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The neuroimaging signs of the clot in acute ischemic stroke are relevant for clot biology and its response 
to treatment. The diagnostic and predictive value of clot imaging is confirmed by conventional studies 
and emerges as a topic of interest for artificial intelligence (AI) developments. We performed a systematic 
review to evaluate the state of the art of AI in clot imaging, how far AI is from becoming clinically 
beneficial, and what are the perspectives to consider for further developments. In parallel, the review 
is examining the evidence brought by conventional studies concerning the relevance of clot imaging, 
from 2019 to August 2022. The automatic detection and segmentation of the clot are the most important 
advances towards AI implementation in the clinic. Predictive radiomics models require further exploration 
and methods optimization. Future AI approaches could consider conventional clot imaging characteristics 
and patient specific vascular features as variables for model development.

© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Artificial intelligence (AI) becomes recognized for its applica-
tions in medical field. AI methods are designed to harvest infor-
mation from medical imaging, in the context of various diseases, 
with the purpose of rapid and accurate diagnosis and prognosis. 
Stroke is a condition requiring prompt intervention and carries 
high morbidity and mortality rates [1] [2] [3]. Various AI meth-
ods were developed based on information provided by computed 
tomography (CT) and magnetic resonance (MR) neuroimaging. The 
emerging applications of AI in stroke are examined in numerous 
recent reviews [4] [5] [6] [7] [8] [9] [10] [11] [12]. Often cov-
ered are AI developments that aim to differentiate between hem-
orrhagic stroke, ischemic stroke and stroke mimics, measure the 
Alberta Stroke Program Early CT Score (ASPECTS), detect and seg-
ment parenchyma, analyze the collateral flow status, detect large 
vessel occlusion (LVO) from computed tomography angiography 
(CTA), or analyze biomarkers of corticomotor structure and func-
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tion. The image-based AI methods aim to have a powerful impact 
in clinical management of stroke, by improving the diagnostic, pre-
dictive and prognostic value of clinical neuroimaging. Various AI 
software received FDA (Food and Drug Administration) approval 
and CE (Conformité Européene) mark, although more evidence is 
necessary to prove in what degree they are clinically beneficial 
[12].

A growing number of articles are evaluating AI techniques that 
analyze the neuroimaging signs of the clot (or thrombus) occlud-
ing the arteries in ischemic stroke [13] [14] [15] [16] [17] [18]
[19] [20] [21] [22] [23]. No systematic reviews were conducted so 
far to examine the progress made in developing AI methods that 
are using clot imaging derived parameters. The aim of our sys-
tematic review is to provide an overview regarding the advances 
made in extracting meaningful information from clot imaging with 
AI techniques, to understand how far AI is from becoming clinically 
beneficial, and what are the perspectives to consider for future de-
velopments. Because clot imaging continues to be investigated by 
research studies using conventional statistics, we also provide an 
overview of the recent findings in the field, with the aim of high-
lighting clot characteristics which are predictive for various aspects 
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(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.neuri.2022.100114
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/neuri
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuri.2022.100114&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Daniela.DumitriuLagrange@unige.ch
https://doi.org/10.1016/j.neuri.2022.100114
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Dumitriu LaGrange, J. Hofmeister, A. Rosi et al. Neuroscience Informatics 3 (2023) 100114

Fig. 1. Chart illustrating the selection process for studies included in the review.

in ischemic stroke and which can be proposed as variables for fu-
ture AI predictive models.

2. Methods

A systematic review was performed according to PRISMA guide-
lines using PubMed resource, for all peer reviewed articles in 
English using predetermined search terms: “clot”, “thrombus”, 
“stroke”, “CT”, “MRI”, “segmentation”, large vessel occlusion”, “ves-
sel sign”, “thrombectomy”, “artificial intelligence”, and combina-
tions of them. Studies were included if they reported findings 
regarding the use of artificial intelligence algorithms in relation 
to imaging thrombus characteristics, using CT or magnetic reso-
nance imaging (MRI), in ischemic stroke patients (AI studies), or 
if they used conventional statistics to answer a clinical research 
question and analyzed clot imaging characteristics, as observed in 
CT or MRI. Studies that resulted from these search criteria were 
excluded if they were published before 2019, because we wanted 
to avoid redescribing well-known findings of conventional studies, 
and because we found this time frame relevant for the AI studies. 
Studies were also excluded if the full text was unpublished, or if 
they did not report patient imaging (such as studies reporting ex 
vivo or in vitro results only, or animal studies).

Studies were extracted by a single author and reviewed by 
three authors independently. Data extraction was performed ac-
cording to a pre-designed protocol (details provided in Supplemen-
tary material). Studies were classified according to their methods: 
AI studies, using AI algorithms, and conventional studies, using 
conventional statistics (including studies using logistic regression 

analysis in a conventional frame). The present review protocol is 
not a registered protocol. The last date for which the sources were 
searched was August 2nd, 2022. The quality of AI studies was eval-
uated according to the Checklist for Artificial Intelligence in Medi-
cal Imaging (CLAIM) [24], as presented in Supplementary material 
Table S1. The risk of bias in each individual study was assessed ac-
cording to Newcastle–Ottawa Scale [25] (Supplementary material 
Table S2). Wide variability in design and statistical calculations of 
the reviewed studies prevented calculation of principal summary 
measures.

3. Results

The study selection process is illustrated in Fig. 1. The distri-
bution of the studies included in the review, according to their 
purpose and methods (imaging techniques, variables included in 
the analysis) is presented in Fig. 2.

We provide in the Results section the following: an overview 
of radiomics models using clot imaging features, a summary of 
the studies reporting automatic segmentation of the clot and au-
tomatic detection of the clot, the findings of conventional studies 
evaluating predictors derived from clot imaging, and insights into 
the variability of thrombi according to CT characteristics.

4. Clot radiomics for predicting thrombus composition and 
response to treatment

The biological nature of the clot, which consists specifically in 
its composition and organization, does affect the response to treat-
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Fig. 2. Distribution of studies using AI for the analysis of clot imaging and distri-
bution of conventional studies focused on the significance of clot imaging, based 
on study aim and methods, from 2019 to August 2nd 2022. AI studies: a- models 
predictive for thrombus composition from CT; b- models predictive for recanaliza-
tion outcome from CT; c- models predictive for recanalization outcome from CT 
and included clinical variables; d- models for automatic detection and segmenta-
tion of thrombus on NCCT; e- models predictive for thrombus composition from 
MRI; f- clustering of thrombi according to CT characteristics. Conventional studies: 
g- evaluating CT markers for thrombus composition and organization, and CT pre-
dictors for clinical outcomes; h- evaluating CT markers for thrombus composition 
and organization, and CT predictors for clinical outcomes, including in the analysis 
clinical variables; i- evaluating CT predictors for clinical outcomes; j- CT predictors 
for clinical outcomes, including in the analysis clinical variables; k- evaluating MR 
markers for thrombus composition and organization, and MR predictors for clinical 
outcomes, including in the analysis clinical variables; l- evaluating MR predictors 
for clinical outcomes, and including in the analysis clinical variables.

ment, whether it is thrombolysis or mechanical thrombectomy. An 
important endeavor for clinical neuroimaging in stroke is obtaining 
information regarding the clot composition from patient imaging 
scans, and to predict the response to treatment. Nevertheless, the 
clot imaging made the subject of several studies that extracted and 
analyzed quantitative features from CT scans – Table 1 (detailed 
extracted data is presented in Supplementary material Table S3).

One study, which developed machine learning algorithms capa-
ble of recognizing thrombus composition [13], used imaging data 
obtained with thin slice non contrast CT (NCCT) and CTA. After 
performing a semi-automatic delineation of the thrombus, Hanning 
et al. [13] extracted a large number of quantitative image mark-
ers (radiomic features) per thrombus and established a machine 
learning based classifier for predicting thrombus composition. The 
classification in this proof-of-concept study is based on RBCs/fib-
rin cut-off values corresponding to arbitrarily chosen quantiles. The 
study emphasizes the importance of various and multiple predic-
tive quantitative imaging features. Along with features from throm-
bus and vessel wall segmentation, the model is using features ex-
tracted from the regions of perivascular tissue, which proved to be 
important predictors for fibrin rich thrombi, isodense in NCCT.

There are also studies that use the clot radiomic features (RFs) 
to train and validate models predictive for treatment outcome. 
Among them, the study of Qiu et al. [14] uses the selected features 
to train a linear support vector machine classifier for predicting 
early recanalization after administration of IV alteplase. The study 
of Hofmeister et al. [15] utilizes a support vector machine classifier 
to train and validate a model predicting first-attempt recanaliza-
tion with thromboaspiration, and a support vector regression to 
train and validate a model predicting the number of passages re-
quired for successful recanalization with stent retriever. The study 
of Sarioglu et al. [16] utilizes the selected RFs as variables in 
a logistic regression model, along with demographic and clinical 
variables, and van Voorst et al. [17] compares the predictive per-
formance of random forest models using either a set of 6 thrombus 
radiomic features, a set of 19 clinical variables, a set of 3 manually 

extracted thrombus measurements (density, perviousness, throm-
bus length), or combinations of these sets of variables.

The studies use datasets of various sizes (as listed in Table 1) 
and each extract a different number of RFs per thrombus. The pro-
cedures for selecting the relevant RFs, which are used in model 
development, differ vastly among the studies, and the number of 
RFs identified as predictive is different. Not surprisingly, for studies 
considering additional predictor variables, along with RFs, the find-
ings are also very different: Qiu et al. found RFs more predictive 
than conventional CT derived measures of thrombus [14], Sarioglu 
et al. found that the diagnostic accuracy is increased when com-
bining RFs with demographic and clinical variables [16], and van 
Voorst et al. [17] found that random forest models using thrombus 
radiomics, clinical variables or manual thrombus measurements 
have comparable predictive performance.

The studies that investigate clot radiomics do not hold gener-
alizable value. Some are single-center studies [13] [15] [16], or 
use a small sample size [14], and merely establish a proof-of-
concept for models predictive for thrombus characteristics or var-
ious treatment-related outcomes. Compared to the other studies, 
van Voorst et al. [17] is using a larger data set while extracting a 
relatively low number of RFs per thrombus. The generalizability of 
his findings is hampered by the lack of comparison with radiomics 
models evaluating different sets of RFs.

Contrary to the attention received by the CT of the clot for ex-
tracting quantitative image markers and training machine learning 
models, the MRI of the clot remains vastly unexplored. An AI study 
used images acquired with gradient echo sequences (GRE) at 3T 
MRI to establish a machine learning model capable of predicting 
the atrial fibrillation (AF) as origin of thrombus [26] (Supplemen-
tary material Table S4). The model extracted signal graphic infor-
mation from one dimensional sectional profiles manually drawn 
over regions of interest in MRI scans and used binary labeling (AF 
and non-AF) to train a machine learning classification model.

5. Automatic detection and segmentation of the clot

Some studies indicate that when the thrombus is distinguish-
able on NCCT, its hyperdense sign and location can be used, with-
out the acquisition of additional brain scans, to rapidly recog-
nize the eligibility for thrombectomy. As such, a recent study [27]
which compared the NCCT findings with DSA, CTA and MRA in 
terms of thrombus detection, indicated that on thin slice NCCT 
a hyperdense artery sign corresponding to middle cerebral artery 
(HMCAS) can be enough to decide on transfer for thrombectomy in 
drip-and-ship models. Another study even indicated that the hy-
perdense artery sign can be used to guide the choice of thrombec-
tomy device (stent retriever vs. contact aspiration) [28]. The poten-
tial clinical benefit derived from early HMCAS detection triggered 
AI developments. We identified 6 studies concerned with the au-
tomatic detection of the occlusion from NCCT (Table 2, and more 
detailed information in Supplementary material Table S5) [18] [23]
[19] [20] [21] [29]. A recent large AI study, using a historical 
database of 24214 patients for training and 1453 patients for val-
idation, established a machine learning algorithm and a software 
(MethinksLVO) [18] capable of rapidly and reliably predicting LVO 
from NCCT scans with slice thickness 3-to-5 mm. Weyland et al. 
[23] tested a readily available software, Brainomix © (Oxford, UK). 
Shinohara et al. developed [19] and tested [20] an interactive deep 
learning-assisted identification of HMCAS, on NCCT. Because of the 
small sample size of image data, Shinohara et al. [19] used data 
augmentation methods, which yielded 252 image samples per CT 
scan. Two of the studies [29] [21] also elaborated methods for the 
automatic segmentation of thrombi detected in NCCT.

In addition, we identified two studies [22] [30] elaborating au-
tomatic segmentation of thrombus using information from NCCT 
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Table 1
Summary of articles evaluating clot radiomics from CT scans.

Author, year of 
publication

Target variables Study design Number of 
extracted RFs 
per thrombus

Number of 
predictive RFs 
reported

Findings

Hanning et al., 
2021 [13]

Binary:
1) RBCs rich (lower third 
quantile of fibrin/RBC ratio), 
vs others thrombi
2) fibrin rich (upper third 
quantile of fibrin/RBC ratio), 
vs others thrombi

Single center retrospective
122 patients

4844 RFs 100 RFs Machine learning based analysis 
of admission imaging allows for 
prediction of clot composition

Qiu et al., 2019 
[14]

Binary:
recanalization after 
administration of IV alteplase

Multicenter 67 patients,
nested case-control design (30 
patients and 37 controls 
matched for age, sex, and stroke 
severity)

326 RFs 12 RFs Thrombus radiomics features are 
more predictive of recanalization 
with IV alteplase than previously 
known thrombus imaging 
features such as length, volume, 
and permeability.

Hofmeister et al., 
2020 [15]

1) Binary: successful 
recanalization

Single center
156 patients

1485 RFs 9 RFs 9 RFs were predictive of 
first-attempt recanalization with 
thromboaspiration and also 
predicted the overall number of 
passages required for successful 
recanalization

.

2) Continuous: number of 
thrombectomy passes

n = 109 in retrospective training 
cohort;
n = 47 in prospective validation 
cohort

Sarioglu et al., 
2022 [16]

Binary:
FPE

Single center retrospective 52 
patients
25 FPE cohort, 27 non-FPE 
cohort

88 RFs 2 RFs 2 RFs were independent 
predictors of FPE, in addition to 
female sex and a baseline 
ASPECTS of >8.5.

Van Voorst et al., 
2022 [17]

Binary:
1) successful reperfusion 
(eTICI ≥ 2b),
2) first attempt reperfusion 
eTICI ≥ 2b,
3) reperfusion (eTICI ≥ 2b) 
within three attempts
4) functional independence 
(mRS ≤ 2)

Multicenter retrospective 699 
patients
n = 499 training cohort for 
random forest models;
n = 200 testing cohort, for 
ordinal regression analysis

107 RFs 4 RFs Random forest models using RFs, 
clinical variables or manual 
thrombus measurements had 
comparable predictive 
performance.

ASPECTS = Alberta Stroke Program Early CT Score; eTICI = expanded treatment in cerebral infarction; FPE = first pass effect of mechanical thrombectomy (mTICI 2c/3 at 
first pass); mRS = modified Rankin scale for neurological disability; MTB = mechanical thrombectomy; RFs = radiomic features.

and CTA combined (Table 2, and Supplementary material Table 
S5). Mojtahedi et al. [22] used an off-the-shelf algorithm, Stroke-
Viewer LVO (Nicolab, Amsterdam, The Netherlands), to first de-
tect the thrombus location. The study developed a segmentation 
method based on a bounding box algorithm and CNN, capable of 
segmenting thrombi even when the contrast difference between 
hyperdense artery sign (HAS) and background is minimal. Includ-
ing CTA in addition to NCCT improved thrombus segmentation 
accuracy and allowed to distinguish hyperdense areas that mimic 
HAS. The method was designed as such that it can be applied in-
dependently of the procedures used in the first step for thrombus 
localization. Zoetmulder et al. [30] aimed to elaborate a method 
capable of accomplishing detection and segmentation of thrombi 
in posterior circulation stroke (PCS), by restricting the volume of 
interest to areas in the vicinity of the brainstem. The method was 
not accurate for localizing and segmenting thrombi in the vertebral 
and posterior cerebral artery but did achieve a good localization 
precision and a reasonable segmentation accuracy for thrombi in 
the basilar artery, the most common location for PCS.

6. Predictive value of clot imaging in conventional studies

Recent AI studies consider conventional clot characteristics ob-
tained from CT scans, such as density, perviousness, length [14]
[17]. Recent advancements in automatic segmentation methods 
open vast possibilities for exploration of clot neuroimaging signs. 
For these reasons, we feel compelled to examine the current state 
of the art of the predictive value of the clot imaging, as reflected 
in conventional studies. The rationale for this investigation is based 

on the need of understanding the current limitations in the field, 
and on providing a background for extrapolation of meaningful 
variables into the development of AI predictive models in ischemic 
stroke.

6.1. Markers associated with clot composition

Several studies investigate associations between CT imaging 
markers and thrombus biological nature, which is evaluated with 
various methods (Supplementary material Table S6). Two types 
of thrombus imaging markers emerge from conventional: mark-
ers describing the attenuation properties of the clot, responsible 
for its density on NCCT, and markers describing the permeability 
of the clot for the contrast agent (Table 3). Histopathological eval-
uation is the gold standard for describing thrombus composition. 
Some studies use for this purpose human evaluation (by expert 
pathologists) [31] [32] [33], other studies use for quantification Or-
bit Image Software analysis [34] [35] [36] [37] [38] [39], and one 
study compared the histopathological evaluation performed by the 
expert pathologists with the performance of the Orbit Image Soft-
ware analysis [40]. The latter found that quantification of throm-
bus composition using the software allowed finding significant 
associations which were not found using the reference method. 
When using Orbit software, the histological content of thrombus 
is described with quantitative variables (RBCs, fibrin, platelets, and 
WBCs in %). Evaluation by expert pathologists describes throm-
bus composition in categorical variables (red, mixed and white 
categories [31], or red non-organized and white organized [32]). 
Decreasing the NCCT slice thickness is known to increase the sen-
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Table 2
Summary of studies concerned with automatic segmentation and thrombus detection on NCCT.

Author, year of 
publication

Scope of study AI method CT technique Number of centers, Sample size 
(n, number of patients), 
allocation

Findings

Olive-Gadea et al., 
2020 [18]

identify LVO on NCCT MethinksLVO 
software

NCCT thickness 
3-5 mm

2 comprehensive stroke centers MethinksLVO software can rapidly 
and reliably predict LVO

n = 24 214 patients in training
cohort, from historical database
n = 1453 validation cohort

Sensitivity 0.83
Specificity 0.71

(CTA as reference)

Weyland et al., 2022 
[23]

HAS (LVO) detection commercial 
software 
Brainomix

NCCT (slice 
thickness ≤1 mm)

Three centers Sensitivity 0.77
Specificity 0.87

n = 154,
n = 84 with and
n = 70 without LVO proven by 
CTA

Performance similar to expert 
neuroradiologists

Shinohara et al., 2020 
[19]

HMCAS detection on 
NCCT

CNN
(Xception)

NCCT 0.46-mm 
in-plane resolution

From n = 22 patients:
35 HMCAS-positive and 39 
HMCAS-negative imaging 
samples,

Sensitivity 0.83
Specificity 0.90

followed by data augmentation Model potentially beneficial

Shinohara et al., 2020 
[20]

HMCAS detection on 
NCCT

CNN (Xception) NCCT 0.46-mm 
in-plane resolution

n = 79 patients:
46 HMCAS-positive and 52 
HMCAS-negative test image 
samples

Sensitivity 0.82
Specificity 0.80
Performance similar to expert 
neuroradiologists

Tolhuisen et al., 2020 
[21]

HAS detection and 
thrombus 
segmentation on NCCT 
in patients with LVO

CNN NCCT
Slice thickness 
≤2.5 mm

Multicenter
n = 86 for training
n = 43 for validation

Sensitivity 0.86
Specificity 0.65

For testing: n = 58 with LVO 
and n = 45 without LVO (CTA 
as reference for LVO)

Performance similar to expert 
neuroradiologists

You et al., 2021 [29] HMCAS detection and 
segmentation on NCCT

deep DSU-Net NCCT
multiple scanners, 
various slice 
thicknesses

Multicenter
n = 624 for training,
n = 324 for validation

Accuracy of HMCAS detection 0.86,
Specificity 0.92
Detection and segmentation 
performance similar to expert 
neuroradiologists

Mojtahedi et al., 2022 
[22]

Segmentation of 
thrombus from NCCT 
and CTA combined, in 
patients with ICA-T, M1 
and M2 occlusions

StrokeViewer LVO
dynamic bounding 
box algorithm
CNN

NCCT
CTA
multiple scanners, 
various slice 
thicknesses

Multicenter
n = 208 training cohort
n = 20 validation cohort
n = 100 in testing cohort

Overestimation of the volume of 
small thrombi and 
underestimation of the volume for 
larger thrombi by the automated 
segmentations, compared to the 
ground truth, with an overall high 
spatial overlap with the manual 
annotation by expert 
neuroradiologist used as ground 
truth.
Dice coefficient 0.62
Surface dice 0.78
(Performance based on the 
sensitivity of StrokeViewer for 
LVO, 0.78)

Zoetmulder et al., 2022 
[30]

thrombus localization 
and segmentation on 
co-registered NCCT and 
CTA, in patients with 
PCS

CNN
(Polar-UNet)

NCCT
CTA 
co-registration

Multicenter
n = 187 patients

A good localization precision and a 
reasonable segmentation accuracy 
for thrombi in the basilar artery
Dice coefficient 0.44

CNN = convolutional neural network; CTA = CT angiography; DSU-Net = Dissimilar-Siamese-U-Net; HAS = hyperdense artery sign; HMCAS = hyperdense middle cerebral 
artery sign; ICA-T = terminal internal carotid artery; M1, M2 = occlusion sites in middle cerebral artery (MCA); LVO = large vessel occlusion; NCCT = non-contrast CT; PCS 
= post circulatory stroke.

sitivity for hyperdense arterial sign (HAS) detection and improve 
the prediction of thrombus histopathology [41] [38]. Although the 
NCCT slice thickness varied among the studies, as well as the type 
of variables used to describe thrombus composition, most studies 
[40] [34] [31] [36] [38] [42] [43] confirmed statistically significant 
associations between the hyperdense sign of thrombus on NCCT 
and RBCs rich content, or between HAS absence and the platelets 
or fibrin content. Recently, a study indicated that predicting throm-

bus composition is multifactorial: combining HAS with occlusion 
location, thrombus length, and variables derived from CTA scans 
increased the predictive value for RBCs rich thrombi and explained 
up to 30% of variability in RBCs content [38].

Meanwhile, the studies assessing perviousness measures report 
divergent findings. Some studies explored the associations between 
thrombus composition, described with histopathological evalua-
tion, and the clot perviousness [35] [36] [37], described by throm-
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Table 3
Summary of articles investigating associations between CT derived variables and thrombus composition or porosity.

Studies grouped by main findings Study methods

Categorical variables for 
thrombus composition or 
porosity,

Categorical variables for 
thrombus composition,

Continuous variables for 
thrombus composition,

Continuous variables for 
thrombus composition,

NCCT thick slice 
(typically 5 mm)

thin slice NCCT 
(≤ 2.5 mm)

NCCT thick slice 
(typically 5 mm)

thin slice NCCT 
(≤ 2.5 mm)

Studies confirming associations between NCCT 
hyper density and thrombus RBCs rich 
composition or decreased fibrin and/or 
platelets composition (using conventional 
statistics)

[40] [31] [34] [36] [38] [42] [43]

Studies finding no associations between NCCT 
density and thrombus composition

- - - [37]

Studies finding an association between the 
increased perviousness measures (TAI) and 
increased content in RBCs or decreased 
content of fibrin/platelets, or lack of 
association of perviousness with 
cardioembolic origin

- - - [35] [36] [44]

Studies finding an association between the 
increased perviousness measures (TAI or 
TES) and decreased content in RBCs or 
increased content of fibrin/platelets, or 
association of perviousness with 
cardioembolic origin

- - - [37] [39] [45] [33]

Studies finding an association between the 
increased perviousness measures (TAI), 
decreased content in polyhedral RBCs and 
increased porosity, but no association 
between TAI and overall RBCs content.

[46] - - -

bus attenuation increase (TAI), which measures the difference in 
density of the clot in CTA compared to NCCT. Other studies used 
the thrombus enhancement sign (TES) on CTA to describe the per-
meation of the contrast agent in the region of the vessel occupied 
by the occluding clot [39] [33]. There are also studies investigating 
associations between perviousness and stroke etiology, based on 
TOAST criteria. It is known that thrombus composition varies ac-
cording to stroke etiology, with cardioembolic thrombi being rich 
in fibrin and lower in RBCs content [47] [48] [49]. Two studies 
investigate the associations between TAI and the cardioembolic 
vs large artery atherosclerosis (LAA) etiology, and report different 
findings for different occlusion locations (proximal middle cerebral 
artery occlusions vs. basilar artery occlusions) [45] [44], and one 
study investigates correlations between TES and stroke etiology 
[33]. Characterizing thrombi porosity is a subject of exploration. 
One study [39] used scanning electron microscopy (SEM) to cate-
gorize thrombi according to their porosity, to evaluate the shape 
of RBCs, the fibrin organization, to estimate thrombus composition 
and investigate associations with thrombus perviousness.

The explanations for the divergent findings concerning the as-
sociations between the perviousness measures and thrombus com-
position are multifold. The studies summarized in Table 3 differ in 
regard with the thrombolytic treatment administration. Two stud-
ies [37] [39] excluded from the analysis patients that received 
thrombolytic treatment. Meanwhile, 34% of the patients included 
in [33], all included patients in [35], and 28% of the patients in-
cluded in [36] received thrombolytic treatment prior endovascular 
treatment, fact that could have altered the relevance of histopatho-
logical evaluation in correlation with CT imaging. A second ex-
planation could stem from the fact that thrombus perviousness 
being, in principle, a measure of the flow passage, and therefore 
a reverse measure of thrombus compactness, is affected by under-
lying biological features which are neither completely understood 
nor measurable with the currently available experimental meth-
ods. Such features are the degree of intravital contraction [48]

[50] [51] [52], and the morphology and the organization of fib-
rin network, which depend on the blood flow conditions during 
thrombus formation [50] [52] [53]. An attempt to link thrombus 
perviousness to more adequate biological features, such as porosity 
and the compactness of RBCs, is made by He et al. [46], although 
the study does not mention if patients received thrombolytic ther-
apy. A third explanation stems from the variability of anatomical 
specificities related to occlusion location and local blood flow con-
ditions. This could partially explain the different findings between 
the studies that selectively included patients with occlusions at a 
specific (and different) site only [45] [44], and the studies which 
included patients with occlusions at various locations, in various 
proportions [35] [36] [37] [39] [33]. In conclusion, the biological 
substrate for thrombus perviousness measures is not completely 
understood, and not adequately described in research studies. The 
perviousness measures are not markers of thrombus composition, 
but rather markers of thrombus organization, in the context of lo-
cal hemodynamics.

Some of the above-mentioned studies [36] [32] [39] [44], and 
in addition others, which did not perform a histological analysis 
of the retrieved clot [37] [54] [55] [56] [57] [58] [59] [60] [61]
[62] [63] [64] [28] [65] [66] (Supplementary material Table S7), ex-
plored associations between imaging markers for thrombus biology 
and clinically relevant, treatment related, metrics. The distribution 
of these studies is presented in Table 4. Some studies found no as-
sociations between thrombus imaging markers and clinical aspects 
such as hemorrhage occurrence following treatment [54] [63], or 
successful recanalization [36] [37] [44] [55], number of stent re-
triever passes [55], embolization [32] [55], while other confirmed 
various associations [39] [56] [57] [58] [59] [60] [61] [62] [64] [28]
[65] [66] [67].

There are similarities and differences among the two groups of 
studies, A and B in Table 4. The two groups contain a similar dis-
tribution of studies in terms of frequency of using thin slice CT (at 
least 5 out of 8 in Group A, and at least 9 out of 13 in Group B 
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Table 4
Account of conventional studies investigating associations between CT thrombus density or perviousness measures and outcomes in ischemic stroke treatment or treatment 
strategy.

Reported findings Clot related CT 
derived variables

Outcomes

Recanalization outcome 
following treatment (iv 
tPA or MT)

Functional recovery, 
or neurological 
improvement

Embolization 
following 
treatment

Hemorrhage 
following 
treatment

Treatment 
strategy

no associations found 
between CT derived 
variables and outcomes 
(group A of studies)

Density derived 
variables (on NCCT)

[36] [37] [55] [31] [36] [32] [63] [32] [55] [63] [55]

Perviousness related 
variables

[36] [37] [44] [55] [36] [44] [55] [54] [55]

associations found 
between CT derived 
variables and outcomes 
(group B of studies)

Density derived 
variables (on NCCT)

[59] [60] [60] [64] [67] [56] [58] [58] [28] [64]

Perviousness related 
variables

[39] [57] [61] [62] [65] [61] [65] [66]

used thin slice CT), and in terms of including in the statistical anal-
ysis, along with CT derived variables, clinical variables (6 out of 8 
studies in A, all 13 studies in B). There are nevertheless differences 
between the two groups. In Group B, 5 out of 13 studies consider 
predictors such as thrombus extent (CBS, or thrombus volume or 
length) [56] [57] [62] [65] or vessels anatomy configuration [59]. In 
group A one out of 8 studies considers thrombus extent as predic-
tor [54]. Importantly, studies in Group B used significantly larger 
sample sizes than studies in Group A (Supplementary material). 
Overall, studies in group B are more robust, and their results more 
reliable.

In regard with MRI markers of thrombus composition, older 
studies are associating the susceptibility vessel sign (SVS), in T2* 
GRE or susceptibility weighted imaging (SWI), with increased RBCs 
content [68]. Recently, Darcourt et al. [69] indicated the clots that 
do not display SVS are rich in fibrin/platelets, less likely to be 
retrieved by aspiration alone and more often require the use of 
combined therapy. The thrombus susceptibility from SWI mapping 
was found to be weakly and negatively correlated with diffusion 
weighted imaging (DWI)-ASPECTS, and weakly and positively cor-
related with National Institutes of Health Stroke Scale (NIHSS) at 
admission and discharge [70]. The presence of SVS was found to 
be one of the predictors of excellent outcome in patients with 
LVO treated with intravenous (IV) tissue plasminogen activator (t-
PA) alone [71], and to be associated with successful reperfusion 
after mechanical thrombectomy [72] [73], although superior clini-
cal functional outcome and lower mortality could not be entirely 
attributed to higher reperfusion rates [73]. In patients receiving 
first-line stent retriever treatment, SVS was associated with lower 
disability at 3 months [74]. Also, it was shown that the probability 
of the SVS sign increases with time from symptom onset, and fac-
tors independently associated with SVS positive status were type 
of MRI scanner, cardioembolic cause and baseline NIHSS [75]. A de-
tailed account of these studies is provided in Supplementary mate-
rial Table S8. As evidence shows, the SVS sign is amply considered 
by conventional MRI studies as marker of the clot. Although the 
evidence is scarce, other sequences are being investigated as well: 
a recent study suggests that the bright vessel sign on arterial spin 
labeling (ASL BVS) is more sensitive for identification of LVO, when 
superposed with either MRA or DSA, compared to GRE SVS [76].

6.2. Clot extent, location and shape

Information about the extent of thrombus is typically obtained 
from angiographic scans, CTA or MRA, according to a scoring sys-
tem known as clot burden score (CBS) [77] [78]. Some studies also 
measure thrombus length by evaluating the extent of HAS in NCCT, 
or the extent of the SVS sign in T2* GRE or SWI MRI sequences. 
Thrombus extent is relevant in many aspects.

Increased thrombus length and lower CBS were associated with 
non-cardioembolic stroke etiology [79]. Quite contrary, SVS length 

and admission matrix metallopeptidase 9 (MMP-9) serum level 
were found to improve the prediction of cardioembolic stroke 
when its profile is close to embolic stroke of undetermined source, 
which suggests a common cardiac embolic source [80]. CT-derived 
thrombus characteristics, CBS and thrombus length, were also 
found similar for cardioembolic strokes and strokes with unde-
termined origin [79]. Thrombus length was found to be a strong 
predictor of RBCs content [38].

Longer thrombus was associated with distal embolization [32]
[55], and lower CBS was found in univariate analysis to be a risk 
factor for secondary embolization [56]. A CBS ≤3 robustly pre-
dicted postprocedural hemorrhage [54].

Lower thrombus extent was found to be critical for the effec-
tiveness of IV-tPA [57] and associated with early recanalization 
following IV-tPA treatment [81], and thrombus length was found a 
powerful independent predictor of no-early recanalization follow-
ing IV-tPA treatment in minor strokes [82]. Short SVS was found to 
be a predictor of excellent outcome at 3 months in patients with 
stroke with LVO treated with IV-tPA alone [71].

CBS was higher in patients with mild stroke, compared with 
patients with severe stroke [62]. The SVS length was weakly and 
negatively correlated with DWI-ASPECTS, and CBS was weakly and 
positively correlated with DWI-ASPECTS, and weakly and nega-
tively correlated with admission and discharged NIHSS [70].

CBS was found to be an independent predictor of short and 
long-term functional outcome [83], with rate of favorable outcome 
increasing with CBS [84]. In patients with minor stroke (NIHSS ≤4 
within 24 h following onset) longer SVS was associated with in-
creased risk of early neurological deterioration, and SVS ≥ 9.45 
mm was a powerful independent predictor of early neurological 
deterioration [85].

Occlusion location, measured as distance from ICA terminus 
to thrombus beginning, is another relevant parameter. It was 
found that the occlusion location is a predictor for RBC con-
tent [38], and it is associated with postprocedural hemorrhage 
[54]. Early recanalization following IV-tPA treatment was associ-
ated with more distal occlusion [81]. As compared with patients 
with severe stroke, patients with mild stroke had more distal oc-
clusions [62].

In addition to thrombus density, perviousness, extent, and dis-
tance from internal carotid artery (ICA) terminus, also the shape 
of the clot plays, according to some studies, a role onto the treat-
ment efficacy. A significantly lower rate of successful reperfusion 
was found in patients with angulated or bifurcated SVS, vs pa-
tients with straight SVS [86]. Combinations of MRI sequences were 
found helpful for treatment planning in case of bifurcated thrombi: 
the high spatial resolution of 3D turbo spin echo (3D TSE) T1-
weighted was useful for identifying thrombus location, and 3D TSE 
T2-weighted depicted clearly the arterial configuration [87]. A re-
cent retrospective study [88], using data from MR CLEAN registry, 
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casts doubt whether a more aggressive endovascular treatment ap-
proach is justified for MCA bifurcated occlusions, compared to MCA 
main-stem occlusions. However, the study suffers from the over-
simplification of the complex occlusions patterns that can be found 
in patients.

7. Using AI to classify thrombi according to CT characteristics

Recently, a study using the MR CLEAN Registry dataset used un-
supervised clustering with the purpose of grouping thrombi based 
on the CT image findings according to 1) occlusion location and 
2) thrombus length, density and perviousness [89] (Supplemen-
tary material Table S5). The study found that thrombus imaging 
characteristics form a continuum spectrum, in which a given sin-
gle thrombus variable is accompanied by a large variety of other 
characteristics, and as such, grouping thrombi in archetypes is not 
adequate. The study emphasizes the large variability of thrombi, a 
paradigm that replaces the composition-based categorization and 
has large implications onto future approaches in treatment design 
and elaboration of predictive models based on clot imaging inter-
pretation.

8. Discussions

The automatic segmentation of the clot is probably the most 
important advancement made by AI for reaching an improved 
output from clot imaging. Its applications are multiple. On one 
hand, rendering 3D information about the clot in CT or MRI scans 
could help accelerate the research performed by the large body of 
conventional studies. It has been shown that the automatic seg-
mentation of entire thrombus allows obtaining measures with a 
stronger association with clinical outcomes, compared to the man-
ual assessments using regions of interest (ROIs) [61]. Because of 
the unavailability of automatic segmentation methods, and because 
the manual segmentation of the clot is a tedious process, con-
ventional studies resort so far to manual delineation of ROIs, in 
CT scans slices, to read the density values and to provide image 
markers associated with clot composition and organization, such 
as the HAS and perviousness measures. Disposing of standardized 
means, across multiple centers, of gathering comprehensive infor-
mation about the clot through 3D renderings could not only pro-
vide accurate, meaningful variables for conventional studies, but 
also accelerate AI developments [17]. In perspective, clot charac-
teristics obtained from automatic 3D renderings could be used as 
variables for training AI models predictive for clot composition and 
response to treatment: along with measures of density and pervi-
ousness, the clot extent and shape, together with its location, can 
provide a wealth of information.

Furthermore, all the radiomics studies of the clot relied so far 
on manual segmentation as well, fact that limited the progress in 
the field. Access to automatic segmentation could accelerate the 
development of clot radiomics [15], improve uniformity among 
studies, facilitate inclusion of large and multicenter data sets and, 
as a consequence, the development of radiomic models with gen-
eralizable value.

Not at last, automatic segmentation of thrombus could help, in 
the future, guide endovascular treatment. When obtained rapidly 
before thrombectomy, 3D representations of the clot in the context 
of patient specific vascular anatomy could help the intervention-
alist become aware of the clot positioning relative to branching 
arteries, and as such provide him the necessary information for 
optimal deployment of stent retriever.

Nevertheless, the optimal automatic segmentation of entire 
population of thrombi is still facing technical challenges, and it 
should include isodense thrombi, small thrombi and thrombi lo-
cated at less frequent arterial sites [22] [30].

Currently, the automatic LVO detection with image-based AI is 
available through CTA scans. Among the FDA approved and CE 
marked software are, for example, RapidLVO (iSchemaView, Inc.), 
with a sensitivity of 97%, and Viz LVO (Viz.ai, Inc.) with a sensitiv-
ity of 96%. Algorithms for hyperdense artery sign detection support 
a new paradigm in stroke care, which is based on the direct to an-
giography (DTA) model. The model intends to reduce the delays in 
initiating treatment when they are associated with additional and 
unnecessary neuroimaging investigations. Most likely, benefitting 
from this model are predominantly the patients with severe stroke 
(NIHSS > 9) in early time window (0-6 h hours from symptoms 
onset) [90]. Several studies published up to date demonstrate the 
feasibility of automatic hyperdense sign detection and its transla-
tional potential. Among the published data, MethinksLVO software 
(Methinks AI, Barcelona, Spain) is nearing clinical applicability [18]
[91]. The software is capable of detecting LVO on NCCT in less than 
two minutes, with sensitivity superior to the one provided by pre-
existing scales [92], or proposed by an artificial neural network 
model based on demographic and clinical variables [93].

Quantitative imaging features in CT and MR scans, inherently 
linked to thrombus intrinsic properties, have a vast and unexplored 
potential for predicting the response of the clot to treatment. More 
exploratory work is necessary in establishing AI models predic-
tive for thrombus biology and its implications. The clinical utility 
of radiomics is delayed by well-known technical challenges [94]
[95]. Currently there are not enough evidence and no methodol-
ogy available that could help optimize the study design for clot 
radiomics, and the choice of models to be trained. The selection of 
radiomic features is far from standardization. Research shows that, 
because feature relevance depends on the used machine learn-
ing model [96], the radiomic features cannot become biomarkers. 
In perspective, multicenter studies comparing the performance of 
various AI models, using radiomic features and conventional clot 
related variables, can help render radiomics models effective and 
accelerate their access into the clinical use.

The clinical utility of AI predictive models can be limited by 
the predilection for developing machine learning models destined 
to perform binary classification. Nevertheless, some binary target 
variables can be useful, such as the first pass effect in endovascular 
treatment, the recanalization following IV-tPA administration, the 
embolization, or the hemorrhage following intervention with en-
dovascular treatment. However, thrombi population spans a large 
variability [89]. Prediction of thrombi biology in terms of conven-
tional composition categorization is of limited value, when spa-
tial heterogeneity becomes recognized as an influencing factor for 
thrombus response to treatment [97]. Novel volumetric methods 
might help collect relevant information about the 3D organization 
of thrombi and provide volumetric quantitative variables [98] [99], 
which can add meaning to measures such as perviousness. Exam-
ining thrombi ex vivo and quantifying structural features respon-
sible for how thrombi behave towards various thrombectomy de-
vices might help define new and more relevant thrombi categories, 
which can be used as ground truth for machine learning classi-
fier models. Moreover, the outcome of endovascular treatment in 
stroke is multifactorial. Besides the thrombus biology, there are 
anatomical factors and multiple procedural factors contributing to 
the outcome [11] [100]. Anatomical features such as the carotid 
tortuosity was often overlooked by studies up to date, and emerges 
as an important factor affecting the procedure and its success [59]
[101] [102] [103]. The future of AI development can shift, in a 
first instance, from using radiomics to using more relible and ac-
cessible variables, when training and validating models predictive 
for various clinical outcomes. Especially when placed in the con-
text of patient specific vascular anatomy, the clot location, extent 
and shape can be important predictors for endovascular treatment 
outcome. Having knowledge beforehand about these factors can 
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help design the intervention strategy, and future AI developments 
should address this need. Other variables that can be considered 
for future model developments are the conventional image charac-
teristics: CT density and perviousness measures, MR susceptibility 
measures, when obtained not from ROIs, but from 3D represen-
tations of the clot. The clinical relevance of the MR imaging of 
the clot is demonstrated. In perspective, using postprocessing tech-
niques, combining various MRI sequences or implementing new 
MRI sequences can help define new correlations between imaging 
findings and thrombus characteristics such as composition, etiol-
ogy, compactness [104] [105] [106].

Clot imaging in acute ischemic stroke is clinically significant. It 
offers many incentives for developing AI models. However, there 
are several ethical and legal concerns, before AI can be used with 
full confidence in clinical practice [107] [108]. Around the world, 
regulatory agencies issued guidelines to help define best practices 
for AI development and deployment. In European Union, the guide-
lines list seven key requirements which AI systems must meet, 
throughout their entire life cycle, in order to be considered lawful, 
ethical and robust from technical and social perspective [109]. AI 
will be successfully implemented through the collaboration of all 
stakeholders in complying with the issued guidelines and in help-
ing to perpetually improve the regulations. AI will, nevertheless, 
become an important instrument for clinicians and impact favor-
ably the lives of patients but will not replace the human decision 
making.

Limitations of our review stem from the fact that the number 
of prospective studies available for review was limited, and from 
potential publication bias, because unpublished data was not in-
cluded.

9. Conclusion

The automatic detection of the hyperdense sign on NCCT and 
the automatic segmentation of the clot are the most important 
advances up to date towards clinical utility of AI algorithms that 
are using clot imaging. Clot radiomics is in early stage, with ex-
ploratory steps being necessary before optimizing the methods for 
model development. Important parameters to consider for mod-
els predicting the outcome of endovascular treatment are the clot 
location, extent and shape, in the context of patient specific vas-
cular anatomy. Future developments of predictive AI algorithms in 
ischemic stroke could include conventional variables derived from 
3D representations of the clot, such as image markers for clot biol-
ogy: density, perviousness measures in CT, susceptibility measures 
in MRI.
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