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Systems/Circuits

Context-Dependent Multiplexing by Individual VTA
Dopamine Neurons

Yves Kremer,™ ““Jérome Flakowski,'* Clément Rohner,! and ““Christian Liischer'?
"Department of Basic Neurosciences, University of Geneva, Geneva, CH-1211, Switzerland, and *Clinic of Neurology, Department of Clinical
Neurosciences, University Hospital Geneva, Geneva, CH-1205, Switzerland

Dopamine (DA) neurons of the VTA track cues and rewards to generate a reward prediction error signal during Pavlovian
conditioning. Here we explored how these neurons respond to a self-paced, operant task in freely moving mice. The animal
could trigger a reward-predicting cue by remaining in a specific location of an operant box for a brief time before moving to
a spout for reward collection. VTA DA neurons were identified using DAT-Cre male mice that carried an optrode with mini-
mal impact on the behavioral task. In vivo single-unit recordings revealed transient fast spiking responses to the cue and
reward in correct trials, while for incorrect ones the activity paused, reflecting positive and negative error signals of a reward
prediction. In parallel, a majority of VTA DA neurons simultaneously encoded multiple actions (e.g., movement velocity,
acceleration, distance to goal, and licking) in sustained slow firing modulation. Applying a GLM, we show that such multi-
plexed encoding of rewarding and motor variables by individual DA neurons was only apparent while the mouse was engaged
in the task. Downstream targets may exploit such goal-directed multiplexing of VTA DA neurons to adjust actions to opti-

mize the task’s outcome.
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VTA DA neurons code for multiple functions, including the reward prediction error but also motivation and locomotion.
Here we show that about half of the recorded VTA DA neurons perform multiplexing: they exploit the phasic and tonic activ-
ity modes to encode, respectively, the cue/reward responses and motor parameters, most prominently when the mouse
engages in a self-paced operand task. VTA non-DA neurons, by contrast, encode motor parameters regardless of task

~

J

Introduction

In the interest of survival, animals navigating through the envi-
ronment adapt their behavior when reward contingencies
change. Predicting a reward based on prior outcome contributes
to the necessary learning process through a phasic response (i.e.,
a burst of high frequency spikes) in midbrain DA neurons. Such
reward prediction error (RPE) signaling promotes the formation
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of cue-reward associations (Schultz et al., 1997). RPE signaling
can be observed in Pavlovian conditioning (Saunders et al,
2018) where the animal has little agency. This is particularly
apparent for overtrained animals where the phasic response
shifts from the reward to the cue during the formation of a novel
cue-reward association. RPE coding scales with reward value
(Tobler et al., 2005), reward probability (Fiorillo et al., 2003), and
timing between events (Hollerman and Schultz, 1998). If pre-
ceded by several stimuli, the signal shifts to the earliest reliable
reward-predicting cue (Schultz et al., 1993).

In general, RPE computations may be more complex, possibly
through the inclusion of hidden states inferred from previous train-
ing or subjective valuation (Sadacca et al.,, 2016; Starkweather et al.,
2017). For example, in self-paced operant behavior, the activity of
midbrain DA neurons and the ensuing DA transients in the NAc
may correlate with operant responding during drug or food seeking
(Phillips et al., 2003; Roitman et al., 2004). Additional studies sug-
gest that DA neurons can also code for motivation to work (Hamid
et al., 2016; Mohebi et al., 2019), effort (Walton and Bouret, 2019),
action initiation (Syed et al., 2016), distance to reward (Howe et al.,
2013), and time between stimuli (Soares et al., 2016). This raises the
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question of whether a single VTA DA neuron encodes multiple be-
havioral variables at the same time. It has been proposed that the
phasic component of DA neuron firing encodes the external events
(e.g., a cue and reward), whereas more sustained changes in firing
in the same cell, commonly denominated as the tonic firing, would
encode movement vigor or motivation (Niv et al,, 2007), although
this point is still under debate (Mohebi et al., 2019). The simultane-
ous encoding of rewarding and motor variables in DA neurons is
supported by recent findings in head-fixed mice monitoring neural
activity with calcium imaging in a virtual-reality environment
(Engelhard et al,, 2019). In addition, electrophysiological recordings
suggest that DA neurons tend to covary with body movements in
partially restrained mice, namely, in a spring-suspended basket
(Coddington and Dudman, 2018) or on a running wheel (Dodson
et al, 2016). Spiking correlations between reward and locomotion
have been reported in a freely foraging task in rats (Puryear et al,,
2010), whereas tonic and phasic firing have been used to finely
resolve the DA dynamics of motivation in a 2-armed bandit task
initiated by a cue signal (Mohebi et al., 2019).

However, to the best of our knowledge, no study has probed
the activity of optogenetically identified VTA DA neurons in a
self-paced operant task where the animals can freely move. Thus,
we performed high-resolution single-unit recordings to access
encoding of rewarding and motor variables over time during a
task elaborated by combining an operant behavior test originally
developed to study hippocampal place cell firing patterns
(Blanquat et al.,, 2013; Hok et al., 2013) with food approach
(London et al., 2018). In brief, mice had to find an unmarked
“trigger zone” (TZ) in the operant box and remain there for 2 s,
which would activate a light cue. Once the cue was presented, the
animal had 4 s to collect the reward by licking for a drop of fat
solution at a spout located at the other side of the box. The ani-
mal could engage in the next trial at its own pace. We performed
single-unit recordings in the VTA and video recorded the move-
ment of the mouse. We found that individual VTA DA neurons
simultaneously encode cue/reward events in the phasic response
and motor output in the tonic activity.

Material and Methods

Animals. All experiments were reviewed by the institutional
ethics committee and approved by the relevant authorities of the
Canton of Geneva. Animals were housed individually after im-
plantation to avoid damage to the optrode. During training, they
were food-restricted to a single pellet of chow per day (~2 g). The
animal’s weight did not drop below 85%. All animals (n = 10) used
in this study were adult Dopamine transporter (DAT):IRES-Cre
knock-in (identifier: Tg(Slc6a3-icre)1Fto, RRID:MGI_3770172).
In DAT-Cre mice, the Cre-recombinase is expressed only in dopa-
minergic neurons, characterized by the DAT. Only males were
used for the electrophysiological recordings to minimize the
impact of the weight of the optrode implant.

Surgical procedures and viral injections. For recordings, adult
male DAT-Cre mice (n = 10) were implanted with a custom-built
16-channel optrode mounted into a microdrive (Anikeeva et al.,
2011). Sixteen NiCr microwires (tetrode wire 12.5 pm; Sandvik)
were assembled into an electrode bundle, glued to a 250 pm large
NA (0.66) optic fiber (Prizmatix, London; www.prizmatix.com),
and mounted into the microdrive assembly. The tips were elec-
troplated in gold solution (www.neuralynx.com) containing
multiwall carbon nanotubes (1 mg/ml) (www.cheaptubes.com)
(Ferguson et al., 2009) to reach a resistance of 100-150 k() using
the NanoZ impedance tester. The completed implant did not
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exceed 2 g in weight. During the surgery, mice were anesthetized
using isoflurane (~2%), the scalp was injected with lidocaine,
and the skull exposed. Three skull screws were inserted and
a craniotomy performed above the VTA. The dura was carefully
removed, and 400-600 nl of cre-dependent channelrhodopsin
(ChR2) (AAV5-EF1a-DIO-hchR2(H134R)-eYFP-WPRE-pA;
UNC Vector Core) was slowly injected into the VTA (AP:
—3.2%0.2; ML: 0.8 £0.2; DV: —4.2). Then, the optrode was
lowered slowly into the brain using a micromanipulator and
implanted just above the VTA (AP: —3.2 = 0.2; ML: 0.8 £ 0.2;
DV: —3.8 to —4.0). The space between the brain surface and
the implant was first sealed using silicone elastomer (Kwik-
Cast, World Precision; www.wpi-europe.com), then secured
using super glue and dental cement. The ground electrode was
inserted into the posterior part of the contralateral hemisphere
devoid of brain vessels.

Behavioral training. After the surgery, animals were given at
least 1 week to recover (experimental timeline in Fig. 1A). For re-
cording experiments, DAT-Cre mice were progressively food-re-
stricted down to 1 pellet of chow per day to reach ~85%-90% of
their initial weight. During one habituation session in the behav-
ioral apparatus (Med Associates), they located the drinking spout
and had free access to the fat solution (solution of lipofundin 5%
in water). Then mice started pretraining to associate a light cue
with the availability of a liquid reward. If during the reward win-
dow mice licked against a custom-made piezo-based lickometer,
they obtained a single drop of liquid reward. The analog piezo
lickometer signal was sent to an Arduino board, which applied a
threshold and simultaneously sent a digital signal to the MedPC
software (www.med-associates.com) and to our electrophysiol-
ogy recording Plexon system for high temporal resolution time-
stamping of lick detection (OmniPlex Neural Data Acquisition
System; www.plexon.com). Lick bursts (LBs) were defined as
starting when the interlick interval (ILI) dropped below 0.5s and
ended once the ILI exceeded 2 s. The duration of the cue was 4 s
and the reward window lasted 4 s. Both remained unchanged
across all training stages. During pretraining, the average ran-
dom intertrial interval between two consecutive cues was
increased across pretraining sessions from an average of 45-65 s
during the last session (Fig. 1C). Animals underwent pretraining
until they exhibited good success rates (>0.8) of reward per cue
while simultaneously reducing their licking between subsequent
cues. During both the pretraining and the operant task,
AnyMaze (Stoelting; www.anymaze.co.uk) or CinePlex (Plexon),
were used to online video track the animal’s position (defined by
its center of gravity). A fixed 4 x 4 cm® zone, identical for all
mice, was defined inside the 22 x 22 cm? operant chamber (Fig.
1B). The zone limits are not visible for the mice. Digital signals
were sent to MedPC (MedAssociates) to trigger the light cue and
reward delivery, if the mouse spent 2 s inside the TZ as required
by the task. Additionally, all zone entries, licks, cues, and rewards
were recorded with high temporal resolution by our electrophys-
iology recording system. We did not observe distinct sign or
goal-tracking behavior during the cue-reward time interval. The
animal’s performance was quantified using three different met-
rics during the task (Fig. 1F). On top of the usual reward rate, the
number of zone entries and the median inter-reward interval
were used. The median inter-reward interval (Fig. 2) is more
accurate than the reward rate since it is not sensitive to outliers
(i.e., small number of reward collection events being far apart
from each other) crucial for long behavioral session where the
animal is free to make breaks in the task execution. The shorter
the interval, the better the animal’s performance.

Electrophysiological recordings and spike sorting. We started
recordings during the last pretraining sessions when mice


https://scicrunch.org/resolver/MGI_3770172
http://www.prizmatix.com
http://www.neuralynx.com
http://www.cheaptubes.com
http://www.wpi-europe.com
http://www.med-associates.com
http://www.plexon.com
http://www.anymaze.co.uk

Kremer, Flakowski et al. @ Context-Dependent Multiplexing by VTA Dopamine Neurons

A

Surgery

Virus & electrode Pre-training Spatial task
M

Single-unit
recording

7-10 days 5-10 days 5-20 days Sacrifice,
(recovery) (1 session/day)  perfusion,
histological
imaging
C Reward
Cue availability
onset onset

Cue windows
(4s)

Pre-training

Spatial task Cue windows

Reward window
(4s)

Reward window

J. Neurosci., September 23, 2020 - 40(39):7489-7509 - 7491

el
Cue ¢ Reward
]
! Zone !
1 ]

(4s) (4s)
LiCkS ! | T T - N N N N -
: T TrrrrrTr
Reward ! .
T T
E Reward
Cue availability
onset onset
Rewards 4 el
#)
® b
Hz) o
Speed 10
(cm/s)
0 L L I}
- 0 2 4 8
Time (s)
F 10’—:_ 5k—:_ —:_
= 1 i — 1
£ 8 i =4 L2 200f
£ i £ E 2T i
@ 6F ! ¥ 3t ! E g y
— 1 2] 1 c 1
£ 1 2 i L= 1
S 4t ! iigi g 2F i § g0 .
o Lo/ 5 | =g ;
S 2+ 'l X 1+ ! ® i
N n EE :
OR. H 0 TR I S AR R R R ] S e L
-2 2 4 6 -2 2 4 6 -2 2 4 6
Session Session Session

Figure 1. Performance in self-initiated, operant goal-directed task. A, Experimental timeline. B, Schematics of the task. The 4 x 4 cm? fixed trigger zone (TZ), in a 22 x 22 cm® box, is
depicted here in gray but invisible for the mice that have to make the association between their spatial position and the cue to get a single drop of fat solution at the spout. €, During pretrain-
ing, mice have to associate a randomly occurring 4 s light cue to the availability of the liquid reward. Once this association had been learned, we switch to the operant task during which mice
have to wait for 2 s in the zone to trigger the light cue indicating that the reward can be collected. D, Track plots from 10,000 video frames (~6-7 min) showing the locomotor pattern of the
same mouse at the first and sixth sessions of the spatial task. E, Behavioral variables aligned to the cue onset recorded during Session 6: rewards collected during the 4 s reward window
(green, 100 ms bin), individual licks (black, 100 ms bin), and speed (dark red, mean == SEM) are aligned to the cue. F, Behavioral performance of all mice (n = 10) for the last pretraining (—2
to —1) and the operant task (1-6) sessions. Black squares and error bars represent mean = SEM across mice.

reached the criterion to move to the operant task (Fig. 14). If a
neuron exhibited DA-like firing patterns or responded to the
opto-identification protocol, the mouse was switched to the
operant task on the next day. Neuronal activity was recorded at
40 MHz sampling rate and all behavioral variables timestamped
by our recording system (Plexon). To allow for unrestrained
locomotion and to reduce weight, we used a dual LED and 16-
channel commutator (Plexon). The distance between the

headstage and the commutator was optimized for each animal.
Recording sessions lasted 60-90 min; simple online sorting was
performed to monitor recording quality. For analysis, offline
spike sorting was performed using WaveClus (Quiroga et al.,
2004) (University of Leicester, MATLAB code; https://github.
com/csn-le/wave_clus). A frequency of 150 Hz was used to sepa-
rate the wideband signal into local field potentials and spike
bands. Positive or negative thresholds were applied depending
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Figure 2.  Median inter-reward interval as performance metric. A, Performance of one mouse across leaming stages. Left, Temporal distribution of rewards for the last three pretraining ses-

sions (Sessions —3 to —1, top) and across 10 sessions of the operant task (Session 1-10). Red ticks represent the end of each session. Middle, Distribution of inter-reward time intervals across
sessions (green, 10s bin), showing a gradual narrowing around short durations. Right, Median inter-reward interval (green) and average reward rate (black) across sessions. B, Median reward-
interval plotted against the number of rewards obtained during the same session (gray dots) shows that a small median interval does reflect better performance and is not because of a low
number of rewards. Red dashed line indicates a 1/x fit. The median inter-reward interval is insensitive to slow initiations or occasional breaks, which is why we used it to assess the perform-

ance of the animal.

on the observed waveforms. Spike sorting results were visually
inspected, the optimal temperature parameter in WaveClus
selected, and minimal manual correction applied. The L ratio, a
measure to assess the quality of isolation of each unit, was computed
using MClust (University of Minnesota, MATLAB code: http://
redishlab.neuroscience.umn.edu/MClust/MClusthtml). Only units
with an L ratio < 0.05 were further analyzed (Schmitzer-Torbert et
al,, 2005; Hill et al., 2011). After each session, the microdrive was
used to lower the optrode by ~50 pm and the same procedure
applied on the next day.

Optogenetic identification of single units. After each recording
session and before the optrode was lowered for the next day, we
delivered blocks of 10 pulses of 5ms using a LED (Plexbright
LED module blue 465 nm, Plexon driven by a Master-8 stimula-
tor, A.M.P.L) at frequencies of 1, 2, 5, 10, and 20 Hz (Fig. 3C,D).
Light intensities ranged from 1 to 5 mW. Light-evoked spikes
were detected during a 6 ms window after light onset. A single
unit was validated as an optogenetically identified DA neuron if
its response rate was >0.8 and the correlation between the aver-
age light-evoked waveform and the average of all other spike
waveforms produced during the entire recording session was
>0.85.

Postmortem histology and imaging. After the optrode had
crossed the VTA, mice were killed with a lethal injection of pen-
tobarbital (150 mg/kg) and perfused with 4% of PFA in cold PBS.
After fixation, the optrode was slowly retracted using the micro-
drive and the brain extracted. Coronal brain slices of the VTA
were cut 80-120 pm thick (Fig. 3A). To quantify the specificity of
ChR2 expression, slices were immunostained for TH. Briefly,
slices were permeabilized with 0.1% Triton in TBS-Tween 20
(TBST), blocked using 1% BSA in TBST, and incubated with
primary anti-TH antibody (dilution 1:500; AB152, Merck
Millipore). At 24 h later, slices were rinsed and incubated with
secondary donkey anti-rabbit IgG antibody (dilution 1:500;
AP182C, Merck Millipore) diluted in 1% BSA TBST for 1-2 h.
After each step, samples were washed with TBST. Slices were
mounted and covered on microscope slides using Fluoroshield

mounting medium with DAPI (Abcam, ab104139), low-resolu-
tion imaging was performed using either a 5x/NA 0.25 or 10x/
NA 0.45 objective in a slide scanner (Mirax or AxioScan Z1; Carl
Zeiss). High-resolution stacks were acquired in a confocal fluo-
rescence microscope (LSM800 using 40x/NA1.4, Carl Zeiss or
Alr Spectral 40x/NA1.3, Nikon) (example in Fig. 4A). In
recorded animals, the electrode track could easily be located in 1-
3 brain slices and was mapped to the stereotaxic coordinates of
the slice where the track was most prominent (Fig. 4B). For cell
counting, confocal high-resolution imaging stacks (z steps of
2.5um) were acquired; then cells expressing ChR2 and those
stained for TH were counted manually using Image] (National
Institutes of Health; https://imagej.nih.gov/ij/).

Event-related neuronal responses for the clustering. For each
neuron, spikes were binned into a regular time grid of 250 ms
time bins. Neurons with a mean firing rate <1 Hz as well as
maximal firing rate <3 Hz were excluded, leaving us with 215
single units (n =10 mice). For each neuron, we constructed five
event-related profiles around cue onset, reward consumption,
the mouse’s lick, speed peak, and acceleration peak. The increase
or decrease of each time bin from the baseline (defined as
[—3.5;—3.25] for the cue onset, [2.5;3.0] for reward consump-
tion, [—1.0;—0.75] for lick onset, [—2.0;—1.75] for the speed and
the acceleration peaks) was quantified using an area under a re-
ceiver-operating characteristic curve (auROC) method (Cohen et
al.,, 2012). In brief, auROC values are between 0 and 1; values
<C0.5 indicate a decrease relative to the baseline, whereas values
>0.5 reflect increases in firing relative to the baseline (blue/
black/yellow heatmaps in Figs. 5 and 6A). To visualize the abso-
lute neuronal firing rate (Fig. 6B,C), we computed for each neu-
ron the corresponding continuous spike density function (cSDF)
by convolving the spikes with an EPSP kernel (Wallisch et al.,
2014) using the algorithm proposed by the Schall Lab (Hanes et
al., 1995) (Vanderbilt University, MATLAB code; www.psy.
vanderbilt.edu/faculty/schall/scientific-tools/).

Clustering of neuronal firing patterns. We applied a two-step
clustering strategy to the 215 neurons (n = 10 mice) to isolate the
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Figure 3.

VTA in vivo recording and optogenetic tagging. A, Top, Schematics of the single-unit recordings. Custom-made optrodes were implanted into the left VTA of adult DAT-Cre mice

(n=10) that were injected with virus expressing floxed ChR2. Bottom, Example of a coronal slice showing ChR2 expression (green) and DAPI staining (blue) in the VTA. B, Example of four
simultaneously recorded units. Left, Raster plots for each individual neuron aligned to the cue. Right, Corresponding average spiking histogram showing the diversity of firing pattems during the
same session along with the speed of the mouse and licking (below). Neurons 1, 2, and 4 were subsequently classified as DA neurons. C, Optogenetic identification of DA neurons. Left, 5 ms blue
light pulses at 5, 10, and 20 Hz. Neurons exhibiting a response rate >0.8 spikes/pulse during the 6 ms window after light onset and showing a waveform correlation >0.85 were identified as
light-responsive (bin size opto =1 ms). D, PSTHs of two DA neurons (bin size: 25 ms), which are light-responsive (neuron 1: opt.resp. = 0.819, waveform corr. = 0.952; neuron 2: opt.resp. = 0.8,
waveform corr. = 0.996). They were recorded simultaneously during the same operant task session but display different responses to external events. Both are aligned to the cue onset (left PSTHs)
and the reward consumption (right PSTHs). E, Raster plots and PSTHs of the two previously optogenetically identified DA neurons recorded during the same session of the operant task (both aligned
to the cue). While the first neuron responded exclusively to the cue, the second neuron showed also a response to the reward (as seen in D, the response to the reward is stronger).

ones within the VTA. Before the clustering, we applied a dimen-
sional reduction to the auROC profiles (i.e., displayed in the
heatmap of Fig. 5 for the cue, reward, lick, speed, and accelera-
tion events) using an independent component analysis (fastiCA

MATLAB package, Aalto University; http://research.ics.aalto.fi/
ica/fastica/). We then applied a hierarchical clustering, using the
standardized Euclidean distance metric and ward linkage
method, to 18 combined independent component analysis
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ter the end of the experiment. Top left, Example of a slice showing ChR2-eYFP expression (green) and DAPI staining (blue). Scale bar, 2 mm. The electrode track can easily be seen in the lateral
part of the VTA. Right and bottom, Individual electrode tracks from all animals traced on corresponding brain atlas coronal schema (Paxinos and Franklin, 2001).

components plus the mean firing rate taken across the entire ses-
sion (ie., a 19 x 215 matrix). At this stage, the information
obtained from the optogenetic identification was not considered.
The clustering quality was assessed with the mean silhouette
index and cophenetic correlation coefficient. We identified the
putative DA cluster, characterized by typical phasic responses to
the cue and reward, which identity was confirmed by the fact
that all optogenetically identified DA neurons (n = 16) fell into it
(Cluster 8 in Fig. 5). We exploited the fact that we were moving
the optrode across the VTA from session to session with the

microdrive to further refine our set of neurons: we only accepted
the ones located between the first and the last DA neuron in a
given animal (for 1 animal, we did not find any DA neuron).
This resulted in 159 VTA neurons (n=9 animals), which were
subjected to the same clustering procedure yielding this time 9
clusters (Fig. 6A).

Definition of DA neuron firing modes. The burst and tonic fir-
ing mode was formalized by Grace and Bunney (1984) with the
“80/160 ms” rule. A burst starts each time two successive spikes
are separated by an interspike interval (ISI) <80 ms and ends for
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Figure 5.

Clustering analysis to identify the subset of VTA neurons among all recorded units. The set of 215 recorded units (one per row, n= 10 mice) were aligned to five events of interest

(cue onset, reward consumption, lick, speed peak, and acceleration peak) and the relative firing rate changes (250 ms bin) quantified by computing the area under the auROC for each unit fol-
lowing published methods (Cohen et al., 2012). Briefly, the auROC measures to which extend the firing rate at any given time bin is different from the baseline: an excitatory response is char-
acterized by an auROC > 0.5, whereas an inhibitory response is associated to an auROC << 0.5. It is well suited for comparing numerically and visually the firing rate of multiple neurons. The
auR0C profiles, after a dimension reduction, supplemented by the mean firing rate led through a hierarchical clustering to 14 clusters among which the Cluster 8 (n =73 neurons) contained all
optogenetically identified DA neurons (see Materials and Methods). Using this cluster, it was possible to define for each mouse the units recorded in the VTA using the first and last occurrence
of a DA neuron (yellow represents above; green represents inside; and red represents below the VTA). The resulting 159 neurons located in the VTA were used for a new hierarchical clustering
yielding 9 clusters among which the Cluster 5 contains the DA neurons (n = 72; see Fig. 6) considered afterward.

a following spike with an ISI >160 ms. Since in the freely moving
condition, we found elevated firing rates compared with head-
fixed animals, we could not directly apply this rule to separate
spike bursts from tonic firing. We adapted the 80/160 rule for
freely moving animals by first calculating the mean ISI across the
entire session. Then, the burst onset was obtained for two spikes
separated by an interval shorter than one-third of the mean ISI,
and the offset was reached for a following spike with an interval
two-thirds of the mean ISI. This resulted in burst detection
thresholds similar to previous studies when DA neurons fired at
4-5 Hz, but scaled for neurons with higher firing rates. All spikes
not attributed to a spike burst were tagged as tonic spikes. To
detect spike pauses, we plotted the histogram of ISIs of all tonic
spikes (ISLionic). We then fitted a Gaussian in the interval [0; 3] of
this distribution and computed the time at which the difference
between the Gaussian fit and the actual distribution was largest.
We used this value as the threshold for pause detection. If this
threshold was smaller than 2<<ISI,,,;.=>, it was set to 2<<ISI;onic=>
considered as the smallest pause size. In subsequent analyses,
time bins were considered to be in a pause if they were between
the spike starting a pause and the spike ending a pause. We then

computed the pause probability per bin for correct and error tri-
als. Examples of spike signals split into burst/tonic/pause compo-
nents are presented in Figure 7A, B.

Behavioral modules. To characterize more precisely behaviors
during each session, we defined seven modules based on the
recorded behavioral variables: resting, move, run, licks, rewarded
licks, run to zone, and run to spout. Transition points
between resting and moving periods were fixed at 2.1 cm/s.
We then computed the mean speed value for move intervals
and used a move-run threshold of 2.8 cm/s, thereby defining
the resting, moving, and running modules. LBs were detected
as described above, starting with an ILI <0.5s (LB onset) and
ending when ILI > 2 s (LB offset). We defined rewarded LBs
as those whose onsets were occurring between a cue and a
reward. All other LBs were considered as unrewarded LBs.
Finally, we computed the distance to the reward and to the
zone to further specify whether run modules were directed
toward the zone or toward the spout. Examples of the mod-
ules detected across an entire session are displayed in Figure
8B.
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Figure 6. Clustering analysis on units in the VTA. A, Hierarchical clustering of 159 VTA single units (one per row, n=9 mice) based on their auROC spiking profiles (yellow represents
increase from baseline; blue represents decrease from baseline), for five events and their mean firing rate (for details, see Materials and Methods; Fig. 5). All 16 optogenetically identified neu-
rons fell into Cluster 5, which exhibits large phasic responses around the cue and reward. B, , Average continuous spike density function, obtained by convolving the spikes with an EPSP ker-
nel (see Materials and Methods), aligned to the cue (mean == SEM) for functional cluster response patterns. Colors of the SEM correspond to colors of the clusters in the dendrogram in A.
Some clusters display task-related modulations, for example, speed peaks (1 and 3), cue/reward cluster (5), or licking (6). Some clusters (i.e., 2, 4,7, 8, and 9) show complex firing modulation,
which cannot easily be linked to a single behavior. The auROC profile for the motor events of Cluster 5 (lick, speed, and acceleration peaks) are sampled from the entire session without distin-
guishing when mice are performing the task (i.e., from the zone entry to the reward collection), leading to weak noisy mean signals. D, Average cue versus reward responses during the sali-
ency (0-250 ms) and value (250-500 ms) postevent window for all individual neurons of the Cluster 5 (bin size PSTH = 25 ms). Saliency and value windows are defined according to Schultz's
two-component phasic DA response model (Watabe-Uchida et al., 2017). The spike rate between light-responsive and light-nonresponsive neurons is undistinguishable. E, Average response
histograms of all neurons of Cluster 5, namely, the optogenetically identified (stim. resp.) and putative (stim. non-resp.) DA neurons, to cue onset (top) and reward consumption (bottom)
showing average responses to both events. The response to the reward is generally stronger than to the cue.
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Tonic spike variation during cue-reward interval concomitant with locomotion for DA neurons. A, Heatplot of spike, burst, tonic, and pause signal (see Materials and Methods)

from three example DA neurons (each column) displaying different responses when aligned to the cue (250 ms bin; baseline [—1, 0]). B, The z-scored average burst and tonic firing (blue and
gray, top) and mean pause rate or pause probability (purple, bottom) for the same three neurons. During the cue-reward interval, where the animals run from the TZ to the reward spout, the
left neurons pauses, the middle one shows little modulation, and the right one exhibits a strong tonic signal. €, D, Activity of all DA neurons (n =72, from the clustering in Fig. 64) aligned to
speed peak during task execution. C, Top, Acceleration averaged over all trials associated to the neural recording. Bottom, Speed. Right, Behavioral performance of the animal. There is no bias
toward low/high performance (low median inter-reward interval indicates a high performance). D, Normalized tonic signal (top) and pauses (bottom) extracted from the spiking of all DA neu-
rons sorted by the smallest to highest mean pause rate. Right, DA neurons that have been optogenetically identified. These graphs provide visual evidence for modulation of the tonic firing by

the motor behavior (for quantitative analysis, see Figs. 8 and 9).

Comparing neural signal underlying correct and error trials.
Correct trials lasted ~10 s: the mouse entered the zone, waited
there 2 s until the cue turned on, and then ran toward the spout
(or valve) where the reward was delivered from 4 to 8 s after the
cue. The mouse spent a few seconds near the spout to consume
the reward and then returned to the zone (Fig. 1B). To study
VTA DA error signals in our setting, we selected trials with a
motor output similar to correct trials during which neither the
cue nor reward was delivered because the mouse left the zone

too early (Fig. 8A). Under these conditions, the mouse still ran to
the spout and licked, although no reward was delivered. Using
the behavioral modules defined above, we defined error trials
with similar speeds and trajectories to correct trials. In an error
trial, we required the time from the module “run to zone” to the
module “run to spout” to last at least 3 s to avoid the case when
mice just randomly crossed the zone and ran toward the spout.
Moreover, to be included in error trials, mice had to lick and test
for reward delivery. Similarly, we used these same behavioral
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Figure 8.  VTA DA neurons pause during error trials. A, Description of correct and error trials taking both place between the zone entry and LB offset. The animal failed to perform the task
when it leaves the zone too early not triggering the cue (right). Only error trials where the animal licked for the reward were considered. B, Correct versus error trials are analyzed for one
example session. In the neural/behavioral heatplot, the mouse is either in a correct or an error trial at a given line. Colors represent seven behavioral modules (see Materials and Methods).
Bottom, Cue (orange) and reward (green) distribution, lick rate (light green), speed (dark red), and the animal’s distance to the zone (blue) and to the spout (red) averaged across correct and
error trials, respectively. ¢, Neuronal activity heatplot (250 ms bin) of a putative DA neuron split into correct and error trials as defined from the behavioral analysis. On one given line, the dis-
played spiking corresponds either to a correct or an error trial. Bottom, Average spiking histogram (black), z-scored tonic (gray), and bursting (light blue) activity and probability of being in a
spike pause (purple). Plots are aligned to the LB offset. D, Correct versus error discrimination of Cluster 5 neurons (optogenetically identified and putative DA neurons, n=72; Fig. 64).
Significantly discriminating neurons are represented by their auROC change between error versus correct trials in spiking, burst firing, tonic firing, and pausing (error/correct discrimination
index; see Materials and Methods). Gray represents a nonsignificant error-to-correct change (Wilcoxon rank sum tests, « = 0.05). Yellow/blue represents a significantly up/down change (e.g.,
a strong yellow discrimination index for a pause at the zone exit event indicates that the neuron’s firing is pausing during error trials but strongly active during correct trials when aligned to
the zone exit). Neurons are grouped per animal and sorted by behavioral performance represented as the median inter-reward interval (Figs. 1F, 24,B; the shorter the interval, the better the
animal’s performance). The negative error signal, which manifests as an increase in pause probability for at least one of the four events, is apparent in 63% of optogenetically identified DA
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modules to identify correct trials and subsequently validated the
procedure using the cue and a reward events, showing that this
procedure was capable of extracting correct and error trials based
on similar motor output. The ratio of error/correct trials gives an
estimate of the operant task success rate of the animal; for exam-
ple, in Figure 8B, the animal did 103 correct and 23 error trials,
so that the success rate is equal to 103/126 =0.82, confirming
that it had well understood the task. This metric is different from
the criterion to move from the pretraining to the operant task
(ratio of rewards/cues) as well other metrics presented in Figure
1F. Throughout the paper, we use the median inter-reward inter-
val criteria (Fig. 1F, right) to evaluate the animal’s performance
(Figs. 7-9).

Using the definition of correct and error trials, we then
compared their associated neural signal (spike, tonic, burst
spiking, and pause) around four events of interest (zone
entry, zone exit, LB onset, and LB offset). We applied an
auROC analysis (Brodersen et al.,, 2010) to compare the
mean signal in error trials versus correct trials for the four
events. The response windows for the auROC comparisons
of the different events were as follows: zone entry [—0.75;
1.5], zone exit [—0.5; 1], LB onset [0; 1], and LB offset
[—0.75; 0.25]). To confirm that the relative change was sig-
nificant, we performed an additional Wilcoxon two-sided
rank sum test (a = 0.05). For Cluster 5 neurons (Fig. 64;
identified and putative DA neurons have an average firing
rate of 4-14 Hz), the analyses were conducted on all spikes,
tonic firing, burst spiking, and pauses (Fig. 8D).

Action related modulation of neuronal spiking inside and out-
side of cue-reward interval. To determine which neurons were
significantly modulated by goal-directed actions (licking and
locomotion), we had first to detect neurons with perievent time
histograms (PSTH) displaying a significant activity around LB
onsets, locomotion onsets, and speed peaks following a method
developed previously (Da Silva et al., 2018). In brief, we selected
a window of [—5; 5] s around these time points, and spikes were
time-averaged in a sliding window of 100ms shifted by 1ms
steps. The baseline was defined as the [—5; —4] time interval. If
the neuronal activity during the response window ([—0.5; 0.5]
for locomotion onset, [0; 0.5] for speed peak and LB onset)
exceeded *=3 SDs and remained above (or below) for at least
50 ms, the neuron was considered significantly Up (or Down)
modulated by the considered action (example of a significantly
larger speed peak in Fig. 10B). The change in firing associated to
the motor action (e.g., speed peak) is generally well separated
from the firing associated to the cue and reward (see e.g., raster
plots in Fig. 10B). Nevertheless, for clear separation, we first
removed all movement-related time points closer than 750 ms to
an external event before analysis. All these calculations were per-
formed for each neuron inside and outside of the cue-reward
window, and the results summarized in a significance heatmap
(Fig. 10C; Table 1): yellow represents significant Up modulation;
blue represents significant Down-modulation; gray represents no
significance.

«—

neurons (10 of 16) and in 41% of putative DA neurons (23 of 56). The neural modulation is
not biased toward the animal’s performance. Black arrows highlight the example neuron of
C. E, Number of neurons significantly discriminating correct versus error trials per event either
with an increase or a decrease in the corresponding firing modality for optogenetically identi-
fied DA neurons (top) and putative DA neurons (bottom). F, Number and distribution of
events, which significantly modulate optogenetically identified DA neurons (top) and putative
DA neurons (bottom).
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Encoding analysis of the spiking. To determine which events
and behaviors contributed most to the spiking output, we applied
a GLM to predict spiking using a Linear-Nonlinear-Poisson
method (Paninski et al., 2007) (see e.g., tutorial example codes;
www.github.com/pillowlab/GLMspiketraintutorial). The model
Y = f(BX) + € relies on an exponential nonlinear link function
f and a Poisson noise € commonly used to predict spiking
(Pillow et al, 2005, 2008). To improve between session compari-
sons, this analysis was restricted to a homogeneous subset of 36
sessions (118 of the 159 neurons). The single units were selected
based on the session duration (65.9 * 3.52 min, mean * SEM);
that is, only units recorded during session with at least 30 min of
continuous recordings were selected. The encoding procedure is
depicted in Figure 11A. Each activity vector Y is built from the
recorded spiking (one per cell, 250 ms bins). The design matrix
X contained seven covariates (i.e., variables): three events (cue,
reward, and zone) and four behaviors (licks, speed, acceleration,
and distance to goal) resampled using same bin size as for the
spiking. The presence inside the TZ was represented in a binary
vector as were cue and valve events, indicated by binary events
lasting 2 bins. The remaining continuous variables (licks, speed,
acceleration, and distance to goal) were normalized and z-scored.
We used a sliding window of 10 bins to predict the spiking at a
given time bin. We estimated the regressors 8 for each neuron
using the GLM. To avoid overfitting because of the large number
of parameters used to predict the spiking, we resorted to a Lasso
and elastic-net regularization (glmnet algorithm for MATLAB,
Stanford University; www.web.stanford.edu/~hastie/glmnet_
matlab/). Pearson’s correlation coefficient was used to compare
the recorded and predicted spiking (e.g., Fig. 11B). Finally,
we temporally shuffled the neural signal 1000x by a randomized
time offset (50-500 s) and performed the analysis again to check
that the prediction is better than chance level (threshold of 2.807
SDs to the shuffled distribution). Accordingly, only neurons
whose Pearson correlation was higher than the shuftled one were
used (108 of the 118 neurons). To compare the encoding inside
versus outside of the task execution time intervals, we concate-
nate separately the recorded Y and predicted Y spiking of each
neuron for inside the task execution on one hand and outside of
the task execution on the other (Fig. 11C). We then computed
the correlations for all correct trials’ time intervals (ranging
from the zone entry to the LB offset) versus outside of correct +
error trials’ time intervals (Fig. 11D,E). We made the same analy-
sis by considering the correlation for inside versus outside of
cue-reward intervals as a cross-check and got similar results.
This was expected since all cue-reward intervals are enclosed in
correct trial intervals. To determine the number of variables con-
tributing to the spiking of a given neuron, the prediction was
performed for each of the possible 127 combinations of the seven
variables (i.e., 7 + 21 + 35+ 35 + 21 + 1 from 1-7 variables; see
Fig. 12A). In the design matrix X, removed covariates were set as
their mean over the entire session and the regressors 8 con-
structed from all seven covariates. We selected the combinations
displaying the maximum correlation for each number of covari-
ates and counted the number of times each covariate appeared in
these best combinations. We then determined the minimum
number of variables (or contributors) necessary to cross 90% of
the largest value between the previously computed maximum
correlations (Fig. 12A,B). To estimate which variables contrib-
uted the most to the spiking pattern, we looked at the relative
loss in correlations after removing a single variable from the
input to the model (Fig. 12C,D) constructed from six covariates,
and therefore computed the following:


http://www.github.com/pillowlab/GLMspiketraintutorial
www.web.stanford.edu/~hastie/glmnet_matlab/
www.web.stanford.edu/~hastie/glmnet_matlab/
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Relative loss in correlation = (cOIT.7eovariates —
Corr-6a>variates)/ COIT Fcovariates.

We computed the average relative loss
per variable and per type of neurons (opto-
genetically identified DA neuron, putative
DA neuron, and non-Cluster 5 or non-DA
neurons). On the other hand, we checked
that the largest contributors really matter to
the encoding. To do so, we compared the
distributions of correlations when the
encoder was given all seven covariates to
when the three strongest covariates were
removed (Fig. 12E).

Experimental design and statistical anal-
ysis. Based on previous experience, for
the single-unit recording experiment, we
included 10 adult male mice with the goal to
record ~20 cells per animal (average pre-
dicted outcome: 5-10 recording sessions dur-
ing the task while crossing the VTA with the
16-channel optrode microdrive getting 2-4
well isolated units per session). All analyses
were performed using custom-written code
in MATLAB as well as included packages
(The MathWorks). We used the following
MATLAB functions for statistical analysis: ¢
test with (t test) and then applied a Bonferroni
correction, nonparametric Wilcoxon two-sided
rank sum test with (ranksum), Kruskal-Wallis
nonparametric unpaired one-way ANOVA
with post hoc test Tukey-Kramer with (kruskal-
wallis) and (multcompare), and two-sample
Kolmogorov-Smirnov  one-sided test with
(kstest2). Temporal shuffling of the data was
done using (randi) and (circshift) MATLAB
function. GLM calculations were performed
with functions (cvglmnet), (glmnet), and
(glmnetPredict) from the glmnet MATLAB
package (Stanford University). All data are
available on request.

Results

Operant task and behavioral
performance

We injected a virus expressing cre-depend-
ent ChR2 and implanted a 16-channel
optrode mounted into a microdrive into the
VTA of DAT-Cre mice (Fig. 1A). After re-
covery, we started the pretraining phase that
lasted 5-10 d where the mice were condi-
tioned in a cue-reward paradigm (Fig. 1B,
C). The mice learned to associate a ran-
domly occurring 4 s light stimulus (cue)
with the availability of a drop of a fat solu-
tion (5% of lipofundin, BBraun). We then
switched to the cue-guided operant task for
5-20 d (Fig. 1C, bottom timeline), where the
cue was triggered once the mouse had spent
2 sinasmall (4 x4 cmz), unmarked fixed
TZ of the operant chamber (Fig. 1B, gray
dotted square). To collect the reward, the
mouse had to move to the other end of the
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at the time of the zone leave are shown for each of the putative and optogenetically

identified DA neurons (Cluster 5 neurons; Fig. 64). Left, For each neuron, optogenetic identification and the auROC values
(spike, burst, tonic, and pause). Right, The performance of the animal during the corresponding recording session, repre-
sented as the median inter-reward interval. Neurons are sorted from top to bottom according to the auROC discrimination
of the spike pauses (same auROC values as for Fig. 8D; yellow represents significant increase; blue represents significant
decrease; gray represents no significant modulation). auROC values were quantified during the event windows highlighted
by the vertical white dashed lines. We have 14 of 72 neurons with significant increase in firing pause and 5 of 72 neurons
with significant decrease in firing pause. B, Same representation as in A, with an alignment of the neuronal activity and
auR0C analysis performed at the LB offset. As in A, neurons are sorted by the auROC value during firing pauses. We found
19 of 72 neurons with significant increase in firing pause and 5 of 72 neurons with significant decrease in firing pause.
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Figure 10.  Neuronal modulation inside versus outside of the cue-reward interval. 4, Schematics of three events aligned at the Zone exit used for the comparison below: locomotor onset,
speed peak, and LB onset. B, Left panels, PSTH (top) and raster plot (bottom) showing the firing of a putative DA neuron aligned to the speed peak (bin size =100 ms) inside and outside of
cue-reward interval. Right panels, Average spike rate aligned at the speed peak outside (top) and inside (bottom) of the cue-reward interval. Spikes of each neuron were first time-averaged in
a sliding window of 100 ms shifted by 1 ms steps in a [—5; 5] s interval around the event. If the modulation during the response window ([—0.5; 0.5] for locomotion onset, [0; 0.5] for speed
peak and LB onset) exceeded =3 SDs and remained above (or below) the baseline modulation (taken from [—5; —4]) for at least 50 ms, the neuron was considered significantly Up (or
Down) modulated (see Materials and Methods). Bottom, Yellow arrow indicates the start time of significant increase of firing rate. The significant firing change is only observed when the trials
are aligned to the speed peak in the cue-reward interval. €, Display of significant modulations for all VTA neurons (n = 159) for the three variables. Bottom, Identification of phasic activity in
all DA neurons and intersection between motor and cue-reward modulation (Venn diagram). Thirty-nine of 72 neurons (54%) show modulation by both modalities, indicating multiplexing in a
majority of DA neurons. D, The fraction of modulated neurons, depicted individually in C, grouped here by cell types and context. The Up modulation is more frequent inside than outside of
the cue-reward interval for DA neurons (Cluster 5, n =72; Fig. 64) compared with non-DA neurons (other clusters, n = 87; Fig. 6A) as shown on the rightmost panel. The change in modulation
between inside and outside of the cue-reward interval in DA neurons cannot originate from a context difference since non-DA neurons were recorded together with DA neurons but did not
show such firing modulations.
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Table 1. Summary of the analysis of movement-related modulation of Figure 10

All events across session Between cue-reward Outside cue-reward Total N

Fraction of neurons  Fraction of events  Fraction of neurons  Fraction of events  Fraction of neurons  Fraction of events  Neurons Events

Al Up Down Al Up Down Al Up Down Al Up Down Al Up Down Al Up Down
All motor events”
Non-DA 098 082 074 075 042 033 098 079 055 073 045 028 092 079 063 067 04 028 87 261
Putative DA 07 055 032 036 024 012 082 071 025 046 036 011 048 03 029 021 011 0.1 56 168
opto. id. DA 0.75 063 019 027 021 006 081 075 013 033 029 004 056 05 019 023 017 006 16 48
Motor events with onsets further than
750 ms from cue and reward®
Non-DA 095 082 07 072 04 032 087 071 043 064 042 022 093 079 064 066 039 027 87 261
Putative DA 0.61 039 039 031 016 015 061 039 029 031 02 011 05 03 03 022 011 011 56 168
opto. id. DA 063 056 019 025 0.19 0.06 0.63 044 019 021 015 006 05 044 019 021 015 006 16 48

“Averaged values computed from the individual neuron values as presented in Figure 10C heatplot and used in Figure 10D. The fraction of All neurons indicates how many cells have at least a single significant modulation to
motor output. On the other hand, the fraction of Up-modulated neurons shows how many cells display at least one significant increase in spiking, whereas the fraction of Down-modulated neurons shows the number of cells
with at least one significant decrease in spiking. The fraction of events counts the number of all significantly modulated, up-modulated or down-modulated events grouped by cell type (non-Cluster 5 or non-DA neurons, pu-
tative DA, or opto. id. DA). The total number of events Neyents = 3 X Mpeurons for each cell type.

®The same analysis, but excluding all motor events that are closer than 750 ms to the cue or reward (lead to similar results).
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Figure 11.  VTA DA neuronal multiplex encoding is specific to trial execution. A, Encoding model. For a given session, the design matrix X is constructed using seven behav-
ioral covariates (events: zone, cue, and reward; as well as actions: lick, speed, acceleration, and distance to the goal). Each activity vector Y is built from the recorded spiking
(one per cell, 250 ms bins). We first estimated the regressors B for each neuron using a linear-nonlinear-Poisson (LNP) approach; that is, a GLM with an exponential nonli-
nearity f and a Poisson noise, for a sliding window of 10 bins with lasso and elastic-net regularization to avoid overfitting. The GLM prediction is compared with the true
spiking through Pearson correlations. We proceeded only with neurons whose correlation is larger than chance level for continuous session recording of at least 30 min (see
Materials and Methods; n = 159—108). B, Top, Encoding example for an optogenetically identified DA neuron. The true (black bars) and predicted (purple dotted line) neu-
ral signals have been z-scored and displayed along with all behavioral variables. Bottom, Definition of the time intervals inside a trial (from the zone entry to the LB offset;
for details, see Fig. 84) and outside of a trial used in C-E. C, We concatenate separately the recorded ¥ and predicted ¥ spiking for inside the task execution on one hand
and outside of the task execution on the other. We then computed the associated correlations. D, Scatterplot comparing the correlation of inside correct trials versus outside
of the trials (excluding the error trials) as defined in B and C. E, Using a Kruskal-Wallis nonparametric unpaired one-way ANOVA with post hoc test Tukey-Kramer (regroup
putative and opto. id. DA neurons to have groups of comparable size, i.e., number non-Cluster 5 or non-DA neurons =52 and number DA neurons = 56; *p < 0.05;
**%p < 0.001), we show that the variables encoding are significantly stronger during the task execution (zone entry to LB offset) than outside for all DA neurons (putative
and optogenetically identified) but not for the non-DA neurons. We also see that the correlations are overall larger for non-DA than DA neurons.
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Figure 12.  Contribution of individual behavioral variables to neural spiking. 4, lllustration of the method to compute the number of variables significantly contributing to the spiking for each

cell (variables combinations and counting). Top, For a given cell, we performed the encoding analysis as depicted in Figure 114 for each combination of variables (127 in total) constructing X by set-
ting the missing variables to their mean value over time. Bottom, We selected the combination with the minimum number of variables necessary to cross 90% of the largest value among the com-
puted maximum correlations (red dots); in the depicted example, we get four significantly contributing variables (the black arrow, four in red). B, Bottom, Maximum correlation for each neuron
beyond chance level (n=108) as a function of the number of variables significantly contributing to the spiking following the method depicted in A. Top, Percent of neuron per type and per number
of significant behavioral variables; considering one or two variables, we have more non-DA (or non-Cluster 5) neurons than identified and putative DA (44% vs 23% and 27%), whereas for three or
more variable the tendency is opposite (56% vs 77% and 72%). The average maximum correlation across all neurons decreases with the number of encoded variables (0.53, 0.36, 0.33, 0.27, and
0.26 from 1-5 variables). C, The relative importance of a given variable is estimated from the loss in correlation caused by removing it. Histograms represent the relative loss in correlation for each
variable (three example neurons, one of each type). Example DA neurons display a similar encoding profile (apart for lick < speed). By contrast, the displayed non-DA neuron only encodes two var-
iables, namely, speed and acceleration. D, Average loss of correlation for non-DA and DA neurons (combining putative and opto. id. DA neurons to yield groups of comparable size for non-DA neu-
rons, n =52, and DA neurons, n=56). The average loss in correlation is significantly different from zero for all variables and neuronal types (t test with Bonferroni correction; *p << 0.05;

Fp<<0.01) but not for comparisons between variables (for each neuronal type: Kruskal-Wallis nonparametric unpaired one-way ANOVA with post hoc test Tukey-Kramer; *p << 0.05;
**p <<0.01). For non-DA neurons, the loss is significantly larger for acceleration versus reward/cue, whereas for DA neurons the loss is significant larger for reward versus acceleration and for cue versus speed.
E, Comparing the distributions of correlations when the encoder was given all seven covariates to when the three strongest covariates were removed by setting them to a constant value (the average of the
covariate). The significant decrease in correlation (two-sample Kolmogorov-Smimov one-sided test; ***p < 0.001) confirms that the largest contributing variables are essential for a proper encoding.

box. Importantly, the mouse was free to initiate a new trial by
going back to the TZ. The maximum number of rewards was
limited only by the duration of the executed sequence (~10 s).
Within a few sessions, all mice found the TZ and the reward rate

sometimes left the TZ too early, which led to an error trial.
Among the 10 mice, we did not distinguish sign- or goal-tracking
behavior. For example, in the speed track plot (Fig. 1D), the frac-
tion of trajectories belonging to speed (orange-yellow lines) are

increased, whereas the median inter-reward interval decreased in
the first days (Fig. 1F). Since the median inter-reward interval
was insensitive to slow initiation or occasional breaks, we chose
it as learning metric (Fig. 24,B). After 3-5 d, the mice executed
the task using the shortest trajectories between the TZ and the
drinking spout (Fig. 1D,E; Movie 1). Still, even after 5 d, the mice

oriented between the light bulb and the spout.

Identification and classification of VT A neurons

During the operant task, we recorded 215 neurons from 10 mice
along the electrode trajectories. The cells exhibited a wide range
of firing patterns, responding briefly to the cue and/or the reward
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Movie 1. Illustration of three successive trials during the operant task: the mice wait 2 s
in the zone until the light cue turns on, run toward the reward spout to collect the reward,
and then go back to the zone to start the next trial. [View online]

or slowly varying firing pattern (see raster plots and associated
PSTHs aligned to the cue onset in Fig. 3B). At the end of each
session, before the optrode was lowered for the next day, we opti-
cally stimulated (Fig. 3C) and found 16 responding cells across
the 10 mice, which are thus confirmed as DA neurons. Two
optogenetically tagged DA neurons recorded simultaneously
exhibited contrasting responses to the cue and reward (Fig. 3D,
E). A classification was then conducted in two steps. First, 215
recorded single units were aligned to five events of interest (cue
onset, reward consumption, lick, speed peak, and acceleration
peak) and quantified by computing the auROC for each cell fol-
lowing published procedure (Cohen et al., 2012). The auROC
indicates how the firing rate can be discriminated from the base-
line at any given time bin and is perfectly suited to compare fir-
ing patterns of a large number of neurons over multiple events
numerically as well as visually (see the heatplots in Figs. 5, 6A).
The auROC profiles subjected to a dimensional reduction com-
bined to the mean firing across the session were processed with a
hierarchical clustering (see Materials and Methods) that yielded
14 clusters among which Cluster 8 (n="73; see Fig. 5) contained
all optogenetically identified DA neurons. A second classification
was then conducted on the cells in the VTA (159 neurons for 9
mice; see Materials and Methods), which were all units recorded
between the first and last occurrence of a DA neuron. The result-
ing hierarchical tree yielded nine clusters among which Cluster 5
contains the DA neurons (n=72; see Fig. 6). In line with previ-
ous studies (Cohen et al., 2012; Sadacca et al., 2016; Engelhard et
al., 2019), our analysis revealed clusters reflecting motor output,
which were modulated by locomotor speed or acceleration
(Clusters 1, 3, and 7; n=11, n =26, and n =8 neurons) or licking
(Cluster 6; n="7 neurons) as displayed in Figure 6B, C using a
continuous spike density function representation. A comparison
between light-responsive and light nonresponse neurons failed
to reveal any difference (Fig. 6D,E). Before starting the operant
task, all mice had to complete the pretask training to assimilate
the cue-reward connection so that the reward was fully predict-
able. Nevertheless, in 32% (23 of 72 neurons), the response to the
predicted reward was larger than the cue response, whereas 44%
(32 of 72 neurons) showed the converse (Wilcoxon rank sum
test, & = 0.05), with only 17% (12 of 72 neurons) having no
response at reward consumption during the self-paced operant
task (Fig. 6D). Again, the distribution of response amplitudes
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measured in optogenetically identified DA neurons (4 of 16 with
[reward resp.] > [cue resp.] vs 11 of 16 with [cue resp.] >
[reward resp.]; Wilcoxon rank sum test, & = 0.05) was similar to
responses across all recorded DA neurons (Fig. 6E). Light-non-
responsive VT'A neurons of Cluster 5 can thus be considered as
putative DA neurons (n=56). The other VTA neurons (ie.,
non-Cluster 5 neurons) showed high mean firing rate (>20 Hz),
were activated during specific motor output (e.g., licking or loco-
motion), did not show a clear response at the cue and/or reward,
and are hereafter designated as non-DA neurons (n=387).
Hereafter, we mainly focused on the DA neurons (Cluster 5,
n=72), but we used non-DA neurons to perform various cross-
checks.

Tonic signals reflecting motor activity during cue-reward
interval

For DA neurons, spike bursts represent a phasic signal contrast-
ing with sustained spiking that is referred to as the tonic signal.
This distinction was formalized as “80/160 ms” criteria (Grace
and Bunney, 1984) whereby spikes with an ISI <80 ms marks
the beginning of a burst and subsequent spikes are part of the
burst until the ISI becomes >160 ms. Here we applied an adapt-
ive threshold method whereby a burst started when the ISI fell
below one-third of the mean ISI for a given neuron and ended
when two spikes were separated by an ISI longer than two-thirds
of the mean ISI. This method yields identical results as the 80/
160 rule for spike rates <5 Hz, and has the advantage to accom-
modate burst with higher frequency. Phasic activity was observed
in response to the cue and/or reward (Fig. 3B,D,E) exclusively in
the DA neuron cluster (Cluster 5 in Fig. 6A,B). In addition, vari-
ation of the tonic activity was observed for some neurons, in par-
ticular during the cue-reward interval (Fig. 7A,B). During this
period, with the cue lights on, the animal leaves the TZ and runs
to the spout to collect the reward, suggesting a possible link to
locomotion. To examine this possibility, we aligned the trials to
the speed peaks during this period. The mean normalized tonic
and pause responses of a fraction of the recorded DA neurons
(Fig. 7D) reflect the speed and acceleration modulation (Fig. 7C).
Such neural variation of DA neurons could hardly be detected in
the auROC profiles aligned to the locomotor activity in Figures 5
and 6 because, there, all speed/acceleration peaks were consid-
ered (i.e., inside and outside of the cue-reward interval).

VTA DA neuronal pause during error trials

We next analyzed the trials where the mouse did not wait 2 s in
the TZ (i.e., no cue presented) but still approached the spout and
started licking but did not get a reward. We wondered whether
we can detect a negative prediction error signal during error tri-
als (Fig. 8A-C). We compared four events compatible with both
correct and error trials: the zone entry and exit as well as the LB
onset and offset. The zone exit is a proxy for the cue (absent in
error trials), whereas the LB offset is a proxy for the reward (also
absent in error trials). We considered the neural activity along
with the behavioral parameters for all DA neurons (n=72). For a
single session, the mean distance to the zone/spout, speed, and
licks along with the cue and reward distribution, all aligned to
the LB offset, are displayed in Figure 8B. The two speed peaks
observed in correct trials are partially merged in error trials since
the mouse did not wait the 2 s required to trigger the cue. The
firing (spike rate, burst/tonic firing, and pause probability),
equally aligned to the LB offset, are shown in Figure 8C for a DA
neuron. We observed a negative error signal, associated to the
lack of reward, in the form of a significant dip in the spike rate
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and tonic firing, but an increase of the pause probability, for
error versus correct trials. The absence of burst signal in error tri-
als reflect the absence of the cue and reward. Finally, the firing
difference between correct and error trials is unlikely arising
from a lower motivation in error trials since the licking profiles
are similar in both type of trials (Fig. 8B). To check whether we
have a significant modulation of the neural signal at four key
time points of the task execution (zone entry/exit and LB onset/
offset) between correct and error trials, we resorted to auROC
profiles (Fig. 8D; see Materials and Methods) for each firing mo-
dality (spike, burst, tonic, and pause). In order to check that the
relative change was significant (i.e., that stronger/weaker
response to error than to correct trials is significant), we per-
formed a Wilcoxon two-sided rank sum test (p < 0.05) and dis-
played them in a heatplot (Fig. 8D). We also grouped neurons by
animal and sorted them by behavioral performance measured as
the median inter-reward interval (Fig. 8D) to check that the
observed modulations are not associated to the animal’s per-
formance. We found spike pause increases in 23 of 56 (41%) of
putative DA neurons and 10 of 16 (63%) of optogenetically iden-
tified DA neurons for at least one of the four events (Fig. 8D).
Discriminating neurons were not necessarily specific to a single
event (Fig. 8F). A detailed mean spike rate heatmap of the two
mains events (leave zone and LB offset) for all DA neurons is
provided in Figure 9. In particular, a negative error prediction
signal was present at the leave zone event (Fig. 9A), signaling the
absence of the cue in the error trials, but in a smaller proportion
than for the LB offset (Fig. 9B) signaling the absence of reward.
VTA DA neurons can thus exhibit an internally generated error
signal aligned to the mouse’s actions yielding a distinct activity
pattern in the face of very similar motor output.

Neuronal modulation during goal-directed actions

VTA DA neurons respond to rewarding events, but evidence is
accumulating that they are also modulated by motor parameters
(Dodson et al., 2016; Da Silva et al., 2018; Engelhard et al., 2019)
maybe in conjunction with phasic response to the reward
(Puryear et al., 2010). Indeed, we expect this overlapping encod-
ing to be goal-directed. To test this point, we first analyzed the
PSTH of each neuron around the locomotion onset, time of
maximal speed, and lick onset within and outside the cue-reward
window (schematic of their temporal localization is given in Fig.
10A). For example, alignment to the speed peak revealed a
change in firing between the cue and reward onset but not when
the alignment was made to the time of peak speed outside trials
(e.g., Fig. 10B, compare top with bottom panels). We computed
significance in a 1 s time window around the motor event for all
159 VTA neurons (Fig. 10C; see Materials and Methods). Up
versus down modulation was seen in all VTA neurons; however,
only DA neurons showed a clear modulation difference between
inside and outside of the cue-reward interval (Fig. 10D; Table 1).
For all DA neurons, we also examined the cue and reward
responses and found that 53 of 72 showed such phasic responses.
Importantly, 39 of 72 (54%) neurons encoded simultaneously
elements of motor behavior and cue-reward events (Venn dia-
gram in Fig. 10C). Such overlapping response was more pro-
nounced within the cue-reward window than outside (Fig. 10D).
The same analysis was performed excluding all motor events that
are closer than 750ms to the cue or reward leading to similar
results (Table 1). These results confirm our previous observation
for tonic and pause modulation at the speed peak between cue
onset and reward collection (Fig. 7C,D), supporting altogether
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the hypothesis that DA neuron modulation encodes motor
action when it is goal-directed.

VTA DA neuron multiplexing in cue-reward intervals

Trying to transmit multiple signals through a single communica-
tion channel is commonly referred as multiplexing in telecom-
munication. The brain, and thus the neurons, can also multiplex
(Lankarany et al., 2019). To determine how many variables con-
tribute to the spiking pattern of a single unit, we applied an
encoding approach (Fig. 11A) for each neuron using a linear-
nonlinear Poisson method, that is, a GLM with an exponential
nonlinearity and a Poisson noise (Pillow et al, 2005, 2008;
Paninski et al., 2007) (see Materials and Methods). This choice
circumvents the possibility of negative spike counts encountered
using a Gaussian noise, leading to a purely linear model, when
performing spikes encoding/decoding (Triplett and Goodhill,
2019). For a given session, we used seven variables (external
events: zone, cue, and reward; as well as motor actions: lick,
speed, acceleration, and distance to the goal) and compared the
resulting prediction to the recorded spiking through Pearson
correlations (Fig. 11B). To compare the encoding during the task
execution versus when the animal is not performing the task
(Fig. 11C; see Materials and Methods), we computed for each
neuron the correlations for all correct trials’ time intervals (rang-
ing from the zone entry to the LB offset) versus outside trials’
time intervals (excluding error trials where the task is executed
but wrongly). Only neurons recorded during session with at least
30 min of uninterrupted recording were used (n=159—118). In
addition, we excluded neurons whose correlation are below
chance level to retain only the ones displaying a significant
encoding (see Materials and Methods; in brief, we repeated
1000 the prediction analysis for temporally shuffled neural sig-
nal setting a threshold of 2.807 SDs to the shuffled distribution
and found 10 neurons below chance level; n=118—108 with 52
non-DA, 43 putative DA, and 13 opto. id. DA; see Fig. 11A). The
correlations were overall stronger for non-DA than DA neurons
(putative and opto. id. DA) inside and outside of the task.
However, for DA neurons (n=43+ 13=56), the correlations
were significantly higher inside than outside of the task execu-
tion. This effect is not context-dependent since the inside versus
outside difference for non-DA neurons (n=52) is absent.
(Figure 11D,E; Kruskal-Wallis nonparametric unpaired one-way
ANOVA with post hoc test Tukey-Kramer; KW: df=3, y* =
334, p=2.7¢-7; TK: a = 0.05, e.g.,, non-DA inside vs outside: p
(1,2) = 0.50, DA inside versus outside: p(3,4) = 0.049, non-DA
inside vs DA inside: p(1,3) = 0.016, non-DA outside vs DA out-
side: p(2,4) = 0.0003). Together, this indicates that salient,
reward-predicting events provide a time window during which
goal-directed actions are closely tracked by DA neurons. Finally,
we estimated the number of variables significantly contributing
to the spiking for each cell. In brief, we performed the encoding
analysis for each variables’ combination (Fig. 124, top; see
Materials and Methods) by setting the missing variables to their
mean value over time for each cell. The number of significantly
contributing variables was obtained by selecting the combination
with the minimum number of variables necessary to cross 90%
of the largest value among the computed maximum correlations
(see Materials and Methods; Fig. 124, bottom). We found that
DA neurons typically required three or more contributors to
explain their firing pattern based on both external events (i.e.,
cue and reward, and actions, such as licking or speed) (Fig. 12B,
top). On the other hand, non-DA neurons typically encoded two
or less variables, such as speed and acceleration (Fig. 12B, top).
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The degree of correlation to the variables is overall lower for DA
neurons than for non-DA neurons. The reasons find its roots in
the very principle of multiplexing. A single channel (the neuron’s
spiking profile) has to accommodate multiple signals and thus
divide its capacity between them. Furthermore, each variable
comes with its own noise decreasing the overall encoding
capacity. Finally, we most probably only studied a fraction of the
parameters, which are multiplexed by the DA neurons in regard
of the complexity of the task. Thus, the higher number of
encoded variables, noise, and overlooked variables could explain
the lower correlation for DA neurons compared with non-DA
neurons. This is reflected in Figure 12B where more a neuron
encodes variables, the lower the maximum correlation tends to
be on average.

To determine the relative importance of the different varia-
bles for each group of studied neurons, we computed the fraction
of correlation lost by removing one variable at the time (see
Materials and Methods). Using a temporal shuffling procedure,
we found that the computed loss in correlation of the 108 neu-
rons previously selected is beyond chance level. In addition, we
checked that the average loss in correlation is significantly differ-
ent from zero for all variables and neuronal type independently
(for non-DA and DA groups: ¢ test vs zero with Bonferroni cor-
rection, all p < 0.05). Moreover, we identified significant loss in
correlation between variables (for non-DA and DA groups:
Kruskal-Wallis nonparametric unpaired one-way ANOVA with
post hoc test Tukey-Kramer; non-DA neurons: KW: df=6, y* =
66.56, p=2.07e-12; TK: a = 0.05, e.g., acceleration vs reward: p
(1,5) = 5.5e-6, speed vs cue: p(2,7) = 0.002; DA neurons: KW:
df=6, )(2 =47.39, p=1.6e-08; TK: a = 0.05, e.g., reward vs accel-
eration: p(1,5) = 1.1e-4, reward vs speed.: p(1,5) = 5.7e-7). The
obtained fractions may not seem large at first (in general, <0.25;
see, e.g., values for individual neuron examples in Fig. 12C).
They remain reasonable since a neuron performing multiplexing
has to share its channel between the variables (e.g., four variables
would each occupy 25% of the capacity assuming equipartition).
As expected, external events (cue and reward) as well as licking
were more important for DA neurons, whereas speed and accel-
eration matter more in non-DA neurons (examples in Fig. 12C
and summary in Fig. 12D). The encoding in DA neurons was
stronger for the reward than for the cue (Fig. 12D) in accordance
to the observation that the neural response was in general stron-
ger to the reward than to the cue (Fig. 6D,E). Furthermore, a DA
neuron encoding reward collection did not necessarily also
encode licks (see example in Fig. 12C). The less marked differen-
ces in loss between variables for DA than non-DA (Fig. 12D) is
because DA neurons multiplex more variables (Fig. 12B). In DA
neurons, the loss in correlation is smaller for motor-related vari-
ables than for reward-related variables (see, e.g., Fig. 12C). From
the multiplexing point of view, this originates from the fact that
the channel capacity is not equally shared between the variables
(the tonic signal varies on a smaller scale than the burst signal).
This repartition is biologically meaningful since the most impor-
tant action to perform a correct trial are to accurately track the
cue appearance and the reward collection while the motor output
matters to maximize the reward rate. Finally, to control that the
largest contributors really matter to the encoding, we compared
the distributions of correlations when the encoder was given all
seven covariates to when the three strongest covariates were
removed (Fig. 12E; two-sample Kolmogorov-Smirnov one-sided
test, KS test statistics=0.381, p=6.1e-9). Together, the GLM
encoding confirmed that multiple variables determine the firing
pattern of VTA neurons. More variables contributed in DA
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neurons than non-DA neurons. Moreover, the correlations
between the variables and the neural signal were higher during
than outside of the task execution for DA neurons, but not for
non-DA neurons.

Discussion

Our single-unit recordings in freely moving mice show that, dur-
ing a self-paced operant task, external events and motor-related
activity are encoded simultaneously in the majority of VTA DA
neurons using distinct firing modes. The multiplexing was prom-
inent during the task execution in the interval between cue pre-
sentation and reward collection.

Cue and reward coding

A large fraction of neurons responded strongly even to a pre-
dicted reward, which is at odds with the classical view of the RPE
hypothesis (Schultz et al., 1993). However, in case of predictable
rewards, we still observed a response in line with temporal differ-
ence algorithms in a standard cue-reward experimental para-
digm (Pan et al, 2005). It is unlikely that the incomplete
disappearance of a reward response would be because of the
introduction of the TZ. Indeed, some DA neurons responded
only weakly to the reward during the pretraining phase, where
the mice were still learning the cue-reward association.
Moreover, this cannot be because of different stages of learning,
as all mice had fully associated the cue with the availability of the
reward already during the pretraining well before the self-paced
operant task was introduced. In line with the two-component
phasic DA response model (Schultz, 2016; Watabe-Uchida et al.,
2017), the persistent phasic responses to the reward could repre-
sent an early saliency signal rather than a late value coding
(Nomoto et al., 2010). Indeed, we found that the cue responses
contained early saliency (0-250 ms) as well as late value compo-
nents (250-500 ms), whereas reward responses predominantly
occurred during the early 250 ms window (Fig. 6D).

During sessions where several DA neurons were recorded
simultaneously, we found some DA neurons showing large
responses to the reward along with cue-responsive DA neurons
that only showed a very small reward response (Fig. 3D,E). This
could be explained by an extension of the classical temporal dif-
ference paradigm, namely, distributional reinforcement learning,
which has been proposed for single-unit recordings in the VTA
of mice performing tasks with probabilistic rewards (Dabney et
al., 2020). This model assumes the existence of a diverse set of
RPE channels, each of which carries a different value prediction
and constitutes a part of a distributional code. Thus, a single
reward could elicit a different response in each DA neuron since
each of them codes its own value prediction. Similarly, it has
been proposed that sensory prediction error is not represented
by individual DA neurons but rather encoded in the firing pat-
tern of many DA neurons (Stalnaker et al., 2019). Thus, the di-
versity in responses observed here would simply reflect the
necessity of a multidimensional encoding of prediction error to
handle a self-paced complex operant task.

Correct versus error trials discrimination through spiking
pause

In favor of RPE coding, we observed a robust decrease in spiking
for error trials, indicating that erroneous actions produced sig-
nificant decreases in spiking causing a pause. Previous studies
have argued that VTA DA neuron pauses represent a negative
RPE (Chang et al., 2016; Parker et al., 2016), which in our case
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may not be limited to the evaluation of the reward but also
encompass actions in general. In our operant task, the animal
would build a model of the task structure and continuously
improve future outcomes by adjusting their actions (Costa, 2011;
Nakahara and Hikosaka, 2012). Another example for DA driving
general action refinement may be found in songbirds. When pre-
sented with a distorted auditory feedback during song learning,
birds produce a similar negative performance signal in VTA DA
neurons (Gadagkar et al., 2016).

Multiplexing by VTA DA neurons

While previous studies using FSCV have argued for task-related
variables in addition to RPE coding in DA transients (Howe et al.,
2013; Collins et al., 2016; Hamid et al., 2016; Lee et al., 2018), they
fell short of identifying individual DA neurons that would encode
multiplexed information with high temporal resolution. As men-
tioned above, the phasic component of DA neuron firing may
encode cue and reward, whereas sustained changes in tonic firing in
the same cell could encode goal-oriented locomotion (Niv et al.,
2007), providing efficient means to transmit complex information
through a single channel. In the present study, we found a large
fraction of VTA DA neurons whose tonic firing and pauses are con-
comitant to the speed peak when the animals runs from the TZ to
the reward spout (Fig. 7C,D). On the other hand, frequency-division
multiplexing has been proposed for DA neuromodulation on theo-
retical grounds (Niv et al, 2007; Schultz, 2007; Hiroyuki, 2014;
Oster et al,, 2015), but experimental evidence remains scarce.

There is also evidence for functionally specialized subpopula-
tions, for example, between midbrain DA neurons of the VTA
and SNc. The latter were observed to encode kinematics regardless
of the valence of trigger of the movement (Barter et al,, 2015).
Similarly, monitoring the DA terminals in ventral and dorsal stria-
tum revealed functional specialization (Wang and Tsien, 2011;
Howe and Dombeck, 2016). In the VTA, some DA neurons pre-
dominantly encoded reward, whereas others mainly encoded
movements or both (Puryear et al., 2010; Barter et al,, 2015). One
study reported burst at the onset and offset of voluntary move-
ment in VTA DA neurons (Wang and Tsien, 2011). Finally, when
monitoring the activity of many neurons with calcium imaging in
head-fixed mice navigating through a virtual-reality environment,
spatially organized subpopulations of DA neurons were identified
that may encode information about a subset of behavioral varia-
bles in addition to encoding reward (Engelhard et al., 2019).

Using perievent analysis (Da Silva et al., 2018) and a GLM
approach (Allen et al.,, 2017), we found a mixture of external
events and goal-directed actions predicting the neural signal of
VTA DA neurons (Figs. 10-12) consistent with task-related
modulation in DA firing rates described in monkeys while per-
forming a forelimb reaching task (Schultz, 1986). This was in
contrast to VTA non-DA neurons whose firing patterns could
largely be explained by a small number of motor output (e.g.,
Fig. 12C, top). The multiplexing of VTA DA during the cue-
reward time-interval (or more generally the trial ranging from
the zone entry to the LB offset) does not encode precisely all sig-
nal, cortical neurons are perfectly fitted to encode with precision
motor events (Rickert et al., 2009), but most probably combines
them for downstream processing, such as regulating the plasticity
of cortical input to the striatum (Wang and Tsien, 2011;
Menegas et al., 2015; Howe and Dombeck, 2016). This is in line
with optogenetic manipulations where direct stimulation of VTA
GABAergic neurons shows disruption of motor output (Van
Zessen et al., 2012), whereas phasic firing of VTA DA neurons
reinforces action rather than driving motor output (Tsai et al,

J. Neurosci., September 23, 2020 - 40(39):7489-7509 - 7507

2009; Hamid et al., 2016). In SN¢ DA neurons, transient increases
in firing have been observed before action initiation and optoge-
netic stimulation promoted movement initiation (Da Silva et al.,
2018). Moreover, DA neurons tend to covary with various move-
ment parameters (Dodson et al., 2016; Engelhard et al., 2019).

Multiplexing may arise from the convergence of many motor
inputs onto VTA DA neurons, namely, inputs from motor con-
trol (M1, M2) and general locomotor regions (e.g., diagonal
band of Broca, medial septal nucleus, pedunculopontine nucleus,
and laterodorsal tegmentum) (Watabe-Uchida et al., 2012;
Fuhrmann et al., 2015; Xiao et al,, 2016) and inputs shaping the
RPE computation. The latter are believed to be more widely distrib-
uted, neurons contributing to the positive RPE signal have been
found in the striatum, ventral pallidum, subthalamic nucleus, pedun-
culopontine nucleus, and lateral hypothalamus (Tian et al.,, 2016).
For the negative error signals, the lateral habenula has emerged as
the main input (Matsumoto and Hikosaka, 2007; Tian and Uchida,
2015). Interestingly, specific inputs can differentially affect individual
firing modes in DA neurons, thereby precisely addressing a single
channel of the multiplexed signal (Floresco et al., 2003). Without
surprise, optogenetic manipulations of VTA DA neurons have
revealed strong behavioral effects, which may be explained by the
many information streams treated in parallel (Lammel et al., 2008,
2011, 2012; Beier et al., 2015; Xiao et al., 2016).

But how might the signal then be demultiplexed?
Downstream of the VTA, cell type-specific changes in the NAc
can occur during learning (Atallah et al., 2014). Indeed, D1 and
D2 receptors expressed on individual medium spiny neurons dif-
ferentially regulate synaptic plasticity of afferent glutamate trans-
mission (Shen et al., 2008; Yagishita et al., 2014), which has been
proposed to underlie reinforcement learning (Schultz, 1998). As
D1 and D2 receptors have different affinities, it makes them ideal
candidates to decode a multiplexed DA signal (Dreyer et al,
2010; Marcott et al., 2014), and differentiate between the phasic
and tonic spiking. In line with this interpretation, does closed-
loop stimulation of either D1- or D2-striatal medium spiny neu-
rons during movement execution bidirectionally shift specific
parameters of the stimulated movement (Yttri and Dudman,
2016)? Comparable mechanisms could underlie the optimization
of task-related parameters in ventral striatum during goal-
directed actions. Similar DA-dependent mechanisms have been
reported in other downstream areas of the VTA: stimulation of
VTA DA projections to PFC showed opposing effects between
phasic and tonic stimulation (Ellwood et al., 2017), and func-
tional imaging studies in humans have implicated the posterior
medial frontal cortex in learning from errors and showed that it
was dopamine and D2 receptor-dependent (Klein et al., 2007).

We provide here experimental evidence for goal-directed mul-
tiplexing in individual DA neurons for freely moving mice during
an operant task. Cue-reward signals and movement-related firing
are processed in parallel thanks to the phasic and tonic modes of
DA neurons. Each single unit is modulated in an outcome-de-
pendent manner, thus contributing to the learning of new contin-
gencies in self-paced operant settings. Our results may also have
translational implications. Presentation of salient cues to patients
with Parkinson’s disease can improve symptoms, for example, by
overcoming freezing of gait (Ginis et al., 2017; Gilat et al., 2018). If
elevated DA levels constitute an underlying mechanism, then our
data indicate that adding cues may recruit otherwise silent VTA
DA neurons (some of which encode motor actions), which are
less affected by neurodegeneration than SNc neurons (Surmeier et
al, 2017) and could partially compensate in regions where SNc
and VTA projections overlap. Another implication might be that,
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in substance abuse, where pharmacological jamming of the error
signal by the drug in addition to environmental cues could drive
the persistent consumption despite negative consequences and
lead to addiction (Keiflin and Janak, 2015; Pascoli et al., 2015).
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