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Abstract Climate models are often affected by long-term
drift that is revealed by the evolution of global variables such
as the ocean temperature or the surface air temperature. This
spurious trend reduces the fidelity to initial conditions and
has a great influence on the equilibrium climate after long
simulation times. Useful insight on the nature of the climate
drift can be obtained using two global metrics, i.e. the en-
ergy imbalance at the top of the atmosphere and at the ocean
surface. The former is an indicator of the limitations within
a given climate model, at the level of both numerical imple-
mentation and physical parameterisations, while the latter is
an indicator of the goodness of the tuning procedure. Using
the MIT general circulation model, we construct different
configurations with various degree of complexity (i.e. differ-
ent parameterisations for the bulk cloud albedo, inclusion or
not of friction heating, different bathymetry configurations)
to which we apply the same tuning procedure in order to ob-
tain control runs for fixed external forcing where the climate
drift is minimised. We find that the interplay between tuning
procedure and different configurations of the same climate
model provides crucial information on the stability of the
control runs and on the goodness of a given parameterisa-
tion. This approach is particularly relevant for constructing
good-quality control runs of the geological past where huge
uncertainties are found in both initial and boundary condi-
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tions. We will focus on robust results that can be generally
applied to other climate models.

Keywords Tuning · Energy budget · GCM · Paleoclimate

1 Introduction

Paleoclimate simulations of the geological past are partic-
ularly challenging since initial conditions are not well con-
strained by sedimentary data, flawed by uncertainties in dat-
ing and spatial scarcity, while boundary conditions are often
affected by large uncertainty in paleogeographic reconstruc-
tions (National Research Council et al. 2011, p. 86). As a
consequence, deep-time simulations are not only limited by
the usual biases of climate models, but also by additional
biases which come from the construction of imperfect ini-
tial and boundary conditions. Moreover, the technique of
restoring surface temperature and salinity to observed ini-
tial conditions, which is used to improve the stability of
coupled simulations in preliminary integrations (Sanchez-
Gomez et al 2016), is not possible when accurate initial
conditions are not available. In such a situation the tuning
procedure assumes a crucial role (Mauritsen et al 2012; Go-
laz et al 2013; Hourdin et al 2016). In present-day simula-
tions, the tuning procedure guarantees the construction of
control runs, which are runs where the climate forcing (e.g.,
from solar brightness, atmospheric concentration of green-
house gases, . . . ) is held constant, with minimal spurious
drift (Covey et al 2006; Sen Gupta et al 2012, 2013). In pa-
leoclimate simulations, the tuning procedure becomes even
more important because it helps in constraining the possi-
ble values of parameters, thus reducing the number of cli-
matic attractors that can be explored within a given climate
model (Freire et al 2008).

In general, tuning is not well-documented in climate sim-
ulations but the scientific community is now more and more
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aware that tuning should be made a more explicit process
and should be taken into account for evaluating and inter-
preting model results (Hourdin et al 2016). Tuning is used
to improve the performance of a model in reproducing a
given climate. However, if tuning is disconnected from the
development of improved physical parameterisations at the
process level, the risk is to have heavily tuned models that
mask the presence of systematic errors (Jakob 2014). We
will present here a tuning procedure that highlights the good-
ness of a given parameterisation. The idea is to apply the
same tuning procedure to a hierarchy of configurations of a
climate model, characterised by a given complexity in the
representation of its physical processes. We will take ad-
vantage of the modular design of the MIT general circula-
tion model (MITgcm) (Marshall et al 1997a,b; Adcroft et al
2004), where, as in many other climate models, physical
processes and parameterisations in each component of the
climate system are designed as a module that can be ac-
tivated at runtime, allowing one to change the complexity
of the climate simulations by including/excluding different
parts of the code. The result is that the link between tuning
and process description narrows the size of the parameter
space, with clear advantages in particular in the case of pa-
leoclimate simulations.

The tuning procedure can change from one climate code
to the other (Gregoire et al 2011; Irvine et al 2013; Hour-
din et al 2016). The optimal solution found by tuning only
one parameter at a time can differ from the one found by
perturbing multiple parameters systematically, using objec-
tive methods such as, for example, cost function optimisa-
tion (see Hourdin et al (2016) and references therein). Such
objective methods are still not commonly implemented in
climate groups nowadays, while in general tuning procedure
is performed in two stages. In a first stage, the model com-
ponents (atmosphere, ocean, land, sea ice) are finalised in-
dependently in forced mode. In a second stage, the compo-
nents are coupled together and only few parameters are al-
lowed to change (in order to avoid compensating errors). For
example, in CESM (Community Earth System Model) these
tuning parameters are the sea ice albedo, and the humidity
threshold that controls the formation of low clouds (Gent
et al 2011; Tang et al 2016). We apply here the same tuning
procedure to the case of MITgcm in coupled atmosphere-
ocean-sea ice configurations. We consistently use the same
procedure at each level of complexity of the model to obtain
quasi-equilibrium simulations over long time-scales. We start
from considering present-day simulations with different phys-
ical parameterisations. This will allow us to better under-
stand the limitations of the code and to set the robustness of
the results. Then we move to deep-time paleoclimate simu-
lations in order to set the right procedure for obtaining well-
balanced control runs.

In both present-day and deep-time simulations, the tun-
ing parameters are optimised by checking the energy im-
balance of the system under consideration at the top of the
atmosphere (hereafter named TOA imbalance) and at the
ocean surface, since the ocean becomes the dominant en-
ergy store in the Earth system on a timescale of about one
year (Palmer and McNeall 2014). We show that useful in-
formation on the limitations of the activated modules and on
the quality of the control runs can be obtained from these
energy budgets.

The paper is organised as follows: in section 2 we de-
scribe the coupled simulations and the suite of modelling
set-ups. In section 3 we analyse the control runs for each
configuration and we describe the method that links tuning
and parameterisation. In section 4 we discuss the relevance
of the method for deep-time simulations and we draw con-
clusions.

2 Model description and experiments

The coupled model that we use for the present study is the
MIT general circulation model (Marshall et al 1997a,b; Ad-
croft et al 2004). We have chosen this code since it is mod-
ular programmed, open-access and it can use cubed-sphere
grids that turn out to be particularly useful when polar re-
gions are covered by oceans, as was repeatedly the case in
the geological past. In this code, the same dynamical kernel
is employed for representing atmosphere and ocean dynam-
ics (Marshall et al 2004) on the same cubed-sphere grid.
The Gent and McWilliams scheme (Gent and McWilliams
1990) is used to parameterise mesoscale eddies, while the
KPP scheme (Large et al 1994) accounts for vertical mix-
ing processes in the ocean surface boundary layer and the
interior. The 5-level SPEEDY physics package for the at-
mosphere, that is described in Molteni (2003), comprises a
four-band radiation scheme, boundary layer and moist con-
vection schemes, resolved baroclinic eddies and diagnos-
tic clouds. Orbital forcing is prescribed at present-day val-
ues and the atmospheric CO2 content is fixed to a constant
value of 326 parts per million. The Winton thermodynamic
model (Winton 2000) is used for the sea ice component. A
2-layer land model is also included (Hansen et al 1983).

The first step in using a climate model is to construct
the so-called control run, i.e. the quasi-equilibrium configu-
ration obtained by setting the climate forcing to a constant
level. The quasi-equilibrium configuration corresponds to a
state where global metrics, such as the surface air tempera-
ture (SAT) or the global ocean temperature, reach station-
ary values so that the climate model does not experience
drifts that prevent to study the system over long simulation-
time. This quasi-equilibrium configuration is obtained after
a spin-up phase. It has been shown that long spin-up has the
advantage of reducing the rate of climate drift (Sen Gupta
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et al 2012), but on the other hand, even in the presence of a
small drift, a long integration means that the climate state is
more likely to diverge from the initial conditions (Sen Gupta
et al 2013). From here the importance of constructing con-
trol runs with minimal drift from the beginning to obtain at
the same time great fidelity to initial conditions and the pos-
sibility of performing long-term runs.

Here we consider a low resolution cubed-sphere grid,
where each face of the cube has 32×32 cells, giving a hor-
izontal resolution of ca. 2.8◦. The ocean has 15 vertical lev-
els with different thickness, from 50 m near the surface to
690 m in the abyss. In this way, we can perform simulations
over thousand years, which is the dynamical time-scale of
the overturning in the entire ocean, in a reasonable amount
of CPU time, allowing us to test for different parameters and
configurations. One of the advantages of the MITgcm code
is that the modules for a given parameterisation can be acti-
vated at runtime so that one can easily construct a hierarchy
of models with different degrees of complexity by including
or not a given physical process. The simulations considered
in the present study according to our suite of modelling set-
ups are listed in Table 1.

Run1 is the reference run where, beside all the above
listed parameterisations, we also included a modification of
the bulk cloud albedo that has been implemented in 8-level
SPEEDY (Molteni and Kucharski 2006; Kucharski et al 2006)
in order to correct a too strong high-latitude solar radiation
flux. This reference run has been chosen among a series of
numerical experiments where we changed the values of ver-
tical diffusivity within the ocean and of snow/ice albedo (as
listed in Table 2) so that the temperature drift in the global
ocean temperature was minimal, following the tuning pro-
cedure used in other modelling groups (Gent et al 2011;
Tang et al 2016). These albedo values are within the ob-
served range reported, for example, in Nguyen et al (2011).
Afterwards, only the relative humidity threshold RH for low
clouds (a parameter referred as RHCL2 in MITgcm atmo-
spheric module) has been changed for tuning the suite of
modelling set-ups and obtaining the corresponding control
run.

In Run2 we consider a slight change in the input param-
eter RH with respect to the value found for Run1 to show
its impact on the energy budget. In Run3 we use a different
parameterisation for the bulk cloud albedo (the one typically
used in 5-level SPEEDY (Molteni 2003)) in order to discuss
the impact of a different parameterisation on energy bud-
get and tuning procedure, and how to decide which param-
eterisation is better. In Run4 the kinetic energy dissipated
within the ocean and the atmosphere is re-inserted into the
system as thermodynamic energy allowing for an improved
TOA budget. In Run5 we apply the same procedure used
in present-day runs to a different deep-time configuration,

namely the Callovian (165 Ma) bathymetry (see Brunetti
et al (2015) for an example of Callovian configuration).

Our analysis is based on the calculation of annual means
of globally integrated energy budget variables, as suggested
in Hobbs et al (2016) for a useful first-order diagnostic of
the model behaviour. The TOA energy imbalance is calcu-
lated by summing the net shortwave radiation flux and the
outgoing longwave radiation flux at each grid point, (T SR−
OLR in MITgcm atmospheric module, in units of [Wm−2])
and then performing area-weighted averages. Positive val-
ues correspond to a net radiative warming of the planet. The
budget at the ocean surface (in units of [Wm−2]) is esti-
mated in two ways: (i) from the net heat flux into the ocean
(T FLUX in MITgcm ocean component, positive if heat en-
ters into the ocean surface and the ocean warms) and (ii)
from taking the time derivative of the ocean heat content H
per unit area, defined as:

H(t) =
ρocp

A

∫
T (x,y,z, t) dx dy dz (1)

where ρ = 1023 kg m−3 is seawater density, cp = 4000 J
(K kg)−1 is the specific heat capacity (same values used
in Hobbs et al (2016)), T is seawater potential temperature
and A is the ocean surface.

The model is spun up from rest, without snow and ice
covered oceans. Initial three-dimensional distributions of po-
tential temperature and salinity are derived from the ocean
climatological database (annual means) (Levitus et al 1994;
Levitus and Boyer 1994). Land mask, vegetation cover, soil
albedo and runoff are given to initialise the coupled atmosphere-
ocean model. Simulations are run until deep-ocean equilib-
rium and the last 100 yr are used for diagnostics.

3 Results

We describe here the results obtained from the analysis of
the suite of modelling set-ups listed in Table 1.

3.1 Reference run: Run1

The reference run, Run1, is the result of the tuning procedure
described in the previous section where the final tuning pa-
rameter is the relative humidity threshold RH for low clouds.
Thus, given the approximations of the set-up described in
Section 2, this control run can be considered as a good de-
scription of the pre-industrial climate.

The SAT reaches an average value of 13.4◦C during the
last 500 yr of simulation, as can be seen in Fig. 1. The global
ocean temperature in Run1 shows a very small drift, with
an ocean temperature increase of (Tf in − Tinit)/Tinit [

◦C] =
2% over 1000 yr including the spin-up phase, as shown in
Fig. 2. The vertical section of the ocean temperature evolu-
tion in Fig. 3a shows that although during the spin-up phase
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Table 1: List of simulations.

Name Bathymetry Description Cloud albedo as in RH
n-level SPEEDY

Run1 Present-day Reference run n = 8 0.8440
Run2 ” Sensitivity to RH n = 8 0.8500
Run3 ” Cloud albedo n = 5 0.7677
Run4 ” Friction heating n = 8 0.7900
Run5 Callovian ” n = 8 0.9035
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Fig. 1: Time evolution of annual-averaged surface air tem-
perature (SAT).

warming occurs near the surface and cooling at depth, im-
plying vertical redistribution of heat from the deep ocean to
the surface, afterwards the ocean has constant conditions in
all the vertical section, including the deep ocean in the last
300 yr. The overturning circulation is well established in the
Atlantic ocean with a maximum intensity of 17.9 Sv at lati-
tude 47◦N, that are typical values in low-resolution runs (see
Fig. 4a).

The Arctic sea ice extent is comparable to annual mean
values obtained by other climate models in pre-industrial
simulations (ranging from 12.27 · 106 to 19.85 · 106 km2 in
Howell et al (2016)), as can be seen from Fig. 5. However,
the Antarctic sea ice cover is too extensive as compared to
12 ·106 km2 in the observations and to the annual average of
20.3 ·106 km2 obtained in pre-industrial control simulations
by CCSM4 (Landrum et al 2012), probably because the sea
ice module in our code does not include dynamical but only
thermodynamical effects. However, the reached values are
rather constant during the last 500 yr showing that the sim-
ulation is stable during this period of time.
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Fig. 2: Time evolution of annual-averaged global ocean tem-
perature.

3.2 Run2

Run2 is analysed here to illustrate the impact of tuning on
the simulation results. The same input parameters used in
Run1 are employed for this simulation except for the value
of RH which is set to RH = 0.85, a value only 0.7% larger
than the one used in Run1 (see Table 1). The effect of this
small increase is that the energy budget at the ocean surface
is unbalanced, 0.25 Wm−2, giving rise to SAT that reaches
15.2◦C at the end of the simulation, as shown in Fig. 1,
and to a huge drift in the global ocean temperature, with
an increase of (Tf in − Tinit)/Tinit [

◦C] = 23% over 1000 yr
(see Fig. 2). In the vertical section (Fig. 3b) the ocean tem-
perature increases at all depths (and especially within the
first 1000 m depth), while both the intensity of the Atlantic
Meridional Overturning Circulation (AMOC) and the sea
ice extent decrease with respect to the reference run, as shown
in Figs. 4b and 5, respectively. We remark that the Antarctic
sea ice, continuously decreasing throughout the simulation,
is more sensitive to drift than the Arctic sea ice, which sta-
bilises to an equilibrium value of 15 ·106 km2.

It turns out that there is a strong dependence on the RH
parameter that we have summarised in Fig. 6 by plotting
the temperature drift in the ocean as a function of the rel-
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Table 2: Model parameters used to tune the reference run (Run1) and applied to all the other simulations.

Ocean albedo 0.07
Max sea ice albedo 0.64
Min sea ice albedo 0.20
Cold snow albedo 0.85
Warm snow albedo 0.70
Old snow albedo 0.53
Vertical diffusivity 3 ·10−5 m2/s
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200 400 600 800 1000

Time [yr]

-100

-10 -1

D
ep

th
 [k

m
]

-1

-0.5

0

0.5

1

1.5

2

2.5

 T
 [o

C
]

(d) Run4
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Fig. 3: Deviation of the annual-averaged global ocean temperature from the first year as a function of depth.

ative error in this parameter, (RH −RHc)/RHc, where RHc
corresponds to the no-drift case. Dots in this plot refer to
runs with the cloud-albedo parameterisation as in 8-level
SPEEDY. We can see that there is a value of RH where the
drift is practically equal to zero (this value, RH = 0.844,
corresponds to the reference run, Run1). Small variations
around this value gives rise to unbalanced runs, like Run2.

Note that drift in the global ocean temperature occurs in
many of the state-of-the-art climate model simulations con-
ducted under CMIP5 (Hobbs et al 2016) where dT/dt is
typically higher than the value reached in Run1. Given that

models drift away from the observed state chosen at initial-
isation if tuning is not sufficiently accurate, short spin-up
results in greater fidelity to initial conditions with respect to
long spin-up. On the other hand, long spin-up is an impor-
tant factor in drift reduction (Sen Gupta et al 2012, 2013).
Our analysis shows that choosing a value of RH that min-
imises the drift, such in Run1, increases model fidelity to
initial conditions and at the same time guarantees stability
over simulation times of the order of thousand years.
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Fig. 4: Atlantic meridional overturning circulation (AMOC) in Sv = 106 m3/s as a function of depth and latitude, averaged
over the last 100 yr of simulation time. (a) Run1. AMOC anomalies with respect to Run1 for the simulations (b) Run2, (c)
Run3 and (d) Run4.

Table 3: Energy imbalances and drift in the global ocean temperature.

Simulation TOA imbalance Surface imbalance dT/dt
[Wm−2] [Wm−2] [K/Century]

Run1 2.65 0.00 0.001
Run2 2.81 0.25 0.052
Run3 2.74 0.23 0.047
Run4 -0.55 0.04 0.009
Run5 -0.36 0.09 0.016

3.3 Run3

We have tested in Run3 a different way of representing the
bulk cloud albedo, to be compared to the one used in Run1.
As in the atmospheric module 5-level SPEEDY (Molteni
2003), the bulk cloud albedo is held constant in Run3. Since
this parameterisation gives rise to a solar radiation that is too
strong at high latitudes in coupled models, developers of the
SPEEDY code remarked that using a bulk cloud albedo that

increases with latitude improved the simulation results (Ku-
charski et al 2016). We thus expect that the parameterisation
used in Run3 is less accurate than the one used in the refer-
ence run (Run1).

We have checked that the parameterisation used in Run1

produces less net solar radiation at high latitudes (see Fig. 7)
with respect to Run3, as expected from the different descrip-
tion of bulk cloud albedo employed in 8-level and 5-level
SPEEDY. We find that while SAT is rather constant during
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Fig. 6: Sensitivity to the RH parameter. Drift in the mean
ocean temperature vs. the relative error in the RH parame-
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for different modelling set-ups: 8-level SPEEDY cloud-
albedo parameterisation as for Run1 and Run2 (dots); 5-
level SPEEDY cloud-albedo parameterisation as for Run3
(squares); friction heating included as in Run4 (diamonds);
Callovian simulations as Run5 (stars).

the first 800 yr in Run3, it tends to increase in the last century
(see Fig. 1). The annual-averaged global ocean temperature
has a positive trend all along the simulation (see Fig. 2).
This increase in temperature can also be observed in Fig. 3c
where the ocean temperature is seen to raise, especially in
the upper 500 m. This change in the ocean and surface air
temperature can be related to a decrease of sea ice extent in
both north and south polar regions with respect to the ref-
erence run, as can be seen in Fig. 5. The AMOC is only
slightly affected, as can be seen in Fig. 4c, while the total
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Fig. 7: Zonal mean of TOA net shortwave radiation in sim-
ulations Run1 and Run3.

heat transport is smaller than in the case of Run1, as can be
seen in Figs. 8a.

The monotonic increase in global ocean temperature de-
monstrates that Run3 is not well stabilised. It is important
to note that if the tuning parameter is slightly reduced, the
result is a monotonic decrease in the global ocean tempera-
ture, showing that it is very difficult to obtain a stable control
run for this series of simulations. In order to better under-
stand this point, we have investigated the behaviour of the
temperature drift as a function of the relative error in RH
parameter (Fig. 6, squares) and interestingly we found that
the dependence on this relative error is different from the
case of Run1-Run2 series (Fig. 6, dots). In the present case,
the temperature drift dT/dt is strongly sensitive to the RH
parameter: a huge change in dT/dt (of the same order as
that occurring between Run1 and Run2) is obtained for very
small variations of RH (of the order of 0.01%, to be com-
pared with 0.7% in the case of Run1 and Run2). This means
that the parameterisation considered in Run3 and all the runs
in the same series represented by squares in Fig. 6 is much
more sensitive to the tuning parameter RH than the param-
eterisation used in Run1 series (dots in Fig. 6). This sensi-
tivity can be used as a criterium to establish for the good-
ness of a given parameterisation since the more the sensitiv-
ity to the tuning parameter, the smaller the range where the
tuning parameter can vary to obtain minimal drift and well-
stabilised control runs. This criterium, applied to different
tuning parameters and/or parameterisations, can be gener-
alised to other coupled climate models.
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3.4 Run4

The origin of the imbalance at TOA has received a great
deal of attention from the scientific community (Pascale et al
2011; Lucarini and Ragone 2011; Hobbs et al 2016). The
imbalance is ascribed to physical processes that have been
neglected or approximated in climate models. In our set-up,
the main source/sink of heat are (i) the neglect of the heating
due to kinetic energy dissipation by internal stress and vis-
cous processes (Lucarini and Pascale 2014) ; (ii) the approx-
imation of considering fixed soil moisture; (iii) the neglect
of the sea ice dynamics; (iv) the approximation used in the
thermodynamical module to limit the ice thickness to a max-
imal value of 10 m. Other sources of imbalance have numer-
ical origin and can be related to the time-stepping method,
to the advection schemes or to hyperdiffusion operators in-
troduced in the dynamical core in order to smooth and avoid
divergences (Lucarini and Pascale 2014).

The heating due to kinetic energy dissipation is in gen-
eral dominant with respect to the other effects and can reach
values of the order of 3 Wm−2 in other coupled atmosphere-
ocean general circulation models, such as HadCM3 and its
coarse-resolution version FAMOUS (Pascale et al 2011). Mo-
reover, biases ranging from −0.3 to 4.8 Wm−2 are found
in the net global balance of pre-industrial simulations in-
cluded in the IPCC4AR (Lucarini and Ragone 2011). In
order to better understand this point, we have performed
simulations where the friction heating is returned back to
the atmospheric component by activating the corresponding
switch in MITgcm. We obtain a simulation, Run4, where the
TOA imbalance is much reduced with respect to the refer-
ence run, as can be seen in Table 3. The tuning procedure
gives rise to a very well equilibrated simulation, as can be
inferred from the time evolution of SAT, that reaches a rather
constant value of 12.8◦C (Fig. 1), and from the global ocean
temperature, that decreases of only (Tf in −Tinit)/Tinit [

◦C] =
−2% in 1100 yr (Fig. 2). From the vertical section of the
ocean temperature shown in Fig. 3d, we observe that there
is less warming of the upper ocean than in Run1, the AMOC
increases almost everywhere by 4 Sv (Fig. 4d) while the sea
ice extent becomes very well stabilised in the last 500 yr of
the simulation (Fig 5).

The range where the tuning parameter gives reasonable
well equilibrated runs is comparable to Run1 series (com-
pare the slope of the curves with dots and diamonds in Fig. 6),
thus we can conclude that including friction heating back
into the atmospheric column has a global positive effect on
the quality of the simulations, since the TOA imbalance is
reduced with respect to Run1, and this is a result that can be
generalised to other coupled climate models. The positive
effect of accounting for the friction heating clearly appears
in the total heat transport, that is much closer to observed
values of the order of 6 PW at 30◦N (Fasullo and Trenberth
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Fig. 8: (a) Total heat transport in PW (1015 W) and the
oceanic contribution to this total transport. A positive value
on the vertical axis corresponds to a northward transport. (b)
Zoom of the oceanic contribution.

2008) in Run4 than in all the other considered simulations,
as shown in Fig. 8. The improvement is particularly effective
in the atmospheric contribution to the total heat transport es-
pecially within the northern hemisphere, while it is negligi-
ble in the oceanic contribution (compare Run1 and Run4 in
Figs. 8a and b).

3.5 Run5

We now apply the previous method to the case of a differ-
ent paleogeographic configuration. Since we have seen that
including friction heating back into the atmospheric compo-
nent had positive effects on the simulation results, we em-
ploy the same procedure here. We also use the cloud albedo
parameterisation of Run1 that gives improvements with re-
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spect to the one used in Run3. The paleogeographic config-
uration that we consider here corresponds to the Callovian-
Oxfordian transition (165 Ma) (see Fig. 9a or, for more de-
tails, Fig. 1 in Brunetti et al (2015)), where Pangea breakup
gave rise to the formation of the Central Atlantic and the
Proto-Caribbean basin, and provided a connection between
the Neo-Tethys and Panthalassa. We have already used this
configuration in ocean-only simulations presented in Brunetti
et al (2015). Apart from the interest of studying this period
using a coupled climate model and comparisons with ge-
ological data, that we will pursue in forthcoming publica-
tions, the technical challenge is now to obtain a stable sim-
ulation by tuning the RH parameter so that the TOA energy
imbalance is minimal and the surface energy imbalance is
nearly zero. For the present test we do not put much effort
in optimising the initial conditions, for which we took the
zonal average of the potential temperature over the present-
day Pacific ocean, a constant salinity distribution at 39 psu, a
vegetation cover that is homogeneous in latitude from Sell-
wood and Valdes (2008), and a runoff map based on the to-
pography used in Brunetti et al (2015). The initial condi-
tions are anyway affected by many uncertainties, the range
of published estimates of Jurassic atmospheric CO2 content
varying between present-day values to 15 times such val-
ues (Sellwood and Valdes 2008).

The simulation results are shown in Fig. 9. Both SAT and
global ocean temperature increase during the spin-up phase
and reach a stable value around 18◦C and 3.8◦C, respec-
tively (Fig. 9b). The vertical section of the ocean tempera-
ture shows that it is well stabilised at all depths (Fig. 9c). The
upper ocean is much warmer than at the beginning, showing
that the initial conditions should indeed be optimised in or-
der to reduce the gap with respect to the final equilibrium.
The sea ice extent reaches a constant value of 12 · 106 km2

in the north polar region, while it shows larger variability
in the south polar region near a mean value of 9 · 106 km2

(Fig. 9d).
The sensitivity to the tuning parameter, quantified by the

slope in the plot in Fig. 6 showing temperature drift against
the relative error in RH, is of the same order as the sensitivity
in the Run4 series (compare stars and diamonds in Fig. 6).
We have thus proved that the above method is general and
can be applied successfully to other bathymetric configura-
tions.

4 Discussion and conclusions

High-accuracy measurements from satellite programs as CE-
RES (Clouds and the Earth’s Radiant Energy System (Wieli-
cki et al 1996)) and SORCE (Solar Radiation and Climate
Experiment (Anderson and Cahalan 2005)) have constrained
the radiation fluxes at TOA with uncertainty range of less

than 1 Wm−2. The resulting imbalance at TOA is in agree-
ment with that determined from changes in ocean heat con-
tent that amounts to 0.8± 0.2 Wm−2 (Hansen et al 2011;
Wild et al 2013). Thus, in the present-day climate, observa-
tions point to equal values of TOA and ocean surface budget
of the order of 1 Wm−2.

Ideally the same imbalance should be obtained in cli-
mate models. However, while ensemble averages are in gen-
eral in agreement with these values (Wild et al 2013; Tren-
berth et al 2014), there is a huge spread of results in each
model of the ensemble, even in pre-industrial control sim-
ulations (see, for example, Fig. 2 in Lucarini and Ragone
(2011) for CMIP3 and Fig. 1 in Hobbs et al (2016) for CMIP5).
Here, the imbalance should ideally be zero (Lucarini and
Ragone 2011) since these simulations represent an estimate
of the unforced quasi-equilibrium climate that evolves under
the only effect of internal nonlinear dynamics. Moreover, the
values of imbalance at TOA and at ocean surface are in gen-
eral different in climate models (Hobbs et al 2016).

In the control runs presented here, the ocean surface bud-
get is tuned to zero to avoid temperature drift. Therefore the
imbalance at the ocean surface can be considered as a mea-
sure of the goodness of the tuning procedure in control runs.
In our simulations, the TOA budget is different from zero,
as shown in Table 3. The TOA imbalance can be reduced
to lower values by improving the climate code, as in our
case where it moved from 2.65 to −0.55 Wm−2 when fric-
tion heating was taken into account in the simulations (com-
pare Run1 and Run4 in Table 3). Therefore, the TOA budget
can be considered as a measure of the goodness of param-
eterisations and coding, since it is related to the presence
of energy sources/sinks within the coupled climate system
due to imperfect representations of physical processes (such
as, for example, friction heating) and/or to numerical diffu-
sion. Thus, we can confirm the importance of using global
metrics, such as TOA and ocean surface imbalance, as first-
order diagnostics of the model behaviour (Hobbs et al 2016).
These two quantities should always be explicitly stated when
numerical results are presented.

A model can perfectly conserve energy between its com-
ponents at the ocean surface, as the MITgcm (Campin et al
2008), and still have energy sources/sinks that affect the
TOA budget (due to approximate processes within the model,
like numerical or kinetic-energy dissipation), that are not ac-
counted for and are sometimes called ‘ghost energy’ (Lu-
carini and Ragone 2011). Within certain models, a correc-
tion is applied to eliminate the kinetic energy dissipation by
the internal stresses at each time step (Pascale et al 2011),
while in others, analysis of the results are presented as anoma-
lies with respect to the time-mean nonconservation term (Hobbs
et al 2016). We have chosen to explicitly show the values
of TOA imbalance since we think that they are very useful
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Fig. 9: Callovian simulation Run5. (a) paleogeography. (b) Time evolution of annual-averaged surface air temperature and
global ocean temperature. (c) Deviation of the annual-averaged global ocean temperature from the first year as a function of
depth. (d) Time evolution of annual-averaged sea ice extent.

to gain insight into the limitations/biases of a given climate
model.

Since we have verified that the net ocean surface heat
flux (that is an output of the MITgcm called T FLUX) ex-
actly accounts for the temperature drift in the ocean volume,
we can state that the energy leaks in MITgcm are mainly
outside the ocean, as occurs in the majority of climate mod-
els considered in Hobbs et al (2016). This is also confirmed
by the fact that the oceanic contribution to the total heat
transport, shown in Fig. 8b, does not change much for differ-
ent modelling set-ups, while the total heat transport becomes
more closer to the observed value of 6 PW at 30◦N (Fasullo
and Trenberth 2008) when the correct set-up is implemented
(compare Run1 to Run4 in Fig. 8a).

We have shown that, taken together, the tuning proce-
dure and the parameterisations can give useful insight into
limitations of a climate model. An example for such an ap-
proach is given by Fig. 6 where we plotted how the temper-

ature drift dT/dt depends on the tuning parameter RH for
different configurations of MITgcm. A strong dependence
of the temperature drift on the tuning parameter corresponds
to a steep growth (as occurs in Run3 series, squares), a small
change in RH giving rise to a huge temperature drift. This
means that the implemented physical process strongly de-
pends on the tuning procedure, with the risk that the result-
ing control run will be not stable and too strongly dependent
on internal variability. On the contrary, if small changes in
RH produce the same nearly-zero values for the temperature
drift, we can expect to obtain good-quality control runs with
the considered set-up of the climate code. Thus, the analysis
of the dependence of the temperature drift on the tuning pa-
rameter provides insight on the quality of control runs and
their stability. This is a general and robust result that can be
applied to other climate codes and tuning parameters.

The importance of developing simple diagnostics to as-
sure the quality of control runs and model verification is
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even more important in simulations of the deep-past where
huge uncertainties exist in initial and boundary conditions.
From the analysis performed in the previous section, it turns
out that the tuning procedure should be applied for each
different paleogeographic configuration. We stress here the
importance of explicitly stating the values of the TOA and
ocean surface energy imbalance, and how the latter depends
on the tuning parameter, each time a new simulation of the
deep-past is presented. This procedure will indeed allow other
researchers to know important aspects on the quality of the
numerical results and on the stability of the control run. Un-
fortunately, nowadays these global metrics are almost never
mentioned in paleoclimate studies. We have seen that a small
amount of imbalance in the ocean surface budget can induce
large effects in SAT, the global ocean temperature or the in-
tensity of the overturning circulation (compare Run1 with
Run2 in Figs. 1, 2 and 4). This is particularly important in
paleoclimate simulations that need to be run for thousands
of years to attain a fully equilibrated coupled atmosphere-
ocean state that is not known a priori (while in present-day
simulations we know the characteristics that a control run
should satisfy at the end of the simulation). Even a small im-
balance, but lasting for a long period of time, can strongly
affect the final results. This is why it is important in pale-
oclimate simulations to correctly tune the parameters from
the beginning and use procedures, such as the one illustrated
in Fig. 6, that allow one to optimise the physical parameter-
isations and configurations used in the climate code.

In climate simulations of the deep-past there is of course
also the need of constructing realistic initial and boundary
conditions that can reduce the size of the parameter space.
Interdisciplinary effort, with contributions from geologists,
physicists, climate modellers, is essential in this respect and
intercomparison projects, such as the Paleoclimate Model-
ing Intercomparison Project (Braconnot et al 2011; Lunt et al
2017), are crucial to progress in this field. Sensitivity studies
to the initialisation and to the paleogeography are strongly
encouraged. Inclusion of the main variables used in the present
study (in order to calculate TOA and ocean surface energy
imbalance) are recommended in intercomparison datasets.
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