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We carefully analyze the contribution to the oscillations of a metallic gravitational antenna due to the
interaction between the electrons of the bar and the incoming gravitational wave. To this end, we first derive
the total microscopic Hamiltonian of the wave-antenna system and then compute the contribution to the
attenuation factor due to the electron-graviton interaction. As compared to the ordinary damping factor, which
is due to the electron viscosity, this term turns out to be totally negligible. This result confirms that the only
relevant mechanism for the interaction of a gravitational wave with a metallic antenna is its direct coupling
with the bar normal modes.
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I. INTRODUCTION metal. Due to the electron-phonon interaction, an indirect
coupling between gravitons and phonons is then genetated.
The detection of gravitational waves represents nowadays By considering the microscopic Hamiltonian for the inter-
one of the most challenging and stimulating problems in exaction of a gravitational wave with the bar, in this paper we
perimental and theoretical physics. carefully analyze the electronic contribution to the absorp-
At the beginning of the 1960s, Weber pioneered a redtion of gravitational waves by the antenna. More specifically,
search program based on the construction of metallic anterwe compute the contributioftenormalization to the attenu-
nae(aluminum bars and computed the cross section for theation factor, i.e., the imaginary part of the frequency of the
absorption of gravitational wavdd] (see alsd2,3]) under  propagating acoustic wave, due to the interaction of the elec-
the assumption that the relevant mechanism that governs theons with the gravitational wave. Depending on its sign, this
transfer of energy is a direct resonant coupling between thegerm could lead to an attenuation or an amplification of the
wave and the bar normal modes, the so called resonant asar oscillation amplitude. This is a correction to the “ordi-
sumption[3]. The detector is so built that a signal is ob- nary” (positive factor, called'® from now on, which is the
served when the frequency of the incoming wave is close tdar attenuation factor in the absence of gravitational waves
the bar fundamental mode, the cross section taking a Breitsee Sec. V beloy Therefore, irrespectively of its sign, the
Wigner shape around this frequency. actual relevance of such a term depends on its magnitude
Weber successively proposed a correction to his ownelative toT'™°.
computation. Arguing that the bar has very many resonant A similar phenomenon has already been considered for
frequencies within the tiny detection range, he found arthe propagation of an acoustic wave in a semiconductor in
enormous enhancement of the cross sectigh Later the presence of an electromagnetic w4¥6,11. Here the
Preparatd5] considered a different mechanism that againelectron-phonon interaction generates, via electron-hole
lead to an enhancement of the cross section. The problensops, an indirect photon-phonon coupling. Although this
with both of these mechanisms have been clearly identifieglectron viscosity generally causes an attenuation of the
[6-8]. It is by now largely accepted that, within the frame- acoustic wave, under certain circumstances the wave can be
work of the resonant assumption, the correct result is the oldmplified. We shall see in the following that, while this is
one[1]. possible for the electromagnetic case, for a gravitational
However, in addition to the direct graviton-phonon cou-wave hitting a metallic antenna such an amplification cannot
pling considered i1-3], which at the microscopic level is occur.
due to a modification of the geodesic distance between the Present bars are aluminum detectors operating at a tem-
ions of the lattice in the presence of the gravitational wave, iperature of about 2 K. To avoid uncontrolled complications
is clear that the gravitons also couple to the electrons of theue to superconductivity effects, the antennae operate at tem-

*Email address: Vincenzo.Branchina@cern.ch 4t has been recently claimed that this interaction is responsible
TEmail address: Alice.Gasparini@physics.unige.ch for an enormous enhancement of the cross se¢8@nOur results
*Email address: Anna.Rissone@physics.unige.ch (see Sec. Ystrongly disagree with this conclusion.
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peraturesT>Tg, whereTs is the transition temperature to tional wave is discussed, and in Sec. V we compute the at-
the superconducting state. We also restrict ourselves to thignuation factor. Section VI contains the summary and con-
case. clusions.
Let us focus now our attention on the graviton-phonon
interaction, which is the only interaction mechanism usually
considered, and suppose that a gravitational burst hits per-
pendicularly the antenna. If the bar lies along, say,zthgis,
the wave excites the modes;=(mvs/L)(2n+1), where To set up the tools for our investigation, and to introduce

q=q =[0,0,(z/L)(2n+1)], L is the length of the bay,is ~ SOme notations, in this section we very briefly review the
the srl)und speed in aluminum, and positive integer. If, as derivation of the correction to the attenuation factor for an

we assume, the incoming wave contains a superposition acoustic wave that propagates in a semiconductor in the field
of frequencies having a cutoff which does not greatly exceed an €lectromagnetic wave, referring[tb0,11] for details.
the kHz, the only excited mode is the fundamental one. The microscopic Hamiltonian of the systefexternal
As is well known, the detector measures the energy storeflléctromagnetic wave- electrons+ phonons is
in the bar,Eg, which is proportional to the square of the

Il. SOUND WAVES IN THE FIELD
OF AN ELECTROMAGNETIC WAVE

. b : S 2
. e,
amphtudg of the bar~oscnlat|on§. Th|§ quantity |s.related to _ 65— SA(D) ata5+2 wIZbEbIZ
the Fourier transforn,, of the signal in the following way 2m “5 c P X
[12]:
+Z C,gagﬂzaﬁ(bﬁ bilz), 2
MLZ , ) p.k
Es= 2 Yq |hzz(wci )| . D
o 0 0

wherea; and a;- are the annihilation and creation operators

; 1 ihilati i
Hereh,, is thezzcomponent of the Fourier transform of the for the electronspy and by the annihilation and creation

gravitational waveh;;, M is the mass of the bagg its ~ Operators for the phonone) the electron masg(t) is the

fundamental frequency, anid as before, the length of the \iector potential of the incoming electromagnetic wave,

bar. Note that, for notational convenience, but without loss ofA(t) =Aocos(2t) [corresponding tde(t) = Eosin((2t)], and
generality, we have chosen the axes so that the antenna li€s the coupling constants of the electron-phonon interaction.
along thez direction. Moreover we have considered a gravi-Note that we are considering an electromagnetic wave of
tational wave perpendicular to the direction of the antennawavelength large with respect to the linear dimension of the
This is why in Eq.(1) only thezzcomponent of the Fourier System, so that its spatial dependence, within the semicon-
transform of the gravitational wave appears. ductor itself, can be neglected.

Equation (1) is obtained by considering the graviton-  Following the standard procedure, we assume that in the
phonon interaction only, and our problem amounts to thénfinite past, i.e., at= —, the electrons and the phonons do
question of whether the indirect graviton-phonon interactiornot interact and that the external field is absenp(lf) is the
induced by the electrons can lead to a significant modificadensity matrix of the system, and we denote quantum-
tion of this equation. In fact, would this additional interaction statistical averages with standard notat{ea., for a generic
generate a value of the attenuation factor significantly lowepperatorO we write T p(t) O]=(0),), the above condition
thanT'°, the bar oscillation amplitude would turn out to be for the phonons ready;)_..=0 and(bb_m:O. The exter-
greater than expectedndEg highey. Therefore, taking into  nal electromagnetic field and the electron-phonon interaction
account only the direct interaction, we would be lead to arare then adiabatically switched on. At a certain time, with the
overestimate of the signal. help of an external source, phonons of given momentum, say

The oscillations induced_ in the bar by_tzhle gravitationald, are excited. Starting from this timébg),# 0 and(bt>t
wave have very small amplitudea(/L~10 <), and they q
ansclucing hese bar wscllations nto elecionic signals al Te renormalizaton of the phonon atenuaton fadk;

e ; and more generally the renormalization @f, can be ob-
lows for the amplification only of those amplitudes that are, ined by considering the time evolution equation(og) 2
larger than a given threshold. Therefore, in the case of reso- 4t
nance, the detector is practically blind to frequencies other
than those within a narrow band around the fundamental one.,

In the following we consider an incoming plane wave with ﬁlt%rnrqrtllvetz:}y, \'/:ve f](::k:] ZQmF:urtT? tper trﬁ norrr]nillznedrfrequetn(;yl\kl)yt
frequencyQ = wy,. considering the Feynman diagrams for the phonon propagator. Note

that, due to the presence of the external electromagnetic field, see

‘The rest of the paper is organized as follows. In Sec. Il Wape first term in Eq(2), there are additional loop corrections con-
b”eﬂy SketCh the de“Vatlon Of the attenuation faCtor fOI’ thetammg insertion of external e|ectromagnetic lines. Equa(ﬂjrbe_

electromagnetic case mentioned above. In Sec. Ill we presefd gives an example of these additional terms. As it is immediately
the derivation of the microscopic Hamiltonian for the inter- clear from its form, this is the contribution to the renormalization of
action of the gravitational wave with the antenna. In Sec. IVw; where the fermion loop contains the insertion of an external
the renormalization ofu,io in the presence of the gravita- photon line(absorption and emission of a photon with enekgdy).
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This equation is easily obtained with the help of the Liou-electromagnetic contribution to the attenuation fa¢tanich

ville equation for the density matrix: is nothing but theE, dependent part of Im wg), ys, van-
9 0=TH 3 ishes whempe<muvs—|2q/2—mQ/q| (v is the sound ve-
ldp=[H.p]. ) locity in the semiconductay while it is
For the Hamiltonian2), we have from Eq(3
s %) VCEaZ mPus (g mQ)
| T Y it hg \2 g /° ®
(b~ wa(bgh=Ca2 (a5 _qap. (4) g
P for pp>mu¢+|hg/2—mQ/q|.
The right-hand sidéRHS) of Eq. (4) provides a small cor- As is clear from Eq.(6), the total attenuation factor is

rection, due to the electron-phonon interaction, to the fregiecomposed aEa=FQ+ Y wherel2 (>0) is the “ordi-
q : q

equation,i dy(bg);— wq(bg)=0, whose elementary solution 5~ (i e in the absence of an electromagnetic Waate
is (bg)i=Ae™'“d', with A an integration constant. tenuation factor.

Going  to tFourler _space, i.e., writing (bg) From Eq.(8) we see that when the phonon frequency is
=JdwB(w)e™'*", we derive from Eq(4) an equation for  sma|l enough with respect to the frequency of the incoming
B(w). Finally, by considering a value @ close towg, it is photon, more precisely wheg<2mQ/%, y; becomes
not difficult to see that from this Ia_st equation we can Obtamnegative Moreover, as it depends quadraticqallyliz,n for
the value of the phonon frequenayg, renormalized by the g ticiently large values of the external field, it can give a
electron-phonon interactiofll1]. Moreover, by simple in-  gignificant contribution tal. Under these conditions, an
spection of the free solution, we see that the attenuation facémplification of the acoustic wave is obsenjdd,13.
tor for the acoustic wave is given by the negative of the  ag \ye shall see in the following, in the case of a gravita-
imaginary part ofwg. tional wave hitting a metallic bar these conditions are not

In order to extractwg from Eq. (4), a certain number of met.
steps are neede@ee[11] for the detail$. First, again with
the help of the Liouville equation, an evolution equation for ||| HAMILTONIAN OF THE GW-ANTENNA SYSTEM
the correlato(agfaa,pt, which appears in the RHS of Eq.
(4), is derived. As the RHS of Ed4) already contains one
power of the small electron-phonon coupling, we can Iimita metallic antenna
ourselves to consider the lowest order solutior€ipto this The total energ;l/-momentum of this systeniTis, = T2
new equation. This approximated solution contains the factogr T \where T9% is the pure aravitational co%tribul;iyon
(bg)t- Therefore, from Eq(4), going again to Fourier space uv? wy P 9 '
and dropping the factd(w), we get(to the lowest order in

In this section we present the derivation of the micro-
scopic Hamiltonian for a gravitational wave interacting with

while Tf)ﬁtis the matter one, including its interaction with the
Co) [11]; gravitational wave. Being the metric just the flat background
q plus a small deviatiorg,,,= 7,,,+h,,, we can consider the
Eﬁz wg+ CEE(‘”&)' (5) !inearized expression fng",‘f. Insertir?g this ap'proximation
in the energy-momentum conservation equatifT;,,,=0,
where 3 (wg) contains the “ordinary” contribution to the We get[we user,z=diag(+1,-1,-1,-1)]
renormalization ofwg, 39, as well as the additional term 1
due to the presence of the electromagnetic way/&)( auTlTst_ 5 ﬂMhaﬁngt: 0. 9)

S (0g)=3%wg) + 2 (wg). (6)
Clearly T} contains the contributions of both the ions and
For our purposes, we are mainly interestedﬁﬁ'(wd). the electrons:
To the lowest order in the dimensionless parameter

a=ek,-G/mQ?, it is [11]; The=To, + T+ To, (10)
a2 NG_g—N; where the last term in the RHS is due to the electron-ion
3% wg) = T > Y interaction, whileT¢, and T} are the contributions from the
p \€p—q- EpTliwgtnll+ie noninteracting electron and ion systems in the presence of

the external gravitational field.
, (7) Since the electron-ion interaction is small, the Hamil-
tonian for the free electrons and ions can be derived by con-
_ sidering, at first, the electron gas and the ions as noninteract-
where n; the Fermi distribution function¢5=p2/2m, and ing. Moreover, once we keep only the first two terms in the
ie, as usual, implements the appropriate boundary condiRHS of Eq.(10), we note thafl'i'v and T';’Q, in this limit,
tions. separately satisfy Eq9).
From Egs.(5) and (7), it is not difficult to see that, if We could derive the complete Hamiltonian of the system
ﬁQ>p§/2m andzq>pg (pg is the Fermi momentuinthe  from the linearized Eq(9). In the following, however, we

Ng_q— Ny
+ P—q p

€p-q— eﬁ+ﬁwd—ﬁﬂ+le
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shall follow this pattern only to derive the Hamiltonian for It is now a trivial exercise to show that the above equation of
the electrons interacting with the external gravitational field.motion can be obtained from the Lagrangian:
In fact, by closely paralleling6], we shall see that the
Hamiltonian for the interaction of the phonons with the
gravitational wave is easily obtained from the expression for
the force coming from the geodesic deviation equafibfl.
Finally, the free phonon and the electron-phonon interactio@nd that
terms are the ;econd and the third term in the RHS of Eq. AL
(2), respectively. _ o « w

As is clear from the above considerations, the total Hamil- Pu= Jur MR U™ 70,U%)- (16)
tonian of the system has the form

m o
L= 5 (71as* Nag)uu (15

Choosing the transverse tracel€39) gauge forh,,, and
H=Hg'+HIW e+ HEN4 HOW—Phy HeI=Ph - (11)  remembering that, as the electron gas is nonrelativistic, the
spatial components of the electron four-veloaity, are noth-
whereHg'+H9"¢' is the Hamiltonian for the electrons in ing but the components of electron velocity, while u°

the presence of the gravitational waw¢"+H9"~P" is the =1, the above Lagrangiafup to an irrelevant constant
phonons’ one, an#i®'~P" is the electron-phonon interaction term becomes
term. "

Let us consider now Ed9) for TZ'V. As we are neglect- L= 5(5” +hij)o'vl. (17)

ing the mutual interaction between the electrons, it is suffi-
cient to consider a single electron in the field of the gravita- . G
. = . . The corresponding Hamiltonian is
tional wave. The Hamiltonian of the electron noninteracting
gas is simply the sum of the individual terms. m 1

Taking the spatial integral of Eq9) for T%,, we obtain H="—u'—L=2—(p 2~h;p'p)), (18)
(dropping the superscript “el” for simplicity au' 2m

d 1 andp' is the momentum canonically conjugate to the elec-
d_p“zif d3x(9#haﬁT“ﬁ, (120  tron position. Note that, as the wavelength of the typical
t incoming gravitational wave is large with respect to the lin-

o ) ) ear dimension of the bah;; can be considered as spatial
where a vanishing total spatial divergence term has beeﬁ‘\dependent.

omitted, and/ d XTZ_haS been written gs,, . Thisis clearly  The classical Hamiltonian of the nonrelativistic, noninter-
the equation of motion for the electron in the external gravi-acting, electron gas in the field of the incoming gravitational

tational field. Our goal here is to find the Lagrangian, andyave is the sum of terms of the for(18), and the corre-
then the Hamiltonian, from which this equation can be de'sponding quantum Hamiltonian is

rived (see for instancgls)).

As we are considering the linearized theory, the electron el , Lygw—el_ 1 -, At
energy-momentum tensor can contain only the free term Ho+H _ﬁz (p “—hijp'phazas;. (19
plus, possibly, an addition&®(h,,) term. We have then P

Let us now turn our attention 89" P". As we said before,
T =mu P 8*(x—x(1))+O(h,,), (13)  rather than following the same line of reasoning that lead to
Eqg. (19), we derive this interaction term from the geodesic
wherem is the electron massi® the electron four-velocity, ~deviation expression for the force acting upon a generic point

andx(t) the electron trajectory. of massm [14]:
Inserting Eq.(13) in Eqg. (12), and keeping terms up to _
O(h,,), Wg hgve q P P Fi=—mMRokoXx (20)

wherex, are the coordinates of the point aRy},,,, is the
g m (14) Riemann tensor of the metric field. In the TT gauge, again
' within the linear approximation, it is

Rjoko= — _ij1 (21

3Clearly the Hamiltonian of our metallic antenna should also con- 2

tain an electron-electron interaction term. In our case, however, we . .

do not need to write this term explicitly. In fact, its main effect is While all the other components vanish.

that of screening the electron-phonon interaction and results in a Obviously the Hamiltonian corresponding to the force
renormalization of the electron-phonon coupling consténts [see (20) is [6]

Eqg. (2)]. Therefore, once we regard tl@&;'s as the renormalized

(screenedcouplings, the Hamiltoniaill) written below correctly H= m

= = RjokoXjXk - 22
describes our system. 2 T0k07% Mk (22)
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Now we choose the coordinate system so that the bar lies

along thez axis and the origin coincides with the center of HOW-Ph= — (1) >, —k(bk+ b ), (30)

the bar. Moreover, in order to face the most favorable con- K \/w_k

ditions for the detection, we assume that the incoming wave .

propagates perpendicularly to thexis, say along the axis. ~ With

Under these conditions, the only nonvanishing components (—1)™ [AM

of h;; are = —i—————\| = (32)
47Tnk 2

hyy=—h,,=—h and hy,=h,,. (23

Finally, inserting Eqs(19) and(30) in Eq. (11), and remem-
For the purposes of our present analysis, we can neglebering that the termil5" andH®'~P" of this equation are the

the xy (circularn section of the bar, so that we can consider itsecond and the third term in the RHS of E2), respectively,

as being essentially a unidimensional chain of coupled hamve can now write the total microscopic Hamiltonian for the

monic oscillators(the ions. From Egs.(21) and (22), the interaction between the gravitational wave and the antenna.

interaction Hamiltonian between the ions and the gravitait is

tional wave can be written as

1 - o
| —_ H=5—2 (0 2=h;(Op'phajas+ > wibbg
HOMo%= — —Zh D (z9)%, (24) P :
n

+2 Ceal, zag(bi+b’ o) - h(t)E \/_(bk+b 0,

where the sum is over the ion sites andis the position of »
the nth ion, which is given by 32

=na+
Zn=nat &, @9 whereh;; andh are given in Eq(23).

Having at our disposal the microscopic Hamiltonian of
the system, we can now move to the central issue of the
present work, namely the computation of the contribution to
the attenuation factor due to the interaction between the in-
) coming gravitational wave and the electrons of the metallic
Hion-gw= Ionahz né,. (26)  antenna. To this end, following the pattern illustrated in Sec.
II, we shall first consider the time evolution (i, )., where

where a is the lattice spacing, and, is the displacement
from the equilibrium position of thath ion. To first order in
the displacements, we have

This Hamiltonian can be immediately written in terms of ﬁo is the wave number of the fundamental mode, and then
phonons if, as usual, we devel@p in normal modes: compute the corresponding attenuation factor. This is the
subject of the two following sections.

_ F Ak
§n—\/—ﬁ ; e an, (27) IV. TIME EVOLUTION OF (B )t
AND RENORMALIZATION OF  wg,

where N>1 is the number of ions, and the operatdis Let us consider a gravitational wave, with frequetibyf
satisfy the reIationsEl=E_k. By considering periodic the order of thd<Hz, hitting the metallic antenna. The wave-
boundary conditions, we hawe=2mn,/Na, wheren, is an  length of such a wave is much larger than the linear dimen-
integer. sion of the bar, which is typically of about one meter. There-

The Hamiltonian for the interaction between the gravita-fore, the spatial dependence lof can be neglected and we
tional wave and the phonons is now found by replacing Eqcan write
(27 into Eq. (26) and WritingEk in terms of creation and
annihilation phonon operatof46]:

7 As usual(see Sec. )| we assume that in the infinite past
E= N ——(b+b ). (2g)  the gravitational wave is absent and that the electrons and the
2Mionwy phonons do not interact. Therefore, for each valuek of
(bg)—.=0. The evolution equation fafbg); (for notational
simplicity, from now on we Writeﬁ rather tharﬁo to indicate
(—1)" the fundamental modes obtained with the help of the Liou-
(290 ville equationEq. (3)]. With the Hamiltonian(32) we obtain

hij:AijCOSQt). (33)

Performing the sum ovar, in the largeN limit we have

2 neikan IN2
n

277nk
Inserting now Eq(29) in Eq. (26), and replacindNa with L ; ’th(t)
. ’ , id¢(bg)i— wg(bgh=—F——+C4 E (ap i ag)t .
the length of the bar, anim,,, with M, the mass of the bar, Jog
we get (34)
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The correlator(ag_aa,;)t in the RHS of Eq.(34) comes WhereA=A,, is the amplitude of the component of the field

from the electron-phonon interaction term. Again with thein the longitudinal direction. Fofl~wg, this solution has
help of Eq.(3), an equation for this correlator can be derived:the expected resonant form, with a very large amplitude.
Strictly speaking, fof)=wg, the RHS of Eq(38) is diver-
_ . hij . gent. We note, however, that the well known phenomeno-
mt(aﬁ_da,;)t— €5 €~ ﬁ(Zpiqj—qiqj) (a‘;_aa,;x logical Breit-Wigner shape is obtained adding an imaginary
part to wg. As we shall see below, this damping factor,
" " " which is always added on phenomenological grounds to the
Z% Cil(a;_gap-k—a;_g.¢@p)(bitb ). (35  equation that describes the bar oscillations, from a micro-
scopic point of view is mainly due to the electron viscosity,
As it was expected, the right-hand side of this equation coni-'e" to the interaction of the electrons with the phonons. In

i .more technical terms, it comes from the renormalization of
tains correlators of products of three operators, as for in-

+ o wg due to the electron-phonon interaction.
stance the term{a-_-a; ¢by), and this is due to the L
p—q_P -azb as
p k>t-

) . We observe now that for the Correla((art_ .
electron-phonon coupling. In fact, repeatedly exploiting the P d

Liouville equation, an infinite system of coupled differential well as for the other similar correlators that appear in the
equations qfor the’ different cor)ielators is gnerated Therel—?HS of Eq.(37), the assumption that in the infinite past the

q : 9 L electron-phonon interaction is absent clearly amounts to the
fore, we have to resort to a suitable truncation of this system

In the following we shall see how such an approximation CanCOndltlon
be obtained. . )
The hypothesis that in the infinite past the electron gas is (a,;_a+;a5b;z>,m=(aﬁ_dﬁa‘;),m(b,;)m_ (39)

noninteracting yields the boundary conditio(ragfda,p_m . o
=0. Solving (formally) Eq. (35 under this condition we At the lowest order in thf;’s, the above factorization prop-
have erty is also satisfied byar;_ g L capbg), at anyt:
t t o ot N S
<a£7aa,;>t:—iz Cl;f dt’((agfaa‘;_g—agfaﬂza,;) (g g+ k@pPi=(a;_g. @p)(P) - (40
Kk —

This approximatior(and the other similar ongss crucial to
X (bg+ bilz»t’eXF{_i(fﬁ_fﬁd)(t_t,) find the desired truncation of the above mentioned infinite
system of differential equations.
i(qig—2p'ql) [t Inserting Eq.(40) in Eqg. (35), we see that, to the lowest
— TJ dt”hij(t”)}. (36) order, the correlatorsa;gfda,;) are time-independent con-
t N
stants. More precisely, they all vanish unlgss0, in which
T = s .
Finally, inserting Eq.(36) in Eq. (34), the time evolution ~Cas&(@;az)=n;, wheren; is the occupation number for the

equation for(bg) becomes states with momenturp.
Therefore, if we limit ourselves to consider in E@7)
d 2
= (ba)+iwg(bg) only Eernjs up toO(Cq), we need to keep only those terms
at with k=q. Then, inserting the expressi¢d3) for h;; in Eq.
. 202h() . . (37) we have
c%—q
=it C*Cgf dt'[{a:_-. a5
\/w_ti ;3,!2 q Cw p—q+k—P

J
—(bg)+iwg(bg),
X (betb! D) —(al a5 w(betb! )] ot

-02
ca_gQ°AcogOt) 2
O =—i +C2>) (ng—n;_g
exr{ i(ep—€5-g)( ) \/w_q 1< p~ ''p—q
i Yt t
— ﬁ(qlqj_zplqj)f dt"hij(t”)}. (37) X f dt (<bq>t/+<b7a>t/)
t’ -
If we now neglect the electron-phonon interaction in Eq. xexpg —i(e;—€5-g)(t—t')—5—(a'qg’=2p'q’)
(37), i.e., we consider the zeroth order in thés, we have 2m
(for the given boundary conditiops ‘
X J dt"cos(m")}. (41
a_gO%A wgcod Q) —iQsin(Qt v
(bg go): q . qc0d l . n( ), (39)
@ Q T @g It is now convenient to move to Fourier space and write
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b — o dwB- it 42 (bia>t. In fact, taking into account that the electron-phonon
(bg)= | dwBg(w)e . (42 coupling constants are real, and ti&g=C_;, we have
. t J Jd
Note that Eq.(41) also contains the terrb_;); and that, iﬁ<bia>t+wd<bt&>t:_i E<b&>t+“’d<b&>t (44)
from Eq. (42), we have
" which implies the relation
<bt~>t=f dwB* (w)e't. (43)
4 —oo 4 wi—
B* :(—w)=——B(w). (45)
q wgt o

A relation betweerBs(w) and Bfa(w) is immediately ob-
tained with the help of the time evolution equation for Inserting now Eqs(42), (43) and (45) in Eq. (41), we find

fw doe ' “(—io+iogBi(0)=CiX (Ng=n5_q) 2 Jn(@)dn(@)
— p n,m=—o

* t o B P Wg—w
Xf dwf dt’e it e IthelmQt e I(ep Ep,q)(t th) Ba(Q))'f' Ba(w)
. . a)a-l- w
JadA (80— Q)+ 8(w+Q)) (46)
- w w— w s
2\wg J-=
whereJ,(a) are Bessel functions, whose argumans
Aij(g'q'—2p'a))
= oma “0
and we have used the relation
glasing_ 2 Jn(a)einal (48)

n=-—w

The time integral in the RHS of E@46) is easily performed. Isolating the Fourier coefficients, we obtaimns(, as usual, is
the converging factor for the time integral, i.e., it implements the boundary conditions

a_;0%A - N;—nN5_g
(0= 0g)Bg(0)= ——(J(0—-Q)+ H0+Q))+CE Y, 3 I@)in(a) S —
2\wqg nm=-—o g —o+tnQ+e—€; e

wg— o+ (n—m)Q)

X| Bg(w+(m—n)Q)+ Bj(w+(m—n)Q)]. (49

ozt o+ (m—n)Q

From Eq.(49) we can obtainBg(w) up to O(Cg). To the O(CE). Here we are rather interested in the renormalization
lowest order, i.e., by keeping only the first term in the RHSof the phonon frequencyy, let us callwg the renormalized
of this equation, we have frequency, due to the electron-phonon interaction. In the fol-
lowing we shall see how;[i can be obtained with the help of
= (0-0)+8w+Q). (0 Ed-(49. r
2\ og(w—wg) We could computev; directly by considering the renor-
malization of the phonon propagator. As we are interested in
. 2 . q q
Fourier transform of Eq38). To get theO(Cy) correctionto  yith one electron-hole loop. However, the electrons also in-
Eq. (50), we have to insert in Eq(49) the seriesB;(w)  teract with the external gravitational fieJdee the first term

= Bgo)(w)-}—CgBél)(w)-l-O(Cg), and keep only terms up to on the RHS of Eq(32)]. Therefore, in addition to the usual

a_ QA
B (w) :
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fermionic loop, an infinite series of one-loop diagrams with *

bt e i 2 2 Ns—Np—g

the insertion of one, two, ... gravitational external lines is wg= g+ Ci > 2 Jn(a) —.

generated. These diagrams are alogiC?). n=-®p —ogtnQte—egie
Equivalently, following a standard proceduf&0], the (53

same result can be obtained from E49) once we perform
the following steps. First of all we note that the first term on o ) 5
the RHS of this equation cannot contribute to the renormal- AS We have anticipated, in E¢3) we see that the©(Cp)
ization of wg. In fact, as it is due to the resonant coupling correction towg contains an infinite series of one-loop terms
between the external gravitational field and the phorises ~ due to the interaction of the electrons with the gravitational
the last term on the RHS of E§32)], this term does not Wwave. Equation(53) is the result we were looking for,
enter in the loop correction of the phonon propagator. namely, the renormalizedg “dressed” by the interaction
If we now (i) ignore this term in Eq(49), (i) consider a  With the external gravitational field. This expression clearly
value of w such thatw=wg+ o(cg), and (iii) keep only contains also the contribution tﬂ% which does not depend
terms up toO(C%), we can write Eq(49) as on this interaction, which is nothing but the result in Eq.
q (52). It is easily found in then=0 term of this series once
we consider the first term of the expansion]é(a) in pow-
(0= wg—I(w))Bg(w)=0. (51)  ers ofa[see Eq.(55) below].
Our aim is to investigate the impact of this additional
The precise form ofI(w) is given below[see Eqs(52) and “dressing” of " on the oscillations of the gravitational an-
(53)]. Apart from harmless factors, the coefficient in front of tenna. To this end, we compute in the next section the damp-
B;(w) is the inverse phonon propagator UFQ(JCE)- There- ing factorl'g=—1Im w%. Following the notation introduced
fore, the one-loop corrected phonon frequency, which ign Sec. Il, we indicate the attenuation factor in the absence of
nothing but the pole of the phonon propagator, is given bythe gravitational wave Witﬂ“g and the gravitational contri-
that value ofw for which this coefficient vanishes. bution with Y4, SO that the total attenuation factor ]s

To begin with, let us consider the case when the gravita—p%, -
tional wave is absent. As in this case=0, all the Bessel a 7
functions, with the exception afy [Jo(0)=1], vanish. Fol-
lowing the procedure outlined above, neglecting higher order V. THE ATTENUATION FACTOR
terms in CE and dropping the factoBg, from Eq.(49) we This section is devoted to the computation of the attenu-
get ation (or damping factorI'g. In order to compare our esti-

mates of physical quantities with experimentally known val-
ues, in the following we consider the specific example of the

ob=wi+C2Y Np~Np—gq _ (52 antenna EXPLORER12] operating at CERN. Taking the
q % - wgt €p—€p_g—ie imaginary part of Eq(53), we have
This is the well known result for the renormalization @f; Ti=—Imo-=T%y:=7C2 > > 3a)(n;_z—n;)
[17] in the absence of external fieldsee Sec. V below for d ¢ g Y e G pra P

the detailed computation where we easily recognize the
one-loop structure of the second term on the RHS of Eq.

(52). Note that the negative of the imaginary part corg,

X 6(ep—€p_g— wgtnid). (54)

P 5 o i Due to the weakness of the gravitational waee,the
I'g=—Imaog, gives theO(C;) contribution to the damping  gimensjonless argument of the Bessel functions, is a small
factor due to the electron-phonon interaction. This term, agumber. Therefore, we can expand these functions in powers
we have anticipated, modifies the deltalike structure of Edof a and limit ourselves to consider terms up to the lowest
(38 giving to this amplitude the expected Breit-Wigner nontrivial order ina. This amounts to keep only the Bessel
shape, the maximum being attained o= Rewé. functions withn=0,=1. In fact, it is

The same steps can be repeated for the case when the
gravitational wave is present. As we only keep terms up to
O(Cg), the functionsB; in both members of Eq49) have

to be replaced with their lowest order approximatidag),).
Consequently, the only nonvanishing terms in the RHS of )
Eq. (49) are those for whiclm=m. Moreover, as it was also Fa@=7+ (59
the case when the gravitational wave was absent, the last

. . . .2

term of Eq.(49), which is of higher ogder irC;, has to be  \yhere the dots indicate higher power termsajnand the
neglected. Therefore, dropping ageﬁi[?) from both sides of  expansion of all the other Bessel functioda) with |n|

Eq. (49), we have =2 starts with higher powers @&. We know from Eq.(47)

2

P a
B@)=1-5 -+,

2
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that the quantitya is a function off): a=a(5). For reasons B pﬁq cosé (ﬁq)2 i
that will be immediately clear, in the following expression it =9 om —2haog),
is convenient to indicate explicitly this dependence. Keeping
in Eq. (54) only terms up to0(a?), we have pﬁq cosé (ﬁq)
=0 2m )’
T;=nC2 z N[ S(€5:q— €~ wg) — d(€;—€5_c— wg) ] 2
q ql < ''p p+q~ €p~ ¥q P~ €p—q Yq phq cosé (ﬁq)
P 63=96 —Zﬁwd ,
2m
Np I . o
+Z Z([5(5p+q_6p_2wq)+5(6p+q_5p) 5y=5 pﬁq cosé (ﬁCI)
P o B ~2m |’
—26(€51q— €5~ wa)]az(er q)—[d(ep—€5-g—2wg)
5( pfiq cosé (ﬁq)2 . )
> 5= wq
+0(e5—€p_q)—28(e5— €5~ wg)1a%(p)) |.  (56) 2m d

5 _5( prqcosd (#Q)? . )
The first term in the RHS of Eq56) does not depend on 6 m 2m “q)-
a. It is nothing butF . Considering for the time being only For a typ|cal gravitational antenna we are under the

(60)

this term, and performmg the summation oyerwe get conditions*
fq)? (hg)? (h9)® _pehq
87VCE oom? ( ) _ (A7 _pehq
ro_ q ©@gMm | (57 om <lhwg >m <lhwq+ om < (1=1,2,
q 4
h q (61

whereV is the volume of the bar anuh is the electron mass. and the integration of Eq59) gives
Moreover, as we have chosen the bar to lie alongztldé 6 3VC
rection, in the above expression we h m m? “’q A2

) p aeq;. Yo=— [ZA z]' (62

Let us focus now our attention on the derivation)qf h4
i.e., on the computation of the two remaining terms in the

RHS of Eq.(56). As previously said, the bar lies along the z Finally, since the incoming gravitational wave is not ex-
direction, while the gravitational wavén the TT gauge Pected to be polarized, now we have to perform the average
propagates perpendicularly to the bar, alongstrection.  over the polarizations. If we caB the polarization angle, we
Therefore, the only nonvanishing components Af are ~ can write

Ayy= ~Azz 8NdAG=Ayy, SO that A,~e.cos2B—e.sin2B, A,,=e.sin2B+e,cos .

P'a Aij=Pyd-A 2+ PAAL= PA(A,SiN0Sin -+ A, £0S0), (63
(58) Averaging overs, we arrive at the result

3w3vc mwyg

h4

where, to write the last term, we have introduced spherical Y=

coordinates in thqn space(and noted again that,=q).
Inserting Eq.(58) in Eq. (56), and proceeding as before,

(e +ed). (64)

It is interesting to compare E§64) with the correspond-

we find ing damping factor for the electromagnetic césee Eq(8)
of Sec. lll. We note that, differently from this case, the gravi-
Vv WC% , tational contribution tqu is always positive. The gravita-
Ya= 3 ﬁ P dpf d(COSG)f do tional correction td"2 can never produce an amplification of
h® Aim*(% wg)
the bar oscillation.
X ([(hq)*A2 +4p2(ﬁq)2(AZZs|nz¢95|n2¢+A £0%6)] Irrespectively of its sign, however, it is more important to
compare the magnitude of;, Eq. (64), with F~ Eq (57)
X[ 01+ 82— 037 64— 285 26] Taking for e, =e, =e the realistic value 02102, we
+4p(19)3A2,L0S0[ 8, + 85+ 83+ 84— 285—255)), obtain
(59
“For instance for EXPLORER it i# wg=6x10"%J, pp=1,22
where we have introduced the compact notations: X 1072 Kgm/s, q=1,1x 10734 Kg m/s.
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metallic bar(the gravitational antenpawe have studied the

18510*42. (65 contribution to the oscillations of the antenna due to the in-
Fa teraction of its electrons with the incoming wave.

o ) 0. ) More precisely, we have considered the contribution to
Clearly, the.grawtatlon.al gorrectlon lba is too small to give 0 damping factoF ; (the negative of the imaginary part of
any appreciable contribution ;. the phonon frequengyhich comes from the interaction be-
A few comments are in order. First of all we note thatyeen the electrons of the bar and the gravitational external
such a result, which could be expected on the basis of thge|q_ |t turns out that this term is several orders of magnitude

extreme yv_eakness of the grawtanonal wave a'mplltude, %Smaller than the ordinary factor which is due to the electron
tirely justifies the common assumption according to Wh'Chviscosity(i e., to the electron-phonon interactjon

the only physically r_elevar]t mechanism for the _transfer of As is well known, the gravitational wave interacts directly
energy between the incoming wave and the gravitational an- . . : Y
ith the normal modes of the bar. This resonant interaction is

tenna is the direct resonant coupling between the wave an\é\i e L
the bar normal modes. ue to the modification of the geodesic distance between the

We also note that, as the loop integrals extend up to th'f)nS Of_ the lattice i”‘?'uce_d by the presence of the gravita-
Fermi momentum, we could expect that correctionItg) t|_onal f|g|d. The contr!butlorvd to the dampl_n_g factqr con-

' . . . sidered in this paper is the result of an additional “indirect”
depends orpe.. Performing the momentum 'F“.egra's in Eq. interaction between the gravitational wave and the phonons.
(59), however, we see that the terms that individually depend].hiS additional coupling, which is due to the electron-
on pr cancel each o_the_rs. . graviton interaction, is induced by electron-hole loops.

One coulda priori think tgat, would these cancellations However, as the incoming wave is extremely weak and
not_ occur, the correction tBa could turn o_ut more signifi- the Fermi momenturfwhich is the highest value of momen-
cative. However, the value of the Fermi momentisee {,m running in the loopsis not sufficiently high to compen-
footnote 4 is not sufficiently high to compensate for the gate for this weakness, it should not come as a surprise that
extremely low value of the gravitational amplitude. In fact, ¥; turns out to be a negligibly small contribution Fy; .
as we can easily see by simple inspection of &), there Finally, it is worth mentioning that our findings, while
are three typical terms that come out from the Integration Otonfirming the assumption that the only relevant mechanism
Eq. (59 before the cancellations. They ar@e(.a/m)°,  of interaction between a gravitational wave and a metallic
(fiwg)? and (°q*/2m)?. While the third term is negligible par is the direct resonant coupling between the wave and its
with respect to the second one, the first term is six orders oformal modes, strongly disagree with the recent claim that
magnitude greater than the second. Therefore, the order @fe interaction of the gravitational wave with the electrons of
magnitude of the “gravitational dampingyq, even in the  the par enhances the resonant cross section of several orders
absence of these cancellations, would only change of a facteg magnitude, actually of four orders of magnitui®.
10°, and the resulting value of; (~10 3¢ s™*) would still
be far too small if compared Witﬁg.
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