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Abstract 

 
Modelling Lorenz curves (LC) for stochastic dominance comparisons is central to the 
analysis of income distribution. It is conventional to use non-parametric statistics 
based on empirical income cumulants which are in the construction of LC and other 
related second-order dominance criteria. However, although attractive because of its 
simplicity and its apparent flexibility, this approach suffers from important 
drawbacks. While no assumptions need to be made regarding the data-generating 
process (income distribution model), the empirical LC can be very sensitive to data 
particularities, especially in the upper tail of the distribution. This robustness problem 
can lead in practice to “wrong” interpretation of dominance orders. A possible remedy 
for this problem is the use of parametric or semi-parametric models for the data-
generating process and robust estimators to obtain parameter estimates. In this paper, 
we focus on the robust estimation of semi-parametric LC and investigate issues such 
as sensitivity of LC estimators to data contamination (Cowell and Victoria-Feser 
2002), trimmed LC (Cowell and Victoria-Feser 2006) and inference for trimmed LC 
(Cowell and Victoria-Feser 2003), robust semi-parametric estimation for LC (Cowell 
and Victoria-Feser 2007) selection of optimal thresholds for (robust) semi-parametric 
modelling (Dupuis and Victoria-Feser 2006) and use both simulations and real data to 
illustrate these points. 
 



 
Distributional Analysis Research Programme 

 
The Distributional Analysis Research Programme was established in 1993 with 
funding from the Economic and Social Research Council. It is located within 
the Suntory and Toyota International Centres for Economics and Related 
Disciplines (STICERD) at the London School of Economics and Political 
Science. The programme is directed by Frank Cowell. The Discussion Paper 
series is available free of charge. To subscribe to the DARP paper series, or for 
further information on the work of the Programme, please contact our Research 
Secretary, Leila Alberici on: 
 
 
Telephone:  UK+20 7955 6674 
Fax:   UK+20 7955 6951 
Email:  l.alberici@lse.ac.uk 
Web site:  http://sticerd.lse.ac.uk/DARP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Authors: Frank Cowell and Maria-Pia Victoria-Feser.  All rights reserved. Short 
sections of text, not to exceed two paragraphs, may be quoted without explicit 
permission provided that full credit, including © notice, is given to the source. 



1 Introduction

The Lorenz curve is central to the analysis of income distributions, embody-
ing fundamental intuition about inequality comparisons (Dagum 1985, Cow-
ell 2007). Ranking theorems based on Lorenz dominance and the associated
concept of stochastic dominance are fundamental to the theoretical welfare
economics of distributions. But formal welfare propositions can only be sat-
isfactorily invoked for empirical constructs if sample data can be taken as a
reasonable representation of the underlying income distributions under con-
sideration. In practice income-distribution data may be contaminated by
recording errors, measurement errors and the like and, if the data cannot be
purged of these, welfare conclusions drawn from the data can be seriously
misleading. Indeed, it has been formally shown that Lorenz and stochastic
dominance results are non-robust (Cowell and Victoria-Feser 2002). This
means that small amounts of data contamination in the wrong place can
reverse unambiguous ranking orders: the “wrong place” usually means in
the upper tail of the distribution. This is of particular interest in view of a
burgeoning recent literature that has focused on empirical issues concerning
the upper tail of both income distributions and wealth distributions (Atkin-
son 2004, Kopczuk and Saez 2004, Moriguchi and Saez 1991, Piketty 2001,
Piketty and Saez 2003, Saez and Veall 2005). So it is important to have an
approach that enables one to control for the distortionary effect of upper-tail
contamination in a systematic fashion. This paper addresses the problem by
introducing a robust method of estimating Lorenz curves and implementing
stochastic dominance criteria.
Our approach is organized as follows. We begin, in section 2, by setting

out the formal background to the Lorenz curve and the estimation prob-
lems associated with extreme values. Section 3 develops the semi-parametric
approach to modelling Lorenz curves and section 4 discusses the practical
problem of parameter choice in implementing the method. Section 5 applies
the method to UK data and section 6 concludes.

2 Background

We may set out the formal representation of the Lorenz Curve using the
following simple framework. Let F be the set of all univariate probability
distributions andX be a random variable with probability distribution F ∈ F
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and support X ⊆ R. F can be thought of as a parametric model Fθ. We shall
write statistics of any distribution F ∈ F as a functional T (F ); in particular
we write the mean as µ(F ) :=

R
xdF (x). A key distributional concept derived

from F is given by the qth cumulative functional C : F× [0, 1] 7→ X:

C(F ; q) :=

Z Q(F ;q)

x

xdF (x) = cq. (1)

where x := inf X and

Q(F ; q) = inf{x|F (x) ≥ q} = xq (2)

is the quantile functional. The importance of this concept is considerable in
the practical analysis of income distributions: for a given F ∈ F, the graph of
C(F, q) against q describes the generalized Lorenz curve (GLC); normalizing
by the mean functional µ(F ) = C(F, 1) one has the Relative Lorenz curve
(RLC) (Lorenz 1905):

L(F ; q) :=
C(F ; q)

µ(F )
(3)

The GLC and RLC are fundamental to a number of theorems drawing
welfare-conclusions from income-distribution data and other types of data.
Now consider the problem of estimating Lorenz curves. There are broadly

three approaches.

1. Nonparametric methods. Cumulative functionals can obviously be es-
timated by replacing F in (1) by the empirical distribution of a sample
of incomes x1, . . . , xn

F (n)(y) =
1

n

nX
i=1

ι (y ≤ xi)

where ι (·) is the indicator function. However, this can lead to mislead-
ing conclusions when it comes to comparing distributions in terms of
their cumulative functionals when there is data contamination (Cowell
and Victoria-Feser 2002). One way of avoiding the potential bias in-
duced by extreme data in the tails is to rely on the concept of trimmed

3



Lorenz curves: basically, F in (1) is replaced by the trimmed distribu-
tion F̃α given by:

F̃α(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < Q(F, α)

F (x)−α
1−α if Q(F,α) ≤ x < Q(F, α)

1 if x ≥ Q(F, α)

.

with α + α = α. Using F̃α instead of F (n) amounts to trimming the
sample data below Q(F,α) and above Q(F, α), and then compute em-
pirical cumulants. The theoretical aspects are handled in Cowell and
Victoria-Feser (2006).

2. Parametric modelling. Alternatively, one can estimate F using a model
(a functional form) such as the one proposed by Dagum (1977).1 The
parameters should obviously be estimated in a robust fashion (see e.g.
Victoria-Feser and Ronchetti 1994, Victoria-Feser 1995), but as has
been discussed in Cowell and Victoria-Feser (2007), a full parametric
estimation forces the data into the mould of a functional form that may
not be suitable for comparisons.

3. Semi-parametric approach. The problem that a single, tractable func-
tional form may not be appropriate for the data motivates the use of an
approach in which the data above a threshold x0 are (robustly) fitted
to a parametric distribution, while the rest of the data are treated non-
parametrically. The semi parametric approach is of particular interest
because of its ad hoc use in practical treatment of problems associated
with the upper tails of distributions. For example a Pareto tail is some-
times fitted to data in cases where data are sparse in order to provide
better estimates of upper tail probabilities or higher quantiles.

It is this third estimation method, the semiparametric approach, that
forms the focus of the present paper.

1Other models can be found in Dagum (1980), Dagum (1983) and McDonald (1984)
and an excellent overview is provided by Kleiber and Kotz (2003).
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3 Semi-parametric robust estimation of Lorenz
curves

If the range of X is bounded below — 0 is a typical value — the problems
with contaminated data occur in the upper tail of the distribution (Cowell
and Victoria-Feser 2002). A case can therefore be made for using paramet-
ric modelling only in the upper tail and estimating the parameter of the
upper-tail model robustly. The rest of the distribution is estimated using the
empirical distribution function. If no restriction is imposed on the range of
the random variable of interest, then the results below can easily be extended
accordingly.
Cowell and Victoria-Feser (2007) proposed an approach which is suitable

for any parametric model for the upper tail of the distribution. They however
choose a model that is of special relevance empirically, that is the Pareto
distribution given by

Fθ(x) = 1−
∙
x

x0

¸−θ
, x > x0 (4)

with density f(x; θ) = θx−(θ+1)xθ0. The parameter of interest is θ
2. A semi-

parametric approach will combine a non-parametric RLC for say the (1−α)%
lower incomes and a parametric RLC based on the Pareto distribution for
the α% upper incomes. Therefore x0 is determined by the 1 − α quantile
Q(F ; 1− α) defined in (2). The method for a suitable choice for x0 is given
in section 4. The full semi-parametric distribution eF of the income variable
X is eF (x) = ½ F (x) x ≤ x0

F (x0) + (1− F (x0))Fθ,x0(x) x > x0

where F could be in principle any suitable parametric distribution, but in our
case will be estimated by the empirical distribution. With x0 = Q(F ; 1−α),
we have

eF (x) = ( F (x) x ≤ Q(F ; 1− α)

1− α
h

x
Q(F ;1−α)

i−θ
= x > Q(F ; 1− α)

. (5)

For x > Q(F ; 1− α), the density ef isef(x; θ) = αθQ(F ; 1− α)θx−θ−1 .

2θ is assumed to be greater than 2 for the variance to exist.
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In particular ef(x1−α; θ) = αθ

x1−α
. (6)

The quantile functional is then obtained using (5) and is given by

Q( eF, q) = ( Q(F, q) q ≤ 1− α

Q(F ; 1− α)
¡
1−q
α

¢−1/θ
q > 1− α

Hence the cumulative income functional defining the semi-parametric GLC
becomes

C( eF ; q) =

Z Q(F,q)

x

xd eF (x)
=

⎧⎪⎪⎨⎪⎪⎩
R Q(F,q)
x

xdF (x) q ≤ 1− αR Q(F,1−α)
x

xdF (x)

+α
R Q(F ;1−α)( 1−qα )−1/θ
Q(F,1−α) xdFθ q > 1− α

=

⎧⎪⎪⎨⎪⎪⎩
R Q(F,q)
x

xdF (x) q ≤ 1− αR Q(F,1−α)
x

xdF (x)

+α θ
1−θQ(F ; 1− α)

h¡
1−q
α

¢ θ−1
θ − 1

i
q > 1− α

(7)

where x := inf X. The mean of the semi-parametric distribution is given by:

C( eF ; 1) =

Z Q(F,1−α)

x

xdF (x)− αQ(F ; 1− α)
θ

1− θ

= c1−α − αx1−α
θ

1− θ
(8)

= µ( eF )
The semi-parametric RLC is simply

L( eF ; q) = C( eF ; q))
µ( eF ) (9)

(7) needs obviously to be estimated. F is replaced by the empirical distri-
bution F (n) and an estimate for α will be discussed in Section 4. To estimate
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the Pareto model, hence θ, for the upper tail of the distribution, one can use
the maximum likelihood estimator (MLE). Unfortunately, the MLE for the
Pareto model is known to be very sensitive to data contamination (Victoria-
Feser and Ronchetti 1994). This is also the case for other models such as
Dagum (1977) model (see Victoria-Feser 1995). Cowell and Victoria-Feser
(2007) propose to use a robust estimator in the class ofM-estimators (Huber
1981). For a sample of n observations xi, a general M-estimator is defined
as the solution in θ of

1

n

kX
i=1

ψ (xi; θ) = 0

with some (mild) conditions on the function ψ. This function is chosen
so that the resulting estimator is consistent at the model Fθ and also that
it is robust to slight model deviations (for a discussion, see e.g. Hampel,
Ronchetti, Rousseeuw, and Stahel 1986). The latter condition is satisfied
if the ψ-function is bounded, which is the case for so-called weighted MLE
(WMLE), i.e.

1

n

kX
i=1

w (xi; θ) [s (zi; θ)− a(θ)] = 0 (10)

where w (x; θ) is a weight function with value in [0, 1] insuring the robustness
of the estimator, s (x; θ) = ∂/∂θ log f(x; θ) is the score function and a(θ)
is a consistency correction factor3. Cowell and Victoria-Feser (2007) choose
the optimal B-robust estimators (OBRE) (Hampel et al. 1986), a robust
estimator with minimal asymptotic covariance matrix (see e.g. for Cowell
and Victoria-Feser 2007 details).
The resulting semi-parametric GLC (and RLC) estimates are hence ro-

bust to data contamination. They can be used for robust welfare comparison.
Cowell and Victoria-Feser (2007) also provide the asymptotic covariances of
the estimators for inference. In section 5, an example will illustrate the
performance of robust semi-parametric estimators of RLC and GLC.

4 Choosing α

The choice of the proportion α of data in the upper tail to be fitted to the
Pareto model, or equivalently the threshold x0 above which the data are fitted

3The correction factor does not need to be estimated simultaneously, see below.
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to a Pareto model, is not a problem specific to income distribution analysis.
It has attracted and still attracts the attention of researchers in domains such
as finance, insurance, engineering, or environmental sciences. This problem
falls within the general heading of extreme value distributions (for a general
reference, see e.g. Embrechts et al. 1997). To estimate the threshold, a com-
promise should be sought between bias and variance: choosing a threshold
too close to the central data will cause bias in the Pareto model estimator
since only the tail can be assumed to be Pareto distributed, and selecting too
extreme a threshold will yield large variances for the estimator since it will
be based on a small sample. A common practice is to use the Pareto quantile
plot (see e.g. Beirlant, Vynckier, and Teugels 1996). Indeed, rearranging (4)
one gets

log

µ
x

x0

¶
= −1

θ
log (1− Fθ(x)) , x > x0 (11)

showing that there is a linear relationship between the log of the x > x0 and
the log of the survival function. This relationship was actually found empiri-
cally by Pareto (1896) and led him to the construction of his model (see also
Dagum 1983). Let x∗[i], i = 1, . . . , k, be the ordered largest k observations, so
that x∗[i] = Q(F ∗(n); i/(k + 1)), with F ∗(n) the empirical distribution of x∗[i].
The empirical counterpart of (11) is the Pareto quantile plot

log

µ
Q(F ∗(n); i/(k + 1))

x0

¶
= −1

θ
log

µ
k + 1− i

k + 1

¶
, i = 1, . . . , k. (12)

Therefore, given a sample of n income data xi, 1, . . . , n and by letting x[i] de-
note the ith order statistic, the plot of log

¡
x[i]
¢
versus− log ((n+ 1− i)/(n+ 1)),

i = 1, . . . , n is the Pareto quantile plot that is used to detect graphically the
quantile x[i] above which the Pareto relationship is valid, i.e. the point above
which the plot yields a straight line. We note that there is a clear relationship
between x0 and k in that k =

Pn
i=1 ι(x[i] ≥ x0).

More formally, a general approach in determining k is the minimization of
an estimate of the asymptotic mean squared error (AMSE) of the estimator of
θ. If a classical estimator such as the MLE is chosen, then the determination
of k can be influenced by extreme data in the upper tail (see Dupuis and
Victoria-Feser 2006). Note that here extreme is used relatively to the Pareto
model: if it is assumed to fit the upper tail, then extreme data represent
deviations for this assumption that can appear in the Pareto quantile plot as
data that do not fit the straight line.
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In order to choose k, or equivalently x0 in a robust fashion, Dupuis
and Victoria-Feser (2006) use another criterion, namely a prediction er-
ror criterion that is estimated robustly (see also Ronchetti and Staudte

1994), named the RC-criterion. Let Yi = log
³
x∗[i]/x0

´
, i = 1, . . . , k, Ŷi =

−1/θ̂ log [(k + 1− i)/(k + 1)] , i = 1, . . . , k where θ̂ is an estimator of θ, and

bσ2i =var(Y i) =
iX

j=1

1bθ2(k − i+ j)2

the (estimated) RC-criterion is given by

CR (x0) =
1

n

nX
i=1

ŵ2i

Ã
Yi − Ŷi
σi

!2
+
2

n

nX
i=1

1

σ2i
cov

h
ŵiYi, ŵiŶi

i
−1
n

nX
i=1

1

σ2i
var [ŵiYi]

(13)
where each ŵi, 0 ≤ ŵi ≤ 1, is the fitted weight of the ith observation, provided
by a robust fit of the Pareto model, using aWMLE given in (10). For suitable

estimates of cov
h
ŵiYi, ŵiŶi

i
and var[ŵiYi], see Dupuis and Victoria-Feser

(2006). The effect of extreme observations on the calculation of CR (x0)
is controlled by the weights ŵi. The criterion is minimized over possible
values for x0. Obviously, at the minimum, we have that Yi ≈ Ŷi, hence
log
³
x∗[i]/x0

´
≈ −1/θ̂ log [(k + 1− i)/(k + 1)].

For the choice of the WMLE, Dupuis and Victoria-Feser (2006) propose
an estimator which downweights observations that are “far” from the Pareto
model in terms of the size of the residuals with respect to the Pareto regres-
sion model, i.e.

w(x∗[i]; θ) =

½
1 if |ri| ≤ c

c/|ri| if |ri| > c
(14)

with ri = (Yi−Ŷi)/σi and c is a constant regulating the amount of robustness
(for more details, see Dupuis and Victoria-Feser 2006).
In the following section, an empirical example will illustrate the method.

5 Data analysis

Let us put the semiparametric method into practice using a typical income
distribution. The data for our illustration are for household disposable in-

9



0 1 2 3 4

6.
4

6.
6

6.
8

7.
0

7.
2

−log(1−F(X))

lo
g(

X
)

MLE
c=2.5
c=1.25

 

Figure 1: Pareto regression plot. Fitted regression line based on classical and
robust $RC-$ criteria added. Only incomes above 600 are shown for clarity.

comes in the UK, 1981 (n = 7470)4.
A Pareto quantile plot of the data together with fitted regression lines are

given in Figure 1. The fits are provided by WMLE estimates with residual
weights (14) for two values of c as well as the classical MLE. The optimal
values for x0 are obtained using CR (x0) in which the weights ŵi and Ŷi are
obtained using the different estimators. For the MLE, ŵi = 1, ∀i. The fit
for the MLE (and hence the corresponding optimal value for x0) are not
adequate, probably because of a few very extreme observations. Both robust
fits seem on the other hand appropriate. For the latter, the optimal value
of x0 corresponds to k = 22 selected upper incomes (k = 32 for the MLE).
Figure 2 shows observations above the robustly selected threshold x0 = 803.3
and arrows indicate the downweighted observations. The striking feature

4The data set is Households Below Average Income which, despite its name, actu-
ally provides a representative sample of households over the whole income range — see
Department of Social Security 1992 for details.
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is that not only the largest observations are downweighted, but also the
smallest.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

6.
7

6.
8

6.
9

7.
0

7.
1

7.
2

−log(1−F(X))

lo
g(

X
)

2nd and 3rd observations

Figure 2: Pareto quantile plot of income data above robustly chosen thresh-
old. Downweighted observations (with WMLE, c = 1.25) are identified.

To estimate the Pareto parameter, we hence choose k = 22. The value
for the MLE is θ̂ = 17.5 (with standard error 3.73) and the one for the
OBRE with c = 25 is θ̂ = 76.65 (17.62). We use these two estimates to
build estimated RLC (see (7) and (8)). These curves (corresponding to the
0.5% top incomes) are presented in Figure 3 together with the empirical
RLC estimate. Even if it is small, one can see a difference between the three
estimates, in that the MLE follows the empirical RLC up to roughly the 0.1%
of the top distribution, while the OBRE leads to an estimated RLC showing
less inequality on the entire 0.5% top range.

5One can note that a different robust estimator is used to estimate the Pareto para-
meter. For the choice of k a WMLE based on residual weigths is a reasonnable choice,
whereas the more efficient robust estimator (OBRE) for the Pareto parameter given a
value for k is also a reasonnable choice.
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Figure 3: RLC (top 0.5%) estimates (empirical and semi-parametric with
MLE and OBRE with c = 2) of the UK income data

6 Conclusion

Using ranking criteria to compare distributions is of immense theoretical
advantage and practical convenience. In welfare economics they provide a
connection between the philosophical basis of welfare judgments and elemen-
tary statistical tools for describing distributions. In practical applications
they suggest useful ways in which simple computational procedures may be
used to draw inferences from collections of empirical distributions.However,
since it has been shown that second order rankings are not robust to data
contamination, especially in the upper tail of the distribution, it is important
to provide the empirical researcher with computational devices which can be
used to draw inferences about the properties of distributional comparisons
in a robust fashion.
One way forward might be to estimate Lorenz curves through an appro-

priately specified parametric model and to estimate the model parameters
robustly. However, this approach is too restrictive because tractable para-
metric models are unlikely to be sufficiently flexible to capture some of the
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essential nuances of Lorenz comparisons. For example, in order for Lorenz
curves to be able to cross, a parametric model would usually need to incor-
porate at least three parameters, which itself may lead to serious estimation
complications.
The method proposed here is a semi-parametric approach in that the up-

per tail of the distribution is robustly fitted using the Pareto model and a
semi-parametric Lorenz curve is then built which combines non-parametric
cumulative functionals and estimated ones. Simulated examples have proved
not only that a few extreme data can reverse the ranking order, but also that
the robust parametric Lorenz curve restores the initial ordering. Inference
can be made for comparing two distributions even in the semi-parametric set-
ting, by extending the general setting provided in Cowell and Victoria-Feser
(2003). For variances too, a robust approach provides reasonable estimates
when there is contamination.
Finally note that although we took the Pareto distribution as a suitable

parametric model for the upper tail, and although we considered the (most
common) case of a range of definition for the variable bounded below, our
results can be extended to other models and/or to a two-tail modelling in a
relatively straightforward manner.
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