortex, and right calcarinus. Interestingly,
activation in the left posterior cingulate cortex was most strongly
associated with reductions in HDRS scores (see Fig. 1).

Faces > houses. Similarly, for the contrast faces > houses there
were also significant negative correlations (p < .001, uncorrected)
between percental change in depression severity and neural acti-
vation in a several areas, such as the bilateral insula and bilateral
caudate nucleus (see Table 4 and Fig. 2) and right superior temporal
gyrus. This contrast did not survive correction for multiple
comparisons, but involved regions of our a priori hypothesis.

Houses > baseline. Similarly, the negative correlation between
activity and severity remained significant following correction for
multiple comparisons (p < .05, FWE corrected, cluster level) in the

right lingual gyrus and left cuneus for the houses > baseline
contrast (see Table 3).

Patients only: responders vs. non-responders
Effects of treatment response were found for two contrasts, i.e.

faces> baseline and houses> baseline (see Table 5 and Supplement
Table 6).

Faces > baseline. For the faces > baseline contrast, only the inter-
action between time (t1 vs. t2) and treatment outcome (responder
vs. non-responder) was remained significant after correction for
multiple comparisons in the following area: left superior parietal
gyrus. At p < .001 responders presented increased activation,
compared to non-responders, in the left calcarine gyrus, irre-
spective of time (t1 or t2). Following treatment (t2), all patients
exhibited greater activation in the right supplementary motor area
(SMA) than they did before treatment (t1). Interestingly, activation
associated with emotional processing at t1 was predictive of
treatment outcome. Responders had significantly higher levels of
activation, compared to non-responders in a range of brain regions,
i.e. right precentral gyrus, left paracentral lobule, several activa-
tions in the visual cortex, left middle temporal gyrus and right
caudate nucleus.

Houses > baseline. Again, there was an interaction between time
and outcome in only one area: the right superior temporal gyrus
was predictive for a more pronounced decrease in responders from
t1 to t2 after correction for multiple comparisons. At p < .001 at t1,
responders showed more activation than non-responders in the
right middle temporal gyrus, whereas non-responders showed
more activation at t2 than responders in the right insula.

Discussion

The present study revealed that brain activity associated with
emotional processing can indicate, before treatment, patients with
MDD who will respond better to pharmacological interventions.
Several areas, namely the left dmPFC and the left pCC seem to play
a crucial role in this phenomenon, especially in the contrast
emotional face versus resting state baseline. This finding is inter-
esting with respect to the default mode network, which is defined
by its coordinated behavior, commonly has the greatest activity at
rest and is related to self-referential processes. It involves, among
other areas, the medial prefrontal cortex, posterior cingulate and
precuneus (Raichle et al., 2001; Fox & Raichle, 2007). When
a person is resting quietly in the scanner, the “resting state”
demonstrates slow spontaneous fluctuations in the blood oxygen
leveledependent (BOLD) signal in regional brain activity. In
depression, extremely high connectivity between the dmPFC and
dlPFC, ventral medial prefrontal cortex, ACC, pCC, and precuneus
was shown during the resting state (Sheline et al. 2010). Two of
these regions, the dmPFC and the pCC, were associated with
treatment response in the present study. The dmPFC was involved

Table 3
Regions exhibiting an effect of emotional processing and percental change of depression severity (HDRS score) in patients as derived by regression analysis significant on the
cluster level (p < .05, FWE corrected for multiple comparisons). MNI coordinates (x y z).

Volume Cluster p corrected Region p uncorrected T-Value MNI Coordinates x y z

Faces > Baseline neg 382 0.019 L dmPFC 0.000 6.09 �12 34 38
289 0.048 R superior frontal gyrus 0.000 4.81 26 16 40
2206 0.000 L posterior cingulate cortex (pCC) 0.000 5.93 �12 �48 16
414 0.014 R Calcarinus 0.000 5.44 18 �78 14

Houses > Baseline neg 2773 0.000 R lingual gyrus 0.000 7.02 22 �74 2
451 0.034 L cuneus 0.000 5.17 �6 �76 18
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in the processing of negative faces compared to houses or to the
baseline resting condition, whereby the pCC did not appear to be
directly involved in the processing of the task as demonstrated in
the contrasts for the control group. Since higher activity in both
dmPFC and pCC was found to be associated with better response in
the patients this might indicate that responders have at scan T1
more problems in inhibiting these default mode regions compared
to non-responders.

Previously, response to cognitive behavioral therapy (CBT) has
been also linked to metabolic increases in a PET investigation
(Goldapple et al., 2004). The area of pCC involved encompassed the
retrospinal cingulate cortex (BA 30), one of the associational
cortical areas in the transitional region between the pCC andmedial
temporal lobe, and which may be involved in cortical components
of the limbic system (e.g., Vogt et al, 1992; Phan et al., 2004). The
dmPFC, on the other hand, has been shown to be involved in
attending to internal states that include a strong emotional
component (Walter et al., 2009). Therefore, functional change in
this region may reflect altered self-referential processes, which
change over the duration of treatment in responders.

We also found that activation of the insula, and caudate nucleus
in response to emotionally salient face stimuli in contrast to houses
to be associated with decreases of symptom severity. The caudate
nucleus is another area that exhibited as expected relatively
enhanced activation before successful treatment. The association
was found in the contrast faces versus houses andwas not as strong
as the dmPFC and pCC activation in the contrast faces versus
baseline. Nevertheless, it is interesting since it confirms previous
studies. This region has a crucial role in cognitive and motor
functioning (Drevets et al., 2008). Motor and cognitive circuits have
been described that link the frontal lobe to the basal ganglia in
parallel feedback loops. The basal ganglia modulate cerebral
cortical functioning through basal ganglia-thalamocortical feed-
back loops (e.g., Boecker et al., 2008, Seger, 2008, Grahn et al.,
2009). The caudate nucleus is the primary target of the “cogni-
tive/limbic” association cortex (Alexander et al., 1986). This change
in activation might reflect improved functioning of cognitive and
emotional processes and is in line with the study by Norburry et al.
(2010) showing caudate reactivity to be a trait marker of depression
vulnerability.

Also the insular cortex was found to be indicative for treatment
response in the present study. The insula is involved in gustatory,
visceral sensation and visceral motor responses, but also in
psychosomatic functions with autonomic regulation and emotion
processing (seeDamasio et al., 2000, Ketter et al.,1996, Reiman et al.,
1989; Lane et al., 1997; Ottowitz et al., 2004; for an overview, see
Nagai et al., 2007). Mayberg et al. (1999) and Kennedy et al. (2001)
found post-treatment responsiveness associated with decreased
metabolism in the insula. In line with these studies, we also found
that activation of the insula, in response to emotionally salient
stimuli is associated with decreases of symptom severity.

Fig. 1. Brain activation in the posterior cingulate cortex (pCC) and the dorsomedial prefrontal cortex (dmPFC) that was associated with decreases in HDRS rating from t1 to t2 in the
patients (N ¼ 21), for the contrast faces > baseline (slices trough: x ¼ �10, y ¼ �46, z ¼ 18; concerning the pCC activation; p < .05, FWE corrected for multiple comparisons).

Table 4
Regions associated with a decrease in HDRS scores in patients in the contrast sad
emotional faces vs. houses. Regions are indicated for which the difference was
significant on the cluster level (p < .001, uncorrected). MNI coordinates (x y z).

Region Volume T-Value MNI Coordinates x y z

R þ L Caudate nucleus 256 4.97 2 22 0
R Caudate nucleus 103 4.88 14 20 18
R Superior temporal gyrus/Insula 70 4.87 46 0 �16
L Insula 49 4.14 �26 12� 18
R Insula 38 3.82 30 16 �20
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Importantly, the association between response and brain acti-
vation seen in the linear regression analysis and dichotomic
differentiation of patients into responders and non-responders
were statistically stronger in the contrast faces versus baseline than
in the contrast faces versus houses. Therefore, looking at neural
activations in contrasts between stimuli state and resting state
might be an advantage with respect to markers for treatment
response. This might be because the contrast faces versus baseline,
would rely not only in the emotional content, but the entire visual
stimulation/processing system, whereby the contrast faces versus
houses is more narrowed to the difference of processing emotional
content versus non-emotional content images. Furthermore, the
effect of relative HDRS decrease revealedmore interpretable results
than comparing simply responders to non-responders. This might
indicate that the cutoff with 50% decrease in depression severity for
response could be misleading especially for subjects that may
nearly reach 50% or for those that may reach response criteria at

a later stage. Hereby, the effects were less pronounced and survived
correction for multiple testing only in a few areas like the middle
temporal and superior parietal gyrus. Furthermore, these regions
did not overlap with those that were found to be linearly associated
with individual changes in the HDRS scores for each patient.

Hyperactivity before treatment in, for example, pCC, dmPFC,
insula, and caudate nucleus may be trait markers for treatment
response. Hypothetically, these general hyperactivations may
reflect certain characteristics of the neuromodulatory systems,
such as the serotonergic or noradrenergic system, which have
widespread connections in the brain. Such widespread effects
would aid in the elucidation of why we and others find multiple
brain regions associated with treatment response and change
during therapy. This postulation is supported by the observation
that the promoter polymorphism of the serotonin transporter,
which is functional relevant for serotonin reuptake, is associated
with antidepressant efficacy (Serretti et al., 2007). Also

Fig. 2. Stronger brain activation in the insula and caudate nucleus at t1 correlates with stronger decreases in HDRS scores (N ¼ 21) in the contrast Faces > Houses. Axial slices at -2
and -19, and coronal slice at þ16. Regions are indicated for which the difference was significant on the cluster level (p < .001, uncorrected).

Table 5
Regions exhibiting an effect of treatment outcome (responders vs. non-responders) and time (t1 vs. t2). Regions are indicated for which the difference was significant on the
cluster level (p < .05, FWE corrected for multiple comparisons). MNI coordinates (x y z).

Volume Cluster p
corrected

Region p uncorrected T-Value MNI Coordinates
x y z

Faces > Baseline interaction1 (t1 responder, t2
non-responder > t2 responder, t1 non-responder)

379 0.032 L superior
parietal gyrus

0.000 3.88 �26 �20 20

Houses > Baseline interaction1 (t1 responder, t2
non-responder > t2 responder, t1 non-responder)

473 0.028 R superior
temporal gyrus

0.002 4.06 48 �26 14
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polymorphisms of the genes related to serotonin and noradrenalin
reuptake inhibitors (e.g. Uher et al., 2009) were specific to predict
treatment response. The substances used for treatment in our study
were dual acting substances that modulate both serotonergic and
noradrenergic systems in a different way. A larger sample would
have been required to disentangle the specific response prediction
to one or the other. It is interesting to mention that recent studies
indicated differential effects of norardrenergic versus serotonergic
antidepressants (Wagner et al. 2010) or of mirtazapine compared to
venlafaxine (Frodl et al. 2010).

It is important to note that the differences seen here in the
neural correlates of emotional processing between treatment
responders and non-responders are not a complete replication of
previous observations. In particular midline regions like pCC and
dmPFC need also to be taken into consideration when looking at
treatment response. The caudate nucleus was shown previously to
be related to depression vulnerability (see Norburry et al., 2010).
While decreased metabolism in the insular cortex was found to be
associated with post-treatment responsiveness by Mayberg et al.
(1999) and Kennedy et al. (2001), we found that higher activation
following emotional stimuli is predicitve for a good response.
However, pre-treatment hyperactivity in the rostral anterior
cingulate cortex was not related to symptom improvement in our
study, in difference to previous studies, whichwas unexpected (e.g.,
Drevets et al., 2002; Gotlib et al., 2005). Also unexpected was that
amygdala hyperactivation was not related to response in the
present study, whereas this had been shown for response to CBT
(Siegle et al., 2006, Fu et al., 2004). Differences between studies
may be the result not only of different medications (see Frodl et al.,
2010), but might also partly be explained by differences in the task
(e.g., implicit or explicit emotion processing task). Moreover, the
nature of the control or baseline condition employed by a particular
study may also account for differences in the neural activation
patterns between studies.

There are limitations to the present study. First the trial duration
with 4 weeks was relatively short and it might have been that we
missed patients that would have responded later, e.g. after 6 weeks
to the treatment. Moreover, the sample size for a dichotomic
comparison was relatively small with 10 responders and 11 non-
responders, which may be another reason for the weakened effect
in this kind of analysis. While the results are interesting they need
further exploration in larger studies. It has to be mentioned that we
were not interested in differences between the two medication
groups and due to too small group sizes it would not be advisable to
compute differences in brain activation dependent on medication
and the treatment with benzodiazepines. However, we suggest
taking into account the effect of benzodiazepines and different
medication in a further study, which deals with larger group sizes.
Another limitation is that we presented only negative emotional
stimuli, as most of the previous studies did. Recent studies showed,
for example, a hypo-activation of the amygdala in processing of
positive facial expressions inMDD patients (Suslow et al., 2010) and
in bipolar disorder (Lawrence et al., 2004). Another limitation of the
present study is that a passive viewing task was used. In passive
viewing tasks, it can not be controlled whether the participants
really focus on the presented stimuli.

Although we found differences between responders and non-
responders, there were almost no notable differences between the
patients and the healthy control group. We would have expected to
find changes in the amygdala, since other studies BOLD responses
in the amygdala were larger in patients than in controls. Increased
responses in the amygdala to masked fearful faces (Sheline et al.
2001), to sad faces (Fu et al. 2004) and to sad pictures (Anand
et al. 2005) have been reported. In our tasks the participants
probably used more visual and cognitive strategies to solve the task

so that amygdala activation may have been inhibited by the ACC
and prefrontal cortices. It is possible that if sub-groups of
responders and non-responders are not specified in the data
analysis that the differences in the neural response between
patients and controls will not be evident in comparison. Therefore,
in future investigations in may be relevant to define sub-groups of
patients, such as responders and non-responders, for the purposes
of data analysis.

In conclusion, activation in several areas, particularly the pCC,
dmPFC, insula, and caudate nucleus seems to play a crucial role in
the pathophysiology and treatment response of major depression.
Patients with depression who respond positively to medication
show enhanced dmPFC activation during negative emotion pro-
cessing. This might be related to the attentional bias to negative
emotional stimuli, which is associated with negative cognitions or
might be related to the failure to balance and regulate emotional
states effectively in patients withMDD (see also Anand et al., 2005).
Responders may, therefore, be more likely to exhibit compensatory
functional hyperactivation during fMRI tasks. However, this link
and the underlying neurochemical changes of functional hyper-
activation require further exploration.
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