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On Performance Evaluation of Inertial Navigation
Systems: the Case of Stochastic Calibration

Davide A. Cucci, Lionel Voirol, Mehran Khaghani, Stéphane Guerrier

Abstract—In this work we address the problem of rigorously
evaluating the performances of a inertial navigation system under
design in presence of multiple alternative choices. We introduce
a framework based on Monte-Carlo simulations in which a
standard extended Kalman filter is coupled with realistic and
user-configurable noise generation mechanisms and attempts to
recover a reference trajectory from noisy measurements. The
evaluation of several statistical metrics of the solution, aggregated
over hundreds of realizations, gives a reasonable estimate of the
expected performances of the system in real-world conditions and
allow the user to operate the choice between alternative setups.
To show the generality of our approach, we consider an example
application to the problem of stochastic calibration. Two compet-
ing stochastic modeling techniques, namely, the widely popular
Allan variance linear regression, and the emerging generalised
method of wavelet moments are rigorously compared in terms
of the framework defined metrics and in multiple scenarios. We
find that the latter provides substantial advantages and should
be preferred, at least for certain classes of inertial sensors. Our
framework allows to consider a wide range of problems related
to the quantification of navigation system performances such as,
for example, the robustness of an INS with respect to outliers or
other modeling imperfections. While real world experiments are
essential to assess to performance of new methods they tend to be
costly and are typically unable to lead to a sufficient number of
replicates to evaluate, for example, the correctness of estimated
uncertainty. Therefore, our method can bridge the gap between
these experiments and pure statistical consideration as done, for
example, in the stochastic calibration literature.

Index Terms—Kalman Filter, Monte-Carlo Simulations, Allan
variance, Generalized Method of Wavelet Moments.

I. INTRODUCTION

NAVIGATION refers to the determination of the position
and the orientation of a body with respect to a well-

defined coordinate reference system. Inertial Navigation Sys-
tem (INS) is found at the core of many modern navigation
systems: inertial sensors keep track of the acceleration and
the angular velocity (rotation rate) of the body, which can
be integrated over time to estimate its position, velocity, and
attitude [1]. INS is autonomous (largely unaffected by the
surrounding environment), widely available and affordable,
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high-rate in output (up to a few kHz), and accurate in short-
time. However, it suffer from accumulation of random errors in
time, eventually leading to unreliable position and orientation
estimates. This limitation is magnified with low-grade inertial
sensors, as those typically employed in smartphones or drones,
where position estimates can become practically unusable in
as low as few dozens of seconds.

To control this inevitable position and orientation drift
in accuracy, inertial measurements are typically fused with
aiding information coming from other sensors. In outdoor
applications, such as in planes, cars, ships, and drones, the
aiding data typically comes from Global Navigation Satellite
Systems (GNSS). These systems provide absolute Position,
Velocity and Timing (PVT) data at lower rates if compared
to INS (up to 20 Hz), but immune to error accumulation.
Therefore, GNSS are complementary to INS and the com-
bination INS-GNSS is widely used in practice. In indoor
applications, or whenever the system can not depend on
the reliable and continuous reception of uncorrupted GNSS
signals, such aiding information can come for example from
cameras, in visual-inertial systems [2], or ultra wide band
beacons [3]. The fusion of data from INS and other aiding
systems, such as GNSS, is typically performed via variants of
Kalman filter such as the commonly used Extended Kalman
Filter (EKF) [4].

One of the most critical steps in the design of a navigation
system is the quantification of its performances: when several
types of heterogeneous sensor, such as inertial and GNSS,
are fused together, many factors influence the statistics of the
estimation error and their combined impact tends to be difficult
to predict. Once the system is assembled, the experimental
validation is complex or impossible because of, for example,
the difficulty of acquiring a sufficiently accurate ground truth
or because the platform guidance system (such as the autopilot
in drones) depends on the correct functioning of the navigation
system, potentially leading to undesirable accidents. Further-
more, the validation of performance indicators such as the
consistency of position and orientation uncertainty estimates
requires the execution of hundreds or thousands of trajectories,
which is unfeasible in practice.

In this work we propose a framework for quantifying navi-
gation systems performances that relies on Monte-Carlo simu-
lations. We consider a classical EKF for INS/GNSS navigation
that the user can configure according to different, competing
setups, such as sensor selection or modeling choices. Our
framework allows to perform thousands of Monte-Carlo sim-
ulations using a user-specified trajectory that is representative
of the chosen application scenario. In each run, we generate
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noise-free sensor readings from the user-supplied trajectory
and corrupt those with realistic noise samples, either taken
from static data (typically available and widely used in the
case of inertial sensors) or sampled from an user-specified
noise model. The results of all simulations are aggregated
to compute several type of metrics and allowing the user to
compare the results quantitatively. While this approach can
not entirely substitute the experimental evaluation of the final
system, the use of realistic noise samples and user-defined
noise generation mechanisms allow users to nearly reproduce
real-world operation scenarios.

To show the benefits of our approach, we consider an
example application focusing on the problem of establishing a
suitable stochastic model for inertial sensors. Indeed, inertial
sensors, like any other sensor, have errors, both deterministic
and stochastic. Deterministic errors, such as the stable parts of
scale factors and axis non-orthogonality can be pre-calibrated
and removed from the measurements directly (see e.g., [5]
and the references therein). The additive stochastic part of the
error, for example composed of white noise, turn-on biases
and other time-correlated processes, can only be taken into
account “on-flight” during navigation, provided that a suitable
stochastic model for the sensor errors has been established
beforehand. This process is often referred to as “stochastic
calibration” and it is an important step in navigation system
design and implementation. Indeed, an accurate stochastic cal-
ibration allows to, among others, to maximize the estimation
accuracy by enabling the correct estimation and removal of
the maximum possible portion of the stochastic errors from
sensor measurements and to identify misbehaving sensors
or measurements via fault detection and exclusion/isolation
mechanisms.

Stochastic calibration of inertial sensors has been widely
studied in the last decades and several methods are available,
ranging from the Allan Variance (AV) Linear Regression
method [6, 7], which we refer to as AVLR, to the more recent
Generalized Method of Wavelet Moments (GMWM) [8, 9],
not to mention methods based on the analysis of the power
spectral density of the sensor errors [10, 11], correlation of
filtered sensor outputs [12], and maximum-likelihood estima-
tion [13]. In this context, each technique allows to consider
a class of possible stochastic models and selects one within
this class that appears to be the most suitable according to
some specific goodness-of-fit metric. This means that different
techniques typically yield different stochastic models, and
that many models can be practically equivalent given the
considered metric. Furthermore, it is difficult to relate these
goodness-of-fit metrics used in stochastic modeling to the
actual navigation performances that users will obtain in their
applications. Following our proposed approach, it is possible to
compare different stochastic modeling techniques according to
the criteria that are highly significant from the user’s perspec-
tive, such as the obtained position and orientation estimation
error statistics or the consistency of the derived confidence
intervals, as obtained by the navigation filter in simulated, but
realistic, scenarios. By means of extensive simulation analyses
based on real-world trajectories, and further backed-up by
comparison against data from a real sensor, we show that in

general the models obtained with GMWM perform better in
navigation. However, the difference are significant when low-
cost Micro-ElectroMEchanical System (MEMS) Inertial Mea-
surement Units (IMUs) are considered, while less important if
the stochastic nature of the error processes is the one typical
of tactical or navigation grade sensors.

The rest of the paper is organized as follows. In Sec. II
we summarize the main contributions of the paper. A brief
review on stochastic calibration is given in Sec. III, specifically
in relation with the two methods considered in this work,
namely, the AVLR and the GMWM, discussed in Sec. III-A
and III-B, respectively. In Sec. IV we introduce the proposed
framework to evaluate the performances of navigation systems
and we discuss its components in details. Such framework
is applied in Sec. V and VI to compare the impact of
the stochastic calibration technique, being it the AVLR or
the GMWM, on the performances of the navigation filter,
both based on simulated sensor and real-world ones. Finally,
Sec. VII concludes.

II. MAIN CONTRIBUTIONS

The main contributions of this work are summarized below.
1) We introduce a framework based on Monte-Carlo simu-

lations and realistic, user-configurable noise generation
mechanisms that allow to closely replicate real-world
navigation conditions. This framework can be used to
assess and quantify the performances of an INS in
different conditions, such as, for example, nominal, in
presence of GNSS outages, when sensor measurements
are contaminated with outliers or if the stochastic model
for any sensor has been misspecified. The performance
metrics evaluated by the framework also include measures
of the correctness and of the accuracy of the uncertainty
for the navigation states, as estimated by the INS, which
is often difficult to verify in practice.

2) To illustrate the generality of the proposed approach
we consider an example application targeting an open
research question: we study the impact of different sta-
tistical procedures to determine a suitable stochastic cali-
bration for an inertial sensors, namely, the AVLR and the
GMWM. We propose to compare different techniques not
in terms of the usual metrics used in system identification,
such as information criteria or the likelihood, but in
terms of the actual navigation performances that can
be expected once the determined model is employed
in an INS. Due to its generality and flexibility, our
framework provides a suitable environment to evaluate
the performance of new stochastic calibration methods
compared to existing ones.

3) A comprehensive simulation study suggests that the
AVLR, which is widely used in practice, in certain cases
may lead to stochastic models characterized by worse
performances in navigation, e.g., in terms of position and
orientation error or accuracy of the estimated uncertainty.
In contrast, this appears not to be the case if the GMWM
is employed and our study sheds new light on what are
the conditions under which the differences in navigation
performances are substantial.
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4) Our framework is implemented in an open-source R
package, making it available widely and allowing any
user to easily perform a wide range of assessments of his
own INS and reproduce our results.

III. STOCHASTIC CALIBRATION OF INERTIAL SENSORS

The measurements of inertial sensors are intrinsically af-
fected by random errors that originate from the internal physics
of the device and whose nature depends on the actual tech-
nology employed [14]. For instance, in a typical gyroscope,
the error terms include white noise, correlated random noise,
bias instability, and angle random walk. The sources of these
errors differ from one gyroscope to another. Most of this error
sources are correlated in time. Stochastic calibration refers to
the modeling and characterization of such error sources for a
specific device prior to its usage [5]. Indeed, any navigation
filter performing information fusion between inertial, GNSS
and possibly other sensors needs correct stochastic models of
the measurement errors. The quality of those models impacts
directly the accuracy of the navigation solution and of its
estimated uncertainty.

In general, it is difficult to model the physical processes
behind inertial measurement error, and anyways such model
would be specific to a single device or family. Therefore,
stochastic modeling methods are typically employed instead.
Typically, a mixture of simple stochastic processes is selected
such that it provides a suitable approximation of the stochas-
tic properties of the measurement error. For example, one
common choice is the sum of a white noise and a random
walk processes. The selected model is then integrated in the
navigation filter of choice (e.g., an EKF), after its charac-
terizing parameters have been estimated. In the remainder of
the section we discuss two of the most common method for
the calibration of inertial sections, namely the AV based and
GMWM methods, whose performances are compared later in
Sec. V and VI.

A. The Allan Variance Linear Regression Method

For inertial sensors, the most widespread modeling tech-
nique among practitioners and device manufacturers is the
AVLR [6], conceived for the characterization of phase and
frequency instability of precision oscillators, and suggested
for the stochastic characterization of interferometric fiber optic
gyroscopes in [11]. This is mainly a graphical technique based
on the manual inspection of the AV plot. The AV plot is
derived from a sufficiently long error time series: several hours
of sensor data are acquired while the device is not moving, and
thus no signal is observed other than the measurement error
and constant quantities such as the Earth rotation rate and
the gravity. A stochastic model for the measurement error,
along with its characterizing parameters, can be determined
based on the assumption that the different stochastic processes
composing the total error appear in seemingly different regions
of the AV plot as distinctive patters, such as linear regions, as
illustrated in Fig. 1. Practitioners typically model the error as
a sum of simple stochastic processes, e.g., quantization noise,
white noise, random walk, etc., based on which patterns can

be qualitatively identified in the AV plot. After the model has
been selected, its parameters, can be determined from those,
for example by means of linear regression. This procedure is
commonly referred as the Allan Variance Linear Regression
method and it is summarized in the IEEE standard [11]: “A
first approximation [...] can be estimated by sketching in
the asymptotes to the charted data analysis, and computing
approximate model coefficients”. A comprehensive discussion
of this approach is presented in [7].

The stochastic modeling procedures based on the AV suffer
from several limitations. First, it relies on the assumption
that only one underlying process is completely determining
the shape of the AV at a given region of the plot. This
perfect separation of the processes is actually not true as all
underlying stochastic processes have an impact on the entire
AV. Consequently, the AV slope method leads to inconsis-
tent estimated parameters characterized in practice by large
biases even in the case of simple stochastic models (e.g.,
the sum of a white noise and a random walk [15]). The
second limitation is that no pragmatic rule is available to
the users to solve the model selection problem, i.e., decide
which stochastic processes compose the total measurement
error. Indeed, in realistic scenarios where multiple underlying
stochastic processes are present, it is difficult to approximate
the observed AV with simple stochastic processes having a
linear representation in the standard AV log-log graph. More
often, the empirical Allan variance has a complex shape and
the user needs to resort to their intuition and experience to
select a suitable model and the relevant scales on which
to perform the linear regression. Finally, the AV technique
is only able to estimate the parameters of models having
a linear representation in the AV log-log plot. In order to
obtain reasonable point estimates, it is also needed that the
parameters of the underlying stochastic processes are such that
each process dominates in a distinct region of of the AV, which
is often not the case in practice. The presence of correlated
noise, e.g., first order Gauss-Markov processes, that are not
linear in the AV log-log plot, can render the use of AV slope
method even more challenging.

B. Moment Matching Techniques
Many methods have been proposed which aim minimizing

the distance between an empirical quantity (e.g., the AV) and
its model based counterpart (e.g., the AV implied by a given
stochastic model) which can be expressed as an function of
its parameters. An example of such methods developed in
the context of inertial sensor stochastic calibration is the the
Generalized Method of Wavelet Moments (GMWM), proposed
in [8, 16]. This method uses the Wavelet Variance (WV)
instead of the AV. This choice is due to the statistical properties
of the WV which have been studied further than the ones of
the AV. However, these two quantities are very similar and the
interpretation of the AV presented in Sec. III-A also applies
to the WV. Other moment-matching methods such as the
Autonomous Regression Method for Allan Variance [17] have
been proposed for the estimation of inertial sensors stochastic
models. However, [9] demonstrated that these methods can be
seen as special cases of the standard GMWM approach.
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Fig. 1: Allan variance analysis noise terms results, after [14].

As previously mentioned, the underlying idea of the
GMWM approach is to match the empirical and model-
based WVs. Indeed, the theoretical WV for several stochastic
processes, such as AutoRegressive–Moving-Average (ARMA),
Quantization Noise (QN), White Noise (WN), etc., is known
analytically as a function of the model parameters due to the
results of [18]. Moreover, the wavelet variance of the sum
of several stochastic processes is simply the sum of all the
processes wavelet variances. Thus, the model parameters say
θ ∈ Θ can be obtained as follows:

θ̂ = argmin
θ∈Θ

[
ν̂ − ν(θ)

]T
Ω
[
ν̂ − ν(θ)

]
, (1)

where θ is the vector of model parameters, ν̂ is the empirical
wavelet variance of the time series, ν(θ) is the theoretical
wavelet variance implied by the parameter vector θ and Ω
is a weight vectors that depends on the uncertainty of ν̂.
The optimization problem in (1) is typically solved iteratively
using gradient-based or Gauss-Newton methods. If the wavelet
variance of a given model is linear in the model parameters,
which is the case for arbitrary sums of quantization noise,
white noise, random walk and drift, the optimization problem
can be solved in closed form [9]. Additional information on
this method can be found for example in [8, 16].

IV. ASSESSMENT FRAMEWORK FOR STOCHASTIC MODEL
IMPACT ON NAVIGATION

As previously mentioned, stochastic calibration is required
in order to characterize the inertial sensor measurements
uncertainty, so that the chosen sensor fusion algorithm can
properly integrate them with other sensor measurements and
estimate a reliable navigation solution. While many techniques
exist for such purpose, such as those reviewed in Section III,
it remains difficult to quantify the actual impact of a given
choice of stochastic models on the navigation performances
of the system in a given application scenario. For instance,
the stochastic calibration procedure may yield an accurate
model of the long term correlations of the measurement error,

whereas a much simpler model could perform similarly for the
user application where, for instance, a drone is flown only for
a few minutes at a time. As another example, many alternative
models may exist for a given sensor that perform comparably
with respect to the metric employed in stochastic calibration
(i.e., similar value for the objective function defined in (1)
at the solution), making the choice difficult and potentially
subjective for the users.

In this section, we propose an approach to quantify the
impact on navigation performances of different, competing
setups, such as sensor selection or modeling choices. The
proposed approach is depicted in Fig. 2. To illustrate the
generality of our framework, we will later consider the prob-
lem of comparing the stochastic calibrations obtained from
different statistical procedures, namely, the AV slope method
and the GMWM. More precisely, we consider a user-specified
trajectory which is typical of the application scenario, available
as samples of the body position and orientation. This trajectory
will be used as a ground truth. The available samples are
differentiated to obtain higher order kinematic properties, such
as velocities and accelerations, which are used to calculate
noise-free readings, as they would be measured by perfect
sensors mounted on the body. The noise-free readings are
then corrupted with noise samples taken contiguously from
random portions of static acquisition data (e.g., as collected
during standard stochastic calibration procedures), and thus
consisting of samples of only the actual sensor noise. A
sensor fusion algorithm is configured with the stochastic
model under investigation, for example determined with the
AV slope method. The sensor fusion algorithm processes the
noisy readings and estimates the final navigation solution. This
procedure is repeated in a Monte-Carlo fashion. The set of
obtained navigation solutions is aggregated to compute a suite
of statistics relevant to assess the expected performances of the
system in the given scenario, for example in terms of mean
position and orientation error, or consistency of the estimated
uncertainty. In order to evaluate the impact of different choices
of sensor stochastic models, the user needs just to configure
appropriately the sensor fusion algorithm and compare the
different statistics obtained after the Monte-Carlo simulations.
As previously mentioned, the proposed approach has been
implemented in the form of an open-source R package1. This
software allows to perform easily all the steps outlined in
Fig. 2 and to compute many relevant statistics to compare
competing stochastic models. We use this software package
to perform all the investigations presented in the rest of this
work and therefore our results can be easily replicated. In the
remainder of the section, we discuss the different components
of the framework in further detail.

A. Noise-free Measurements Generation

We assume in this section that a suitable trajectory is
available. This trajectory can be chosen to resemble the user’s
use case, for example in terms of dynamics of the body motion
and duration. The latter is available as a sequence of positions,
rt, and orientations, Rnb,t, of the body frame b at the target

1Navigation “R” package: https://github.com/SMAC-Group/navigation

https://github.com/SMAC-Group/navigation
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Fig. 2: The proposed framework for the evaluation of inertial navigation systems.

inertial sensor rate. These are expressed with respect to a fixed,
Cartesian, non-rotating navigation frame n. The trajectory is
assumed to be the ground truth in the following, therefore
neither its accuracy or how it was originally determined are
relevant for the following.

From the position and orientation samples we derive higher
order kinematic properties of the body frame as follows:

vnt =
rt+1 − rt

∆t
, ant =

vnt+1 − vnt
∆t

,

ωbnb,t =
log(Rnb,t

TRnb,t+1)

∆t
,

(2)

where vnt and ant are the body frame velocity and acceleration
at time t expressed in n, respectively. Moreover, ωbnb,t is the
body frame angular velocity of b with respect to n, expressed
in b, log (·) is the logarithmic map in the 3D rotation group
SO(3) and ∆t is the trajectory sampling time.

Next, noise-free inertial sensor readings are computed.
While gyroscope measurements are already given by ωbnb,t in
(2), the specific force accelerometer reading is given by:

f bt = Rnb,t
T (ant + gn),

where gn is the gravity acceleration expressed in n. Here we
ignore effects such as the Earth rotation, apparent Coriolis
forces, coning and sculling [19], or a position dependant grav-
ity vector. While these effect are important in real world nav-
igation systems, at least above certain accuracy requirements,
they are deterministic and, once they have been accounted
for in the sensor fusion algorithm, they play limited or no role
when looking at the performances of inertial stochastic models.
Thus, they are ignored in the following. For simplicity, position
and orientation derivatives are evaluated in (2) by means of
first and second order forward finite difference scheme. If
desired, more sophisticated differentiators can be employed,
see for example [20]. However, the impact of this choice is
limited, as long as the chosen differentiation scheme matches
the forward integration mechanization employed in the sensor
fusion algorithm detailed in Sec. IV-C.

B. Noisy measurement generation

We assume that the user has collected data from the inertial
sensor under evaluation in static conditions for stochastic
calibration purposes. Since the device is static, the collected
data consists of actual noise samples that can be used to
corrupt noise-free measurements.

Under the assumption that inertial sensors performances
are relatively independent of environmental conditions, the
noise samples collected in static conditions have similar, if
not the same, stochastic properties of the noise during real-
world operation. Thus, we add contiguous chunks of the
available static data to the noise-free inertial measurements to
obtain the noisy ones. A different start time for each chunk is
randomly selected for each Monte-Carlo simulation. However,
the assumed independence between IMU stochastic models
and environmental conditions does not hold entirely, at least
for low-cost IMUs. Indeed, the stochastic properties of the
measurement error and/or the deterministic calibration (e.g.,
scale factors) may depend on temperature (see e.g., [21]) and
motion dynamics [22]. The effect of the device temperatures
can readily be investigated with the proposed framework
simply collecting static data in a temperature chamber and
varying the temperature according to the user application.
However, the dependency on motion dynamics is more difficult
both to model and then to compensate for in a sensor fusion
system, and it is not considered in the following. Alternatively,
reference stochastic model can be assumed for the inertial
sensors and sampled to obtain noise data. This is useful if
static data is not available, or for example, if one wants to
quickly evaluate different sensors available on the market.

An a priori stochastic model is also used to generate noise
samples for the GNSS sensor. Indeed, differently from inertial
sensors, it is well known that the noise properties of GNSS
measurements are very much dependent on environmental
conditions, such as receiver surroundings, satellite constella-
tion, ionosphere and troposphere conditions, and so on, so
that static data is probably not representative of real world
operations. Since this work focus on inertial sensors, the GNSS
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measurement error is assumed to be white and uncorrelated.
More realistic GNSS error samples could be obtained using a
GNSS simulator and then used to corrupt noise-free position
and velocity measurements.

C. Sensor fusion algorithm

Let N denote the number of Monte-Carlo simulations. For
simulation i, with i ∈ {1, ..., N}, a sensor fusion algorithm is
employed to fuse together noisy inertial and GNSS observa-
tions and estimate the navigation solution, (i)r̂t and (i)R̂nbt , as
well as their estimated covariance (i)Σt.

For the sensor fusion algorithm we chose the EKF as this
method is at the core of most of the real time navigation sys-
tems and its behaviour is well known and understood among
practitioners. The choice of the sensor fusion algorithm does
not affect the principle of operation of the approach proposed
in Fig. 2 and any other method, such as unscented Kalman
filters, particle filters, or even smoothing based methods such
as dynamic networks [23], could replace the EKF and directly
allow to compare the performances of different state estimation
algorithms.

We consider a standard error-state formulation of the EKF as
presented for example in [1]. In such EKF, the inertial sensor
process noise models can be configured as an arbitrary sum
of the following stochastic processes:

1) random constant,
2) White Noise (WN),
3) AutoRegressive process of order one (AR1), which is

equivalent to a first-order Gauss-Markov process,
4) Random Walk (RW),
5) drift.

Multiple AR1s (or Gauss-Markov processes) can be con-
sidered, as it will be demonstrated in Section VI-A2. By
combining the previously mentioned processes, a wide class
of models can be constructed which includes standard models
for inertial sensor errors Other Gaussian processes, such as
AutoRegressive Moving-Average (ARMA) models of order
higher than one can be considered, see for example [24].
The proposed framework could be easily extended to include
such processes, however, this choice does not appear to be
widespread in practice and is left for future research.

The implemented EKF employs a first order Euler method
to integrate the process model. This method is simplistic and
higher order integration methods are preferable in real-world
applications. However, here the goal is to evaluate the impact
of the stochastic models for the sensor errors, not the quality
of the filter mechanization. Thus, the latter has been chosen to
match the noise-free measurement generation mechanism pre-
sented in Section IV-A, so that it produces exactly the original
position and orientation samples when integrating noise-free
measurements. This choice prevents spurious integration noise
to impact further analyses.

D. Navigation performance statistics

The navigation solutions are then aggregated to compute
statistics that are useful to evaluate the performances of the
navigation system. The details are given in the following:

1) Position and orientation error: The original trajectory
provided by the user gives the ground truth, and each estimated
solution can be compared to the reference in terms of position
and orientation error:

(i)∆rt = (i)r̂t − rt,

(i)∆Rt = log

[(
(i)R̂nb,t

)T
Rnb,t

]∨
,

(3)

where the (·)∨ operator gives the three elements composing
the skew-symmetric matrix returned by log(·), thus being a
3D representation of the difference between the estimated and
reference orientations. In the following, for simplicity we will
average both position and orientation error over the three axes.

The error samples computed with (3) can then be aggregated
with respect to the different navigation solutions, with respect
to time, or both, by means of any sample based operation,
such as the sample mean, sample covariance, and so on. Given
the statistical properties of such sample based estimators, and
provided that N is sufficiently large (e.g., several hundreds),
those quantities will approach the true value of the underlying
quantities.

E. Normalized Estimation Error Squared

The Normalized Estimation Error Squared (NEES) is a
commonly employed metric to evaluate whether the error
in position and orientation is consistent with their estimated
covariance. An in-depth discussion can be found in [4, Chapter
3.7.4].

The NEES is defined as follows:

(i)NEESt =

[
(i)∆rt
(i)∆Rt

]T
(i)Σ−1

t

[
(i)∆rt
(i)∆Rt

]
, (4)

In a Monte-Carlo setup with N simulations, the average NEES
at time t, which we denote as NEESt, follows (approximately)
a chi-square distribution with 6N degrees of freedom (6 being
the dimension of the stacked (i)∆rt and (i)∆Rt vectors). Thus,
a two-sided confidence interval for NEESt with level 1 − α
can be expressed as [ε1, ε2] where

ε1 = χ2
6N

(α
2

)
and ε2 = χ2

6N

(
1− α

2

)
, (5)

where χ2
n(α) is the α-th quantile of a chi-squared distribution

with n degrees of freedom. A one-sided confidence interval
can be constructed similarly.

The evolution of NEESt with respect to the bounds [ε1, ε2]
is an important metric used in practice to assess whether the
sensor fusion algorithm is overconfident, meaning that the
actual error is typically larger than the estimated uncertainty
of the position and orientation estimates, or underconfident,
the other way around, or none of the two.

F. Coverage

The consistency and the efficiency of the estimated position
and orientation, and of their estimated covariance, can be
evaluated in an alternative way, as commonly done in the
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statistical literature. We first define the one-sided confidence
interval of level 1− α for (i)NEESt as follows:

[ε′1, ε
′
2] =

[
0, χ2

N (1− α)
]
. (6)

Next, we introduce the following binary variable:

(i)ct =

{
1 if (i)NEESt ∈ [ε′1, ε

′
2],

0 otherwise.
(7)

If the estimated covariance (i)Σ̂t is sufficiently well estimated
(i)ct follows approximately a Bernoulli distribution with pa-
rameter p = 1−α, allowing to assess the simulation error. The
coverage of the confidence intervals defined in (6) is given by
the average of (i)ct over the N Monte-Carlo runs, ct.

The coverage, ct, measures how often, in practice, the
confidence intervals constructed from (i)Σ̂t and centered at (i)r̂
and (i)R̂nb,t include, or cover, the true position and orientation.
In other words, such confidence intervals are trustworthy if ct
is close to 1−α. This measure provides an alternative approach
to assess the quality of the computed navigation solution.

V. CASE STUDY: ALLAN VARIANCE LINEAR REGRESSION
METHOD VERSUS GMWM

In this section we apply the proposed framework to compare
different statistical estimators leading to different stochastic
models for the inertial sensors in terms of navigation perfor-
mances. More precisely, we compare the AV slope method and
the GMWM, both briefly presented in Sec. III. This example
is relevant since it allows to investigate whether, and when,
a more sophisticated statistical method such as the GMWM
should be used instead of the commonly employed AV slope
method. Indeed, we consider an experimental setup composed
of two steps:

1) a calibration step, in which the stochastic models are de-
termined from available noise data (for example collected
in during static acquisitions) using the two previously
mentioned estimators,

2) Monte-Carlo navigation simulations, where the frame-
work depicted in Fig. 2 is employed to quantify the
navigation performances of the estimated models.

In our experiment, the estimation of the parameters of the
stochastic models taking place in the first step is performed
based several hours of data collected from a static device.
Since the device is static, the collected measurements will be
composed by noise samples only, and the selected stochastic
modeling techniques are employed to determine the two sets of
stochastic models (each set being composed of the gyroscope
and accelerometer model) that we seek to compare. Next,
we evaluate the determined stochastic models in a realistic
scenario using the proposed Monte-Carlo simulation frame-
work. We consider a trajectory of a real fixed-wing Unpiloted
Aerial Vehicle (UAV) performing an aerial mapping mission
lasting approximately 40 minutes. By performing hundreds of
simulations, each time employing different noise realisations,
we obtain reliable statistics of the navigation performances that
can be obtained employing each of the two sets of models.
From these statistics, which model should be preferred for
implementation in the final application can be assessed.

As discussed in details in Sec. VI, we consider two scenar-
ios. In the first scenario, we consider synthetic inertial sensors
for which the true noise model is assumed to be known. The
chosen models aims to mimic the observed AV/WV shape of
real-world low-to-mid grade inertial sensors. These models are
sampled to generate both synthetic noise data for the stochastic
calibration and for the generation of noisy inertial readings
for the Monte-Carlo simulations. In the second scenario, a
real sensor is considered and multiple static acquisitions are
performed to collect both the data for the stochastic calibration
and the realistic noise samples to corrupt inertial readings
during navigation.

A. A Flexible Set of Stochastic Models

We define a general set of models that is equal or can
well approximate the vast majority of models used in inertial
sensors. Such set is defined as the sum of M AR1s, which
we write as first-order Gauss-Markov processes because of
the practical meaning of the parameters (correlation time and
variance of the innovation):

e(t) =

N∑
i

xi(t),

ẋi(t) = − 1

τc,i
xi(t) + ξi(t), τc ≥ 0,

(8)

where e(t) is the measurement error affecting the inertial
sensor at time t, ξi(t) is a (continuous time) WN with power
spectral density qi and τc,i is the i-th process correlation time.

This class of models is very general and includes most
of the processes typically considered in modeling inertial
sensors, where some well-known special cases are given in
the following:

1) White noise (WN), typically referred to as angular
random walk for gyroscopes and velocity random walk
for accelerometers, is obtained when τc,i → 0,

2) Random walk (RW), or rate random walk, in the case of
gyroscopes, when τc,i → ∞ (any long-term correlation
observed in practice can be modeled with a sufficiently
high τc,i),

3) Bias instability, or flicker noise, it is defined in terms of
its power spectral density:

SΩ =

{
B2

2πf f < f0,

0 f ≥ f0.
(9)

Since no state-space model can be derived for this pro-
cess, it can not be employed directly in state estimation
algorithms, e.g., in an EKF. As suggested in [25, Section
4.3], or in [11], it is “sometimes approximated by a
Markov model or a multiple stage ARMA model”, such
as the one in Eq. (8).

4) Turn-on bias, or random constant, the constant part of
the sensor error that changes at every power cycle can be
modeled setting qi = 0 and τc,i →∞.

Two other commonly employed processes do not fall in the
proposed model family. Those are the quantization noise and
the drift, or rate ramp in gyroscopes. Since both of these can
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Fig. 3: Empirical WV of 2 h static acquisition for the KVH1750 accelerometer (in red) and theoretical WV as implied by
the model obtained with AVLR (green) and the GMWM (brown). The decomposition of the GMWM model in 4 first-order
Gauss-Markov processes, one of which degenerates into a white noise, is also shown for the GMWM model.

be estimated with both the AVLR and the GMWM, they are
not considered in this study.

In stochastic calibration, is more customary to consider the
equivalent, discrete-time formulation of (8):

et =

N∑
i

xi,t,

xi,t = φixi,t−1 + ξi,t, ξi,t ∼ N (0, σ2
i ),

(10)

where the well known relation between the correlation time
and the innovation power spectral densities, and the discrete
time φi ∈ [0, 1] and σ2

i > 0 are given below:

φi = exp

(
− 1

τc,if

)
,

σ2
i =

qiτc,i
2

[
1− exp

(
− 2

τc,if

)]
,

(11)

where f is the sampling frequency. For a given Gauss-
Markov process i, the two different parameterizations (φi, σ

2
i )

and (τc,i, qi) are equivalent given f and they will be used
interchangeably depending on which one is more intuitive in
the given context.

The GMWM provides estimates having suitable statistical
properties for the set presented in (10), when the number of
Gauss-Markov processes, M , is arbitrary but known, and also
to determine the optimal M for a given calibration data. On the
contrary, the AVLR method would typically estimate model
where M = 2 Guass-Markov processes belonging to the WN
(or angular or velocity random walk) and RW (rate random

walk) special cases. The AVLR is also capable of estimating
bias instability in terms of B and f , as in (9). However, it is
difficult to relate those to a suitable state-space model that can
be employed in an EKF.

Given the specific features of the two stochastic calibration
methods presented before, their models may be different. To
illustrate this difference, we considered approximately two
hours static data collected using the Novatel KVH 1750
IMU. In Fig 3 we compare the empirical WV (which can be
interpreted similarly to the AV) of the X axis accelerometer
with the models estimated with AVLR (in green) and GMWM
(in brown). It can be observed that the AVLR model does
not provide a close mach to the the empirical WV between
scales 101 s and 103. Indeed, the AVLR method does not
allow to estimate state-space stochastic models that would well
approximate the flat region in the WV evident at those scales.
On the contrary, the GMWM estimates appear to provide a
better model fit considering a model composed of N = 4
Gauss-Markov processes, the first of which degenerates into
a white noise (τc,1 = 0). The theoretical WV of the resulting
model matches the observed one to an excellent degree. In
particular, the GMWM allows to obtain a model for the long-
term correlation of the error, for example, between scales 101 s
and 103 s. No such model is provided by the manufacturer [26]
or can be estimated reliably with the available graphical
methods based on the AV.

In the next section, we will investigate in which cases
the extra modeling power offered by GMWM would lead to
superior performances in navigation.
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VI. SIMULATION RESULTS

In this section we compare the performance of stochastic
calibration based the AVLR and the GMWM, respectively
in two different scenarios. In the first scenario, we assume
that the stochastic model behind noise generation in inertial
sensors is known and belongs to the set of models introduced
in Sec. V-A. Many different parameter values are considered.
In the second scenario we consider a real sensor, the Xsens
MTI-g IMU [27], for which data from a static acquisition is
available. This sensor is characterized by a significant bias-
instability and the WV of the static acquisitions match the
ones of some of the models considered in the first scenario.

A. Scenario 1: Known Stochastic Models

We consider a simulation scenario in which the true stochas-
tic model behind inertial sensor noise is known. In the follow-
ing, we first consider the class of models introduced (10), with
M = 2, in Sec. VI-A1. Next, in Sec. VI-A2 we consider a
more complex model family where M = 3. In both cases, the
first Gauss-Markov process (or AR1) always degenerates to a
WN, e.g., τc,1 → 0.

1) Model 1: 1 WN + 1 AR1: The stochastic model for the
gyroscope is assumed to be the sum of a white noise and a
Gauss-Markov process: 24 different instances from this model
class, each one being characterized by different parameters,
have been chosen as follows:
• the standard deviation of the white noise is fixed at σξ =

10−6 rad s−1.
• For the first 12 instances (large set from now on) the

variance of the AR1 process is large compared to the
white noise, and it is small for the remaining 12 (small
set from now on). The variance of the AR1 process is
given by σ2

ξ/(1−φ2) and it is kept constant to 5× 10−8

rad2 s−2 for the large set and to 5× 10−9 rad2 s−2 for
the small set.

• The j-th instances of both the large and the small
sets, with j ∈ {1, 2, ..., 12}, have the same value of φ,
and φj spans [0, 1]. In other words, we consider processes
with increasing correlation time τC , in the first order
Gauss-Markov parameterization.

Moreover, we consider a fixed model for the accelerometer
noise, being a white noise with standard deviation σξ =
5× 10−5 m s−2. The resulting stochastic processes are realis-
tic for MEMS IMUs. The theoretical WVs of the considered
models are depicted in Fig. 4, the large set being on the left
and the small set on the right.

For each of the model instance we sample a time-series,
mimicking the static acquisition process that would provide
the stochastic calibration data for a real inertial sensor. Next,
we use the generated noise time-series to estimate a stochastic
model using the GMWM and the AVLR. The estimated model
is used in an EKF to process noisy GNSS and inertial readings,
corrupted by noise sampled the same way as for the synthetic
static acquisition data. The performances of the navigation
solution are measured according to the metrics presented in

the Sections IV-D, IV-E, and IV-F. This procedure is repeated
500 times for each model instance in a Monte-Carlo fashion.

From Fig. 4 it is possible to see that the WVs of some
of the model instances (e.g., the one in violet) have large
parts that are linear in the scales τ and that can be well
approximated by the sum of a WN and a RW using the AVLR.
However, this does not hold for most of the others (e.g., the
ones highlighted in red, green and light blue): for those cases,
the model obtained by means of the AVLR is different from
the true one, in terms of its WV. In contrast, by means of the
GMWM it is possible to recover a good approximation of the
true model for all the model instances.

If the model employed in the EKF is substantially different
from the true one, used to generate noisy inertial readings,
the quality of the navigation solution may degrade. In the
following, we quantify such degradation in terms of position
and orientation error within GNSS coverage, i.e., when a
position fix is available, and during a GNSS outage period
of 60 s. The position and orientation error for each model
instance are presented in Fig. 5 and 6. These quantities
corresponds to (i)∆rt and (i)∆Rt, as defined in Sec. IV,
averaged over the Monte-Carlo simulations and the three axes.
The results are expressed in relative units, in terms of the
performances of the model estimated by means of the AVLR
versus the one estimated with the GMWM. For example, a
value of 110% implies that the model estimated with the AVLR
achieves, on average, a position (or orientation) error 10%
higher than the model estimated with the GMWM. In these
figures, and the ones that will follow, the x axis is the time
relative to the beginning of the GNSS outage, at second 0,
while on the y axis we have the time constant τC of the auto-
regressive process contained in that specific model instance.

From Fig. 5 and 6 we can observe the following.
• When the WV of the true model can be well approx-

imated by the sum of a WN and a RW, i.e., when
φ → 1 or, equivalently, τC is high, both the GMWM
and the AVLR achieve similar performances both in
terms of position and orientation error. This result is
somewhat expected as in this case both the AVLR and
the GMWM are able to provide suitable approximations
of the underlying data generating process.

• When the WV of the true model presents a peak or
anyways it is not linear in the scales τ (see again
Fig. 4, e.g., the model highlighted in green), only GMWM
can estimate an accurate model and the performances
degrade by up to 50% in position and 80% in orientation
with AVLR method as this method, unlike the GMWM,
is unable to provide an accurate approximation of the
underlying data generating process.

• The higher the variance of the AR1 process is (large
set compared to small set, on the left and on the right
in Fig. 5 and 6, respectively), the higher the degradation
of the performances will be. This is intuitive since the
AR1 process is the one that can not be estimated with
the AVLR technique.

• The degradation in terms of position error is mostly
visible during the GNSS outage period only. Indeed, the
GNSS position fix corrects for any error accumulated
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Fig. 4: Wavelet variances of the considered noise models (grey lines). Four out of twelve instances are highlighted with colors
in each figure.
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Fig. 5: Relative position and orientation error of the AVLR model with respect to the GMWM one for the large model set,
before, during and after a GNSS outage of 60 seconds starting at t = 0 s.

because of poorly modeled inertial readings. If the AR1
has large variance compared to the white noise, a peak
in the position error is visible also soon after the GNSS
position fixes have become again available. A possible
explanation for this effect is due to a wrong model
for inertial sensor which will build a wrong covariance
matrix in the EKF, requiring more time to correct after
recovery of GNSS measurements. Additional information
of this effect are shown when discussing the estimated

uncertainty of position and orientation.
• An inaccurate stochastic model for the inertial sensors

will have more impact on the orientation error than on the
position error. In addition, this impact can be observed
even when the GNSS position fix is available. This is
expected because the orientation estimates are known
to be more dependent on the quality of inertial sensor
measurements and models.

Next, we analyze the quality of the confidence intervals
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Fig. 6: Relative position and orientation error of the AVLR model with respect to the GMWM one for the small model set,
before, during and after a GNSS outage of 60 seconds starting at t = 0 s.
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(a) Model estimated with the AVLR.
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(b) Model estimated with GMWM.

Fig. 7: Coverage error as a function of the time relative to the GNSS gap (between 0 and 60 s) and the correlation time τc
for the large model set.

for the position and orientation as estimated by the EKF.
Indeed, during navigation the filter maintains a covariance
matrix over the states, from which confidence intervals can
be derived for those. If the stochastic model for the inertial
measurement assumed in the EKF does not correspond to the
one behind true noise generation, the covariance matrix will
not be a good estimate of the probability distribution of the
states. To quantify this, we evaluate the coverage as defined in
Sec. IV-F with 1−α = 70%: if the states uncertainty estimated

by the EKF is correct, we expect that 66% < ct < 74%,
the interval accounting for the Monte-Carlo simulation error.
Indeed, assuming the filter to provide exact coverage, the
random variable (i)ct follows a Bernoulli distribution with
parameter 1 − α. Therefore, using the central limit theorem
an approximate 95% confidence interval for the averaged (i)ct
over N Monte-Carlo simulation is given by

(1− α)± 1.96

√
α (1− α)

N
≈ [66%, 74%] ,
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(a) Model estimated with the AVLR.
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(b) Model estimated with GMWM.

Fig. 8: Coverage error as a function of the time relative to the GNSS gap (between 0 and 60 s) and the correlation time τc
for the small model set.

for α = 30%. The results are depicted in Fig. 7 for the
large model set and in Fig. 8 for the small model set.
The results are expressed in terms of coverage error which we
define as the difference between the assumed probability (i.e.,
70%) and empirical probability that the true states is within
the computed 70% confidence interval, ct. Consequently, a
negative value indicates an over-confident estimate of the
position and orientation uncertainty, and vice-versa.

We can observe that the models obtained with the GMWM
have the correct coverage (around 70%, or around 0% cover-
age error) at all times, while the models obtained with the
AVLR lead to a large underestimation of the position and
orientation uncertainty when φ→ 1 or, equivalently, τC →∞.
This effect is more severe for the large model set, and less
severe for the small one, as happened for the position and
orientation relative error. This result suggests that, in practice,
if the user is particularly interested in having a reliable esti-
mate of the navigation states uncertainty, the stochastic models
obtained with GMWM can provide substantial advantages over
the commonly used AVLR, at least for specific structure of the
underlying noise generation mechanism.

2) Model 2: 1 WN + 2 AR1s: We consider a more com-
plex case in the following. This is similar to the one discussed
before, with the exception that this time the true gyroscope
noise model is the sum of two AR1s and a white noise
(M = 3). The parameters of such auto-regressive processes
have been chosen so that a flat region in the high scales of the
theoretical WV appears. In this case, 12 different instances
have been considered and their theoretical WVs have been
plot in Fig. 9a. Such shapes are typical of low-to-medium
grade inertial sensors, e.g., MEMS, exhibiting non negligible
bias instability. In Fig. 9b we have plotted one of the chosen
instances, in green in both figures, and compared with the

empirical WV of a static acquisition of a real sensor, the MTI-
g MEMS IMU. It can be observed that the shape of the WV is
very similar, suggesting that our experimental setup considers
a realistic scenario. In Fig. 12a it is also possible to see that
the accelerometer noise model of the MTI-g would present a
similar pattern in the WV. The accelerometer noise model will
be discussed more in detail in Sec. VI-B.

Similarly to the results obtained in the previous section, it
can be observed that a good estimate of the original model
using the AVLR can only be obtained for some of the specific
parameter values corresponding to correlation times of the two
auto-regressive processes that are both either small or high.
Instead, the GMWM allows to estimate arbitrary mixtures of
auto-regressive processes, regardless of their correlation time
and thus recover the underlying noise model with sufficient
accuracy.

We apply the same experimental procedure as the one dis-
cussed in Section VI-A1. The relative position and orientation
error achieved employing the models estimated with the AVLR
versus the ones obtained with GMWM are shown in Fig. 10.
The coverage error, as defined in the previous section, is also
presented in Fig. 11, where it is possible to see that the models
obtained with the AVLR lead to a large underestimation of the
position and orientation uncertainty in the EKF.

B. Scenario 2: Real Sensor Noise

In this scenario we consider a real IMU sensor, the Xsens
MTi-g, a MEMs IMU, for which real data is available from
static acquisitions in a controlled environment. As anticipated
in the previous section, and shown in Fig. 9b, such sensor
exhibits non-negligible bias instability which appears as a flat
region in the wavelet variance plot in correspondence of high
scales τ . The AVLR does not allow to estimate a suitable
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Fig. 9: Comparison of the WV corresponding to the considered parameter values used for the simulation results presented in
Sec. VI-A2 (on the left) and compared to the WV of the MTI-g MEMS IMU (on the right).
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Fig. 10: Relative position and orientation error of the AVLR model with respect to the GMWM one before, during and after
a GNSS outage of 60 second starting at t = 0 s and for different time constants τc,1 of the first auto-regressive process.

state-space model for this data. Instead, a model for this can
be obtained approximating the flat region of the empirical WV
as the sum of multiple auto-regressive processes that can be
effectively estimated by means of the GMWM. The empirical
WV of the noise data collected during the static acquisition is
presented in Fig. 12, along with the theoretical WV of the
model estimated with GMWM and its decomposition. The
empirical WV of the real noise data and the theoretical one of

the estimated with the GMWM model match to a remarkable
extent once three AR1s are considered for the accelerometer
and two for the gyroscope.

We evaluate the performances of the models estimated by
means of the AVLR against GMWM in an EKF. This time,
instead of simulating noise samples from a stochastic model
known a priori, which is not available in the case of a real
sensor, we corrupt inertial readings using real noise samples
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(b) Model estimated with GMWM.

Fig. 11: Coverage error as a function of the time relative to the GNSS gap (between 0 and 60 s) and the correlation time τc,1
of the first auto-regressive process.
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(b) Gyroscope

Fig. 12: Empirical WV of the 2 h of static data collected from an Xsens MTI-g IMU (in red) and the model estimated with
the GMWM (in brown), considering the gyroscope and accelerometer X axis on the left and on the right, respectively. The
model decomposition in terms of WN and multiple auss-Markov processes is also shown.

obtained during a static acquisition: several hours of data are
available and each time different contiguous sets are chosen in
a Monte-Carlo fashion, as discussed in Sec. IV. This approach
permits to evaluate the performances of a given stochastic

model when realistic noise samples are provided, more closely
to a real-world application scenario.

The obtained models are compared in terms of the relative
position and orientation error when configuring the EFK with
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Fig. 13: Position and orientation error.

the associated models. In Fig. 13 we show the position and
orientation error of the models estimated with the AVLR
relative to the ones obtained with the GMWM. As anticipated,
the models obtained by means of the AVLR fail to model
accurately the stochastic nature of the error signal and this
translates in degraded navigation performances, up to 15% in
position and 45% in orientation. The decomposition of the
orientation error along the three axes is also show to point
out that, as expected, the maximum error is found on the Yaw
axis and that the AVLR model performs up to 50% worse than
GMWM on that axis. These results show the potential benefit
of performing stochastic calibration with GMWM on a real
device and are in line with what obtained in Sec. VI-A2: this
can be seen by comparing Fig. 10, along the blue line.

VII. CONCLUSIONS

In this work we propose a simulation-based framework
allowing to assess the performances of INS/GNSS navigation
systems in realistic settings. Indeed, our approach allows
to consider flexible and user-configurable noise generation
mechanisms and permits to quantify INS/GNSS navigation
systems performances in different conditions (e.g, GNSS out-
ages, inaccurate stochastic model for any sensor and so on).
Using this framework, we study the impact on navigation
performances of different statistical procedures (AVLR and
GMWM) used to obtain stochastic inertial stochastic mod-
els. By comparing a various simulation settings, our results
suggest that the commonly AVLR method can lead to to
considerably worse performances compared the GMWM in
terms of position and orientation error as well as in terms
of accuracy of the estimated states, especially for inertial
sensors characterized by important bias-instability. These re-
sults can have important practical implications, suggesting

that the GMWM can provide significant improvements, in
particular when MEMS sensors are considered, where bias-
instability is frequent. Moreover, our framework provides a
systematic method allowing researchers and practitioners to
compare the performance of existing, and potentially new,
stochastic calibration methods. In this work we considered
stochastic calibration as a proof of concept, but other problems
related to the quantification of navigation system performances
can be easily investigated with our framework, such as, for
example, the robustness of an INS with respect to outliers
or other modeling imperfections. Our method can bridge the
gap between real world experiments, which are always needed
but often impractical, costly and difficult to replicate a large
number of time (e.g., to evaluate the correctness of estimated
uncertainty) and pure statistical parameter estimation as done,
for example, in the stochastic calibration literature.

REFERENCES

[1] D. Titterton, J. L. Weston, and J. Weston, Strapdown
inertial navigation technology, vol. 17. IET, 2004.

[2] G. Huang, “Visual-inertial navigation: A concise review,”
in 2019 International Conference on Robotics and Au-
tomation (ICRA), pp. 9572–9582, IEEE, 2019.

[3] Q. Fan, B. Sun, Y. Sun, and X. Zhuang, “Performance
enhancement of MEMS-based INS/UWB integration for
indoor navigation applications,” IEEE Sensors Journal,
vol. 17, no. 10, pp. 3116–3130, 2017.

[4] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation
with applications to tracking and navigation: theory
algorithms and software. John Wiley & Sons, 2004.

[5] P. Clausen, Calibration Aspects of INS Navigation. PhD
thesis, EPFL, 2019.



16

[6] D. W. Allan, “Statistics of atomic frequency standards,”
Proceedings of the IEEE, vol. 54, no. 2, pp. 221–230,
1966.

[7] N. El-Sheimy, H. Hou, and X. Niu, “Analysis and model-
ing of inertial sensors using Allan variance,” IEEE Trans-
actions on instrumentation and measurement, vol. 57,
no. 1, pp. 140–149, 2007.

[8] S. Guerrier, J. Skaloud, Y. Stebler, and M.-P. Victoria-
Feser, “Wavelet-variance-based estimation for composite
stochastic processes,” Journal of the American Statistical
Association, vol. 108, no. 503, pp. 1021–1030, 2013.

[9] S. Guerrier, J. Jurado, M. Khaghani, G. Bakalli, M. Kare-
mera, R. Molinari, S. Orso, J. Raquet, C. Schubert,
J. Skaloud, et al., “Wavelet-Based Moment-Matching
Techniques for Inertial Sensor Calibration,” IEEE Trans-
actions on Instrumentation and Measurement, vol. 69,
no. 10, pp. 7542 – 7551, 2020.

[10] R. Allen and D. Chang, “Performance testing of the
systron donner quartz gyro,” JPL Engineering Memoran-
dum, EM, pp. 343–1297, 1993.

[11] M. J. Ma, Z. H. Jin, Y. D. Liu, C. H. Lim, T. S. Lim, V. C.
Koo, K. Zhang, J. Q. Bai, B. L. Gu, and A. Abbas, “IEEE
Standard Specification Format Guide and Test Procedure
for Single-axis Interferometric Optic Gyros,” IEEE Std
952-2020 (Revision of IEEE Std 952-1997), 1998.

[12] Y. Yuksel, N. El-Sheimy, and A. Noureldin, “Error
modeling and characterization of environmental effects
for low cost inertial MEMS units,” in Proceedings of
IEEE/ION PLANS 2010, pp. 598–612, 2010.

[13] J. Nikolic, P. Furgale, A. Melzer, and R. Siegwart,
“Maximum likelihood identification of inertial sensor
noise model parameters,” IEEE Sensors Journal, vol. 16,
no. 1, pp. 163–176, 2015.

[14] M. El-Diasty and S. Pagiatakis, “Calibration and Stochas-
tic Modelling of Inertial Navigation Sensor Errors,” Po-
sitioning (POS) Journal Information, p. 80, 2010.

[15] S. Guerrier, R. Molinari, and Y. Stebler, “Theoretical
limitations of Allan variance-based regression for time
series model estimation,” IEEE Signal Processing Let-
ters, vol. 23, no. 5, pp. 597–601, 2016.

[16] Y. Stebler, S. Guerrier, J. Skaloud, and M.-P. Victoria-
Feser, “Generalized method of wavelet moments for
inertial navigation filter design,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 50, no. 3,
pp. 2269–2283, 2014.

[17] J. Jurado, C. M. Schubert Kabban, and J. Raquet, “A
regression-based methodology to improve estimation of
inertial sensor errors using Allan variance data,” Naviga-
tion, vol. 66, no. 1, pp. 251–263, 2019.

[18] N. F. Zhang, “Allan variance of time series models for
measurement data,” Metrologia, vol. 45, no. 5, p. 549,
2008.

[19] M. B. Ignagni, “Duality of optimal strapdown sculling
and coning compensation algorithms,” NAVIGATION,
Journal of the Institute of Navigation, vol. 45, no. 2,
pp. 85–96, 1998.

[20] A. Bruton, C. Glennie, and K. Schwarz, “Differentiation
for high-precision GPS velocity and acceleration deter-

mination,” GPS solutions, vol. 2, no. 4, pp. 7–21, 1999.
[21] M. El-Diasty, A. El-Rabbany, and S. Pagiatakis, “Tem-

perature variation effects on stochastic characteristics for
low-cost MEMS-based inertial sensor error,” Measure-
ment Science and Technology, vol. 18, no. 11, p. 3321,
2007.

[22] A. Radi, S. Nassar, and N. El-Sheimy, “Stochastic error
modeling of smartphone inertial sensors for navigation in
varying dynamic conditions,” Gyroscopy and Navigation,
vol. 9, no. 1, pp. 76–95, 2018.

[23] D. A. Cucci, M. Rehak, and J. Skaloud, “Bundle adjust-
ment with raw inertial observations in UAV applications,”
ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 130, pp. 1–12, 2017.

[24] S. Nassar, K.-P. Schwarz, and N. El-Sheimy, “INS and
INS/GPS accuracy improvement using autoregressive
(AR) modeling of INS sensor errors,” in Proceedings of
the 2004 national technical meeting of the institute of
navigation, pp. 936–944, 2004.

[25] Y. Yuksel and H. B. Kaygisiz, “Notes on
stochastic errors of low cost MEMS inertial
units,” Online. Available: http://www.instk.
org/web/static/bibliography/Introduction to Sensor Errors.pdf.,
2011.

[26] KVH Industries, Inc., High-Performance Inertial Sensor
for a Wide Range of Unmanned Applications, 2019. Rev.
7.19.

[27] “Xsens 3D motion tracking.” www.xsens.com. Accessed:
2022-06-28.

www.xsens.com

	Introduction
	Main Contributions
	Stochastic Calibration of Inertial Sensors
	The Allan Variance Linear Regression Method
	Moment Matching Techniques

	Assessment Framework for Stochastic Model Impact on Navigation
	Noise-free Measurements Generation
	Noisy measurement generation
	Sensor fusion algorithm
	Navigation performance statistics
	Position and orientation error

	Normalized Estimation Error Squared
	Coverage

	Case Study: Allan Variance Linear Regression Method versus GMWM
	A Flexible Set of Stochastic Models

	Simulation Results
	Scenario 1: Known Stochastic Models
	Model 1: 1 WN + 1 AR1
	Model 2: 1 WN + 2 AR1s

	Scenario 2: Real Sensor Noise

	Conclusions

