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Backtesting Marginal Expected Shortfall
and Related Systemic Risk Measures

Denisa Banulescu-Radu, Christophe Hurlin, Jérémy Leymarie, Olivier Scaillet ∗

April 3, 2020

Abstract

This paper proposes an original approach for backtesting systemic risk measures. This
backtesting approach makes it possible to assess the systemic risk measure forecasts used to
identify the financial institutions that contribute the most to the overall risk in the financial
system. Our procedure is based on simple tests similar to those generally used to backtest
the standard market risk measures such as value-at-risk or expected shortfall. We introduce
a concept of violation associated with the marginal expected shortfall (MES), and we define
unconditional coverage and independence tests for these violations. We can generalize these
tests to any MES-based systemic risk measures such as SES, SRISK, or ∆CoVaR. We study
their asymptotic properties in the presence of estimation risk and investigate their finite sample
performance via Monte Carlo simulations. An empirical application to a panel of U.S. financial
institutions is conducted to assess the validity of MES, SRISK, and ∆CoVaR forecasts issued
from a GARCH-DCC model. Our results show that this model provides valid forecasts for MES
and SRISK when considering a medium-term horizon. Finally, we propose an early warning
system indicator for future systemic crises deduced from these backtests. Our indicator quantifies
how much is the measurement error issued by a systemic risk forecast at a given point in time
which can serve for the early detection of global market reversals.
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1 Introduction

On October 26, 2014, the European Banking Authority (EBA) published the results of the 2014

EU-wide stress test, which involved 123 banks from 22 countries, covering broadly 70% of total

assets in the EU banking sector (EBA, 2014). The main conclusion of this exercise is that only

24 participating banks fall below the defined capital threshold, leading to a maximum aggregate

capital shortfall of e24.6bn. None of these banks is French, and Christian Noyer, governor of the

Banque de France at that time, immediately saluted the success of the "French banks which are in

the best positions in the Eurozone" (Noyer, October 26, 2014). Interviewed by the Financial Times

a day after these announcements, Viral Acharya (Financial Times, 2014) stated that "French banks

are the weakest in Europe". He declared that in event of a crisis, French financial institutions would

face an aggregate capital shortfall of almost $400bn, i.e., approximately 15 times greater than the

shortfall identified by the EBA for the weakest European banks.1

This debate illustrates the difficulty of measuring systemic risk and the need for validation tools

of such measures.2 Our aim in this paper is to address this gap by introducing a general framework

for assessing the validity of systemic risk measures. This framework is specifically designed for

systemic risk measures that are expressed as functions of the expected equity loss conditional on a

financial crisis.

The ultimate goal of a systemic risk measure is to better identify the vulnerabilities of the finan-

cial system (see De Bandt and Hartmann, 2002; Benoit et al., 2017, for a survey). We can identify

two main families of systemic risk measures. The first set aggregates low-frequency regulatory data.

A typical example is the systemic risk score currently implemented by the Basel Committee on

Banking Supervision (BCBS) and the Financial Stability Board (FSB) to identify so-called systemi-

cally important financial institutions (SIFIs), i.e., firms whose failure might trigger a crisis affecting

the entire financial system.3 Another example is the bank capital shortfall computed from the reg-

ulatory banking stress tests previously mentioned. Until 2014, the performance of these measures

could not be assessed empirically because the necessary data were not in the public domain. Re-

cently, Philippon et al. (2017) proposed the first evaluation of the quality of the EU banking stress
1Considering only the subset of French banks tested in the ECB stress tests, he estimates a capital shortfall of

$189bn which represents approximately 9% of the French GDP.
2For similar discussions see also Acharya et al. (2014), Tavolaro and Visnovsky (2014), Acharya et al. (2016a,b),

and more recently Pierret and Steffen (2018).
3The systemic risk score aggregates information on five broad categories of systemic importance: size, intercon-

nectedness, substitutability, complexity, and cross-jurisdictional activity. To avoid favoring any particular facet of
systemic risk, the BCBS computes an equally weighted average score of these categories. For further details, see
Basel Committee on Banking Supervision (2014).
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tests, and Benoit et al. (2019) identified some pitfalls in the systemic risk scoring. The second set of

systemic risk measures relies on high-frequency market data such as stocks or asset returns, option

prices, or CDS spreads. These measures have the advantage of being easily implemented with pub-

lic data and standard econometric models. Many global risk measures have been proposed in the

academic literature.4 The most prominent examples are the marginal expected shortfall (MES) and

the systemic expected shortfall (SES) of Acharya et al. (2017), the systemic risk measure (SRISK)

of Acharya et al. (2012) and Brownlees and Engle (2017), and the delta conditional value-at-risk

(∆CoVaR) of Adrian and Brunnermeier (2016).5 The MES of a financial firm is defined as its

short-run expected equity loss conditional on the market taking a loss greater than its value-at-risk

(VaR). It is the key determinant, together with leverage and firm market value, of the SRISK and

the SES. These two systemic risk measures correspond to the expected amount by which a bank is

undercapitalized in a future systemic event in which the overall financial system is undercapitalized.

These global measures are designed to summarize the systemic risk contribution of a given financial

institution into a single figure and can be used to rank financial institutions according to their

systemic importance. However, to the best of our knowledge, no backtesting procedures have been

proposed to evaluate their ex post validity. This issue is of crucial importance because validation is

a key requirement for any systemic risk measure to become an industry standard.

We propose here a general framework for backtesting the MES and by extension the SES and

SRISK. As defined by Jorion (2007), backtesting is a formal statistical framework that consists

of verifying whether actual losses are in line with projected losses. This involves a systematic

comparison of the historical model-generated risk measure forecasts with actual losses. Since the

true value of the risk measure is unobservable, this comparison generally relies on violations. For

instance, in the case of VaR, a violation is said to occur when the ex post portfolio return is lower

than the VaR forecast. The goal here consists of defining an appropriate concept of violation for

the MES and then adapting the backtesting tests currently used by regulators and industry for the

market risk measures such as VaR or expected shortfall (ES). We proceed as follows. First, we

introduce a concept of conditional VaR, inspired by the systemic risk measure proposed by Adrian

and Brunnermeier (2016). A (β, α)-CoVaR is defined as the β-quantile of the truncated distribution
4Bisias et al. (2012) surveyed 31 quantitative measures, whereas Giglio et al. (2016) proposed systemic risk indexes

computed from 19 alternative systemic risk measures.
5These articles are among the most influential in the academic literature on systemic risk. For instance, the two

articles by Acharya et al. (2012) and Brownlees and Engle (2017) that defined the MES and the SRISK have been
cited 1,000 times since their publication (source: Google Scholar). For online computation of some of these systemic
risk measures, see the Stern-NYU V-Lab initiative website.
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of the firm returns given that the financial system takes a loss greater than its α-VaR. We express

the MES as an integral of the CoVaRs for all coverage rates β between 0 and 1. To the best of our

knowledge, this is the first time that a relationship is established between the CoVaR and the MES

and extended to the SES and SRISK. Second, we define a concept of joint violation of the (β, α)-

CoVaR of the firm returns and α-VaR of the market returns. This extends the concept of cumulative

violation recently proposed by Du and Escanciano (2017) for ES backtests to a bivariate case. We

define a cumulative joint violation process defined as the integral of the joint violation processes

for all coverage rates β between 0 and 1. We show that if the risk model used to forecast the

MES is well specified, this cumulative violation process is a martingale difference sequence (mds).

Exploiting this mds property, we propose two backtests for the MES: an unconditional coverage

(UC, hereafter) test and an independence (IND, hereafter) test as those generally considered for

the VaR (Christoffersen, 1998). The UC test refers to the fact that the violation frequency should

be in line with the theoretical probability of observing a violation. Failure of UC means that the

MES forecasts underestimate or overestimate the ex post systemic risk. In addition to UC, the

violations should satisfy the independence property, which implies that past violations should not

be informative about current or future violations if the dynamics of the risk model to forecast MES

is well-specified.

Our backtesting procedure has many advantages. It allows backtesting either conditional (with

respect to the past information set) MES or unconditional MES. Furthermore, we derive the asymp-

totic distribution of our test statistics while taking into account the estimation risk (Escanciano and

Olmo, 2010). Indeed, the MES forecasts are generally issued from a parametric risk model where

parameters have to be estimated. Then, the use of standard backtesting procedures to assess the

MES forecasts in an out-of-sample framework can be misleading because these procedures do not

consider the impact of estimation risk. For this reason, we propose a robust version of our test statis-

tics. Monte Carlo simulations show that these robust statistics have good finite sample properties

for realistic sample sizes.

Another advantage of our backtesting procedure is that it can be applied to any MES-based

systemic risk measure, the typical examples being SES and SRISK. As we can express these measures

as a linear deterministic function of the (long-run) MES, we show that testing their validity is

equivalent to testing the validity of the MES forecast itself.6 We can further extend our framework
6This result is due to the assumptions made on the other constituents of SES and SRISK, i.e., a constant level of

liabilities and a constant initial market value of the firm (see Brownlees and Engle, 2017; Acharya et al., 2017).
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to test the validity of ∆CoVaR forecasts. To do so, we propose a simple approach based on a vector

of two joint violations associated with two conditional VaRs of an institution: one for the situation

in which the financial system is in distress and a second with respect to the median state of the

financial system. The intuition is similar here to the backtests proposed for a multi-level VaR, i.e.,

VaR defined for a finite set of coverage rates (see Pérignon and Smith, 2008; Colletaz et al., 2013;

Leccadito et al., 2014; Wied et al., 2016, among others). These multi-level VaR backtests have been

recently adapted by Kratz et al. (2018) and Couperier and Leymarie (2018) to assess ES forecasts.

We apply our backtesting tests to assess the empirical validity of the MES, SRISK, and ∆CoVaR

issued from a GARCH-DCC model for a panel of large U.S. financial institutions over the period

from January 3, 2000, to December 30, 2016. First, we observe that the one-day-ahead forecasts

of these systemic risk measures are generally misspecified in periods of financial instability. The

UC tests reject the validity of the risk forecasts for most of the financial institutions in our panel

during the 2008-2009 global financial crisis. Second, when considering a longer forecasting horizon,

say one month, the UC hypothesis is no longer rejected for MES or SRISK. The results suggest that

for longer horizons, the GARCH-DCC model may provide more reliable forecasts of systemic risk.

Finally, we apply the UC test to the ∆CoVAR daily forecasts. Our findings are fully in line with

those observed for the short-term MES forecasts. The UC hypothesis is rejected for most of the

financial institutions during the global 2008-2009 financial crisis and to a lesser extent during the

2011-2012 European debt crisis. In addition, our tests show that the stressed CoVaR is generally

more affected by model misspecification than the median CoVaR.

Some attempts of validation procedures for systemic risk measures have been proposed in the

literature. Following the coherent risk approach of Artzner et al. (1999), Chen et al. (2013) define

an axiomatic framework for systemic risk measures.7 However, most of the validation techniques are

empirical. They generally consist of testing whether firms with high systemic risk scores are more

likely to become insolvent (Wu, 2018) or to suffer the highest financial losses (Idier et al., 2014)

in a financial crisis, for example. The latter conclude that some standard balance-sheet ratios are

better able to predict large equity losses conditional on a true crisis than is the MES. Brownlees and

Engle (2017) show that banks with higher SRISK before the financial crisis were more likely to be

bailed out by the government and to receive capital injections from the Federal Reserve. Engle et al.
7A systemic risk measure must satisfy the main conditions that define any coherent risk measure, namely, the

monotonicity, positive homogeneity, and outcome convexity axioms. However, it must also satisfy an additional
preference consistency axiom. This axiom states that the risk measure has to reflect the preference of the regulator
on the cross-sectional profile of losses across firms and the distribution of the aggregate outcomes across states.
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(2015) compare the ranking of European financial institutions obtained with the SRISK to the list of

SIFIs produced by the FSB. Recently, Jokivuolle et al. (2018) use statistical tests and find that the

systemic risk categories defined by the FSB are different from those computed by ∆CoV aR, MES,

and SRISK. Brownlees et al. (2020) propose an historical assessment of SRISK and ∆CoVaR based

on two dimensions. The first one, called SIFI ranking challenge, consists of investigating whether

ranking financial institutions by SRISK and ∆CoVaR permits the identification of institutions with

notable deposit declines around panic events. The second one, called the financial crisis prediction

challenge, investigates whether these systemic risk measures are significant predictors of system-

wide deposit declines during panic events. Based on an original historical dataset for the New York

banking system between 1866 and 1933, their results show that both measures well identify SIFIs,

especially in periods of distress. However, SRISK and ∆CoVaR exhibit poor performance as early

warning signals of distress in the financial system as a whole.

Our validation approach is different because it relies on backtesting tests in the same spirit as

those used for market or credit risk measures (Jorion, 2007). We propose test statistics that are

similar to those generally used by regulators or risk managers to backtest the VaR (Kupiec, 1995;

Christoffersen, 1998) or the ES (Du and Escanciano, 2017; Kratz et al., 2018). Even if the validation

approaches are different, they show similarities in the main. As in Brownlees et al. (2020), albeit

with a different empirical approach, we propose an early warning system (EWS) indicator intended

to identify the periods of forecast breakdown that depict significant changes in market conditions.

Our indicator is defined as the difference between the original MES forecast issued from the risk

model and an adjusted MES forecast. The latter represents the forecast that satisfies the null

hypothesis of unconditional coverage. The adjustment of risk forecasts issued from a misspecified

or mis-estimated risk model has already been considered in the risk management literature. For

instance, Gouriéroux and Zakoïan (2013) propose a method to adjust VaR forecasts affected by

estimation risk. Boucher et al. (2014) adjust imperfect VaR forecasts by outcomes from backtesting

frameworks, considering desirable qualities of VaR models such as the frequency, independence and

magnitude of violations. In recent contributions, Couperier and Leymarie (2018) and Lazar and

Zhang (2019) apply a similar approach to adjust imperfect ES forecasts. Similarly, we propose to

adjust imperfect MES-based forecasts exploiting the statistical properties of the cumulative joint

violation process. Formally, it consists of determining an adjusted coverage level for the MES such

that the null hypothesis of the UC test is not rejected. Our empirical results show that the adjusted

MES diverges from the unadjusted MES at the beginning of the 2007-2009 financial crisis and to

6



a lesser extent during the European debt crisis. Such a divergence should alert regulators to the

severity of the financial crisis because the risk models applied by banks before the crisis are no

longer compatible with current market conditions.

The remainder of the paper is organized as follows. In Section 2, we define the MES and introduce

the cumulative joint violation process. We present the backtesting tests for MES in Section 3 and

illustrate their finite sample properties via Monte Carlo simulations. Section 4 extends our backtests

to any MES-based systemic risk measure, especially to SES, SRISK and ∆CoVaR. An empirical

application is proposed in Section 5. Section 6 illustrates how to use these backtests as early warning

systems to detect financial crisis episodes. Finally, we conclude the paper in Section 7.

2 MES and cumulative joint violation process

In this section, we define the MES and introduce a concept of cumulative joint violation dedicated

to its assessment. We consider the following notations. Let Yt = (Y1t, Y2t)
′ denote the vector of

stock returns of two assets at time t. In the specific context of systemic risk, Y1t corresponds to

the stock return of a financial institution, whereas Y2t corresponds to the market return. Denote

by Ωt−1 the information set available at time t − 1, with (Yt−1, Yt−2, ...) ⊆ Ωt−1 and F (.; Ωt−1)

being the joint cumulative distribution function (cdf) of Yt given Ωt−1, such that F (yt; Ωt−1) ≡

Pr (Y1t < y1, Y2t < y2|Ωt−1) for any y = (y1, y2)′ ∈ R2. Assume that F (.; Ωt−1) is continuous.

2.1 Marginal expected shortfall

Following Acharya et al. (2012) and Brownlees and Engle (2017), we define the MES of a financial

firm as its short-run expected equity loss conditional on the market taking a loss greater than its

VaR. Formally, the α-level MES of the financial institution at time t given Ωt−1 is defined as

MES1t (α) = E(Y1t|Y2t ≤ V aR2t(α); Ωt−1), (1)

where V aR2t (α) is the α-level VaR of the marginal distribution of Y2t, denoted FY2 (.; Ωt−1), with

V aR2t (α) = F−1
Y2

(α; Ωt−1), and α ∈ [0, 1].8 If we define the market return Y2t as the value-

weighted average of firm returns (for all the firms that belong to the financial system), then the

MES corresponds to the derivative of the market ES with respect to the firm market share (Scaillet,

2004; Acharya et al., 2017), hence the term "marginal". Thus, MES measures how the financial

institution contributes to the overall risk of the financial system.
8For ease of notation, we do not use the usual convention that defines the VaR as the opposite of the α-quantile

of the return distribution.
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The MES is a conditional expectation, and as such, it can be expressed as a function of the

quantiles of the conditional distribution of Y1t given Y2t ≤ V aR2t(α). For that purpose, we introduce

the concept of Conditional-VaR (CoVaR) inspired by the systemic risk measure proposed by Adrian

and Brunnermeier (2016). For any coverage level β ∈ [0, 1], the CoVaR for firm 1 at time t is the

quantity CoV aR1t(β, α) such that

Pr (Y1t ≤ CoV aR1t(β, α)|Y2t ≤ V aR2t(α); Ωt−1) = β. (2)

There are two main differences between CoV aR1t(β, α) and the CoVaR introduced by Adrian and

Brunnermeier (2016). First, the conditioning event is based on an inequality, i.e., Y2t ≤ V aR2t(α)

as in Girardi and Ergün (2013), rather than on the equality Y2t = V aR2t(α). Second, we in-

troduce a distinction between the coverage level β of the CoVaR and the coverage level α of the

VaR, which is used to define the conditioning event. The (β, α)-level CoVaR can also be defined

as CoV aR1t(β, α) = F−1
Y1|Y2≤V aR2t(α)(β; Ωt−1) where FY1|Y2≤V aR2t(α)(.; Ωt−1) is the cdf of the condi-

tional distribution of Y1t given Y2t ≤ V aR2t(α) and Ωt−1. Definition of a conditional probability

and a change of variables yield a useful representation of MES in terms of CoVaR.

MES1t(α) =

∫ 1

0
CoV aR1t(β, α)dβ. (3)

Equation (3) is essential for our backtesting approach. It provides a simple relationship between two

risk measures, i.e., the MES and the CoVaR. To the best of our knowledge, this is the first attempt

to establish a link between these systemic measures that are both broadly used in the systemic risk

literature (see Acharya et al., 2017, for a comparison). Notice that this definition of the MES is

valid for any bivariate distribution.

For some particular distributions, the conditional cdf FY1|Y2≤V aR2t(α)(.; Ωt−1) that defines the

CoVaR has a closed-form expression. For instance, Arnold et al. (1993) calculate the marginal of a

bivariate normal distribution with double truncation over one variable. Horrace (2005) formalizes

analytical results on the truncated multivariate normal distribution, where the truncation is one-

sided and at an arbitrary point. Ho et al. (2012) focus on the truncated multivariate t-distribution.

Regardless of the distribution, it is also possible to express the cdf of the truncated distribution

of Y1t given Y2t ≤ V aR2t(α) as a simple function of the cdf of the joint distribution of Yt, with

FY1|Y2≤V aR2t(α)(y1; Ωt−1) = α−1F (ỹ; Ωt−1), with ỹ = (y1, V aR2t(α))′.

In general, the MES forecasts are issued from a parametric model specified by the researcher, the

risk manager, or the regulatory authority. For instance, Brownlees and Engle (2017) and Acharya
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et al. (2012) consider a bivariate dynamic conditional correlation (DCC) model to compute the

MES and the SRISK. In practice, the cdf F (.; Ωt−1, θ0) of the joint distribution of Yt, the cdf

FY2 (.; Ωt−1, θ0) of the marginal distribution of Y2t and the cdf FY1|Y2≤V aR2t(α;θ0)(.; Ωt−1, θ0) of the

truncated distribution of Y1t given Y2t ≤ V aR2t(α, θ0) depend on θ0 ∈ Θ ⊆ Rp, a vector of unknown

parameters. Therefore, we need to estimate these parameters to compute the MES forecasts. In

the sequel, we name this parametric model the "risk model" in reference to the internal risk model

used by banks to produce their VaR or ES forecasts.

2.2 Cumulative joint violation process

To backtest the CoVaR and the MES, we define a joint violation of the (β, α)-CoVaR of Y1t and

the α-VaR of Y2t at time t. We represent this violation process by the following binary variable

ht(α, β, θ0) = 1 ((Y1t ≤ CoV aR1t (β, α, θ0)) ∩ (Y2t ≤ V aR2t (α, θ0))) , (4)

where 1 (.) denotes an indicator function. The violation (4) takes value one if the loss of the firm

exceeds its CoVaR and the loss of the market exceeds its VaR, zero otherwise.

The VaR backtesting tests (Kupiec, 1995; Christoffersen, 1998; Berkowitz et al., 2011, among

others) generally exploit the mds property of the violation process (see Christoffersen, 2010, for a

survey). Here, we adopt a similar approach to backtest the CoVaR and the MES. Notice that

Bayes theorem implies that Pr (ht(α, β, θ0) = 1|Ωt−1) = αβ. Then, it follows from Equation

(2) that the violations are Bernoulli distributed with mean αβ and that the centered violation

{ht(α, β, θ0)− αβ}∞t=1 is a mds for risk levels (α, β) ∈ [0, 1]2. Formally, if the (β, α)-CoVaR of Y1t

and the α-VaR of Y2t are correctly specified, we have E (ht(α, β, θ0)− αβ|Ωt−1) = 0.

To test the validity of the MES, we consider a cumulative joint violation process that we can

view as a violation "counterpart" of the MES definition in Equation (3). We define this cumulative

joint violation process as the integral of the violations ht(α, β, θ0) for all the risk levels β between

0 and 1, with

Ht (α, θ0) =

∫ 1

0
ht(α, β, θ0)dβ.

We can regard this cumulative joint violation process as an extension to the bivariate case of the

cumulative violation process recently introduced by Du and Escanciano (2017) to backtest the

ES. The random variable Ht (α, θ0) has an Ωt−1-conditional distribution defined as the product of a

Bernoulli(α) random variable times a continuous uniform distribution over [0, 1]. The mean and vari-

ance of Ht(α, θ0) are equal to α/2 and α (1/3− α/4), respectively (see Appendix B for details). Fur-
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thermore, the Fubini theorem implies that the mds property of the sequence {ht(α, β, θ0)− αβ}∞t=1 ,

∀ (α, β) ∈ [0, 1]2 is preserved by integration. As a consequence, the sequence {Ht(α, θ0)− α/2}∞t=1

is also a mds for any α ∈ [0, 1], such that we have E (Ht (α, θ0)− α/2|Ωt−1) = 0.

3 Backtesting MES

Exploiting the mds property of the cumulative joint violation process enables the implementation

of various types of backtests for the MES (see Nieto and Ruiz, 2016, for a survey). Here, we propose

two tests based on the so-called unconditional coverage hypothesis and independence hypothesis

(Christoffersen, 1998). The unconditional coverage test relies on the following null hypothesis:

H0,UC : E (Ht (α, θ0)) = α/2.

Since we have E (Ht (α, θ0)) =
∫ 1

0 E (ht(α;β, θ0)) dβ, the null H0,UC is equivalent to H0,UC :

Pr (ht(α, β, θ0) = 1) = αβ for any β ∈ [0, 1]. The null hypothesis UC means that for any risk

level β, the joint probability of observing an ex post return Y1t exceeding its (β, α)-CoVaR and an

ex post return Y2t exceeding its α-VaR must be equal to αβ. Note that if H0,UC is violated, there

are two scenarios. The first corresponds to E (Ht (α, θ0)) > α/2, and indicates that the number

of joint exceedances is higher than expected. This scenario is associated with an underestimation

of the MES. In the opposite case, E (Ht (α, θ0)) < α/2 indicates that not enough exceedances are

experienced on average and reveals an overestimation of the MES.

The second backtest is based on the independence property of the centered cumulative violation

process {Ht (α, θ0)− α/2}∞t=1: the cumulative violations observed at two different dates for the

same coverage rate α must be independently distributed. As in Christoffersen (1998), we propose a

simple Box-Pierce test (Box and Pierce, 1970) to test for the nullity of the first K autocorrelations

of Ht (α, θ0), denoted ρk. We define the null hypothesis of the IND test as

H0,IND : ρ1 = .... = ρK = 0,

with ρk = corr (Ht (α, θ0) , Ht−k (α, θ0)). A rejection of H0,IND highlights a misspecification in the

MES dynamics, and reveals the use of an incorrect risk model.

Implementing the tests requires estimating the parameters θ0 ∈ Θ of the model used by the risk

manager to forecast the MES. For simplicity, we adopt a fixed forecasting estimation scheme. We

use an in-sample period from t = 1 to t = T to estimate θ0. Denote by ΩT the information set
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available at the end of the in-sample period, with {Y1, ..., YT } ⊆ ΩT and θ̂T a consistent estimator of

θ0. Based on the ex post returns observed from t = T + 1 to t = T +n, we compute the backtesting

test statistics from the out-of-sample forecasts of the cumulative violation process given by

Ht(α, θ̂T ) =
(

1− u12t(θ̂T )
)
1

(
u2t(θ̂T ) ≤ α

)
, ∀t = T + 1, ..., T + n,

with u2t(θ̂T ) ≡ FY2(Y2t; Ωt−1, θ̂T ) and u12t(θ̂T ) ≡ F
Y1|Y2≤V aR2t(α,θ̂T )

(Y1t; Ωt−1, θ̂T ). See Appendix B

for further details.

3.1 Unconditional coverage test

By analogy with the backtest proposed by Du and Escanciano (2017) for ES and the well-known

VaR backtest proposed by Kupiec (1995), we consider a standard t-test for the null hypothesis of

unconditional coverage H0,UC for the MES. We define the test statistic, denoted UCMES , as

UCMES =

√
n
(
H̄(α, θ̂T )− α/2

)
√
α (1/3− α/4)

, (5)

with H̄(α, θ̂T ) the out-of-sample mean of Ht(α, θ̂T ), namely H̄(α, θ̂T ) = 1
n

∑T+n
t=T+1Ht(α, θ̂T ). To

provide intuition for the asymptotic properties of the statistic UCMES , let us define a similar statistic

UCMES (α, θ0) based on the true value of the parameters θ0 instead of its estimator θ̂T . Under the

null hypothesis, the sequence {Ht (α, θ0)− α/2}T+n
t=T+1 is a mds with variance equal to α (1/3− α/4).

As a consequence, the Lindeberg-Levy central limit theorem implies that UCMES (α, θ0) has an

asymptotic standard normal distribution. A similar result holds for the feasible statistic UCMES ≡

UCMES(α, θ̂T ) when T →∞ and n→∞, whereas λ = n/T → 0, i.e., when there is no estimation

risk.

However, in the general case T →∞, n→∞ and n/T → λ <∞, there is an estimation risk as

soon as λ 6= 0. Escanciano and Olmo (2010) show that the use of standard backtesting procedures

can be misleading if one does not account for the uncertainty associated with parameter estimation.

Similarly, Bontemps and Meddahi (2005) develops a test for normality that is robust to parameter

uncertainty and show that standard tests are misleading due to parameter uncertainty. In the

presence of estimation error, the asymptotic distribution of UCMES is not standard and depends

on the ratio of the in-sample size T to the out-of-sample size n. Theorem 1 gives the corresponding

asymptotic distribution of UCMES when T →∞, n→∞ and n/T → λ with 0 < λ <∞.
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Theorem 1 Under Assumptions A1-A4 in the Appendix, we have:

UCMES
d→ N

(
0, σ2

λ

)
,

where d→ denotes the convergence in distribution and where the asymptotic variance σ2
λ is

σ2
λ = 1 + λ

R′MESΣ0RMES

α (1/3− α/4)
,

with RMES = E0 (∂Ht (α, θ0) /∂θ) and Vas(θ̂T ) = Σ0/T .

The proof of Theorem 1 is reported in Appendix C. The vector RMES quantifies the parameter

estimation effect on the test statistic UCMES due to the difference between the estimate θ̂T and

the true value of the parameter θ0. We can characterize the impact of the estimation risk on the

UCMES test statistic as follows

UCMES =
1

σH
√
n

T+n∑
t=T+1

(Ht (α, θ0)− α/2)︸ ︷︷ ︸
UCMES(α,θ0)

+

√
λ

σH

1

n

T+n∑
t=T+1

E

 ∂Ht

(
α, θ̃

)′
∂θ

∣∣∣∣∣∣∣Ωt−1

√T (θ̂T − θ0)

︸ ︷︷ ︸
Estimation risk

+ op (1) .

This formula is similar to that obtained by Du and Escanciano (2017) to backtest ES, but its con-

stituents are different because the testing procedure now relies on a bivariate distribution. Whatever

the dynamic model considered for the returns, we can deduce the vector RMES from the cdf of the

joint distribution Yt given Ωt−1 with

RMES = − 1

α
E0

(
∂F (ỹt; Ωt−1, θ0)

∂θ
1(u2t (θ0) ≤ α)

)
+ E0

(
(1− u12t (θ0))

∂1(u2t (θ0) ≤ α)

∂θ

)
,

where ỹt = (y1t, V aR2t(α, θ0))′ and

∂F (ỹt; Ωt−1, θ0)

∂θ
=

∫ y1t

−∞
f (u, V aR2t (α, θ0) ; Ωt−1, θ0) du× ∂V aR2t (α, θ0)

∂θ︸ ︷︷ ︸
Impact on the truncation

+

∫ y1t

−∞

∫ V aR2t(α,θ0)

−∞

∂f (u, v; Ωt−1, θ0)

∂θ
dudv︸ ︷︷ ︸ .

impact on the pdf of the joint distribution

In the bivariate case, the estimation error affects the cdf of the truncated distribution of Y1t given

Y2t ≤ V aR2t (α, θ0) not only through its effect on the joint distribution but also through the
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truncation parameter, i.e., the VaR of the market return. There is no analytical expression for

the derivative ∂F (ỹt; Ωt−1, θ0)/∂θ except for some particular bivariate distributions (see Appendix

D for the case of a bivariate normal distribution). In the general case, we have to evaluate that

expression via numerical differentiation.

Corollary 2 When there is no estimation risk, i.e., when λ = 0, under Assumptions A1-A4 in the

Appendix, we have UCMES
d→ N (0, 1).

When the estimation period T is much larger than the evaluation period n, the unconditional

coverage test is simplified because it does not require evaluations of RMES and Σ0. Given these

results, it is possible to define a test statistic UCCMES that explicitly takes into account the estimation

risk while having a standard limit distribution for any λ with 0 ≤ λ < ∞ when T and n tend to

infinity. The feasible robust UC backtest statistic is

UCCMES =

√
n
(
H̄(α, θ̂T )− α/2

)
√
α (1/3− α/4) + nR̂′MESV̂as(θ̂T )R̂MES

,

where V̂as(θ̂T ) = Σ̂0/T is a consistent estimator of the asymptotic variance-covariance matrix of

θ̂T and R̂MES is a consistent estimator of RMES . In Appendix E, we propose an estimator for the

vector RMES that we can easily implement.

3.2 Independence test

To test the independence hypothesis H0,IND : ρ1 = .... = ρm = 0, we use a Portmanteau Box-Pierce

test applied to the sequence of cumulative joint violation forecasts. We define the Box-Pierce test

statistic as follows

INDMES = n
m∑
j=1

ρ̂2
nj ,

with ρ̂nj the sample autocorrelation of order j of the estimated cumulative joint violation Ht(α, θ̂T )

given by

ρ̂nj =
γ̂nj
γ̂n0

and γ̂nj =
1

n− j

T+n∑
t=T+1+j

(
Ht(α, θ̂T )− α/2

)(
Ht−j(α, θ̂T )− α/2

)
,

where γ̂nj denotes a consistent estimator of the j-lag autocovariance of Ht(α, θ̂T ). Theorem 3 gives

the asymptotic distribution of the statistic INDMES when T →∞, n→∞ and n/T → λ <∞.
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Theorem 3 Under Assumptions A1-A4 in the Appendix, we have:

INDMES
d→

m∑
j=1

πjZ
2
j ,

where {πj}mj=1 are the eigenvalues of the matrix ∆ with the ij-th element given by

∆ij = δij + λR′iΣ0Rj ,

Rj =
1

α (1/3− α/4)
E0

(
(Ht−j(α, θ0)− α/2)

∂Ht(α, θ0)

∂θ

)
,

where δij is a dummy variable that takes value 1 if i = j and 0 otherwise, {Zj}mj=1 are independent

standard normal variables, and Vas(θ̂T ) = Σ0/T .

The proof of Theorem 3 is reported in Appendix F. The test statistic INDMES has an asymptotic

distribution, which is a weighted sum of chi-squared variables. The weights depend on the asymp-

totic variance-covariance matrix of the estimator θ̂T , on the cumulative joint violation process and

on its derivative with respect to the model parameter θ, as for the UC test. However, this limit

distribution becomes standard when λ = 0, i.e., when there is no estimation risk.

Corollary 4 When there is no estimation risk, i.e., when λ = 0, under Assumptions A1-A4 in the

Appendix, we have INDMES
d→ χ2 (m).

From the previous results, we can deduce a robust test statistic for the independence hypothesis,

which has a standard distribution for any λ with 0 ≤ λ <∞, when T and n tend to infinity. Denote

by ρ̂(m)
n the vector (ρ̂n1, ..., ρ̂nm)′. The feasible robust IND backtest statistic is defined as

INDC
MES = nρ̂(m)′

n ∆̂−1ρ̂(m)
n ,

where ∆̂ is a consistent estimator of ∆, such that ∆̂ij = δij + nR̂′iV̂as(θ̂T )R̂j , where V̂as(θ̂T ) is

a consistent estimator of the asymptotic variance-covariance matrix of θ̂T and R̂j is a consistent

estimator of Rj . In Appendix E, we provide a simple method to estimate Rj . When T and n tend

to infinity, the robust statistic INDC
MES converges to a chi-squared distribution with m degrees of

freedom regardless of the relative value of n and T .

3.3 Monte Carlo simulations

This section assesses the finite sample properties of our two backtest statistics computed with and

without taking into account the estimation risk. We consider two definitions of the MES to study
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the properties of our tests in various settings. First, we consider the particular case of a marginal

(time-invariant) MES, as in Acharya et al. (2017). This configuration allows us to easily control

for the degree of misspecification of firm risk and financial interdependencies and thus to assess the

power of our tests in relevant cases. Second, we consider a conditional (time-varying) MES based

on a multivariate GARCH-DCC model, as in Brownlees and Engle (2017). In the sequel, we briefly

present the two data generating processes (DGP) and the results of our Monte Carlo simulations.

Backtesting marginal MES. To evaluate the empirical size and power of our tests in the case

of a marginal MES, we consider a bivariate normal distribution for the daily demeaned returns

Yt = (Y1t, Y2t)
′, such that Yt = Σ1/2zt, with Y1t being the firm return and Y2t being the market

return and where zt denotes an i.i.d. Gaussian vector error process with E (zt) = 0 and E (ztz
′
t) = I2.

Under the null, the variance-covariance matrix Σ is defined as

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

where σ1 and σ2 denote the volatility of firm and market returns, respectively, and ρ is the correlation

between the two returns. We calibrate the parameters θ0 =
(
σ2

1, σ
2
2, ρ
)′ using the daily log-returns

of Bank of America and the CRSP market value-weighted index over the period from January 1,

2012, to December 30, 2016.9 Notice that, under the normality assumption, the MES of the bank

does not depend on the market volatility.10

For each Monte Carlo replication b, we simulate the series {y(b)
1t , y

(b)
2t }

T+n
t=1 , and we estimate the

variance-covariance parameters θ0 using the first T simulated observations {y(b)
1t , y

(b)
2t }Tt=1. Then,

using the estimated parameters θ̂(b)
T , we compute the cumulative violation process Ht(α, θ̂

(b)
T ) for

the out-of-sample periods t = T +1, . . . , T +n. For a finite sample size T , the violations are affected

by the estimation risk due to the difference between the estimate θ̂(b)
T and the true parameter

value θ0. Finally, using the series {Ht(α, θ̂
(b)
T )}T+n

t=T+1, we compute the test statistics UCMES and

INDMES , without estimation risk correction, and the corresponding robust test statistics UCCMES

and INDC
MES . The simulation study is based on 10, 000 replications. In addition, we consider

various in-sample sizes (T = 250, 500, and 2, 500) and out-of-sample sizes (n = 250 and 500) to

illustrate the impact of T and n on the estimation error and the small-sample properties of the
9The estimated values of unconditional variances and correlation, σ2

1 , σ2
2 , and ρ, are equal to 3.506, 0.722, 0.663,

respectively.
10Under these assumptions, the MES for the bank return has a closed-form expression (Brownlees and Engle, 2017)

given by MES1(α) = −ρσ1φ
(
Φ−1 (α)

)
/α, where φ (.) and Φ (.) denote the pdf and the cdf of a standard normal

distribution. We can also express the MES as the product of the beta of the firm by the ES of the market return
(Benoit et al., 2017), such as MES1(α) = β1ES2 (α), with β1 = ρσ1/σ2, and ES2 (α) = E(Y2t|Y2t ≤ V aR2(α)).
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backtests. Finally, we set the coverage rate α for the MES to 5%, and we compute the empirical

size as the rejection frequency at a nominal level of 5%.

Because the MES depends on risk levels (volatilities) and dependencies (correlation), we propose

various experiments designed to assess the capabilities of our tests to detect misspecification on these

two quantities. We consider three misspecified models given by Yt = Σ̃1/2zt under the alternative

hypothesis:

Σ̃ =

(
σ̃2

1 ρ̃σ̃1σ̃2

ρ̃σ̃1σ̃2 σ̃2
2

)
,

• H1(A1): Undervalued variance of firm returns, σ̃2
1 = (1− τ)σ2

1, with 0 < τ < 1.

• H1(A2): Undervalued variance of market returns, σ̃2
2 = (1− τ)σ2

2, with 0 < τ < 1.

• H1(A3): Undervalued correlation between firm and market returns, ρ̃ = (1 − τ)ρ, with 0 <

τ < 1.

Under these alternatives, the variance-covariance matrix is misspecified and underestimates the

variance of return (A1 and A2) or the correlation (A3) by a rate τ , equal to either 25%, 50%, or

75%. Such undervaluations of risk or dependence induce an underestimated MES and, in fine,

an undervaluation of the systemic risk. In the case of alternatives, we use the first T simulated

observations to estimate the variance-covariance parameters θ0 under the constraint H1.11 Denote

the vector of estimated and constrained parameters obtained in the bth replication by θ̂
(b)
T . We

compute the test statistics from the misspecified cumulative violation process Ht(α, θ̂
(b)
T ) for t =

T + 1, ..., T + n, and we compute the empirical power as the rejection frequency at a 5% nominal

level. To take into account the potential size distortions for small T , our reported powers are all

size-corrected.

Table 1 displays the empirical sizes and powers for the UCMES , UCCMES , INDMES , and

INDC
MES tests. Four main results are noteworthy. First, the empirical sizes of the UC and IND

tests, with or without correction for estimation risk, converge to the nominal level when both T and

n increase. However, for small in-sample sizes T , the UCMES test exhibits severe size distortions
11For each alternative, the reduction rate τ is applied to the true value of the parameter instead of its estimated

counterpart to avoid variations of the constrained parameters across replications. To ensure positive semi-definiteness
of the estimate of Σ̃ for any τ , the other parameters are estimated by using the constrained maximum likelihood.
This framework makes it possible to illustrate the power of our tests while taking into account the estimation risk.
Notice that the data generating process considered under H1 (A2) leads to a misspecified MES: even if MES does not
depend on the market volatility σ2, the other estimated parameters (firm return volatility and correlation) do not
converge to their true value.
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due to estimation errors. For instance, for T = 250 and n = 500, the UCMES test is substantially

oversized as its empirical size (11.99%) is twice the nominal size. These size distortions increase

with the out-of-sample size n, as the test statistic UCMES diverges when T is fixed and small, and

n tends to infinity. Second, for small T samples, we recommend the use of robust test statistics that

properly control for estimation risk. Empirical sizes of the robust test statistic UCCMES are close to

the nominal size of 5% for all reported samples. For instance, for T = 250 and n = 500, its empirical

size is 5.53%. However, the robust INDC
MES backtest exhibits a slower rate of convergence and

displays slight size distortions in small samples.12 Third, our tests demonstrate good capacity for

detecting various misspecifications in the variance-covariance matrix used to compute the MES.

The empirical power of UC increases with the misspecification rate τ and the out-of-sample size n.

The simulations for very large n (not reported) confirm that our UC tests are consistent, as the

rejection frequencies tend to 1. Interestingly, we obtain the highest empirical powers for the mar-

ket volatility misspecification (A2), indicating that a poor assessment of market distress may have

severe consequences on the MES. Finally, for all alternatives, the empirical power of the IND test

is still very low whatever n and T . This result is consistent with the theory, as the underestimation

of volatilities and correlation of returns does not have any consequences on the autocorrelations of

the cumulative violation process Ht. As a consequence, the IND backtest is non-sensitive to the

alternatives A1, A2, and A3.

Backtesting conditional MES. For the conditional case, we consider a dynamic conditional

correlation (DCC) model as in Brownlees and Engle (2017). This model is widely used in the

context of systemic risk since it is able to well reproduce most of the stylized facts on financial

data and to capture the interdependencies observed between firm and market returns. Formally, we

assume that the vector process of demeaned returns is now defined as Yt = Σ
1/2
t zt, where Σt denotes

the conditional variance-covariance matrix and zt is as defined previously. Under the null, we define

the conditional variance-covariance matrix Σt as Σt = DtRtDt, where Dt = diag{σ1t;σ2t} is a

diagonal matrix that contains conditional volatilities and Rt is the conditional correlation matrix of

Yt. We consider a GJR-GARCH specification for the conditional variances of the firm and market

returns (Glosten et al., 1993; Rabemananjara and Zakoian, 1993),

σ2
it = αi0 + αi1Y

2
i,t−1 + αi2Y

2
it−11 (Yi,t−1 < 0) + αi3σ

2
it−1 ∀i = 1, 2.

The DCC specification imposes a time-varying correlation structure on the standardized returns
12Using an independence test for backtesting expected shortfall, Du and Escanciano (2017) obtain similar size

distortions for small sample sizes.
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ε1t = Y1t/σ1,t and ε2t = Y2t/σ2,t through the pseudo-correlation matrix Qt,

Qt = (1− a− b)Q+ aεt−1ε
′
t−1 + bQt−1,

where Q is the unconditional correlation matrix and a and b are two non-negative parameters

such that a + b < 1. The conditional correlation matrix is obtained by rescaling Qt, such as

Rt = (diag Qt)
−1/2Qt(diag Qt)

−1/2. In the sequel, we refer to this conditional specification as

the GARCH-DCC model.13 The Monte Carlo study design is similar to that previously described,

except that we now consider 1, 000 replications. We consider four misspecified models given by

Yt = Σ̃
1/2
t zt under the alternative hypothesis:

• H1(B1): Undervalued conditional variance of firm returns, σ̃2
1t = (1− τ)σ2

1t, with 0 < τ < 1.

• H1(B2): Undervalued conditional variance of market returns, σ̃2
2t = (1−τ)σ2

2t, with 0 < τ < 1.

• H1(B3): Undervalued conditional correlation, ρ̃t = (1− τ)ρt, with 0 < τ < 1.

• H1(B4): Misspecification of the dynamics of firm and market returns, with Yt = Σ1/2zt.

Under the alternatives B1-B3, the GARCH-DCC model is misspecified because the conditional

variances or the conditional correlation are misleading by a rate τ , set to either 25%, 50%, or 75%.

In contrast, the alternative B4 induces a misspecification of the dynamics of returns: the cumulative

violation process is computed with a variance-covariance matrix that is assumed to be constant over

time, whereas the true matrix is time-varying and exhibits a leverage effect. We expect that this

setting creates autocorrelated violations, which should be detected by our independence test.

Table 2 provides the empirical size and size-corrected power at a 5% nominal level of the con-

ditional MES backtests. Our results are similar to those obtained for the unconditional setting,

and the key takeaways are the following. First, we observe size distortions for the UC backtests

when there is no correction for the estimation risk and the estimation sample size T is small. For

a fixed size T , these distortions increase with the out-of-sample size n. We also observe that the

impact of estimation risk is amplified compared to the unconditional case due to the increase in

the number of estimated parameters (11 in the case of the GARCH-DCC model). As expected,

the estimated parameters converge to the true parameter values and the impact of estimation error

vanishes asymptotically. Second, our correction for estimation risk is efficient because it leads to
13We set the parameters (α10, α11, α12, α13, α20, α21, α22, α23, a, b) at their maximum likelihood parameter es-

timates, obtained using the same dataset as for the marginal MES. The corresponding estimated values are
(0.149, 0.065, 0.075, 0.855, 0.057, 0.001, 0.268, 0.786, 0.041, 0.754). The unconditional correlation is still set to 0.663.
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precise inference, even for small T and n. The robust UC test statistic has an empirical size that is

generally close to the nominal size, typically about 4% for T = 250 and n = 500. The robust IND

test statistic is slightly over-sized for finite sample sizes. Third, our backtests display good power

performance. The UC tests generally detect well the misspecified alternatives B1, B2, and B3, and

we verify that there is a general improvement in power as the sample size n increases, suggesting

that these tests are consistent for these alternatives. Fourth, the results on the empirical power

suggest complementarity between UC and IND tests. As in the unconditional case, the UC test

displays good power performance against alternatives B1, B2, and B3, while the empirical power of

the IND test is still very low, except for large risk undervaluations. By definition, the IND backtest

demonstrates better abilities to detect misspecification errors in model dynamics. Under alternative

B4, the IND test has an empirical power that is almost twice that of the UC test. As observed in

the VaR backtesting literature (Christoffersen, 1998), the combination of UC and IND tests permits

the detection of a larger spectrum of potential misspecifications in the dynamic models.

TABLES 1-2 ABOUT HERE

4 Backtesting other systemic risk measures

A great advantage of our backtesting approach lies in its simple extension to any systemic risk

measures defined as a function of the MES or the CoVaR. In the sequel, we focus our analysis on

the SES of Acharya et al. (2017), the SRISK of Acharya et al. (2012) and Brownlees and Engle

(2017), and the ∆CoVaR of Adrian and Brunnermeier (2016), as they are the most prominent in

the literature.14

4.1 Backtesting SES and SRISK

Brownlees and Engle (2017) define the SRISK as the expected capital shortfall of a financial insti-

tution, conditional on a crisis affecting the entire financial system. The capital shortfall, denoted

CS1t, is defined as the capital reserves that the firm needs to hold to conform with regulation

and/or prudential management minus firm equity. Formally, we define the capital shortfall of the

firm indexed by 1 on day t as CS1t = k (L1t +W1t) −W1t, where L1t is the book value of debt,

W1t is the market value of firm equity, and k is a prudential ratio. We define a systemic event as a
14Our backtests apply to many other measures, such as the ∆CoVaR proposed by Girardi and Ergün (2013), the

component expected shortfall (CES) of Banulescu and Dumitrescu (2015), or the delta conditional expected shortfall
(∆CoES) of Ferreiro (2018), among others. However, they cannot be applied to the class of network systemic risk
measures, such as those proposed by Billio et al. (2012) or Hué et al. (2019).
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market decline below a given threshold over a time horizon h. Denote by Ỹt+h = (Ỹ1t+h, Ỹ2t+h)′, or

equally by Yt+1:t+h = (Y1t+1:t+h, Y2t+1:t+h)′, the vector of multi-period arithmetic firm and market

returns between t + 1 and t + h and by Ṽ aR2t+h ≡ V aR2t+1:t+h (α) the corresponding α-VaR of

Ỹ2t+h used as the market threshold. We define the SRISK of the firm on day t for an horizon h as

SRISK1t (h) = Et(CS1t+h| Ỹ2t+h < Ṽ aR2t+h (α))

= kEt(L1t+h| Ỹ2t+h < Ṽ aR2t+h (α))− (1− k)Et(W1t+h| Ỹ2t+h < Ṽ aR2t+h (α)),

where Et(.) denotes the conditional expectation with respect to Ωt. To compute this expectation,

Brownlees and Engle assume that the debt is constant during a systemic event, i.e., Et(L1t+h| Ỹ2t+h <

Ṽ aR2t+h (α)) = L1t. Furthermore, they introduce the concept of long-run marginal expected short-

fall (LRMES) to compute the expected market value of the firm. The LRMES is simply a MES

defined in terms of cumulative returns after h periods:15

MES1t (α;h) = Et(Ỹ1t+h|Ỹ2t+h < Ṽ aR2t+h (α)).

Thus, we get Et(W1t+h| Ỹ2t+h < Ṽ aR2t+h (α)) = Wit(1 + Et(Ỹ1t+h|Ỹ2t+h < Ṽ aR2t+h (α))), and

finally, the SRISK is defined as16

SRISK1t (h) = k L1t − (1− k)W1t(1 +MES1t (α;h)). (6)

A similar systemic risk measure, the SES, is proposed by Acharya et al. (2017). The SES represents

the amount that a bank equity drops below its target level (defined as a fraction k of assets) in

the event of a systemic crisis when the aggregate capital is less than k times the aggregate assets.

Acharya et al. (2017) provide theoretical justification for how SES relates to MES and show that:

SES1t (h) = (k LV1t − 1−Π MES1t (α;h) + ∆) W1t,

where Π and ∆ are two constant terms with Π > 0 and LV1t = (L1t + W1t)/W1t denotes the

quasi-leverage ratio.

These two formulas show how the SRISK and the SES extend the LRMES to take into account

both the liabilities and the size of the financial institution. Assuming that the level of debt cannot

be negotiated in the case of a systemic event implies that the level of debt is known at time t. Thus,
15For h = 1, the LRMES boils down to the MES given by Equation (1).
16Equation (6) is similar to the definition reported by Brownlees and Engle (2017) in Equation (1) (page 52) of

their paper, except that we do not adopt the same sign convention for the MES. Here, we have defined the MES as
a negative quantity according to our Equation (1).
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the need for inference for these risk measures comes only from the expected value of the firm at

horizon h, which can break down into an initial value known at time t and the long-run MES. More

generally, we define a MES-based systemic risk measure as a risk measure for which the need for

inference comes only from its MES component.

Definition 5 A MES-based systemic risk measure RM1t (h) for firm 1 at time t and for an horizon

h ≥ 1 is defined as a deterministic function of the (long-run) MES with

RM1t (h) = gt(MES1t (α;h) , Xt),

where gt (.) is a monotonic (in MES) function and Xt is a set of variables that belong to Ωt.

By definition, testing the validity of any MES-based systemic risk measure is equivalent to

testing the validity of the LRMES itself. The intuition is as follows. We can rewrite any MES-based

risk measure as a function of the CoVaR (defined in terms of cumulative returns), with

RM1t (h) =

∫ 1

0
gt(CoṼ aR1t+h (β, α, θ0) , Xt)dβ.

This expression is similar to that obtained for the MES in Equation (3). Furthermore, the violation

process ht(α, β, θ0, Xt) associated with the quantity gt(CoṼ aR1t+h (β, α, θ0) , Xt) is equivalent to

the violation process ht(α, β, θ0) associated with the CoVaR, CoṼ aR1t+h (β, α, θ0): both binary

processes will take value 1 on the same dates. Thus, the cumulative joint violation process used

to backtest the SRISK, the SES, or any MES-based measure is equivalent to the cumulative joint

violation process used to backtest the MES itself (see Appendix G). As a consequence, the UC and

IND tests are identical to those reported in Section 3.

To implement the aforementioned test statistics, we need to compute the cumulative violation

process Ht (α, θ0) associated with the joint distribution of the multi-period returns (Ỹ1t+h, Ỹ2t+h)

after h periods. For h > 1, it is generally not available in closed form for the class of standard

dynamic models (e.g., GARCH-type models) typically used for daily returns. The problem here is

similar for the estimation of the LRMES itself (see Brownlees and Engle, 2017, for more details).

However, it is straightforward to implement a simulation-based procedure to obtain an estimate of

the cdf of the joint distribution for any horizon h. In the empirical application, we simulate a large

number of paths of returns for the periods t+ 1 to t+h, conditional on the information available at

time t, and we compute the corresponding cumulative returns. Then, we apply a kernel estimator

to the simulated cumulative returns to estimate the cdf of their joint distribution.
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4.2 Backtesting ∆CoVaR

Our testing procedure can be extended to assess the validity of the ∆CoVaR (Adrian and Brun-

nermeier, 2016). In the sequel, we define this indicator as the difference between the conditional

VaR (CoVaR) of an institution conditional on the financial system being in distress and the CoVaR

conditional on the financial system being in its median state.17 Adrian and Brunnermeier define the

stress for the financial system as a situation in which the market return Y2t is equal to its V aR2t (α)

and consider a quantile regression model for the estimation of the CoVaR. A more general approach

consists of defining the financial stress as a situation in which Y2t ≤ V aR2t(α), as in Girardi and

Ergün (2013). In both cases, we can estimate the CoVaR with M-GARCH-type models and some

usual results about truncated distributions. Similarly, we can represent the normal or median state

of the system by a situation in which V aR2t(βinf) ≤ Y2t ≤ V aR2t(βsup), with α < βinf < βsup, for

instance βinf = 25% and βsup = 75%. Formally, if we denote by Y2t the return of a portfolio of

financial institutions (financial system), then the ∆CoVaR of the financial firm is given by18

∆CoVaRt (α) = CoV aR1t(α, α, θ0)− CoV aR1t(α, βinf , βsup, θ0), (7)

where CoV aR1t(α, α, θ0) (hereafter, stressed CoVaR) verifies Pr(Y1t ≤ CoV aR1t(α, α, θ0)|Y2t ≤

V aR2t(α, θ0); Ωt−1) = α and CoV aR1t(α, βinf , βsup, θ0) (hereafter, median CoVaR) verifies Pr(Y1t ≤

CoV aR1t(α, βinf , βsup, θ0)|V aR2t(βinf , θ0) ≤ Y2t ≤ V aR2t(βsup, θ0); Ωt−1) = α. To backtest the

stressed CoVaR and the median CoVaR, we define two violations through the following binary pro-

cesses: ht(α, α, θ0) = 1((Y1t ≤ CoV aR1t(α, α, θ0))∩(Y2t ≤ V aR2t(α, θ0))), and ht(α, βinf , βsup, θ0) =

1((Y1t ≤ CoV aR1t(α, βinf , βsup, θ0)) ∩ (V aR2t(βinf , θ0) ≤ Y2t ≤ V aR2t(βsup, θ0))). The logic of the

test is then similar to that used for backtesting the MES. If the risk model is correctly speci-

fied, the two violation processes satisfy the mds property with E
(
ht(α, α, θ0)− α2

∣∣Ωt−1

)
= 0 and

E( ht(α, βinf , βsup, θ0)− α(βsup − βinf)|Ωt−1) = 0. By exploiting the mds property, we can propose

various types of backtests for the ∆CoVaR or for each of its constituents. As for the MES, we

consider an unconditional coverage test with the following joint null hypothesis:

H0,UC : E (ht(α, βinf , βsup, θ0)) = µ,

17Adrian and Brunnermeier provide various definitions of CoVaR depending on the direction of the conditioning.
To maintain consistency with the conditioning event used in the MES definition, we consider hereinafter the indicator
referred to as Exposure-∆CoVaR, which is a measure of an individual institution’s exposure to system-wide distress.

18Adrian and Brunnermeier deal with the special case in which βinf = βsup = 0.5, implying that the
CoV aR1t (α, βinf , βsup, θ0) is null. For ease of presentation, we only present the ∆CoVaR at horizon h = 1.
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where ht(α, βinf , βsup, θ0) = (ht(α, α, θ0), ht(α, βinf , βsup, θ0))′ denotes the vector of violations, and

where µ =
(
α2, α (βsup − βinf)

)′. Here, the intuition is similar to the backtests proposed for the

multi-level VaR, i.e., the VaR defined for a finite set of coverage rates (see Francq and Zakoïan,

2016, for estimation issues). We can cite the tests proposed by Hurlin and Tokpavi (2006), Pérignon

and Smith (2008), Colletaz et al. (2013), Leccadito et al. (2014), and Wied et al. (2016), among

others. These multi-level VaR backtesting procedures have been recently adapted to test the validity

of ES forecasts by Kratz et al. (2018) and Couperier and Leymarie (2018). Given this joint null

hypothesis, we consider a Wald test statistic with

UC∆CoVaR = n
(
h(α, βinf , βsup, θ̂T )− µ

)′
γ−1

(
h(α, βinf , βsup, θ̂T )− µ

)
,

where h(α, βinf , βsup, θ̂T ) denotes the out-of-sample mean of ht(α, βinf , βsup, θ̂T ) and γ is the condi-

tional variance-covariance matrix of ht(α, βinf , βsup, θ0) such that

γ =

(
α2(1− α2) −α3(βsup − βinf)

−α3(βsup − βinf) α(βsup − βinf)(1− α(βsup − βinf))

)
.

Under the null hypothesis, the sequence {ht(α, βinf , βsup, θ0) − µ}T+n
t=T+1 is a mds with variance

equal to γ. Thus, the Lindeberg-Levy central limit theorem implies that UC∆CoVaR converges to

a chi-squared distribution with two degrees of freedom when we evaluate the test statistic in θ0

instead of θ̂T . The asymptotic distribution remains valid for the feasible statistic UC∆CoVaR ≡

UC∆CoVaR(θ̂T ) as soon as T → ∞ and n → ∞, with λ = n/T → 0, i.e., without estimation

risk. The proof is reported in Appendix H. In the general case n/T → λ < ∞, the test statistic

UC∆CoVaR is no longer chi-squared distributed. However, by considering the same reasoning as

in Section 3, we can derive a robust test statistic UCC∆CoVaR that has an asymptotic chi-squared

distribution regardless of the values n and T . Monte Carlo simulations show that the robust test

statistic provides satisfactory size performance regardless of the sample size (see Table 3).

Finally, if the ∆CoVaR risk model fails the UC test, it is worth examining whether this rejection

is due to the the CoVaR of the distress state of the financial system (stressed CoVaR) and/or of the

median state of the financial system (median CoVaR). To identify the origin of the error, we propose

two UC sub-tests defined as Hdistress
0,UC : E (ht(α, α, θ0)) = α2 and Hmedian

0,UC : E (ht(α, βinf , βsup, θ0)) =

α (βsup − βinf). The testing procedure is then similar to that previously described.
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5 Empirical application

In the section, we apply our UC and IND backtests to a panel of U.S. financial institutions to assess

the validity of MES, SRISK, and ∆CoVaR. In the first part, we describe the data and the empirical

setup, with a special focus on the multiple testing problem. In the second part, we apply our UC

and IND backtests and present our empirical results for short-term (one day) and medium-term

(one month) systemic risk forecasts.

5.1 Data description and empirical setup

Our study focuses on the same panel of large U.S. financial institutions as that considered by Brown-

lees and Engle (2017). The dataset contains all U.S. financial firms with a market capitalization

greater than 5 billion dollars as of the end of June 2007 and covers the period from January 3, 2000,

to December 30, 2016. The panel is unbalanced because some companies were not traded continu-

ously during the sample period (for instance, Lehman Brothers after its bankruptcy on September

15, 2008). The corresponding list of tickers and company names is reported in Appendix I. For each

firm in the panel, we compute the daily logarithmic returns and market capitalization from CRSP

data, and we consider the daily CRSP market value-weighted index return as the market return.

For the SRISK, we collect the quarterly book value of total liabilities from Compustat.

To model the systemic indicators, we use a GARCH-DCC model as in Brownlees and Engle

(2017), Engle et al. (2015), Idier et al. (2014), and Acharya et al. (2012), among others. We estimate

the parameters by maximum likelihood over the T in-sample daily observations assuming a normal

joint distribution. We consider two types of estimation schemes: (i) a rolling-window scheme and

(ii) a recursive scheme.19 In the rolling-window scheme, we estimate the parameters using the most

recent T daily observations up to the end of each month. Here, we consider a 2-year rolling window

with T = 500. In the recursive scheme, we estimate the parameters using all available information

from January 3, 2000, up to the end of each month. As a result, we observe a gradual increase in T

as we move forward in the exercise. For each company, we compute MES, SRISK, and ∆CoVaR at

the end of each month from January 2005 to December 2016. As in Brownlees and Engle (2017),

we only consider positive estimates for the SRISK because it represents a capital shortfall, and the

negative values are set to zero. Finally, we compute the systemic risk forecasts at coverage level α

equal to 5%, and the prudential capital ratio k is set to 8%.
19The Stern-NYU V-Lab website uses the recursive estimation scheme to compute the SRISK for a large set of

U.S. and European financial firms.

24



Our empirical assessment requires testing several hypotheses simultaneously. Each month, we

apply (a maximum of) 95 backtests representing the maximum number of firms in our panel. This

framework causes a multiple testing problem.20 To that end, we use a controlling method based on

the Family Wise Error rate (FWE). It allows control for the probability of erroneously rejecting at

least one of the null hypotheses (UC or IND) among the institutions. In the sequel, we consider

the Bonferroni procedure, which provides a strong control of the FWE (Romano et al., 2008). The

method is applied as follows. Denote by γ the significance level used for a single backtest and by

M the number of backtests to be applied simultaneously, with typically M ≤ 95 in our case. For

each individual backtest, i.e., each firm s = 1, . . . ,M , we compute an individual p-value ps, and we

reject the null hypothesis at level γ if ps < γ/M for all backtests.

5.2 Empirical results for short-term MES and SRISK forecasts

In this section, we apply our backtests to assess the validity of MES and SRISK by considering a

forecasting time horizon of one day, i.e., h = 1. We evaluate the empirical validity of these indicators

for Bank of America (BAC), JP Morgan (JPM), American International Group (AIG), and Lehman

Brothers (LEH). Figure 1 displays the case of the UC hypothesis and Figure 2 presents the case of

the IND hypothesis. The rejection of the null hypothesis at a 5% significance level is represented

by shaded areas. Finally, the backtests are computed with n = 250 out-of-sample observations.21

For each of these firms, Figures 1 and 2 display the one-day-ahead forecasts of the MES (blue

line) and SRISK (red line) issued from a recursive estimation window. The figures reveal that both

MES and SRISK increase during periods of financial instability, particularly during the subprimes

crisis (2008-2009) and the European debt crisis (2011-2012). At first glance, these measures capture

well the impact of the financial crisis on the capital shortfalls of these four institutions. However,

this statement is less clear when one considers the empirical validity of these indicators. Figure 1

highlights a significant number of rejections of the UC hypothesis during the 2008-2009 financial

crisis, and as a result, one can question the validity of the unconditional coverage property during

this period. The GARCH-DCC model produces short-term MES forecasts that are associated with

cumulative violations that are not observed with the right out-of-sample frequency. Furthermore,
20We only control for the multiple testing problem in the cross-sectional dimension. We have decided to not control

for the multiple testing problem in the time series dimension, as we do not aim to provide a "global test" over the
whole period.

21For ease of presentation, we only report the backtests that are robust to estimation risk. Overall, the unadjusted
backtests display more rejections, especially for the rolling estimation scheme, as the ratio λ = n/T increases. The
corresponding results are available upon request.
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we note for Lehman Brothers severe rejections of the unconditional coverage hypothesis just before

its bankruptcy, indicating a sharp change in its market conditions. For the rest of the sample, the

unconditional coverage hypothesis is generally not rejected, and we can conclude that MES and

SRISK forecasts disclose the true level of systemic risk.

Figure 2 looks at the empirical validity of the IND hypothesis. The Box-Pierce test statistic is

computed for a lag order m = 5. Strikingly, the cluster of rejections of the UC hypothesis observed

during the global financial crisis is no longer experienced for the IND hypothesis. Instead, we observe

for AIG and BAC a cluster of rejections of the independence hypothesis during the European debt

crisis. The two statistics take alternative approaches to identify measurement errors that allow for

the separate detection of the two recent episodes of financial market instability. Furthermore, we also

identify for JPM (and to a lesser extent for BAC and AIG) several rejections of the IND hypothesis

in 2016-2017, which should warn regulators of the difficulties encountered by MES and SRISK in

capturing the correct dynamics of the firms and market returns in recent years. In Appendix J, we

provide various robustness check exercises by considering (i) a rolling window estimation scheme

and (2) a larger out-of-sample size, with n = 500. We observe the same overall findings.

FIGURES 1-2 ABOUT HERE

To complete this study, we compute the UC and IND backtests for the full list of tickers and

report the rejection frequencies of the tests. As discussed above, we apply both tests for up to

95 firms simultaneously, and we implement a controlling method to address the multiple testing

problem. Figure 3 displays the rejection rates of the UC test (top panel) and of the IND test (bottom

panel) adjusted via the Bonferroni controlling method. We still consider a recursive estimation

scheme and n = 250 out-of-sample observations. The UC hypothesis is rejected for 20% to 40%

of the firms in the panel during the 2008-2009 subprime crisis. The GARCH-DCC model fails to

capture the average level of systemic risk in times of crisis for a large set of firms. Our results are

consistent with Danielsson et al. (2016), who show that daily risk forecasts are subject to significant

model risk during periods of financial distress, which are unfortunately when they are most needed.

We observe less pronounced rejections of the IND hypothesis, and the 2008-2009 financial crisis is

no longer identified. Thus, the non-autocorrelation property of the violations is more easily satisfied

than the unconditional coverage in global market distress situations. However, we observe up to

20% of rejections during the European debt crisis. Finally, we also highlight a cluster of rejections

of the independence assumption at the end of the sample period, i.e., 2015-2017.
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Finally, we display in Figure 4 the results obtained for n = 500, i.e., twice the previous out-of-

sample size. The UC and IND backtests identify the same periods of invalid risk forecasts, but the

rejections are more frequent and more important due to the large size n that increases the power

of the tests. In this situation, we observe up to 80% of rejections of the UC hypothesis during

the global financial crisis, providing evidence of the failure of the GARCH-DCC model to deliver

valid systemic indicators for most of the financial institutions during this period. We obtain similar

results when considering a rolling estimation scheme (see Appendix J).

FIGURES 3-4 ABOUT HERE

5.3 Empirical results for medium-term forecasts

Due to the difficulty for banks of immediately adjusting their capital structure, it is generally

preferable to forecast systemic risk at a longer horizon than a single day. Here, we follow Brownlees

and Engle (2017) and consider a forecasting horizon of one month, i.e., h = 22 days, for LRMES and

SRISK. Appendix K provides a detailed description of the method used to compute both measures

over a time horizon h > 1. However, the use of a longer forecasting horizon implies drastically

increasing the size of the out-of-sample dataset used to assess the unconditional coverage property.

Indeed, as we consider cumulative firm and market returns Ỹt+h ≡ Yt+1:t+h, the computation of

only one observation of the cumulative violation process Ht(α, θ̂T ) requires h observations of daily

returns. Because the UC test statistic defined in Equation (5) depends on the out-of-sample mean

of the violations Ht(α, θ̂T ), its computation requires n×h daily observations. For instance, one year

of out-of-sample observations (250 daily observations) and a forecasting horizon of 22 days allows

us to compute only 11 observations of Ht(α, θ̂T ). To obtain 100 observations of Ht(α, θ̂T ), we need

about 9 years of daily returns. As the UC test statistic converges with n, this is clearly problematic.

To address this issue, we propose a backtesting framework with overlapping blocks of data.

Figure 5 summarizes the procedure for the case of h = 22. Instead of considering the sequence of

cumulative returns {Y1:22, Y23:44, . . . } (in blue) to compute the violations, we consider the sequence

{Y1:22, Y12:33, Y23:44, . . . } for which two subsequent cumulative returns share a common component

of 11 daily returns (in blue and red). We can view this method as a rolling window procedure

applied to the out-of-sample observations that increases the number of observations available for

the out-of-sample assessment and the power of our test. Obviously, it also creates dependence across
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the violations Ht(α, θ̂T ).22 Therefore, the property of independence of the cumulative joint violation

process is no longer satisfied, and thus we cannot apply the IND backtest in this case.

Figure 6 reports the rejection frequencies of the UC backtest for SRISK (and LRMES) calculated

for the full panel of firms. We estimate the GARCH-DCC parameters either with a recursive

estimation (top panel) or with a rolling-window scheme (bottom panel). For each case, we assess the

empirical validity of SRISK over a time horizon h = 22 with n = 100 out-of-sample observations,

requiring 1111 daily log returns given the 11-day overlap window.23 As mentioned above, the

significance level is adjusted via the Bonferroni controlling method. We find that the one-month-

ahead SRISK forecasts issued by the GARCH-DCC model are generally valid. For both estimation

schemes, there are very few rejections of the UC hypothesis. Our findings differ drastically from

those associated with daily forecasts, where we found large rejection frequencies.

Such a difference should be interpreted with cautious. One the one hand, it could be the sign

that the risk model performs well at longer horizons, while it is less effective in capturing systemic

risk over short-term horizons. This interpretation is in line with that of Brownlees and Engle (2017)

who show that the predictive ability of SRISK is superior over longer horizons. On the other hand,

it may be indicative of the limits in the rejection capabilities of the test for longer horizons. Indeed,

the dependence induced by the overlapping scheme may decrease the power of the backtesting tests

when considering longer horizons.

Finally, we note that the rolling estimation setup is characterized by more rejections than the

recursive estimation setup. This highlights the fact that a widened sample period is more suitable

to capture the long-run dynamics.

FIGURES 5-6 ABOUT HERE

5.4 Empirical results for ∆CoVaR forecasts

This section is devoted to the empirical evaluation of the ∆CoVaR daily forecasts. We compute

the ∆CoVaR with probability levels α = 0.05, βinf = 0.25, and βsup = 0.75. As emphasized by
22If the overlapping is limited and generates only weak dependence across violations, the central limit theorem still

applies, and thus the UC test statistic remains normally distributed under the null. To correct the long-run variance
estimate, we consider an HAC estimator (Newey and West, 1987) for estimating the variance of the violation process.
Monte Carlo experiments (not reported) show that this adjusted test is well sized as soon as the overlap does not
exceed 11 trading days for h = 22.

23The joint distribution of the cumulative returns Ỹt+h ≡ (Y1t+1:t+h, Y2t+1:t+h)′ is not available in closed form,
and thus the derivative of their cdf is more difficult to compute numerically. For this reason, we do not compute the
robust statistics, and alternatively, we set T to 500 to limit the impact of estimation risk.
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Equation (7), if the ∆CoVaR does not successfully pass the test, it is interesting to know whether

this rejection stems from the CoVaR associated with the distress state (stressed CoVaR) or with the

median state (median CoVaR). Thus, we also report the two UC sub-tests associated with each type

of CoVaR to complete the analysis and identify which component of the ∆CoVaR is misspecified.

Figure 7 reports the forecasts of ∆CoVaR for AIG, BAC, JPM, and LEH and the rejection

regions of the UC backtest in shaded areas. For each firm, we observe that the ∆CoVaR predictions

increase in 2008-2009 and in 2012, suggesting that this indicator is sensitive to systemic events and

helpful for systemic risk monitoring. However, at the same time, we observe several rejections of

the unconditional coverage hypothesis for the ∆CoVaR forecasts. In this respect, our empirical

results associated with the ∆CoVaR and with the MES coincide fairly well. Such similarities are

not surprising given the relationship between MES and CoVaR described by Equation (3).24

To characterize which component of the ∆CoVaR is misspecified, Figures 8 and 9 report the

results for separate backtests of the stressed CoVaR and the median CoVaR, respectively. We find

that the CoVaR calculated in distress conditions generally increases more markedly during financial

crisis than the CoVaR evaluated in median conditions. Furthermore, we observe that the rejection

periods of the ∆CoVaR identified in Figure 7 coincide with those of the stressed CoVaR, while the

median CoVaR is overall not affected by misspecification (except for AIG). Thus, the GARCH-DCC

model has noticeable problems in properly estimating the CoVaR in case of the financial crisis, as

the corresponding frequency of out-of-sample violations is not correct.

Finally, the empirical assessment is extended to the full list of tickers. Figure 10 reports the

rejection rates of the 95 U.S. firms for the ∆CoVaR (top panel), the stressed CoVaR (middle

panel), and the median CoVaR (bottom panel). We implement the Bonferroni controlling method

and the corresponding results are based on a recursive estimation scheme and n = 250 out-of-sample

observations. Our results confirm that the rejections of the risk model are generally observed for

the ∆CoVaR and for the stressed CoVaR, while the validity of the median CoVaR is generally not

rejected. Furthermore, these rejections mainly occur during the 2008-2009 financial crisis, indicating

that the ∆CoVaR and the stressed CoVaR may be severely affected by forecasting errors during

crisis periods. We obtain similar results for n = 500 with more pronounced rejections (not reported).

FIGURES 7-10 ABOUT HERE
24In the same spirit, Benoit et al. (2013) theoretically show that the higher the correlation between the returns of

the SIFIs and the market are, the more likely it is that MES and CoVaR will lead to a convergent diagnostic.
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6 Early warning system

A by-product of our backtesting procedure is to provide an early warning system (EWS) indicator

that allows us to depict significant changes in the stability of the financial system. The idea is the

following: a given risk model, say a GARCH-DCC, is used to produce a systemic risk measure,

say MES or SRISK. If the model is correctly specified, we will observe the cumulative violations

with the right frequency, and we will not reject the null hypothesis of unconditional coverage. On

the contrary, if the model is misspecified and/or if the market conditions are likely to change, the

model produces invalid systemic risk measures. Let us define an adjusted systemic risk measure

produced by a potentially misspecified model but for which we do not reject the null hypothesis

of unconditional coverage. We can use the difference observed between adjusted and unadjusted

risk measures as a predictor of financial distress. This provides useful insights for monitoring the

financial system on a real-time basis.

In the same spirit as done for VaR or ES by Gouriéroux and Zakoïan (2013), Boucher et al. (2014)

or Lazar and Zhang (2019), we propose to adjust imperfect MES-based forecasts by considering the

mean property of the cumulative joint violation process. Formally, we define an adjusted coverage

level α̃ for the MES-based forecast such that the null hypothesis of unconditional coverage is valid,

i.e., E(Ht(α̃, θ0)) = α/2. If the risk model is correctly specified then α̃ = α. We can obtain a

feasible adjusted coverage level α̃ as the solution of the program

α̃ = arg min
α∈]0,1[

(
H̄(α, θ̂T )− α/2

)2
,

where H̄(α, θ̂T ) = (1/n)
∑T+n

t=T+1Ht(α, θ̂T ) denotes the mean of the cumulative joint violation pro-

cess and α/2 represents the expected value of the cumulative joint violation process under the

null hypothesis of correct unconditional coverage. Given the definition of α̃, the adjusted forecast

MES1t(α̃, θ̂T ) is valid as we observe the corresponding cumulative joint violations with the right

frequency. MES is appealing as an EWS because it reacts very quickly to changes in financial

market conditions through its short-run information content. Thereafter, we devise an adjustment

for MES, but we can easily generalize this adjustment to any MES-based systemic risk measure.

Considering the difference between the adjusted and unadjusted MES, we can build an indicator

that depicts the unexpected changes in market conditions and provides early warning signals of

distress in the financial system. Formally, this indicator, denoted EWSt (α, α̃), is defined as

EWSt (α, α̃) = MES1t(α̃, θ̂T )−MES1t(α, θ̂T ).
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This quantity depicts the magnitude of model misspecification at time t expressed in terms of

systemic risk and represents the unexplained systemic risk component not anticipated by market

practitioners. In line with our notations, a positive value of EWSt (α, α̃) induces an unexpected

growth in systemic risk, while a negative value indicates an unexpected decline in systemic risk.

Figure 11 reports the indicator EWSt (α, α̃) for AIG, BAC, JPM, and LEH. The results are

reported using a recursive window estimation scheme and n = 250 out-of-sample observations. In

line with our previous results, we observe a large increase in EWSt (α, α̃) during the 2007-2009

financial crisis and to a lesser extent during the European debt crisis. During these periods, the

GARCH-DCC model is unable to provide valid systemic risk forecasts, and an adjustment of the

coverage rate is required to get acceptable measures. Interestingly, we also observe a sharp increase

in this indicator for Lehman Brothers at the beginning of 2007, substantially before its bankruptcy.

Finally, we perform the same exercise at an aggregated level, that is, summing our indicator over

the 95 U.S. firms in our panel. Our aim is to evaluate the ability of the EWS for the financial system

as a whole. Figure 12 displays the aggregated EWSt (α, α̃). Our results are consistent to those

observed at the firm level. There is a large increase of the indicator during the global financial crisis.

This increase starts in mid-2007 confirming the ability of our indicator to detect reversals early. The

highest value of our aggregated early warning indicator, 3.23, is observed in September 2008 and

coincides with the collapse of Lehman Brothers. Similar results are obtained when considering a

rolling window estimation scheme, and using n = 500 for the out-of-sample period.

In their recent work, Brownlees et al. (2020) evaluate the ability of CoVaR and SRISK to provide

early warning signals of distress in the financial system. They conclude that even if CoVaR and

SRISK may be helpful for identifying systemic institutions in periods of distress, neither indicator

would be efficient for predicting when the next crisis is likely to occur. Our approach here is

complementary: by examining the number of violations experienced by a systemic risk indicator,

our aim is to detect systemic risk measurement errors caused by changes in global market conditions.

FIGURES 11-12 ABOUT HERE

7 Conclusion

This article develops a statistical procedure to backtest systemic risk measures. The tests are

built-up in analogy with the recent backtests for ES proposed by Du and Escanciano (2017). Our

procedure is consistent with the testing strategies applied by risk managers to assess the validity of
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market risk measures such as VaR and ES. Its implementation is easy since it only implies evaluating

a cdf of a bivariate distribution. Furthermore, it allows performing a separate test for unconditional

coverage and independence hypothesis (Christoffersen, 1998). Monte Carlo simulations show that

for realistic sample sizes, the tests have good finite sample properties. Also, we pay particular

attention to the consequences of estimation risk and derive a robust version of the test statistics.

We apply our backtests to large U.S. financial institutions considering a GARCH-DCC model

for modeling systemic risk. We find that the short-term forecasts of systemic risk (one-day-ahead

forecasts) do not satisfy the unconditional coverage hypothesis during the 2007-2009 financial crisis.

The risk model does not capture the true level of systemic risk on a short-term basis, and it is

not possible to accurately conclude which institution is (systemically) riskier than another, or to

determine the right level of regulatory capital for the SIFIs. In contrast, we observe for longer

forecasting horizons (one-month-ahead forecasts) that the unconditional coverage hypothesis is no

longer rejected. Our overall recommendation for users of these tools, first and foremost academics

and regulators, is assessing ex ante the validity of the risk forecasts before providing any interpre-

tation of bank exposure to systemic risk.

As a by-product of our backtesting methodology, we develop a procedure that adjusts misleading

systemic risk predictions. The technique consists of modifying the coverage level of a MES-based risk

measure through the severity of the market distress event, such that the adjusted indicator satisfies

the unconditional coverage assumption. This technique has been used for market risk measures such

as ES and VaR (Boucher et al., 2014; Lazar and Zhang, 2019, etc.), but to date, it has not been

available for systemic risk measures. To illustrate the merit of our method, we introduce an EWS

indicator defined as the difference between the misleading forecast and its adjusted counterpart.

Our EWS exhibits a sharp increase before the early signs of the crisis and takes its highest value

during the historic collapse of Lehman Brothers. As a forward-looking measure, it may complete

the toolbox used by academics and regulators to capture the accumulation of systemic risk and

improve the allocation efficiency of regulatory capital among banks.
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TABLES

Table 1: Empirical rejection rates for backtesting MES(5%) at 5% nominal level (marginal case)
T = 250, n = 250 T = 250, n = 500

UCMES UCC
MES INDMES INDC

MES UCMES UCC
MES INDMES INDC

MES

H0 0.0809 0.0499 0.0895 0.0728 0.1199 0.0553 0.0795 0.0626
H1(A1) τ = 25% 0.0909 0.0906 0.0479 0.0467 0.1037 0.1042 0.0446 0.0484

τ = 50% 0.2010 0.1886 0.0413 0.0408 0.2460 0.2250 0.0482 0.0462
τ = 75% 0.3824 0.3516 0.0386 0.0344 0.5021 0.4436 0.0460 0.0418

H1(A2) τ = 25% 0.2129 0.2359 0.0364 0.0353 0.2794 0.3333 0.0417 0.0384
τ = 50% 0.7161 0.7174 0.0437 0.0220 0.8862 0.8912 0.0808 0.0346
τ = 75% 0.9877 0.9830 0.1848 0.0165 0.9993 0.9984 0.4400 0.0296

H1(A3) τ = 25% 0.1351 0.1291 0.0407 0.0391 0.1533 0.1487 0.0455 0.0440
τ = 50% 0.2676 0.2462 0.0365 0.0337 0.3497 0.3095 0.0460 0.0424
τ = 75% 0.4032 0.3590 0.0368 0.0340 0.5218 0.4409 0.0456 0.0388

T = 500, n = 250 T = 500, n = 500

UCMES UCC
MES INDMES INDC

MES UCMES UCC
MES INDMES INDC

MES

H0 0.0648 0.0473 0.0891 0.0774 0.0898 0.0509 0.0755 0.0652
H1(A1) τ = 25% 0.1014 0.1006 0.0437 0.0450 0.1111 0.1113 0.0437 0.0441

τ = 50% 0.2161 0.2079 0.0391 0.0389 0.2751 0.2617 0.0446 0.0397
τ = 75% 0.4115 0.3904 0.0394 0.0358 0.5572 0.5146 0.0452 0.0393

H1(A2) τ = 25% 0.2372 0.2526 0.0327 0.0352 0.3481 0.3846 0.0460 0.0464
τ = 50% 0.7524 0.7556 0.0438 0.0319 0.9365 0.9411 0.0826 0.0550
τ = 75% 0.9942 0.9932 0.1774 0.0497 0.9998 0.9998 0.4554 0.1408

H1(A3) τ = 25% 0.1379 0.1355 0.0375 0.0383 0.1814 0.1740 0.0393 0.0393
τ = 50% 0.2813 0.2648 0.0347 0.0311 0.3905 0.3637 0.0420 0.0373
τ = 75% 0.4231 0.3963 0.0367 0.0314 0.5765 0.5310 0.0447 0.0399

T = 2500, n = 250 T = 2500, n = 500

UCMES UCC
MES INDMES INDC

MES UCMES UCC
MES INDMES INDC

MES

H0 0.0540 0.0503 0.0883 0.0851 0.0581 0.0498 0.0773 0.0724
H1(A1) τ = 25% 0.0971 0.0971 0.0420 0.0402 0.1204 0.1189 0.0446 0.0447

τ = 50% 0.2169 0.2144 0.0422 0.0389 0.3122 0.3079 0.0417 0.0406
τ = 75% 0.4287 0.4239 0.0373 0.0325 0.6130 0.6018 0.0432 0.0402

H1(A2) τ = 25% 0.2515 0.2544 0.0344 0.0346 0.4008 0.4125 0.0411 0.0443
τ = 50% 0.7961 0.7968 0.0444 0.0414 0.9656 0.9669 0.0796 0.0775
τ = 75% 0.9974 0.9973 0.1666 0.1336 1.0000 1.0000 0.4319 0.3710

H1(A3) τ = 25% 0.1421 0.1409 0.0416 0.0402 0.1893 0.1875 0.0417 0.0427
τ = 50% 0.2874 0.2824 0.0354 0.0324 0.4357 0.4251 0.0439 0.0430
τ = 75% 0.4331 0.4281 0.0329 0.0301 0.6487 0.6367 0.0423 0.0401

Note: This table displays the Monte Carlo results associated to the marginal MES setting. UCMES and
INDMES denote the unconditional coverage test and independence test, respectively. The test statistics
robust to estimation risk are superscripted by C. For the independence test, we consider a maximum lag
order m = 5. Reported powers are sized-corrected.
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Table 2: Empirical rejection rates for backtesting MES(5%) at 5% nominal level (conditional case)
T = 250, n = 250 T = 250, n = 500

UCMES UCC
MES INDMES INDC

MES UCMES UCC
MES INDMES INDC

MES

H0 0.1080 0.0460 0.1000 0.0590 0.1500 0.0400 0.1100 0.0530
H1(B1) τ = 25% 0.0780 0.0670 0.0400 0.0470 0.0820 0.0800 0.0400 0.0550

τ = 50% 0.1550 0.1540 0.0540 0.0480 0.1970 0.1980 0.0610 0.0630
τ = 75% 0.3090 0.2750 0.0430 0.0440 0.4470 0.3630 0.0480 0.0600

H1(B2) τ = 25% 0.1520 0.1850 0.0320 0.0250 0.2210 0.2730 0.0270 0.0310
τ = 50% 0.6490 0.6290 0.0310 0.0110 0.8500 0.7920 0.0530 0.0120
τ = 75% 0.9750 0.9100 0.1710 0.0020 0.9970 0.9540 0.3610 0.0040

H1(B3) τ = 25% 0.0970 0.1050 0.0410 0.0420 0.1180 0.1320 0.0390 0.0470
τ = 50% 0.2240 0.2060 0.0450 0.0490 0.3050 0.2820 0.0600 0.0620
τ = 75% 0.3190 0.2890 0.0450 0.0420 0.4600 0.3800 0.0490 0.0430

H1(B4) 0.2140 0.3170 0.4470 0.4690 0.2490 0.3710 0.5920 0.6460

T = 500, n = 250 T = 500, n = 500

UCMES UCC
MES INDMES INDC

MES UCMES UCC
MES INDMES INDC

MES

H0 0.0760 0.0430 0.0940 0.0600 0.0920 0.0360 0.0900 0.0610
H1(B1) τ = 25% 0.0810 0.0760 0.0470 0.0550 0.1050 0.1140 0.0470 0.0490

τ = 50% 0.1800 0.1680 0.0420 0.0450 0.2760 0.2790 0.0430 0.0420
τ = 75% 0.3810 0.3600 0.0530 0.0610 0.5360 0.5050 0.0570 0.0580

H1(B2) τ = 25% 0.2250 0.2460 0.0260 0.0330 0.3260 0.3940 0.0430 0.0380
τ = 50% 0.7340 0.7160 0.0420 0.0290 0.9310 0.9290 0.0680 0.0290
τ = 75% 0.9900 0.9770 0.1750 0.0140 1.0000 0.9960 0.3640 0.0140

H1(B3) τ = 25% 0.1090 0.1100 0.0450 0.0540 0.1630 0.1960 0.0420 0.0430
τ = 50% 0.2790 0.2670 0.0450 0.0540 0.3960 0.3880 0.0470 0.0400
τ = 75% 0.3830 0.3460 0.0320 0.0380 0.5790 0.5400 0.0500 0.0520

H1(B4) 0.2200 0.2880 0.4640 0.5030 0.2860 0.3850 0.5970 0.6390

T = 2500, n = 250 T = 2500, n = 500

UCMES UCC
MES INDMES INDC

MES UCMES UCC
MES INDMES INDC

MES

H0 0.0500 0.0410 0.0890 0.0810 0.0650 0.0380 0.0680 0.0590
H1(B1) τ = 25% 0.0980 0.1010 0.0540 0.0540 0.1000 0.0980 0.0480 0.0370

τ = 50% 0.2080 0.2080 0.0450 0.0440 0.3050 0.2990 0.0560 0.0510
τ = 75% 0.4120 0.4100 0.0330 0.0330 0.6190 0.6070 0.0590 0.0540

H1(B2) τ = 25% 0.2700 0.2810 0.0300 0.0280 0.4020 0.4220 0.0570 0.0580
τ = 50% 0.8200 0.8220 0.0420 0.0290 0.9680 0.9690 0.0870 0.0600
τ = 75% 0.9990 0.9980 0.1620 0.0640 1.0000 0.9990 0.4380 0.2270

H1(B3) τ = 25% 0.1380 0.1350 0.0280 0.0330 0.1940 0.2030 0.0560 0.0560
τ = 50% 0.2940 0.2910 0.0360 0.0340 0.4470 0.4460 0.0500 0.0430
τ = 75% 0.4630 0.4570 0.0380 0.0340 0.6160 0.6020 0.0520 0.0400

H1(B4) 0.2770 0.2960 0.4040 0.4200 0.2860 0.3210 0.6580 0.6660

Note: This table displays the Monte Carlo results associated to the conditional MES setting. UCMES and
INDMES denote the unconditional coverage test and independence test, respectively. The test statistics
robust to estimation risk are superscripted by C. For the independence test, we consider a maximum lag
order m = 5. Reported powers are sized-corrected.
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Table 3: Empirical rejection rates for backtesting ∆CoVaR at 5% nominal level (marginal case)
T = 250, n = 250 T = 250, n = 500

UC∆CoV aR UCC
∆CoV aR UC∆CoV aR UCC

∆CoV aR

H0 0.0766 0.0458 0.1051 0.0572
H1(A1) τ = 25% 0.3100 0.3637 0.4881 0.4966

τ = 50% 0.9002 0.9300 0.9941 0.9928
τ = 75% 1.0000 0.9999 1.0000 1.0000

H1(A2) τ = 25% 0.0585 0.0599 0.0555 0.0686
τ = 50% 0.0681 0.0748 0.1001 0.1292
τ = 75% 0.0938 0.1492 0.2513 0.3323

H1(A3) τ = 25% 0.1027 0.1141 0.1449 0.1799
τ = 50% 0.2669 0.3026 0.4957 0.5299
τ = 75% 0.5644 0.5917 0.8471 0.8253

T = 500, n = 250 T = 500, n = 500

UC∆CoV aR UCC
∆CoV aR UC∆CoV aR UCC

∆CoV aR

H0 0.0601 0.0396 0.0806 0.0525
H1(A1) τ = 25% 0.3534 0.3922 0.5325 0.5341

τ = 50% 0.9336 0.9467 0.9974 0.9969
τ = 75% 1.0000 1.0000 1.0000 1.0000

H1(A2) τ = 25% 0.0493 0.0501 0.0541 0.0634
τ = 50% 0.0735 0.0798 0.1180 0.1278
τ = 75% 0.1313 0.1635 0.3234 0.3444

H1(A3) τ = 25% 0.1109 0.1210 0.1732 0.1886
τ = 50% 0.3085 0.3453 0.5299 0.5525
τ = 75% 0.5945 0.6273 0.8629 0.8613

T = 2500, n = 250 T = 2500, n = 500

UC∆CoV aR UCC
∆CoV aR UC∆CoV aR UCC

∆CoV aR

H0 0.0547 0.0468 0.0642 0.0522
H1(A1) τ = 25% 0.3769 0.3870 0.5723 0.5760

τ = 50% 0.9414 0.9421 0.9974 0.9973
τ = 75% 1.0000 1.0000 1.0000 1.0000

H1(A2) τ = 25% 0.0493 0.0529 0.0612 0.0677
τ = 50% 0.0715 0.0799 0.1234 0.1319
τ = 75% 0.1336 0.1512 0.3164 0.3457

H1(A3) τ = 25% 0.1100 0.1196 0.1864 0.1977
τ = 50% 0.3074 0.3349 0.5794 0.5933
τ = 75% 0.6112 0.6361 0.8943 0.9001

Note: This table displays the Monte Carlo results for the ∆CoVaR associated to a time-invariant setting as
defined in Subsection "Backtesting marginal MES". UC∆CoV aR denotes the unconditional coverage test for
∆CoVaR. The probability levels are set to α = 0.05, βinf = 0.25, and βsup = 0.75. The test statistic robust
to estimation risk is superscripted by C. Reported powers are sized-corrected.
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FIGURES

Figure 1: UC backtests for one-day risk forecast horizon (recursive estimation, n = 250)

Note: This figure displays the daily MES (blue line), the daily SRISK (red line) and the rejection dates
(shaded area) of the UC backtest at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 250
out-of-sample observations and a recursive scheme for parameter estimation. Reported results are robust to
estimation risk.

Figure 2: IND backtests for one-day risk forecast horizon (recursive estimation, n = 250, m = 5)

Note: This figure displays the daily MES (blue line), the daily SRISK (red line) and the rejection dates
(shaded area) of the IND backtest at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 250
out-of-sample observations and a recursive scheme for parameter estimation. We consider a maximum lag
order m = 5. Reported results are robust to estimation risk.
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Figure 3: Rejection rates of UC and IND backtests (recursive estimation, n = 250, m = 5)

Note: This figure displays the rejection rates of the UC backtest (top panel) and IND backtest (bottom
panel) at 5% significance level for the full list of tickers. We use n = 250 out-of-sample observations, a
recursive scheme for parameter estimation, and a Bonferroni correction for multiple testing. We consider a
maximum lag order m = 5. Reported results are robust to estimation risk.

Figure 4: Rejection rates of UC and IND backtests (recursive estimation, n = 500, m = 5)

Note: This figure displays the rejection rates of the UC backtest (top panel) and IND backtest (bottom
panel) at 5% significance level for the full list of tickers. We use n = 500 out-of-sample observations, a
recursive scheme for parameter estimation, and a Bonferroni correction for multiple testing. We consider a
maximum lag order m = 5. Reported results are robust to estimation risk.
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Figure 5: Overlapping procedure

Note: This figure provides an illustration of the overlapping procedure. The variables {Y1:22, Y12:33, . . .}
represent the successive out-of-sample returns considered in the test to backtesting h-day-ahead systemic
risk forecasts with h = 22.

Figure 6: Rejection rates of UC backtests (n = 100, h = 22, overlap of 11 days)

Note: This figure displays the rejection rates of the UC backtest at 5% significance level for the full list of
tickers. We use a recursive scheme (top panel) and a rolling scheme with T = 500 observations (bottom
panel) for parameter estimation. We consider a forecasting horizon h = 22, an overlap of 11 trading days,
n = 100 out-of-sample observations, and a Bonferroni correction for multiple testing.

Figure 7: UC backtests for ∆CoVaR (recursive estimation, n = 250)

Note: This figure displays the daily ∆CoVaR (blue line) and the rejection dates (shaded area) of the UC
backtest at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 250 out-of-sample observations
and a recursive scheme for parameter estimation. Reported results are robust to estimation risk.
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Figure 8: UC backtests for stressed CoVaR (recursive estimation, n = 250)

Note: This figure displays the daily stressed CoVaR (blue line) and the rejection dates (shaded area) of the
UC sub-test for stressed CoVaR at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 250
out-of-sample observations and a recursive scheme for parameter estimation. Reported results are robust to
estimation risk.

Figure 9: UC backtests for median CoVaR (recursive estimation, n = 250)

Note: This figure displays the daily median CoVaR (blue line) and the rejection dates (shaded area) of the
UC sub-test for median CoVaR at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 250
out-of-sample observations and a recursive scheme for parameter estimation. Reported results are robust to
estimation risk.
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Figure 10: Rejection rates for ∆CoVaR, stressed, and median CoVaRs (recursive estimation, n =
250)

Note: This figure displays the rejection rates of the UC backtest for ∆CoVaR (top panel), the UC sub-test
for stressed CoVaR (middle panel), and the UC sub-test for median CoVaR (bottom panel) at 5%
significance level for the full list of tickers. We use n = 250 out-of-sample observations, a recursive scheme
for parameter estimation, and a Bonferroni correction for multiple testing. Reported results are robust to
estimation risk.

Figure 11: EWSt (α, α̃) for a panel of four firms (recursive estimation, n = 250)
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Note: This figure displays the EWS (blue line) issued by the UC backtest at 5% significance level for AIG,
BAC, JPM, and LEH. We use n = 250 out-of-sample observations and a recursive scheme for parameter
estimation.
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Figure 12: Aggregated EWSt (α, α̃) (recursive estimation, n = 250)
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Note: This figure displays the aggregated EWS (blue line) issued by the UC backtest at 5% significance
level for the full list of tickers. We use n = 250 out-of-sample observations and a recursive scheme for
parameter estimation.
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8 Appendix

Appendix A: Assumptions

To derive the asymptotic properties of the test statistics and the robust test statistics, we introduce

the following assumptions.

A1: The vectorial process Yt = (Y1t, Y2t)
′ is strictly stationary and ergodic.

A2: The marginal distribution of Y2t is given by FY2(Y2t; Ωt−1, θ0) and the truncated distribution

of Y1t given Y2t ≤ V aR2t(α, θ0) is given by FY1|Y2≤V aR2t(α,θ0)(Y1t; Ωt−1, θ0).

A3: θ0 ∈ Θ, with Θ a compact subspace of Rp.

A4: The estimator θ̂T is consistent for θ0 and is asymptotically normally distributed such that:

√
T
(
θ̂T − θ0

)
d→ N (0,Σ0) ,

with Σ0 a positive definite p× p matrix. Denote Vas(θ̂T ) = Σ0/T .

Appendix B: Cumulative joint violation process

Proof. First, let us rewrite Ht (α, θ0) in a more convenient way, through the Probability Integral

Transformation (PIT). Notice that the cumulative joint violation process Ht (α, θ0) depends on the

distribution of Yt as follows:

Ht (α, θ0) = 1 (Y2t ≤ V aR2t (α, θ0))×
∫ 1

0
1 (Y1t ≤ CoV aR1t (β, α, θ0)) dβ

= 1 (FY2 (Y2t; Ωt−1, θ0) ≤ α)×
∫ 1

0
1
(
FY1|Y2≤V aR2t(α;θ0) (Y1t; Ωt−1, θ0) ≤ β

)
dβ.

Let us introduce two terms that we can interpret as "generalized" errors, namely u2t (θ0) ≡ u2t =

FY2(Y2t; Ωt−1, θ0) and u12t (θ0) ≡ u12t = FY1|Y2≤V aR2t(α,θ0)(Y1t; Ωt−1, θ0). Then, the cumulative joint

violation process becomes

Ht (α, θ0) = 1 (u2t ≤ α)

∫ 1

0
1 (u12t ≤ β) dβ = 1 (u2t ≤ α)

∫ 1

u12t

1dβ.

Thus, we can express the process Ht (α, θ0) as a simple function of the transformed i.i.d. variables

u2t and u12t defined over [0, 1], such as

Ht (α, θ0) = (1− u12t (θ0))× 1(u2t (θ0) ≤ α).

The PIT implies that the variable u2t has a uniform U[0,1] distribution. The binary variable

1(u2t (θ0) ≤ α) has a Bernouilli distribution with a success probability equal to α. The variable
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u12t has also a U[0,1] distribution as soon as the PIT transformation FY1|Y2≤V aR2t(α,θ0)(.; Ωt−1, θ0) is

applied to observations Y1t for which Y2t ≤ V aR2t (α, θ0).25

1(u2t (θ0) ≤ α)|Ωt−1 ∼ Bernouilli (α) ,

(1− u12t (θ0))| {Ωt−1, u2t (θ0) ≤ α} ∼ U[0,1].

The two first conditional moments of the cumulative joint process Ht (α, θ0) are then given by

E (Ht (α, θ0)|Ωt−1) = Pr (u2t (θ0) ≤ α|Ωt−1)× E (Ht (α, θ0)|u2t (θ0) ≤ α,Ωt−1)

= α− α E (u12t (θ0)|u2t (θ0) ≤ α,Ωt−1) ,

E
(
H2
t (α, θ0)

∣∣Ωt−1

)
= α E

(
1− 2u12t (θ0) + u2

12t (θ0)
∣∣u2t (θ0) ≤ α,Ωt−1

)
.

Since the conditional distribution of u12t (θ0) given Ωt−1 is U[0,1] with E (u12t (θ0)|u2t (θ0) ≤ α,Ωt−1) =

1/2 and E
(
u2

12t (θ0)
∣∣u2t (θ0) ≤ α,Ωt−1

)
= 1/3, then we get

E (Ht (α, θ0)|Ωt−1) =
α

2
,

V (Ht (α, θ0)|Ωt−1) = α

(
1

3
− α

4

)
.

Appendix C: Proof of Theorem 1

Proof. Denote Ht (α, θ) = (1− u12t (θ)) 1 (u2t (θ) ≤ α) the cumulative violation process, with

u2t (θ) = FY2(Y2t; Ωt−1, θ) and u12t (θ) = FY1|Y2≤V aR2t(α,θ)(Y1t; Ωt−1, θ), ∀t = T + 1, ..., T + n and

∀θ ∈ Θ. Under the null hypothesis H0,UC , the sequence {Ht (α, θ0)− α/2}T+n
t=T+1 is a mds with

σ2
H = V (Ht (α, θ0)) = α (1/3− α/4). For simplicity, we assume that Ωt−1 only includes a finite

number of lagged values of Yt, i.e., there is no information truncation. We can rewrite the test

statistic UCMES as

UCMES =
1

σH
√
n

T+n∑
t=T+1

(
Ht(α, θ̂T )− α/2

)
.

Under Assumptions A1-A4, the continuous mapping theorem implies that

1√
n

T+n∑
t=T+1

(
Ht(α, θ̂T )− E

(
Ht(α, θ̂T )

∣∣∣Ωt−1

))
=

1√
n

T+n∑
t=T+1

(Ht (α, θ0)− E (Ht (α, θ0)|Ωt−1))+op (1) .

25We thank Andrew Patton for this suggestion.
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Rearranging these terms gives

1√
n

T+n∑
t=T+1

(
Ht(α, θ̂T )− E (Ht (α, θ0)|Ωt−1)

)
=

1√
n

T+n∑
t=T+1

(Ht (α, θ0)− E (Ht (α, θ0)|Ωt−1)) (8)

+
1√
n

T+n∑
t=T+1

E
((

Ht(α, θ̂T )−Ht (α, θ0)
)∣∣∣Ωt−1

)
+ op (1) .

The mean value theorem implies that

Ht(α, θ̂T ) = Ht (α, θ0) +
(
θ̂T − θ0

)′ ∂Ht(α, θ̃)

∂θ
,

where θ̃ is an intermediate point between θ0 and θ̂T . Equation (8) becomes

1

σH
√
n

T+n∑
t=T+1

(
Ht(α, θ̂T )− α/2

)
=

1

σH
√
n

T+n∑
t=T+1

(Ht (α, θ0)− α/2)

+

√
λ

σH

√
T (θ̂T − θ0)′

1

n

T+n∑
t=T+1

E

(
∂Ht(α, θ̃)

∂θ

∣∣∣∣∣Ωt−1

)
+ op (1) .

Assume that T → ∞, n → ∞ and n/T → λ with 0 ≤ λ < ∞. Under the null hypothesis H0,UC ,

the first term on the right hand converges in distribution to a standard normal distribution. The

covariance between the first term and
√
T (θ̂T −θ0) is 0 as θ̂T depends on the in-sample observations

and the summand in the first term is for out-of-sample observations. Under Assumption A4, θ̃ p→ θ0

and since ∂Ht (α, θ0) /∂θ is also a mds, we have

1

n

T+n∑
t=T+1

E

(
∂Ht(α, θ̃)

∂θ

∣∣∣∣∣Ωt−1

)
p→ RMES = E0

(
∂Ht (α, θ0)

∂θ

)
,

where E0 (.) denotes the expectation with respect to the true distribution of Ht (α, θ0). So, we get

√
λ

σH

1

n

T+n∑
t=T+1

E

(
∂Ht(α, θ̃)

∂θ

∣∣∣∣∣Ωt−1

)′√
T (θ̂T − θ0)

d→ N
(

0,
λ

σ2
H

R′MESΣ0RMES

)
,

and finally

UCMES
d→ N

(
0, 1 + λ

R′MESΣ0RMES

α (1/3− α/4)

)
.

Appendix D: Bivariate normal case

Proof. Let us assume that Yt = (Y1t, Y2t)
′ such that

Yt = Σ
1/2
t εt
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where εt = (ε1t, ε2t)
′ are i.i.d. N (0, I2), where I2 denotes the 2× 2 identity matrix and Σt = Σt (θ0)

is the conditional variance-covariance matrix of Yt given Ωt−1. Denote by f (y,Σt) ≡ f (y1, y2,Σt)

the pdf and by F (y,Σt) ≡ F (y1, y2,Σt) the cdf of the joint distribution of Yt such that

f (y,Σt) =
1

2π
|Σt|−

1
2 exp

(
−y
′Σty

2

)
,

F (y,Σt) = Pr ((Y1 ≤ y1) ∩ (Y2 ≤ y2)) =

∫ y1

−∞

∫ y2

−∞
f (a, b,Σt) dadb.

Using the Dwyer formula (1967), we know that

∂f (y,Σt)

∂Σt
=
∂ ln f (y,Σt)

∂Σt
× f (y,Σt) = −f (y,Σt)

2

(
Σ−1
t − Σ−1

t yy′Σ−1
t

)
,

and we get

∂F (y,Σt)

∂Σt
=

∫ y1

−∞

∫ y2

−∞

∂f (a, b,Σt)

∂Σt
dadb (9)

= −Σ−1
t

2
F (y,Σt) +

1

2

∫ y1

−∞

∫ y2

−∞
f (a, b,Σt) Σ−1

t ∆ (a, b) Σ−1
t dadb,

with ∆ (a, b) a 2× 2 matrix equal to (a, b)′× (a, b). If we define the conditional variance-covariance

matrix as

Σt =

(
σ2

1t σ12t

σ12t σ2
2t

)
,

we can decompose the matrix expression given in Equation (9) as follows

∂F (y,Σt)

∂σ2
1t

= − σ2
2t

2∆t
F (y,Σt) +

1

2∆2
t

∫ y1

−∞

∫ y2

−∞

(
σ2

2ta
2 − 2σ12tσ

2
2tab+ σ2

12tb
2
)
f (a, b,Σt) dadb,

∂F (y,Σt)

∂σ2
2t

= − σ2
1

2∆t
F (y,Σt) +

1

2∆2
t

∫ y1

−∞

∫ y2

−∞

(
σ2

12ta
2 − 2σ12tσ

2
1ab+ σ2

1tb
2
)
f (a, b,Σt) dadb,

∂F (y,Σt)

∂σ12t
= −σ12t

2∆t
F (y,Σt)

+
1

2∆2
t

∫ y1

−∞

∫ y2

−∞

(
−σ2

2tσ12ta
2 +

(
σ2

12t + σ2
1tσ

2
2t

)
ab− σ2

1tσ12tb
2
)
f (a, b,Σt) dadb,

with ∆t = σ2
1tσ

2
2t − σ2

12t. If θ denotes the parameters vector of the conditional variance-covariance

model (CCC, DCC, etc.), then for any θ ∈ Θ, we have

∂F (y,Σt)

∂θ
=

(
vec
(
∂F (y,Σt)

∂Σt

))′
vec
(
∂Σt

∂θ

)
,

where vec(.) denotes the vectorization operator of a matrix.
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Appendix E: Consistent estimates of RMES, Rj, and γλ

We provide consistent estimates of RMES , Rj , and γλ involved in the computation of the robust

test statistics (see Theorem 1 and 3, and Appendix H).

Estimation of RMES. As a starting point, we consider the approach that consists in evaluating

the convergence of

1

n

T+n∑
t=T+1

E

 ∂Ht

(
α, θ̃

)
∂θ

∣∣∣∣∣∣Ωt−1

 .

Deriving the cumulative joint violation process with respect to θ yields

∂Ht

(
α, θ̃

)
∂θ

= −∂u12t(θ̃)

∂θ
1

(
u2t

(
θ̃
)
≤ α

)
+
(

1− u12t

(
θ̃
)) ∂1(u2t

(
θ̃
)
≤ α

)
∂θ

.

Since FY2 (V aR2t (α, θ) ; Ωt−1, θ) = α for any θ ∈ Θ, we have

−∂u12t (θ)

∂θ
= − 1

α

∂F (ỹt (θ) ; Ωt−1, θ)

∂θ
,

with the vector ỹt (θ) defined as ỹt (θ) = (y1t, V aR2t (α, θ))′. Taking sums and conditional expecta-

tions yield

1

n

T+n∑
t=T+1

E

 ∂Ht

(
α, θ̃

)
∂θ

∣∣∣∣∣∣Ωt−1

 = − 1

αn

T+n∑
t=T+1

E

(
∂F (ỹt(θ̃); Ωt−1, θ̃)

∂θ
1

(
u2t

(
θ̃
)
≤ α

)∣∣∣∣∣Ωt−1

)

+
1

n

T+n∑
t=T+1

E

(1− u12t(θ̃)
) ∂1(u2t

(
θ̃
)
≤ α

)
∂θ

∣∣∣∣∣∣Ωt−1

 .

Now assume that T →∞, under assumption A4, this quantity converges to

1

n

T+n∑
t=T+1

E
(
∂Ht (α, θ0)

∂θ

∣∣∣∣Ωt−1

)
= − 1

αn

T+n∑
t=T+1

E
(
∂F (ỹt(θ0); Ωt−1, θ0)

∂θ
1 (u2t(θ0) ≤ α)

∣∣∣∣Ωt−1

)

+
1

n

T+n∑
t=T+1

E
(

(1− u12t(θ0))
∂1 (u2t(θ0) ≤ α)

∂θ

∣∣∣∣Ωt−1

)
.

(10)

Assume that n→∞, this quantity converges to

1

n

T+n∑
t=T+1

E
(
∂Ht (α, θ0)

∂θ

∣∣∣∣Ωt−1

)
p→ RMES = E0

(
∂Ht (α, θ0)

∂θ

)
. (11)

We deduce from Equations (10) and (11) that

RMES = − 1

α
E0

(
∂F (ỹt(θ0); Ωt−1, θ0)

∂θ
1 (u2t(θ0) ≤ α)

)
+ E0

(
(1− u12t(θ0))

∂1 (u2t(θ0) ≤ α)

∂θ

)
,

(12)
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Note that explicit formulas for ∂F (ỹt (θ0) ; Ωt−1, θ0)/∂θ in the left hand side of Equation (12) are

available for some particular bivariate distributions (see Appendix D for the normal distribution).

In any case, we can evaluate the derivative numerically. The right hand side of Equation (12) is

trickier to implement due to the presence of the indicator function 1 (u2t (θ0) ≤ α) that cannot be

continuously differentiated (see Engle and Manganelli, 2004; Lambert et al., 2012, for similar issues).

We first approximate the indicator function with a continuously differentiable function. Denote by

1
⊕ (u ≤ τ) a continuous approximation function of 1 (u ≤ τ), where u is a random variable, and τ

is a probability level,

1
⊕ (u ≤ τ) =

∫ τ

0

1

h
φ

(
u− v
h

)
dv = Φ

(u
h

)
− Φ

(
u− τ
h

)
.

with φ (.) a Gaussian kernel function, and h > 0 a bandwidth parameter. Under a suitable form

of the law of large number, we can replace the expectation operator by the sample mean, and a

consistent estimator of RMES of Equation (12) is given by

R̂MES = − 1

αn

T+n∑
t=T+1

∂F (ỹt(θ̂T ); Ωt−1, θ̂T )

∂θ
1(u2t(θ̂T ) ≤ α)+

1

n

T+n∑
t=T+1

(1−u12t(θ̂T ))
∂1⊕(u2t(θ̂T ) ≤ α)

∂θ
,

with

∂F (ỹt(θ̂T ); Ωt−1, θ̂T )

∂θ
=

∫ y1t

−∞
f(u, V aR2t(α, θ̂T ); Ωt−1, θ̂T )du× ∂V aR2t(α, θ̂T )

∂θ

+

∫ y1t

−∞

∫ V aR2t(α,θ̂T )

−∞

∂f(u, v; Ωt−1, θ̂T )

∂θ
dudv,

∂1⊕(u2t(θ̂T ) ≤ α)

∂θ
=

1

h

(
φ

(
u2t(θ̂T )

h

)
− φ

(
u2t(θ̂T )− α

h

))
× ∂FY2t(y2t, θ̂T )

∂θ
.

This approach requires to choose an appropriate value for the bandwidth parameter h for the kernel

smoothing which must ensure lim
n→∞

h ≡ h(n) = 0. Throughout the paper, we select a bandwidth

parameter h = n−1 which verifies the above properties.

Estimation of Rj. The sketch of the proof is similar to that of the quantity RMES . We use a

continuously differentiable function in place of the indicator function, and we compute a consistent

estimator of Rj by the law of large number. The quantity Rj is given by

Rj =
1

α (1/3− α/4)
E0

(
(Ht−j(α, θ0)− α/2)

∂Ht(α, θ0)

∂θ

)
.

Given the above equation, we need a consistent estimator of ∂Ht(α, θ0)/∂θ to estimate Rj . As it

has been done for RMES , we substitute the indicator function by the kernel approximation, and
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estimate ∂Ht(α, θ0)/∂θ as follows

∂H⊕t (α, θ̂T )

∂θ
= − 1

α

∂F (ỹt(θ̂T ); Ωt−1, θ̂T )

∂θ
1(u2t(θ̂T ) ≤ α) + (1− u12t(θ̂T ))

∂1⊕(u2t(θ̂T ) ≤ α)

∂θ
.

Finally, by the law of large number, we get

R̂j =
1

α (1/3− α/4)

1

n− j

T+n∑
t=T+1+j

(
(Ht−j(α, θ0)− α/2)

∂H⊕t (α, θ̂T )

∂θ

)
.

Estimation of γλ. Let us rewrite ht(α, α, θ̂T ) and ht(α, βinf , βsup, θ̂T ) in terms of their generalized

errors,

ht(α, α, θ̂T ) = 1(u12t(α, θ̂T ) ≤ α)× 1(u2t(θ̂T ) ≤ α),

ht(α, βinf , βsup, θ̂T ) = 1(u12t(β, θ̂T ) ≤ α)× (1(u2t(θ̂T ) ≤ βsup)− 1(u2t(θ̂T ) ≤ βinf)),

with

u12t(α, θ̂T ) = F
Y1|Y2≤V aR2t(α,θ̂T )

(Y1t; Ωt−1, θ̂T ),

u12t(β, θ̂T ) = F
Y1|V aR2t(βinf ,θ̂T )≤Y2≤V aR2t(βsup,θ̂T )

(Y1t; Ωt−1, θ̂T ).

As a key point, we need estimates of RαC and RβC (see Appendix H for a definition). As for RMES

and Rj , the quantities RαC and RβC depend on indicator functions, and we propose to approximate

them with kernel smoother. A consistent estimator of RαC is given by

R̂αC =
1

n

T+n∑
t=T+1

(
∂

∂θ
1
⊕(u12t(α, θ̂T ) ≤ α)× 1(u2t(θ̂T ) ≤ α) +

∂

∂θ
1
⊕(u2t(θ̂T ) ≤ α)× 1(u12t(α, θ̂T ) ≤ α)

)
,

with ∂
∂θ1
⊕(u12t(α, θ̂T ) ≤ α) = 1

h

(
φ
(
u12t(α,θ̂T )

h

)
− φ

(
u12t(α,θ̂T )−α

h

))
∂
∂θu12t(α, θ̂T ), and ∂

∂θ1
⊕(u2t(θ̂T ) ≤

α) = 1
h

(
φ
(
u2t(θ̂T )

h

)
− φ

(
u2t(θ̂T )−α

h

))
∂
∂θu2t(θ̂T ). Similarly, a consistent estimator of RβC is given by

R̂βC =
1

n

T+n∑
t=T+1

[
∂

∂θ
1
⊕(u12t(β, θ̂T ) ≤ α)×

(
1(u2t(θ̂T ) ≤ βsup)− 1(u2t(θ̂T ) ≤ βinf)

)
+ 1(u12t(β, θ̂T ) ≤ α)×

(
∂

∂θ
1
⊕(u2t(θ̂T ) ≤ βsup)− ∂

∂θ
1
⊕(u2t(θ̂T ) ≤ βinf)

)]
,

with ∂
∂θ1
⊕(u12t(β, θ̂T ) ≤ α) = 1

h

(
φ
(
u12t(β,θ̂T )

h

)
− φ

(
u12t(β,θ̂T )−α

h

))
∂
∂θu12t(β, θ̂T ), and ∂

∂θ1
⊕(u2t(θ̂T ) ≤

βsup)− ∂
∂θ1
⊕(u2t(θ̂T ) ≤ βinf) = 1

h

(
φ
(
u2t(θ̂T )−βinf

h

)
− φ

(
u2t(θ̂T )−βsup

h

))
∂
∂θu2t(θ̂T ). Given the results

in Appendix H, we get

γ̂λ =

λR̂αC ′Σ̂0R̂αC λR̂αC
′
Σ̂0R̂

β
C

λR̂αC
′
Σ̂0R̂

β
C λR̂βC

′
Σ̂0R̂

β
C

 .
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Appendix F: Proof of Theorem 3

Proof. Define the lag-j autocovariance and autocorrelation of the cumulative joint violation

Ht(α, θ0) for j ≥ 0 by

ρj =
γj
γ0

and γj = Cov (Ht(α, θ0), Ht−j(α, θ0)) .

For ease of notations, we drop the dependence of γj and ρj on α and θ0. The sample counterparts

of γj and ρj based on the sample {Ht(α, θ0)}T+n
t=T+1 are

ρnj =
γnj
γn0

and γnj =
1

n− j

T+n∑
t=T+1+j

(Ht(α, θ0)− α/2) (Ht−j(α, θ0)− α/2) ,

respectively. Similarly, define ρ̂nj and γ̂nj , the sample counterparts of γj and ρj based on the sample

{Ht(α, θ̂T )}T+n
t=T+1 with

ρ̂nj =
γ̂nj
γ̂n0

and γ̂nj =
1

n− j

T+n∑
t=T+1+j

(
Ht(α, θ̂T )− α/2

)(
Ht−j(α, θ̂T )− α/2

)
.

The sketch of the proof is similar to that used for Theorem 1. Under Assumptions A1-A4, the

continuous mapping theorem implies that

√
n− j (ρ̂nj − E ( ρ̂nj |Ωt−1)) =

√
n− j (ρnj − E (ρnj |Ωt−1)) + op (1) .

Rearranging these terms gives

√
n− j (ρ̂nj − ρnj) =

√
n− jE ( ρ̂nj − ρnj |Ωt−1) + op (1) . (13)

The mean value theorem implies that

ρ̂nj = ρnj +
(
θ̂T − θ0

)′ ∂ρ̃nj
∂θ

,

with ρ̃nj the lag-j autocorrelation of the process Ht(α, θ̃), where θ̃ is an intermediate point between

θ0 and θ̂T . Define λ = (n− j)/T , Equation (13) becomes

√
n− j (ρ̂nj − ρj) =

√
n− j (ρnj − ρj) +

√
λ
√
T (θ̂T − θ0)′E

(
∂ρ̃nj
∂θ

∣∣∣∣Ωt−1

)
+ op (1) .

Under Assumption A4, when T →∞ we have θ̃ p→ θ0. Then, we get for j 6= 0

E
(
∂ρ̃nj
∂θ

∣∣∣∣Ωt−1

)
p→ E

(
1

γn0

∂γnj
∂θ

∣∣∣∣Ωt−1

)
− E

(
ρnj
γn0

∂γn0

∂θ

∣∣∣∣Ωt−1

)
.
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When n → ∞, γn0
p→ γ0 and ρnj

p→ ρj . Since E((Ht (α, θ0)− α/2)∂Ht−j(α, θ0)/∂θ|Ωt−1) =

∂Ht−j(α, θ0)/∂θ E( (Ht (α, θ0)− α/2)|Ωt−1) = 0 for j > 0, we get

E
(
∂ρ̃nj
∂θ

∣∣∣∣Ωt−1

)
p→ Rj − 2ρjR0,

with

Rj =
1

γ0
E0

(
∂γnj
∂θ

)
=

1

γ0
E0

(
(Ht−j(α, θ0)− α/2)

∂Ht(α, θ0)

∂θ

)
,

and γ0 = α (1/3− α/4). Under the null ρj = 0 for j = 1, ...,m. Therefore

√
nρ̂nj =

√
nρnj +

√
λ
√
TR′j(θ̂T − θ0) + op (1) .

Notice that
√
n (ρn1, ..., ρnm)′

d→ N (0, Im) and the covariance between the first term and
√
T (θ̂T −

θ0) is 0 as θ̂T depends on the in-sample observations and the correlation ρnj depends on the out-of-

sample observations. Denote ρ̂(m)
n the vector (ρ̂n1, ..., ρ̂nm)′. Under Assumptions A1-A4, we have

√
nρ̂(m)

n
d→ N (0,∆) ,

with the ij-th element of ∆ given by

∆ij = δij + λR′iΣ0Rj ,

Rj =
1

α (1/3− α/4)
E0

(
(Ht−j(α, θ0)− α/2)

∂Ht(α, θ0)

∂θ

)
,

∀ (i, j) ∈ {1, ...,m}2, where δij is a dummy variable that takes a value 1 if i = j and 0 otherwise. We

can write ∆ = QΛQ′, where Q is an orthogonal matrix, and Λ is a diagonal matrix with elements

{πj}mj=1. So, we have

Q′
√
nρ̂(m) d→ N (0,Λ) .

Finally

INDMES = n

m∑
j=1

ρ̂2
nj

d→
m∑
j=1

πjZ
2
j ,

where {πj}mj=1 are the eigenvalues of the matrix ∆ and {Zj}mj=1 are independent standard normal

variables.

Appendix G: Backtesting MES-based risk measure

Proof. Consider a MES-based risk measure expressed as

RM1t (h) =

∫ 1

0
gt(CoṼ aR1t+h (β, α, θ0) , Xt)dβ,
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with

Pr
(
Ỹ1t+h ≤ CoṼ aR1t+h(β, α, θ0)|Ỹ2t+h ≤ Ṽ aR2t+h(α, θ0); Ωt

)
= β.

In order to backtest the CoVaR and the MES, we define a joint violation of the (β, α)-CoVaR of

Ỹ1t+h and the α-VaR of Ỹ2t+h. This violation process is represented by the following binary variable

ht(α, β, θ0) = 1(Ỹ1t+h ≤ CoṼ aR1t (β, α, θ0))× 1(Ỹ2t+h ≤ Ṽ aR2t+h (α, θ0)).

Denote by ht(α, β, θ0, Xt) the violation process associated to gt(CoṼ aR1t+h (β, α, θ0) , Xt) and used

to backtest the MES-based risk measure, for instance the SRISK. If the function gt (.) is monotonic

decreasing with the MES (as it is the case for the SRISK given our sign convention for the MES),

we have

ht(α, β, θ0, Xt) = 1(gt(Ỹ1t+h, Xt) ≥ gt(CoṼ aR1t+h (β, α, θ0) , Xt))× 1(Ỹ2t+h ≤ Ṽ aR2t+h (α, θ0)).

The violation processes ht(α, β, θ0) and ht(α, β, θ0, Xt) are identical, in the sense that they take

a value 1 at the same date. As a consequence, the cumulative joint violation processes used for

backtesting the MES and a MES-based risk measure are identical.

Ht (α, θ0, Xt) =

∫ 1

0
ht(α, β, θ0, Xt)dβ =

∫ 1

0
ht(α, β, θ0)dβ = Ht (α, θ0) .

The unconditional coverage test for a MES-based risk measure, say SRISK, corresponds to the null

hypothesis

HSRISK
0,UC : E (Ht (α, θ0, Xt)) = α/2.

The corresponding test statistic UCSRISK is given by

UCSRISK =

√
n
(
H̄(α, θ̂T , X)− α/2

)
√
α (1/3− α/4)

,

with H̄(α, θ̂T , X) the out-of-sample mean of Ht(α, θ̂T , Xt). As Ht(α, θ̂T , Xt) = Ht(α, θ̂T ), ∀t, this

statistic is equivalent to that used for backtesting the MES

UCMES =

√
n
(
H̄(α, θ̂T )− α/2

)
√
α (1/3− α/4)

.

Appendix H: Backtesting ∆CoVaR

Proof. The first step of the proof consists in evaluating the two first conditional moments of

ht (α, βinf , βsup, θ0). The Bayes theorem implies that

E (ht (α, α, θ0) |Ωt−1) = α2,
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E (ht (α, βinf , βsup, θ0) |Ωt−1) = α(βsup − βinf),

leading to

E (ht (α, βinf , βsup, θ0) |Ωt−1) ≡ µ =

(
α2

α(βsup − βinf)

)
. (14)

According to Equation (14), ht (α, α, θ0) and ht (α, βinf , βsup, θ0) are Bernouilli distributed with

conditional success probabilities α2 and α(βsup − βinf), and conditional variances given by

V (ht (α, α, θ0) |Ωt−1) = α2
(
1− α2

)
,

V (ht (α, βinf , βsup, θ0) |Ωt−1) = α ((βsup − βinf) (1− α (βsup − βinf)) .

In order to compute the statistic UC∆CoV aR, we have to determine the general expression of the con-

ditional variance-covariance matrix of ht (α, βinf , βsup, θ0), and in particular, we need the conditional

covariance between the two violations,

Cov (ht(α, α, θ0), ht(α, βinf , βsup, θ0)|Ωt−1) = E (ht (α, α, θ0)ht(α, βinf , βsup, θ0)|Ωt−1)

− E (ht(α, α, θ0)|Ωt−1)E (ht(α, βinf , βsup, θ0)|Ωt−1) .

(15)

Since α < βinf , Y2t ≤ V aR2t (α, θ0) and V aR2t (βinf , θ0) ≤ Y2t ≤ V aR2t (βsup, θ0) are incompatible

events, we get ht(α, α, θ0)× ht(α, βinf , βsup, θ0) = 0 implying that the first expectation in Equation

(15) is 0. We thus have

Cov (ht(α, α, θ0), ht(α, βinf , βsup, θ0)|Ωt−1) = −α3(βsup − βinf),

and the conditional variance-covariance matrix of ht (α, βinf , βsup, θ0) is given by

V (ht (α, βinf , βsup, θ0) |Ωt−1) ≡ γ =

(
α2(1− α2) −α3(βsup − βinf)

−α3(βsup − βinf) α(βsup − βinf)(1− α(βsup − βinf))

)
.

With the two first conditional moments of ht (α, βinf , βsup, θ0) in hand, we now turn to the identifi-

cation of its asymptotic distribution. Equation (14) implies that the sequence {ht (α, βinf , βsup, θ0)−

µ}∞t=1 is a mds for any (α, βinf , βsup) ∈ [0, 1]3 with

E (ht (α, βinf , βsup, θ0)− µ|Ωt−1) = 0.

As a consequence, the Lindeberg-Levy central limit theorem implies that

√
n
(
h̄ (α, βinf , βsup, θ0)− µ

) d→ N (0, γ) , (16)
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with h̄ (α, βinf , βsup, θ0) = 1/n
∑T+n

t=T+1 ht (α, βinf , βsup, θ0). From Equation (16), we get immediately

that

UC∆CoV aR = n
(
h̄ (α, βinf , βsup, θ0)− µ

)′
γ−1(h̄ (α, βinf , βsup, θ0)− µ)

d→ χ(2).

We now turn to the case of the feasible test statistic UC∆CoV aR ≡ UC∆CoV aR(θ̂T ) and its asymptotic

distribution. The sketch of the proof is similar to that of Theorem 1. First, rewrite

√
n(h̄(α, βinf , βsup, θ̂T )− µ) =

1√
n

T+n∑
t=T+1

(ht(α, βinf , βsup, θ̂T )− E(ht(α, βinf , βsup, θ0)|Ωt−1)).

The continuous mapping theorem implies that

1√
n

T+n∑
t=T+1

(ht(α, βinf , βsup, θ̂T )− E(ht(α, βinf , βsup, θ̂T ))|Ωt−1) =

1√
n

T+n∑
t=T+1

(ht(α, βinf , βsup, θ0)− E(ht(α, βinf , βsup, θ0)|Ωt−1)) + op(1).

Rearranging these terms gives

1√
n

T+n∑
t=T+1

(ht(α, βinf , βsup, θ̂T )− E(ht(α, βinf , βsup, θ0)|Ωt−1)) =

1√
n

T+n∑
t=T+1

(ht(α, βinf , βsup, θ0)− E(ht(α, βinf , βsup, θ0)|Ωt−1))

+
1√
n

T+n∑
t=T+1

E(ht(α, βinf , βsup, θ̂T )− ht(α, βinf , βsup, θ0)|Ωt−1) + op(1).

(17)

The mean value theorem implies that

ht(α, βinf , βsup, θ̂T ) ≡

(
ht(α, α, θ̂T )

ht(α, βinf , βsup, θ̂T )

)

=

(
ht(α, α, θ0)

ht(α, βinf , βsup, θ0)

)
+

 (
θ̂T − θ0

)′
∂ht(α,α,θ̃)

∂θ(
θ̂T − θ0

)′ ∂ht(α,βinf ,βsup,θ̃)
∂θ

 ,

where θ̃ is an intermediate point between θ0 and θ̂T . Equation (17) becomes

1√
n

T+n∑
t=T+1

(ht(α, βinf , βsup, θ̂T )−E(ht(α, βinf , βsup, θ0)|Ωt−1)) =
1√
n

T+n∑
t=T+1

(ht(α, βinf , βsup, θ0)− µ)

+

 √
λ
√
T
(
θ̂T − θ0

)′
1
n

∑T+n
t=T+1 E

(
∂ht(α,α,θ̃)

∂θ |Ωt−1

)
√
λ
√
T
(
θ̂T − θ0

)′
1
n

∑T+n
t=T+1 E

(
∂ht(α,βinf ,βsup,θ̃)

∂θ |Ωt−1

)
+ op(1).

(18)
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Assume that T →∞, n→∞ and n/T → λ with 0 ≤ λ <∞. Under the null hypothesis H0,UC , the

first term of Equation (18) converges in distribution to a bivariate normal distribution with mean 0

and variance γ. The covariance between the first term and
√
T
(
θ̂T − θ0

)
is 0 as θ̂T depends on the

in-sample observations and the summand in the first term is for out-of-sample observations. Under

Assumption A4, θ̃ → θ0, and since the two derivatives ∂ht(α, α, θ0)/∂θ and ∂ht(α, βinf , βsup, θ0)/∂θ

are also mds, we have

1

n

T+n∑
t=T+1

E

(
∂ht(α, α, θ̃)

∂θ
|Ωt−1

)
p→ RαC = E0

(
∂ht(α, α, θ0)

∂θ

)
,

1

n

T+n∑
t=T+1

E

(
∂ht(α, βinf , βsup, θ̃)

∂θ
|Ωt−1

)
p→ RβC = E0

(
∂ht(α, βinf , βsup, θ0)

∂θ

)
.

where E0(.) denotes the expectation with respect to the true distribution of ht(α, α, θ0) and ht(α, βinf , βsup, θ0).

As a consequence, we have √
λ
√
T
(
θ̂T − θ0

)′
1
n

∑T+n
t=T+1 E

(
∂ht(α,α,θ̃)

∂θ |Ωt−1

)
√
λ
√
T
(
θ̂T − θ0

)′
1
n

∑T+n
t=T+1 E

(
∂ht(α,βinf ,βsup,θ̃)

∂θ |Ωt−1

)
 d→ N (0, γλ) ,

where γλ =

(
λRαC

′Σ0R
α
C λRαC

′Σ0R
β
C

λRαC
′Σ0R

β
C λRβC

′
Σ0R

β
C

)
, and we can deduce that

√
n
(
h̄
(
α, βinf , βsup, θ̂T

)
− µ

)
d→ N (0, γ + γλ) .

The feasible test statistic UCC∆CoV aR that takes into account the presence of estimation risk is then

given by

UCC∆CoV aR = n
(
h̄
(
α, βinf , βsup, θ̂T

)
− µ

)′
(γ + γ̂λ)−1 (h̄

(
α, βinf , βsup, θ̂T

)
− µ),

where γ̂λ denotes a consistent estimator of γλ (see Appendix E). The robust statistic UCC∆CoV aR
converges to a chi-square distribution with two degrees of freedom whatever the value of λ, and is

thus free of estimation risk.
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Appendix I: List of tickers

Tickers and company names
AET Aetna HBAN Huntington Bancshares
AFL Aflac ICE Intercontinental Exchange
ALL Allstate Corp JNS Janus Capital
ABK Ambac Financial Group JPM JP Morgan Chase
ACAS American Capital KEY Keycorp
AXP American Express LM Legg Mason
AIG American International Group LEH Lehman Brothers
AMP Ameriprise financial LNC Lincoln National
AMTD TD Ameritrade L Loews
ANTM Anthem MI Marshall & Ilsley
AON Aon Corp MMC Marsh & McLennan
AIZ Assurant MA Mastercard
MTB M & T Bank Corp MBI MBIA
BAC Bank of America MER Merrill Lynch
BK Bank of New York Mellon MET Metlife
BBT BB&T MS Morgan Stanley
BSC Bear Stearns NCC National City Corp
WRB W.R. Berkley Corp NYCB New York Community Bancorp
BRK Berkshire Hathaway NTRS Northern Trust
BLK Blackrock NMX Nymex Holdings
COF Capital One Financial NYX NYSE Euronext
BOT CBOT Holdings PBCT Peoples United Financial
CBG CBRE Group PNC PNC Financial Services
CB Chubb Corp PFG Principal Financial Group
CI CIGNA Corp PGR Progressive
CINF Cincinnati Financial Corp PRU Prudential Financial
CIT CIT Group RF Regions Financial
C Citigroup SAF Safeco
CME CME Group SCHW Schwab Charles
CNA CNA Financial Corp SEIC SEI Investments Company
CMA Comerica SLM SLM Corp
CBH Commerce Bancorp SOV Sovereign Bancorp
CBSS Compass Bancshares STT State Street
CFC Countrywide Financial STI Suntrust Banks
CVH Coventry Health Care SNV Synovus Financial
AGE A.G. Edwards TMK Torchmark
ETFC E-Trade Financial TRV Travelers
FNM Fannie Mae TROW T. Rowe Price
FNF Fidelity National Financial UB Unionbancal Corp
FITB Fifth Third Bancorp UNH Unitedhealth Group
BEN Franklin Resources UNM Unum Group
FRE Freddie Mac USB US Bancorp
GNW Genworth Financial WB Wachovia
GS Goldman Sachs WM Washington Mutual
HIG Hartford Financial Group WFC Wells Fargo & Co
HNT Health Net WU Western Union
HCBK Hudson City Bancorp ZION Zion
HUM Humana
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Appendix J: Robustness checks for backtesting short-term risk measures

Figure 13: UC backtests for one-day risk forecast horizon (recursive estimation, n = 500)

Note: This figure displays the daily MES (blue line), the daily SRISK (red line) and the rejection dates
(shaded area) of the UC backtest at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 500
out-of-sample observations and a recursive scheme for parameter estimation. Reported results are robust to
estimation risk.

Figure 14: UC backtests for one-day risk forecast horizon (rolling estimation, T = 500, n = 250)

Note: This figure displays the daily MES (blue line), the daily SRISK (red line) and the rejection dates
(shaded area) of the UC backtest at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 250
out-of-sample observations and a rolling scheme with T = 500 observations for parameter estimation.
Reported results are robust to estimation risk.
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Figure 15: UC backtests for one-day risk forecast horizon (rolling estimation, T = 500, n = 500)

Note: This figure displays the daily MES (blue line), the daily SRISK (red line) and the rejection dates
(shaded area) of the UC backtest at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 500
out-of-sample observations and a rolling scheme with T = 500 observations for parameter estimation.
Reported results are robust to estimation risk.

Figure 16: IND backtests for one-day risk forecast horizon (recursive estimation, n = 500, m = 5)

Note: This figure displays the daily MES (blue line), the daily SRISK (red line) and the rejection dates
(shaded area) of the IND backtest at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 500
out-of-sample observations and a recursive scheme for parameter estimation. We consider a maximum lag
order m = 5. Reported results are robust to estimation risk.

57



Figure 17: IND backtests for one-day risk forecast horizon (rolling estimation, T = 500, n = 250,
m = 5)

Note: This figure displays the daily MES (blue line), the daily SRISK (red line) and the rejection dates
(shaded area) of the IND backtest at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 250
out-of-sample observations and a rolling scheme with T = 500 observations for parameter estimation. We
consider a maximum lag order m = 5. Reported results are robust to estimation risk.

Figure 18: IND backtests for one-day risk forecast horizon (rolling estimation, T = 500, n = 500,
m = 5)

Note: This figure displays the daily MES (blue line), the daily SRISK (red line) and the rejection dates
(shaded area) of the IND backtest at 5% significance level for AIG, BAC, JPM, and LEH. We use n = 500
out-of-sample observations and a rolling scheme with T = 500 observations for parameter estimation. We
consider a maximum lag order m = 5. Reported results are robust to estimation risk.

58



Figure 19: Rejection rates of UC and IND backtests (rolling estimation, T = 500, n = 250, m = 5)

Note: This figure displays the rejection rates of the UC backtest (top panel) and IND backtest (bottom
panel) at 5% significance level for the full list of tickers. We use n = 250 out-of-sample observations, a
rolling scheme with T = 500 observations for parameter estimation, and a Bonferroni correction for
multiple testing. We consider a maximum lag order m = 5. Reported results are robust to estimation risk.

Figure 20: Rejection rates of UC and IND backtests (rolling estimation, T = 500, n = 500, m = 5)

Note: This figure displays the rejection rates of the UC backtest (top panel) and IND backtest (bottom
panel) at 5% significance level for the full list of tickers. We use n = 500 out-of-sample observations, a
rolling scheme with T = 500 observations for parameter estimation, and a Bonferroni correction for
multiple testing. We consider a maximum lag order m = 5. Reported results are robust to estimation risk.

Appendix K: Computation of LRMES

In this section, we describe the methodology used to compute the MES, hereafter Long-Run MES

(LRMES), and SRISK over an horizon h > 1. The computation approach differ from that used for

the daily predictions, since the capital shortfall is calculated from the multi-period arithmetic returns
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instead of the arithmetic daily returns. The technique is thus closely related to that proposed by

Brownlees and Engle (2017). Because we do not have closed form distribution for the multi-period

arithmetic returns, we simulate daily log returns for which the distribution is known, and then

aggregate these pseudo daily realizations to obtain its multi-period counterpart. The algorithm is

as follows.

1. Randomly draw S × h pairs {zs1T+t, z
s
2T+t}

T+h
t=T+1 for s = 1, . . . , S of daily firm and market

returns standardized innovations from the normal distribution. The number of pair is set to

S = 500000 in the empirical application.

2. Build S paths of the couple {Y s
1T+t, Y

s
2T+t}

T+h
t=T+1 given the information known at time T using

the simulated standardized innovations.

3. Apply the formula exp
(∑T+h

t=T+1 Y
s

1T+t

)
− 1, and exp

(∑T+h
t=T+1 Y

s
2T+t

)
− 1, for s = 1, . . . , S

to obtain the pseudo multi-period arithmetic returns {Rs1T+1:T+h, R
s
2T+1:T+h}Ss=1.

4. Compute the LRMES as the Monte Carlo average of the multi-period arithmetic returns as

follows

LRMES1T+1:T+h(α, θ̂T ) = −

∑S
s=1R

s
1T+1:T+h1

(
Rs2T+1:T+h ≤ V aRR2T+1:T+h

(
α, θ̂T )

))
∑S

s=1 1

(
Rs2T+1:T+h ≤ V aRR2T+1:T+h

(
α, θ̂T )

)) ,

where V aRR2T+1:T+h

(
α, θ̂T

)
is the multi-period market decline, and is defined as

V aRR2T+1:T+h

(
α, θ̂T

)
= percentile

(
{Rs2T+1:T+h}Ss=1, 100α

)
.

5. Build the h step ahead SRISK forecasts as follows

SRISK1T+1:T+h(α, θ̂T ) = kL1T − (1− k)W1T

(
1 + LRMES1T+1:T+h(α, θ̂T )

)
,

where k is the value of the prudential capital ratio, L1T is the book value of debt of the firm

at time T , and W1T is the market value of the firm at time T . As for the daily case, we set α

to 5%.

Overall, our simulated SRISK forecasts (not reported) are similar to those reported by Brownlees

and Engle (2017) even if we consider a conditional multivariate normal distribution, and not a

semi-parametric GARH-DCC model estimated by QML.
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