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We carefully analyze the contribution to the oscillations of a metallic gravitational antenna due to the
interaction between the electrons of the bar and the incoming gravitational wave. To this end, we first derive
the total microscopic Hamiltonian of the wave-antenna system and then compute the contribution to the
attenuation factor due to the electron-graviton interaction. As compared to the ordinary damping factor, which
is due to the electron viscosity, this term turns out to be totally negligible. This result confirms that the only
relevant mechanism for the interaction of a gravitational wave with a metallic antenna is its direct coupling
with the bar normal modes.
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I. INTRODUCTION

The detection of gravitational waves represents nowadays
one of the most challenging and stimulating problems in ex-
perimental and theoretical physics.

At the beginning of the 1960s, Weber pioneered a re-
search program based on the construction of metallic anten-
nae~aluminum bars!, and computed the cross section for the
absorption of gravitational waves@1# ~see also@2,3#! under
the assumption that the relevant mechanism that governs the
transfer of energy is a direct resonant coupling between the
wave and the bar normal modes, the so called resonant as-
sumption @3#. The detector is so built that a signal is ob-
served when the frequency of the incoming wave is close to
the bar fundamental mode, the cross section taking a Breit-
Wigner shape around this frequency.

Weber successively proposed a correction to his own
computation. Arguing that the bar has very many resonant
frequencies within the tiny detection range, he found an
enormous enhancement of the cross section@4#. Later
Preparata@5# considered a different mechanism that again
lead to an enhancement of the cross section. The problems
with both of these mechanisms have been clearly identified
@6–8#. It is by now largely accepted that, within the frame-
work of the resonant assumption, the correct result is the old
one @1#.

However, in addition to the direct graviton-phonon cou-
pling considered in@1–3#, which at the microscopic level is
due to a modification of the geodesic distance between the
ions of the lattice in the presence of the gravitational wave, it
is clear that the gravitons also couple to the electrons of the

metal. Due to the electron-phonon interaction, an indirect
coupling between gravitons and phonons is then generated.1

By considering the microscopic Hamiltonian for the inter-
action of a gravitational wave with the bar, in this paper we
carefully analyze the electronic contribution to the absorp-
tion of gravitational waves by the antenna. More specifically,
we compute the contribution~renormalization! to the attenu-
ation factor, i.e., the imaginary part of the frequency of the
propagating acoustic wave, due to the interaction of the elec-
trons with the gravitational wave. Depending on its sign, this
term could lead to an attenuation or an amplification of the
bar oscillation amplitude. This is a correction to the ‘‘ordi-
nary’’ ~positive! factor, calledG0 from now on, which is the
bar attenuation factor in the absence of gravitational waves
~see Sec. V below!. Therefore, irrespectively of its sign, the
actual relevance of such a term depends on its magnitude
relative toG0.

A similar phenomenon has already been considered for
the propagation of an acoustic wave in a semiconductor in
the presence of an electromagnetic wave@10,11#. Here the
electron-phonon interaction generates, via electron-hole
loops, an indirect photon-phonon coupling. Although this
electron viscosity generally causes an attenuation of the
acoustic wave, under certain circumstances the wave can be
amplified. We shall see in the following that, while this is
possible for the electromagnetic case, for a gravitational
wave hitting a metallic antenna such an amplification cannot
occur.

Present bars are aluminum detectors operating at a tem-
perature of about 2 K. To avoid uncontrolled complications
due to superconductivity effects, the antennae operate at tem-
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1It has been recently claimed that this interaction is responsible
for an enormous enhancement of the cross section@9#. Our results
~see Sec. V! strongly disagree with this conclusion.

PHYSICAL REVIEW D 70, 024004 ~2004!

0556-2821/2004/70~2!/024004~10!/$22.50 ©2004 The American Physical Society70 024004-1



peraturesT.Ts , whereTs is the transition temperature to
the superconducting state. We also restrict ourselves to this
case.

Let us focus now our attention on the graviton-phonon
interaction, which is the only interaction mechanism usually
considered, and suppose that a gravitational burst hits per-
pendicularly the antenna. If the bar lies along, say, thez axis,
the wave excites the modesvqW5(pvs /L)(2n11), where
qW 5qW

n
5@0,0,(p/L)(2n11)#, L is the length of the bar,vs is

the sound speed in aluminum, andn a positive integer. If, as
we assume, the incoming wavehi j contains a superposition
of frequencies having a cutoff which does not greatly exceed
the kHz, the only excited mode is the fundamental one.

As is well known, the detector measures the energy stored
in the bar,Es , which is proportional to the square of the
amplitude of the bar oscillations. This quantity is related to
the Fourier transformh̃zz of the signal in the following way
@12#:

Es5
ML2

p2
vqW

0

4 uh̃zz~vqW
0
!u2. ~1!

Hereh̃zz is thezzcomponent of the Fourier transform of the
gravitational wavehi j , M is the mass of the bar,vqW 0

its
fundamental frequency, andL, as before, the length of the
bar. Note that, for notational convenience, but without loss of
generality, we have chosen the axes so that the antenna lies
along thez direction. Moreover we have considered a gravi-
tational wave perpendicular to the direction of the antenna.
This is why in Eq.~1! only thezzcomponent of the Fourier
transform of the gravitational wave appears.

Equation ~1! is obtained by considering the graviton-
phonon interaction only, and our problem amounts to the
question of whether the indirect graviton-phonon interaction
induced by the electrons can lead to a significant modifica-
tion of this equation. In fact, would this additional interaction
generate a value of the attenuation factor significantly lower
than G0, the bar oscillation amplitude would turn out to be
greater than expected~andEs higher!. Therefore, taking into
account only the direct interaction, we would be lead to an
overestimate of the signal.

The oscillations induced in the bar by the gravitational
wave have very small amplitudes (DL/L;10221), and they
have to be amplified by an electronic system. The noise in
transducing these bar oscillations into electronic signals al-
lows for the amplification only of those amplitudes that are
larger than a given threshold. Therefore, in the case of reso-
nance, the detector is practically blind to frequencies other
than those within a narrow band around the fundamental one.
In the following we consider an incoming plane wave with
frequencyV.vqW 0

.
The rest of the paper is organized as follows. In Sec. II we

briefly sketch the derivation of the attenuation factor for the
electromagnetic case mentioned above. In Sec. III we present
the derivation of the microscopic Hamiltonian for the inter-
action of the gravitational wave with the antenna. In Sec. IV
the renormalization ofvqW 0

in the presence of the gravita-

tional wave is discussed, and in Sec. V we compute the at-
tenuation factor. Section VI contains the summary and con-
clusions.

II. SOUND WAVES IN THE FIELD
OF AN ELECTROMAGNETIC WAVE

To set up the tools for our investigation, and to introduce
some notations, in this section we very briefly review the
derivation of the correction to the attenuation factor for an
acoustic wave that propagates in a semiconductor in the field
of an electromagnetic wave, referring to@10,11# for details.

The microscopic Hamiltonian of the system~external
electromagnetic wave1 electrons1 phonons! is

H5
1

2m (
pW

S pW 2
e

c
AW ~ t ! D 2

apW
†
apW1(

kW
vkWbkW

†
bkW

1(
pW ,kW

CkWapW 1kW
†

apW~bkW1b
2kW
†

!, ~2!

whereapW andapW
† are the annihilation and creation operators

for the electrons,bkW and bkW
† the annihilation and creation

operators for the phonons,m the electron mass,AW (t) is the
vector potential of the incoming electromagnetic wave,
AW (t)5AW 0cos(Vt) @corresponding toEW (t)5EW 0sin(Vt)], and
CkW the coupling constants of the electron-phonon interaction.
Note that we are considering an electromagnetic wave of
wavelength large with respect to the linear dimension of the
system, so that its spatial dependence, within the semicon-
ductor itself, can be neglected.

Following the standard procedure, we assume that in the
infinite past, i.e., att52`, the electrons and the phonons do
not interact and that the external field is absent. Ifr(t) is the
density matrix of the system, and we denote quantum-
statistical averages with standard notation„i.e., for a generic
operatorO we write Tr@r(t)O#5^O& t…, the above condition
for the phonons readŝbkW&2`50 and^bkW

†
&2`50. The exter-

nal electromagnetic field and the electron-phonon interaction
are then adiabatically switched on. At a certain time, with the
help of an external source, phonons of given momentum, say
qW , are excited. Starting from this time:^bqW& tÞ0 and ^bqW

†
& t

Þ0.
The renormalization of the phonon attenuation factor,GqW ,

and more generally the renormalization ofvqW , can be ob-
tained by considering the time evolution equation for^bqW& t .2

2Alternatively, we could compute the renormalized frequency by
considering the Feynman diagrams for the phonon propagator. Note
that, due to the presence of the external electromagnetic field, see
the first term in Eq.~2!, there are additional loop corrections con-
taining insertion of external electromagnetic lines. Equation~7! be-
low gives an example of these additional terms. As it is immediately
clear from its form, this is the contribution to the renormalization of
vqW where the fermion loop contains the insertion of an external
photon line~absorption and emission of a photon with energy\V).
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This equation is easily obtained with the help of the Liou-
ville equation for the density matrix:

i ] tr5@H,r#. ~3!

For the Hamiltonian~2!, we have from Eq.~3!

i ] t^bqW& t2vqW^bqW& t5CqW(
pW

^apW 2qW
†

apW& t. ~4!

The right-hand side~RHS! of Eq. ~4! provides a small cor-
rection, due to the electron-phonon interaction, to the free
equation,i ] t^bqW& t2vqW^bqW& t50, whose elementary solution
is ^bqW& t5Ae2 ivqW t, with A an integration constant.

Going to Fourier space, i.e., writing ^bqW& t
5*dvB(v)e2 ivt, we derive from Eq.~4! an equation for
B(v). Finally, by considering a value ofv close tovqW , it is
not difficult to see that from this last equation we can obtain
the value of the phonon frequency,v̄qW , renormalized by the
electron-phonon interaction@11#. Moreover, by simple in-
spection of the free solution, we see that the attenuation fac-
tor for the acoustic wave is given by the negative of the
imaginary part ofv̄qW .

In order to extractv̄qW from Eq. ~4!, a certain number of
steps are needed~see@11# for the details!. First, again with
the help of the Liouville equation, an evolution equation for
the correlator̂ apW 2qW

†
apW& t , which appears in the RHS of Eq.

~4!, is derived. As the RHS of Eq.~4! already contains one
power of the small electron-phonon coupling, we can limit
ourselves to consider the lowest order solution inCqW to this
new equation. This approximated solution contains the factor
^bqW& t . Therefore, from Eq.~4!, going again to Fourier space
and dropping the factorB(v), we get~to the lowest order in
CqW) @11#:

v̄qW5vqW1CqW
2
S~vqW !, ~5!

where S(vqW) contains the ‘‘ordinary’’ contribution to the
renormalization ofvqW , S0, as well as the additional term
due to the presence of the electromagnetic wave (Sel):

S~vqW !5S0~vqW !1Sel~vqW !. ~6!

For our purposes, we are mainly interested inSel(vqW).
To the lowest order in the dimensionless parameter
a5eEW 0•qW /mV2, it is @11#:

Sel~vqW !5
a2

4 (
pW

S npW 2qW2npW

epW 2qW2epW1\v̄qW1\V1 i e

1
npW 2qW2npW

epW 2qW2epW1\v̄qW2\V1 i e
D , ~7!

where npW the Fermi distribution function,epW5pW 2/2m, and
i«, as usual, implements the appropriate boundary condi-
tions.

From Eqs.~5! and ~7!, it is not difficult to see that, if
\V@pF

2/2m and\q@pF (pF is the Fermi momentum!, the

electromagnetic contribution to the attenuation factor~which
is nothing but theEW 0 dependent part of2Im v̄qW), gqW , van-
ishes whenpF,mvs2u\q/22mV/qu (vs is the sound ve-
locity in the semiconductor!, while it is

gqW5
VCqW

2
a2

4p\4

m2vs

\q S \q

2
2

mV

q D s21 ~8!

for pF.mvs1u\q/22mV/qu.
As is clear from Eq.~6!, the total attenuation factor is

decomposed asGqW5GqW
0
1gqW , whereGqW

0 (.0) is the ‘‘ordi-
nary’’ ~i.e., in the absence of an electromagnetic wave! at-
tenuation factor.

From Eq.~8! we see that when the phonon frequency is
small enough with respect to the frequency of the incoming
photon, more precisely whenq<A2mV/\, gqW becomes
negative. Moreover, as it depends quadratically onEW 0, for
sufficiently large values of the external field, it can give a
significant contribution toGqW . Under these conditions, an
amplification of the acoustic wave is observed@11,13#.

As we shall see in the following, in the case of a gravita-
tional wave hitting a metallic bar these conditions are not
met.

III. HAMILTONIAN OF THE GW-ANTENNA SYSTEM

In this section we present the derivation of the micro-
scopic Hamiltonian for a gravitational wave interacting with
a metallic antenna.

The total energy-momentum of this system isTmn5Tmn
mat

1Tmn
gw , where Tmn

gw is the pure gravitational contribution,
while Tmn

mat is the matter one, including its interaction with the
gravitational wave. Being the metric just the flat background
plus a small deviation,gmn5hmn1hmn , we can consider the
linearized expression forTmn

gw . Inserting this approximation
in the energy-momentum conservation equation,]nTmn50,
we get@we usehab5diag(11,21,21,21)]

]nTmn
mat2

1

2
]mhabTab

mat50. ~9!

Clearly Tmn
mat contains the contributions of both the ions and

the electrons:

Tmn
mat5Tmn

el 1Tmn
ion1Tmn

el-ion, ~10!

where the last term in the RHS is due to the electron-ion
interaction, whileTmn

el andTmn
ion are the contributions from the

noninteracting electron and ion systems in the presence of
the external gravitational field.

Since the electron-ion interaction is small, the Hamil-
tonian for the free electrons and ions can be derived by con-
sidering, at first, the electron gas and the ions as noninteract-
ing. Moreover, once we keep only the first two terms in the
RHS of Eq.~10!, we note thatTmn

el and Tmn
ion , in this limit,

separately satisfy Eq.~9!.
We could derive the complete Hamiltonian of the system

from the linearized Eq.~9!. In the following, however, we
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shall follow this pattern only to derive the Hamiltonian for
the electrons interacting with the external gravitational field.
In fact, by closely paralleling@6#, we shall see that the
Hamiltonian for the interaction of the phonons with the
gravitational wave is easily obtained from the expression for
the force coming from the geodesic deviation equation@14#.
Finally, the free phonon and the electron-phonon interaction
terms are the second and the third term in the RHS of Eq.
~2!, respectively.3

As is clear from the above considerations, the total Hamil-
tonian of the system has the form

H5H0
el1Hgw2el1H0

ph1Hgw2ph1Hel2ph, ~11!

whereH0
el1Hgw2el is the Hamiltonian for the electrons in

the presence of the gravitational wave,H0
ph1Hgw2ph is the

phonons’ one, andHel2ph is the electron-phonon interaction
term.

Let us consider now Eq.~9! for Tmn
el . As we are neglect-

ing the mutual interaction between the electrons, it is suffi-
cient to consider a single electron in the field of the gravita-
tional wave. The Hamiltonian of the electron noninteracting
gas is simply the sum of the individual terms.

Taking the spatial integral of Eq.~9! for Tmn
el , we obtain

~dropping the superscript ‘‘el’’ for simplicity!

d

dt
pm5

1

2E d3x]mhabTab, ~12!

where a vanishing total spatial divergence term has been
omitted, and*d3xTm

0 has been written aspm . This is clearly
the equation of motion for the electron in the external gravi-
tational field. Our goal here is to find the Lagrangian, and
then the Hamiltonian, from which this equation can be de-
rived ~see for instance@15#!.

As we are considering the linearized theory, the electron
energy-momentum tensor can contain only the free term
plus, possibly, an additionalO(hmn) term. We have then

Tab5muaubd3
„xW2xW~ t !…1O~hmn!, ~13!

wherem is the electron mass,ua the electron four-velocity,
andxW (t) the electron trajectory.

Inserting Eq.~13! in Eq. ~12!, and keeping terms up to
O(hmn), we have

d

dt
pm5

m

2
uaub]mhab . ~14!

It is now a trivial exercise to show that the above equation of
motion can be obtained from the Lagrangian:

L5
m

2
~hab1hab!uaub ~15!

and that

pm5
]L

]um
5m~hamua1hamua!. ~16!

Choosing the transverse traceless~TT! gauge forhmn , and
remembering that, as the electron gas is nonrelativistic, the
spatial components of the electron four-velocity,ui , are noth-
ing but the components of electron velocity,v i , while u0

>1, the above Lagrangian~up to an irrelevant constant
term! becomes

L5
m

2
~d i j 1hi j !v

iv j . ~17!

The corresponding Hamiltonian is

H5
]L

]ui
ui2L5

1

2m
~pW 22hi j p

ipj !, ~18!

and pi is the momentum canonically conjugate to the elec-
tron position. Note that, as the wavelength of the typical
incoming gravitational wave is large with respect to the lin-
ear dimension of the bar,hi j can be considered as spatial
independent.

The classical Hamiltonian of the nonrelativistic, noninter-
acting, electron gas in the field of the incoming gravitational
wave is the sum of terms of the form~18!, and the corre-
sponding quantum Hamiltonian is

H0
el1Hgw2el5

1

2m (
pW

~pW 22hi j p
ipj !apW

†
apW . ~19!

Let us now turn our attention toHgw2ph. As we said before,
rather than following the same line of reasoning that lead to
Eq. ~19!, we derive this interaction term from the geodesic
deviation expression for the force acting upon a generic point
of massm @14#:

F j52mRj 0k0xk , ~20!

wherexk are the coordinates of the point andRmnrs is the
Riemann tensor of the metric field. In the TT gauge, again
within the linear approximation, it is

Rj 0k052
1

2
ḧ jk , ~21!

while all the other components vanish.
Obviously the Hamiltonian corresponding to the force

~20! is @6#

H5
m

2
Rj 0k0xjxk . ~22!

3Clearly the Hamiltonian of our metallic antenna should also con-
tain an electron-electron interaction term. In our case, however, we
do not need to write this term explicitly. In fact, its main effect is
that of screening the electron-phonon interaction and results in a
renormalization of the electron-phonon coupling constantsCkW ’s @see
Eq. ~2!#. Therefore, once we regard theCkW ’s as the renormalized
~screened! couplings, the Hamiltonian~11! written below correctly
describes our system.

BRANCHINA, GASPARINI, AND RISSONE PHYSICAL REVIEW D70, 024004 ~2004!

024004-4



Now we choose the coordinate system so that the bar lies
along thez axis and the origin coincides with the center of
the bar. Moreover, in order to face the most favorable con-
ditions for the detection, we assume that the incoming wave
propagates perpendicularly to thez axis, say along thex axis.
Under these conditions, the only nonvanishing components
of hi j are

hyy52hzz52h and hyz5hzy . ~23!

For the purposes of our present analysis, we can neglect
thexy ~circular! section of the bar, so that we can consider it
as being essentially a unidimensional chain of coupled har-
monic oscillators~the ions!. From Eqs.~21! and ~22!, the
interaction Hamiltonian between the ions and the gravita-
tional wave can be written as

H ion– gw52
mion

4
ḧ(

n
~zn!2, ~24!

where the sum is over the ion sites andzn is the position of
the nth ion, which is given by

zn5na1jn , ~25!

where a is the lattice spacing, andjn is the displacement
from the equilibrium position of thenth ion. To first order in
the displacements, we have

H ion– gw52
mion

2
aḧ(

n
njn . ~26!

This Hamiltonian can be immediately written in terms of
phonons if, as usual, we developjn in normal modes:

jn5
1

AN
(

k
j̃ke

ikan, ~27!

where N@1 is the number of ions, and the operatorsj̃k

satisfy the relationsj̃k
†5 j̃2k . By considering periodic

boundary conditions, we havek52pnk /Na, wherenk is an
integer.

The Hamiltonian for the interaction between the gravita-
tional wave and the phonons is now found by replacing Eq.
~27! into Eq. ~26! and writing j̃k in terms of creation and
annihilation phonon operators@16#:

j̃k5A \

2mionvk
~bk1b2k

† !. ~28!

Performing the sum overn, in the largeN limit we have

(
n

neikan52 iN2
~21!nk

2pnk
. ~29!

Inserting now Eq.~29! in Eq. ~26!, and replacingNa with L,
the length of the bar, andNmion with M, the mass of the bar,
we get

Hgw– ph52ḧ~ t !(
k

ak

Avk

~bk1b2k
† !, ~30!

with

ak52 i
~21!nkL

4pnk
A\M

2
. ~31!

Finally, inserting Eqs.~19! and~30! in Eq. ~11!, and remem-
bering that the termsH0

ph andHel2ph of this equation are the
second and the third term in the RHS of Eq.~2!, respectively,
we can now write the total microscopic Hamiltonian for the
interaction between the gravitational wave and the antenna.
It is

H5
1

2m (
pW

„pW 22hi j ~ t !pipj
…apW

†
apW1(

kW
vkWbkW

†
bkW

1(
pW ,kW

CkWapW 1kW
†

apW~bkW1b
2kW
†

!2ḧ~ t !(
kW

ak

Avk

~bkW1b
2kW
†

!,

~32!

wherehi j andh are given in Eq.~23!.
Having at our disposal the microscopic Hamiltonian of

the system, we can now move to the central issue of the
present work, namely the computation of the contribution to
the attenuation factor due to the interaction between the in-
coming gravitational wave and the electrons of the metallic
antenna. To this end, following the pattern illustrated in Sec.
II, we shall first consider the time evolution of^bqW 0

& t , where

qW 0 is the wave number of the fundamental mode, and then
compute the corresponding attenuation factor. This is the
subject of the two following sections.

IV. TIME EVOLUTION OF ŠBq¢ 0
‹T

AND RENORMALIZATION OF vq¢ 0

Let us consider a gravitational wave, with frequencyV of
the order of theKHz, hitting the metallic antenna. The wave-
length of such a wave is much larger than the linear dimen-
sion of the bar, which is typically of about one meter. There-
fore, the spatial dependence ofhi j can be neglected and we
can write

hi j 5Ai j cos~Vt !. ~33!

As usual~see Sec. II!, we assume that in the infinite past
the gravitational wave is absent and that the electrons and the
phonons do not interact. Therefore, for each value ofkW ,
^bkW&2`50. The evolution equation for̂bqW& t ~for notational
simplicity, from now on we writeqW rather thanqW 0 to indicate
the fundamental mode! is obtained with the help of the Liou-
ville equation@Eq. ~3!#. With the Hamiltonian~32! we obtain

i ] t^bqW& t2vqW^bqW& t5
a2qWV

2h~ t !

AvqW
1CqW(

pW
^apW 2qW

†
apW& t .

~34!
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The correlator̂ apW 2qW
†

apW& t in the RHS of Eq.~34! comes
from the electron-phonon interaction term. Again with the
help of Eq.~3!, an equation for this correlator can be derived:

i ] t^apW 2qW
†

apW& t2S epW2epW 2qW2
hi j

2m
~2piqj2qiqj ! D ^apW 2qW

†
apW& t

5(
k

Ck^~apW 2qW
†

apW 2kW2apW 2qW 1kW
†

apW !~bkW1b
2kW
†

!& t . ~35!

As it was expected, the right-hand side of this equation con-
tains correlators of products of three operators, as for in-
stance the term̂ apW 2qW

†
apW 2kWbkW&, and this is due to the

electron-phonon coupling. In fact, repeatedly exploiting the
Liouville equation, an infinite system of coupled differential
equations for the different correlators is generated. There-
fore, we have to resort to a suitable truncation of this system.
In the following we shall see how such an approximation can
be obtained.

The hypothesis that in the infinite past the electron gas is
noninteracting yields the boundary condition:^apW 2qW

†
apW&2`

50. Solving ~formally! Eq. ~35! under this condition we
have

^apW 2qW
†

apW& t52 i(
kW

CkWE
2`

t

dt8^~apW 2qW
†

apW 2kW2apW 2qW 1kW
†

apW !

3~bkW1b
2kW
†

!& t8expF2 i ~epW2epW 2qW !~ t2t8!

2
i ~qiqj22piqj !

2m E
t8

t

dt9hi j ~ t9!G . ~36!

Finally, inserting Eq.~36! in Eq. ~34!, the time evolution
equation for̂ bqW& becomes

]

]t
^bqW& t1 ivqW^bqW& t

52 i
a2qWV

2h~ t !

AvqW
1(

pW ,kW
CqWCkWE

2`

t

dt8@^apW 2qW 1kW
†

apW

3~bkW1b
2kW
†

!& t82^apW 2qW
†

apW 2kW~bkW1b
2kW
†

!& t8#

3expF2 i ~epW2epW 2qW !~ t2t8!

2
i

2m
~qiqj22piqj !E

t8

t

dt9hi j ~ t9!G . ~37!

If we now neglect the electron-phonon interaction in Eq.
~37!, i.e., we consider the zeroth order in theC’s, we have
~for the given boundary conditions!

^bqW& t
(0)5

a2qWV
2A

AvqW

vqWcos~Vt !2 iVsin~Vt !

V22vqW
2 , ~38!

whereA5Azz is the amplitude of the component of the field
in the longitudinal direction. ForV;vqW , this solution has
the expected resonant form, with a very large amplitude.
Strictly speaking, forV5vqW , the RHS of Eq.~38! is diver-
gent. We note, however, that the well known phenomeno-
logical Breit-Wigner shape is obtained adding an imaginary
part to vqW . As we shall see below, this damping factor,
which is always added on phenomenological grounds to the
equation that describes the bar oscillations, from a micro-
scopic point of view is mainly due to the electron viscosity,
i.e., to the interaction of the electrons with the phonons. In
more technical terms, it comes from the renormalization of
vqW due to the electron-phonon interaction.

We observe now that for the correlator^apW 2qW 1kW
†

apWbkW& t , as
well as for the other similar correlators that appear in the
RHS of Eq.~37!, the assumption that in the infinite past the
electron-phonon interaction is absent clearly amounts to the
condition

^apW 2qW 1kW
†

apWbkW&2`5^apW 2qW 1kW
†

apW&2`^bkW&2` . ~39!

At the lowest order in theC’s, the above factorization prop-
erty is also satisfied bŷapW 2qW 1kW

†
apWbkW& t at anyt:

^apW 2qW 1kW
†

apWbkW& t5^apW 2qW 1kW
†

apW& t^bkW& t . ~40!

This approximation~and the other similar ones! is crucial to
find the desired truncation of the above mentioned infinite
system of differential equations.

Inserting Eq.~40! in Eq. ~35!, we see that, to the lowest
order, the correlatorŝapW 2qW

†
apW& are time-independent con-

stants. More precisely, they all vanish unlessqW 50, in which
casê apW

†
apW&5npW , wherenpW is the occupation number for the

states with momentumpW .
Therefore, if we limit ourselves to consider in Eq.~37!

only terms up toO(CqW
2), we need to keep only those terms

with kW5qW . Then, inserting the expression~33! for hi j in Eq.
~37! we have

]

]t
^bqW& t1 ivqW^bqW& t

52 i
a2qWV

2A cos~Vt !

AvqW
1CqW

2(
pW

~npW2npW 2qW !

3E
2`

t

dt8~^bqW& t81^b2qW
†

& t8!

3expF2 i ~epW2epW 2qW !~ t2t8!2
iAi j

2m
~qiqj22piqj !

3E
t8

t

dt9cos~Vt9!G . ~41!

It is now convenient to move to Fourier space and write
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^bqW& t5E
2`

`

dvBqW~v!e2 ivt. ~42!

Note that Eq.~41! also contains the term̂b
2qW
†

& t and that,
from Eq. ~42!, we have

^b2qW
†

& t5E
2`

`

dvB
2qW
* ~v!eivt. ~43!

A relation betweenBqW(v) and B
2qW
* (v) is immediately ob-

tained with the help of the time evolution equation for

^b2qW
†

& t . In fact, taking into account that the electron-phonon
coupling constants are real, and thatCqW5C2qW , we have

i
]

]t
^b2qW

†
& t1vqW^b2qW

†
& t52 i

]

]t
^bqW& t1vqW^bqW& t ~44!

which implies the relation

B
2qW
* ~2v!5

vqW2v

vqW1v
BqW~v!. ~45!

Inserting now Eqs.~42!, ~43! and ~45! in Eq. ~41!, we find

E
2`

`

dve2 ivt~2 iv1 ivqW !BqW~v!5CqW
2(

pW
~npW2npW 2qW ! (

n,m52`

`

Jn~a!Jm~a!

3E
2`

`

dvE
2`

t

dt8e2 ivt8e2 inVteimVt8e2 i (epW 2epW 2qW )(t2t8)S BqW~v!1
vqW2v

vqW1v
BqW~v!D

2 i
a2qWV

2A

2AvqW
E

2`

`

dv~d~v2V!1d~v1V!!, ~46!

whereJn(a) are Bessel functions, whose argumenta is

a5
Ai j ~qiqj22piqj !

2mV
, ~47!

and we have used the relation

eia sin u5 (
n52`

`

Jn~a!einu. ~48!

The time integral in the RHS of Eq.~46! is easily performed. Isolating the Fourier coefficients, we obtain (2 i«, as usual, is
the converging factor for the time integral, i.e., it implements the boundary conditions!:

~v2vqW !BqW~v!5
a2qWV

2A

2AvqW
„d~v2V!1d~v1V!…1CqW

2 (
n,m52`

`

(
pW

Jn~a!Jm~a!
npW2npW 2qW

2v1nV1epW2epW 2qW2 i«

3S BqW„v1~m2n!V…1
vqW2v1~n2m!V

vqW1v1~m2n!V
BqW„v1~m2n!V…D . ~49!

From Eq. ~49! we can obtainBqW(v) up to O(CqW
2). To the

lowest order, i.e., by keeping only the first term in the RHS
of this equation, we have

BqW
(0)

~v!5
a2qWV

2A

2AvqW~v2vqW !
„d~v2V!1d~v1V!…. ~50!

As it can be immediately verified, this is nothing but the
Fourier transform of Eq.~38!. To get theO(CqW

2) correction to
Eq. ~50!, we have to insert in Eq.~49! the seriesBqW(v)
5BqW

(0)(v)1CqW
2
BqW

(1)(v)1O(CqW
4), and keep only terms up to

O(CqW
2). Here we are rather interested in the renormalization

of the phonon frequencyvqW , let us callvqW
r the renormalized

frequency, due to the electron-phonon interaction. In the fol-
lowing we shall see howvqW

r can be obtained with the help of
Eq. ~49!.

We could computevqW
r directly by considering the renor-

malization of the phonon propagator. As we are interested in
theO(CqW

2) correction tovqW , we only need to keep diagrams
with one electron-hole loop. However, the electrons also in-
teract with the external gravitational field@see the first term
on the RHS of Eq.~32!#. Therefore, in addition to the usual
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fermionic loop, an infinite series of one-loop diagrams with
the insertion of one, two, . . . gravitational external lines is
generated. These diagrams are all ofO(CqW

2).
Equivalently, following a standard procedure@10#, the

same result can be obtained from Eq.~49! once we perform
the following steps. First of all we note that the first term on
the RHS of this equation cannot contribute to the renormal-
ization of vqW . In fact, as it is due to the resonant coupling
between the external gravitational field and the phonons@see
the last term on the RHS of Eq.~32!#, this term does not
enter in the loop correction of the phonon propagator.

If we now ~i! ignore this term in Eq.~49!, ~ii ! consider a
value of v such thatv5vqW1O(CqW

2), and ~iii ! keep only

terms up toO(CqW
2), we can write Eq.~49! as

„v2vqW2P~v!…BqW~v!50. ~51!

The precise form ofP(v) is given below@see Eqs.~52! and
~53!#. Apart from harmless factors, the coefficient in front of
BqW(v) is the inverse phonon propagator up toO(CqW

2). There-
fore, the one-loop corrected phonon frequency, which is
nothing but the pole of the phonon propagator, is given by
that value ofv for which this coefficient vanishes.

To begin with, let us consider the case when the gravita-
tional wave is absent. As in this casea50, all the Bessel
functions, with the exception ofJ0 @J0(0)51#, vanish. Fol-
lowing the procedure outlined above, neglecting higher order
terms inCqW

2 and dropping the factorBqW , from Eq. ~49! we
get

vqW
r
5vqW1CqW

2(
pW

npW2npW 2qW

2vqW1epW2epW 2qW2 i«
. ~52!

This is the well known result for the renormalization ofvqW

@17# in the absence of external fields~see Sec. V below for
the detailed computation!, where we easily recognize the
one-loop structure of the second term on the RHS of Eq.
~52!. Note that the negative of the imaginary part ofvqW

r ,

GqW52Im vqW
r , gives theO(CqW

2) contribution to the damping
factor due to the electron-phonon interaction. This term, as
we have anticipated, modifies the deltalike structure of Eq.
~38! giving to this amplitude the expected Breit-Wigner
shape, the maximum being attained forV5RevqW

r .
The same steps can be repeated for the case when the

gravitational wave is present. As we only keep terms up to
O(CqW

2), the functionsBqW in both members of Eq.~49! have

to be replaced with their lowest order approximations,BqW
(0) .

Consequently, the only nonvanishing terms in the RHS of
Eq. ~49! are those for whichn5m. Moreover, as it was also
the case when the gravitational wave was absent, the last
term of Eq.~49!, which is of higher order inCqW

2 , has to be

neglected. Therefore, dropping againBqW
(0) from both sides of

Eq. ~49!, we have

vqW
r
5vqW1CqW

2 (
n52`

`

(
pW

FJn
2~a!

npW2npW 2qW

2vqW1nV1epW2epW 2qW2 i«
G .

~53!

As we have anticipated, in Eq.~53! we see that theO(CqW
2)

correction tovqW contains an infinite series of one-loop terms
due to the interaction of the electrons with the gravitational
wave. Equation~53! is the result we were looking for,
namely, the renormalizedvqW ‘‘dressed’’ by the interaction
with the external gravitational field. This expression clearly
contains also the contribution tovqW

r which does not depend
on this interaction, which is nothing but the result in Eq.
~52!. It is easily found in then50 term of this series once
we consider the first term of the expansion ofJ0

2(a) in pow-
ers ofa @see Eq.~55! below#.

Our aim is to investigate the impact of this additional
‘‘dressing’’ of vqW

r on the oscillations of the gravitational an-
tenna. To this end, we compute in the next section the damp-
ing factor GqW52Im vqW

r . Following the notation introduced
in Sec. II, we indicate the attenuation factor in the absence of
the gravitational wave withGqW

0 and the gravitational contri-
bution with gqW , so that the total attenuation factor isGqW

5GqW
0
1gqW .

V. THE ATTENUATION FACTOR

This section is devoted to the computation of the attenu-
ation ~or damping! factor GqW . In order to compare our esti-
mates of physical quantities with experimentally known val-
ues, in the following we consider the specific example of the
antenna EXPLORER@12# operating at CERN. Taking the
imaginary part of Eq.~53!, we have

GqW52Im vqW
r
5GqW

0
1gqW5pCqW

2 (
n52`

`

(
pW

Jn
2~a!~npW 2qW2npW !

3d~epW2epW 2qW2vqW1nV!. ~54!

Due to the weakness of the gravitational wave,a, the
dimensionless argument of the Bessel functions, is a small
number. Therefore, we can expand these functions in powers
of a and limit ourselves to consider terms up to the lowest
nontrivial order ina. This amounts to keep only the Bessel
functions withn50,61. In fact, it is

J0
2~a!512

a2

2
1•••,

J61
2 ~a!5

a2

4
1•••, ~55!

where the dots indicate higher power terms ina, and the
expansion of all the other Bessel functionsJn

2(a) with unu
>2 starts with higher powers ofa. We know from Eq.~47!
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that the quantitya is a function ofpW : a5a(pW ). For reasons
that will be immediately clear, in the following expression it
is convenient to indicate explicitly this dependence. Keeping
in Eq. ~54! only terms up toO(a2), we have

GqW5pCqW
2S (

pW
npW@d~epW 1qW2epW2vqW !2d~epW2epW 2qW2vqW !#

1(
pW

npW

4
~@d~epW 1qW2epW22vqW !1d~epW 1qW2epW !

22d~epW 1qW2epW2vqW !#a2~pW 1qW !2@d~epW2epW 2qW22vqW !

1d~epW2epW 2qW !22d„epW2epW 2qW2vqW !#a2~pW !…D . ~56!

The first term in the RHS of Eq.~56! does not depend on
a. It is nothing butGqW

0 . Considering for the time being only

this term, and performing the summation overpW , we get

GqW
0
5

8p3VCqW
2

h4

vqWm
2

q
, ~57!

whereV is the volume of the bar andm is the electron mass.
Moreover, as we have chosen the bar to lie along thez di-
rection, in the above expression we haveq5qz .

Let us focus now our attention on the derivation ofgqW ,
i.e., on the computation of the two remaining terms in the
RHS of Eq.~56!. As previously said, the bar lies along the z
direction, while the gravitational wave~in the TT gauge!
propagates perpendicularly to the bar, along thex direction.
Therefore, the only nonvanishing components ofAi j are
Ayy52Azz andAxy5Ayx , so that

piqjAi j 5pyqzAyz1pzqzAzz5pq~Ayzsinu sinf1Azzcosu!,

~58!

where, to write the last term, we have introduced spherical
coordinates in thepW -space~and noted again thatqz5q).

Inserting Eq.~58! in Eq. ~56!, and proceeding as before,
we find

gqW5
V

h3

pCqW
2

\m2~\vqW !2E0

pF
p2dpE

21

11

d~cosu!E
0

2p

df

3„@~\q!4Azz
2 14p2~\q!2~Ayz

2 sin2usin2f1Azz
2 cos2u!#

3@d11d22d32d422d512d6#

14p~\q!3Azz
2 cosu@d11d21d31d422d522d6#…,

~59!

where we have introduced the compact notations:

d15dS p\q cosu

m
1

~\q!2

2m
22\vqW D ,

d25dS p\q cosu

m
1

~\q!2

2m D ,

d35dS p\q cosu

m
2

~\q!2

2m
22\vqW D ,

d45dS p\q cosu

m
2

~\q!2

2m D ,

d55dS p\q cosu

m
1

~\q!2

2m
2\vqW D ,

d65dS p\q cosu

m
2

~\q!2

2m
2\vqW D . ~60!

For a typical gravitational antenna we are under the
conditions:4

~\q!2

2m
, l\vqW2

~\q!2

2m
, l\vqW1

~\q!2

2m
,

pF\q

m
~ l 51,2!,

~61!

and the integration of Eq.~59! gives

gqW5
6p3VCqW

2

h4

m2vqW

q
@2Azz

2 2Ayz
2 #. ~62!

Finally, since the incoming gravitational wave is not ex-
pected to be polarized, now we have to perform the average
over the polarizations. If we callb the polarization angle, we
can write

Azz5e1cos 2b2e3sin 2b, Ayz5e1sin 2b1e3cos 2b.

~63!

Averaging overb, we arrive at the result

gqW5
3p3VCqW

2

h4

m2vqW

q
~e1

2 1e3
2 !. ~64!

It is interesting to compare Eq.~64! with the correspond-
ing damping factor for the electromagnetic case@see Eq.~8!
of Sec. II#. We note that, differently from this case, the gravi-
tational contribution toGqW is always positive. The gravita-
tional correction toGqW

0 can never produce an amplification of
the bar oscillation.

Irrespectively of its sign, however, it is more important to
compare the magnitude ofgqW , Eq. ~64!, with GqW

0 , Eq. ~57!.
Taking for e1>e35e the realistic value ofe>10221, we
obtain

4For instance for EXPLORER it is\vqW56310231 J, pF51,22
310224 Kg m/s, \q51,1310234 Kg m/s.
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gqW

GqW
0 >10242. ~65!

Clearly, the gravitational correction toGqW
0 is too small to give

any appreciable contribution toGqW .
A few comments are in order. First of all we note that

such a result, which could be expected on the basis of the
extreme weakness of the gravitational wave amplitude, en-
tirely justifies the common assumption according to which
the only physically relevant mechanism for the transfer of
energy between the incoming wave and the gravitational an-
tenna is the direct resonant coupling between the wave and
the bar normal modes.

We also note that, as the loop integrals extend up to the
Fermi momentum, we could expect that correction toGqW

0

depends onpF . Performing the momentum integrals in Eq.
~59!, however, we see that the terms that individually depend
on pF cancel each others.

One coulda priori think that, would these cancellations
not occur, the correction toGqW

0 could turn out more signifi-
cative. However, the value of the Fermi momentum~see
footnote 4! is not sufficiently high to compensate for the
extremely low value of the gravitational amplitude. In fact,
as we can easily see by simple inspection of Eq.~60!, there
are three typical terms that come out from the integration of
Eq. ~59! before the cancellations. They are (pF\q/m)2,
(\vqW)

2 and (\2q2/2m)2. While the third term is negligible
with respect to the second one, the first term is six orders of
magnitude greater than the second. Therefore, the order of
magnitude of the ‘‘gravitational damping’’gqW , even in the
absence of these cancellations, would only change of a factor
106, and the resulting value ofgqW (;10236 s21) would still
be far too small if compared withGqW

0 .

VI. SUMMARY AND CONCLUSIONS

In the present work, after deriving the microscopic Hamil-
tonian for the interaction between a gravitational wave and a

metallic bar~the gravitational antenna!, we have studied the
contribution to the oscillations of the antenna due to the in-
teraction of its electrons with the incoming wave.

More precisely, we have considered the contribution to
the damping factorGqW ~the negative of the imaginary part of
the phonon frequency! which comes from the interaction be-
tween the electrons of the bar and the gravitational external
field. It turns out that this term is several orders of magnitude
smaller than the ordinary factor which is due to the electron
viscosity ~i.e., to the electron-phonon interaction!.

As is well known, the gravitational wave interacts directly
with the normal modes of the bar. This resonant interaction is
due to the modification of the geodesic distance between the
ions of the lattice induced by the presence of the gravita-
tional field. The contributiongqW to the damping factor con-
sidered in this paper is the result of an additional ‘‘indirect’’
interaction between the gravitational wave and the phonons.
This additional coupling, which is due to the electron-
graviton interaction, is induced by electron-hole loops.

However, as the incoming wave is extremely weak and
the Fermi momentum~which is the highest value of momen-
tum running in the loops! is not sufficiently high to compen-
sate for this weakness, it should not come as a surprise that
gqW turns out to be a negligibly small contribution toGqW .

Finally, it is worth mentioning that our findings, while
confirming the assumption that the only relevant mechanism
of interaction between a gravitational wave and a metallic
bar is the direct resonant coupling between the wave and its
normal modes, strongly disagree with the recent claim that
the interaction of the gravitational wave with the electrons of
the bar enhances the resonant cross section of several orders
of magnitude, actually of four orders of magnitude@9#.
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