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THE CRITICAL TEMPERATURE FOR THE ISING MODEL ON

PLANAR DOUBLY PERIODIC GRAPHS

DAVID CIMASONI AND HUGO DUMINIL-COPIN

Abstract. We provide a simple characterization of the critical temperature for the Ising
model on an arbitrary planar doubly periodic weighted graph. More precisely, the critical
inverse temperature β for a graph G with coupling constants (Je)e∈E(G) is obtained as the
unique solution of a linear equation in the variables (tanh(βJe))e∈E(G). This is achieved by
studying the high-temperature expansion of the model using Kac-Ward matrices.

1. Introduction

1.1. Motivation. The Ising model is probably one of the most famous models in statistical
physics. It was introduced by Lenz in [26] as an attempt to understand Curie’s temperature
for ferromagnets. It can be defined as follows. Let G be a finite graph with vertex set V (G)

and edge set E(G). A spin configuration on G is an element σ of {−1,+1}V (G). Given a
positive edge weight system J = (Je)e∈E(G) on G, the energy of such a spin configuration σ
is defined by

H (σ) = −
∑

e={u,v}∈E(G)

Jeσuσv.

Fixing an inverse temperature β ≥ 0 determines a probability measure on the set Ω(G) of
spin configurations by

µG,β(σ) =
e−βH (σ)

ZJ
β (G)

,

where the normalization constant

ZJ
β (G) =

∑

σ∈Ω(G)

e−βH (σ)

is called the partition function of the Ising model on G with coupling constants J .

In this article, we focus on planar locally-finite doubly periodic weighted graphs (G , J),
i.e. weighted graphs which are invariant under the action of some lattice Λ ≃ Z⊕ Z. In such
case, G /Λ =: G is a finite graph embedded in the torus T

2 = R
2/Λ. By convention G will

always denote a doubly periodic graph embedded in the plane, while G will denote a graph
embedded in the torus. Ising probability measures can be constructed on G as limits of finite
volume probability measures [29]. In particular, the Ising measure at inverse temperature β
on G with + boundary conditions will be denoted by µ+

G ,β.

We further assume that G (or equivalently G) is non-degenerate, i.e. that the complement of
the edges is the union of topological discs. A Peierls argument [32] and the GKS inequality [15,
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20] classically imply that the Ising model on G exhibits a phase transition at some critical
inverse temperature βc ∈ (0,∞):

• for β < βc, µ
+
G ,β(σv) = 0 for any v ∈ V (G ),

• for β > βc, µ
+
G ,β(σv) > 0 for any v ∈ V (G ).

This article provides a computation of the critical inverse temperature for arbitrary non-
degenerate doubly periodic weighted graphs (G , J) as a solution of an algebraic equation in
the variables xe = tanh(βJe).

1.2. High-temperature expansion of the Ising model. The result will be best stated
in terms of the high-temperature expansion of the Ising model, which we present briefly now.
As observed by van der Waerden [35], the identity

exp(βJeσuσv) = cosh(βJe)(1 + tanh(βJe)σuσv)

allows to express the partition function as

ZJ
β (G) =

( ∏

e∈E(G)

cosh(βJe)
) ∑

σ∈Ω(G)

∏

e=[uv]∈E(G)

(1 + tanh(βJe)σuσv)

=
( ∏

e∈E(G)

cosh(βJe)
)
2|V (G)|

∑

γ∈E (G)

∏

e∈γ

tanh(βJe),(1)

where E (G) denotes the set of even subgraphs of G, that is, the set of subgraphs γ of G such
that every vertex of G is adjacent to an even number of edges of γ. As a consequence, the
Ising partition function is proportional to Z(G,x) :=

∑
γ∈E (G) x(γ), where x(γ) =

∏
e∈γ xe

and xe = tanh(βJe). This is called the high-temperature expansion of the partition function.

1.3. Statement of the result. Let (G , J) be a planar non-degenerate locally-finite doubly
periodic weighted graph. Recall that G = G /Λ is naturally embedded in the torus. Let E0(G)
denote the set of even subgraphs of G that wind around each of the two directions of the
torus an even number of times. Set E1(G) = E (G) \ E0(G).

Theorem 1.1. The critical inverse temperature βc for the Ising model on the weighted graph

(G , J) is the unique solution 0 < β <∞ to the equation

(2)
∑

γ∈E0(G)

x(γ) =
∑

γ∈E1(G)

x(γ),

where x(γ) =
∏

e∈γ xe and xe = tanh(βJe).

Note that the sign of
∑

γ∈E0(G) x(γ) −
∑

γ∈E1(G) x(γ) indicates if the system is in the dis-

ordered phase (when the quantity is positive) or ordered phase (when it is negative).

Let us briefly summarize the strategy of the proof. Our main tool is the so-called Kac-

Ward matrix associated to the weighted graph (G, J) and to a pair of non-vanishing complex
numbers (z, w), see Definition 1 below. We show that the free energy per fundamental domain
can be expressed in terms of the Kac-Ward determinants (Lemma 4.3). Using exponential
decay of the spin correlations in the disordered phase [1] together with a duality argument
(Theorem 4.4), the free energy is then shown to be twice differentiable in each variable Je
at any β 6= βc. The proof is completed by observing that Equation (2) is equivalent to
the vanishing of the Kac-Ward determinant at (z, w) = (1, 1), which translates into the free
energy not being twice differentiable in some variable Je.
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J1 J2

J3 J4

Figure 1. The graphs of Examples 1, 2, 3 and 5.

The main technical difficulty is to make sure that these Kac-Ward determinants never
vanish for z and w of modulus 1, except at (z, w) = (1, 1). This is achieved by showing that
these determinants are proportional to the Kasteleyn determinants of an associated bipartite
graph (Theorem 3.1), a graph first considered by Fan-Wu [14] (see also [11]). One can then
harness [21] to show that the associated spectral curve is a special Harnack curve, and the
desired statement follows (Lemma 4.2).

This connection between the Ising model and dimers on a bipartite graph is interesting on
its own. It was used recently by Dubédat to show the exact bozonisation of the Ising spin-
correlations [11]. We give some other applications in the body of the text, and refer to [8] for
further ones. Let us also mention that Kac-Ward matrices are related to s-holomorphicity and
fermionic observables introduced in [7] (see [12] for an overview on the subject). Therefore,
this identification of the critical inverse temperature using the Kac-Ward matrices opens new
grounds in the understanding of universality and conformal invariance for the Ising model on
arbitrary doubly periodic graphs.

We would like to highlight the fact that in the case of doubly periodic coupling constants
on G = Z2, Theorem 1.1 was proved independently by Li [27] (although the statement is
formulated quite differently). The proof in [27] relies on the paper [28] of the same author.
The main ingredient is a sequence of transformations mapping the Ising model on Z

2 to the
dimer model on the associated Fisher graph, and ultimately to a dimer model on a bipartite
graph using [11]. In our strategy, the Kac-Ward matrices allow us to work on the original
graph almost throughout, avoiding in particular the use of the Fisher correspondence.

1.4. A corollary. A consequence of the proof is the following corollary, which identifies the
critical point as being the unique singularity of the free energy per fundamental domain, see
(6) for the definition.

Corollary 1.2. The free energy per fundamental domain is analytic in β for any β 6= βc.

1.5. Some examples. We now illustrate Theorem 1.1 with several examples.

Example 1. Consider the square lattice with coupling constants Je = 1. It can be represented
by the toric graph illustrated to the left of Figure 1. The equation of Theorem 1.1 then reads
1 = 2x+ x2, where x = tanh(β). This leads to the well-known value

βc = tanh−1(
√
2− 1) =

1

2
log(

√
2 + 1).

This value was first predicted in [23] and proved in [31]. Several alternative derivations have
been presented, see e.g. [1, 3, 4].

Example 2. Consider now the hexagonal lattice with coupling constants Je = 1 (see Figure 1).
This time, the equation reads 1 = 3x2, leading to

βc = tanh−1(
√
3/3) =

1

2
log(2 +

√
3).
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eθe

Figure 2. An edge e of an isoradial graph, the associated rhombus, and the
half-rhombus angle θe.

Example 3. Similarly, the equation associated to the homogeneous triangular lattice as rep-
resented in Figure 1 is 1 + x3 = 3x+ 3x2. This leads to

βc = tanh−1(2−
√
3) =

1

2
log(

√
3).

Example 4. More generally, consider a doubly periodic graph G isoradially embedded in the
plane, i.e. embedded in such a way that each face is inscribed in a circle of radius one, with
the circumcenter in the closure of the face. To each edge e, associate the coupling constant

Je =
1

2
log

(
1 + sin θe
cos θe

)
,

where θe ∈ (0, π/2) is the half-rhombus angle associated to the edge e, as illustrated in
Figure 2.

It follows from [10, Theorem 4.7] (see also [5]) that
∑

γ∈E0(G) x(γ)−
∑

γ∈E1(G) x(γ) vanishes

for β = 1. By Theorem 1.1, this is the critical temperature for the isoradial graph G . The
cases with constant angles θe = π/4, π/3 and π/6 correspond to the three examples above.
Let us mention that the class of isoradial graphs has been extensively studied in order to
understand universality; see [2, 5, 6, 7].

Example 5. Let us conclude with one last example which does not belong to the class of
isoradial weighted graphs. Let G denote the 2 × 1 square lattice with arbitrary coupling
constants J1, J2, J3, J4 as illustrated in the right-hand side of Figure 1. Then, the critical
inverse temperature is given by the equation

1 + x3x4 = x3 + x4 + x1x2 + x1x2x3 + x2x3x4 + x1x2x3x4

where xi = tanh(βJi) for i = 1, 2, 3, 4.

Organization of the article. The next section defines the Kac-Ward matrices and recalls
several of their properties. Section 3 presents a connection between Kac-Ward and Kaste-
leyn matrices, as well as consequences for the Ising model. Section 4 contains the proofs of
Theorem 1.1 and Corollary 1.2.

Acknowledgments. The second author was supported by the ANR grant BLAN06-3-134462,
the ERC AG CONFRA, as well as by the Swiss FNS. The authors would like to thank Yvan
Velenik for very interesting comments and references. The authors also thank Zhongyang Li,
Béatrice de Tillière and Cédric Boutillier for helpful discussions.
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e e′

α(e, e′)

Figure 3. The angle α(e, e′) ∈ (−π, π).

2. The Kac-Ward matrices

The aim of this section is to review the definition and main properties of the Kac-Ward
matrices associated with graphs embedded in surfaces. To simplify the present exposition,
we shall only treat the case of toric graphs with straight edges, referring the reader to [9] for
the general case and the proofs.

Let us start with some general terminology and notation. Given a weighted graph (G,x),
let E = E(G) be the set of oriented edges of G. Following [33], we shall denote by o(e) the
origin of an oriented edge e ∈ E, by t(e) its terminus, and by ē the same edge with the
opposite orientation. By abuse of notation, we shall write xe = xē for the weight associated
to the unoriented edge corresponding to e and ē.

Now, assume that G is embedded in the oriented torus T
2 so that its edges are straight

lines and its faces are topological discs. Fix a character ϕ of the fundamental group of T2,
that is, an element of

Hom(π1(T
2),C∗) = H1(T2;C∗),

the first cohomology group of T2 with coefficients in C
∗.1

Note that the choice of two oriented simple closed curves γx, γy representing a basis of
H1(T

2;Z) determines an isomorphism H1(T2;C∗) ≃ (C∗)2. Then, such a character simply
corresponds to a pair of non-zero complex numbers (z, w). Let us now assume that the curves
γx, γy avoid the vertices of G and intersect its edges transversally. Then, a natural 1-cocycle
representing the class (z, w) is given by the map ϕ : E → C

∗ defined by ϕ(e) = zγx·ewγy ·e,
where · denotes the intersection form. In words, γ · e gathers a +1 (resp. −1) each time γ
and e intersect in such a way that (γ, e) define the positive (resp. negative) orientation on
T
2.

Definition 1. Let Tϕ denote the |E| × |E| matrix defined by

Tϕ
e,e′ =

{
ϕ(e) exp

(
i
2α(e, e

′)
)
xe if t(e) = o(e′) but e′ 6= ē;

0 otherwise,

where α(e, e′) ∈ (−π, π) denotes the angle from e to e′, as illustrated in Figure 3. We shall
call the matrix I − Tϕ the Kac-Ward matrix associated to the weighted graph (G,x), and
denote its determinant by Pϕ(G,x). When ϕ is identified with a pair of complex numbers
(z, w), we shall simply denote the determinant by P z,w(G,x).

1Recall that in the present context, a 1-cochain is a map ϕ : E → C
∗ such that ϕ(ē) = ϕ(e)−1 for all e ∈ E.

Such a map is called a 1-cocycle if for each face f of G ⊂ T
2, ϕ(∂f) :=

∏
e∈∂f ϕ(e) = 1. Multiplying each

ϕ(e) such that o(e) = v by a fixed λv ∈ C
∗ results in another 1-cocycle, which is said to be cohomologous to

ϕ. Equivalence classes of 1-cocycles define the first cohomology group H1(T2;C∗).
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Expanding this determinant, see [9], leads to an expression of the form

(3) Pϕ(G,x) =
∑

γ∈Γ(G)

(−1)ǫ(γ)x(γ)ϕ(γ),

where ǫ(γ) ∈ {0, 1} is some sign and elements of Γ(G) are unions of closed paths in G that
never backtrack and pass through each edge of G at most twice, and if so, in opposite direc-
tions. This shows that Pϕ(G,x) does not depend on the choice of the 1-cocycle representing
the cohomology class ϕ ∈ H1(T2;C∗). Since γ belongs to Γ(G) if and only if γ̄ does, we also

immediately obtain that if ϕ belongs to H1(T2;S1) ≃ S1×S1 and x to R
E(G), then Pϕ(G,x)

is a real number.

As detailed in [9], a closer analysis of the sign ǫ(γ) leads to the following results. Fix two
oriented simple closed curves γx, γy as above, thus identifying H1(T2;C∗) with (C∗)2 and
H1(T

2;Z2) with (Z2)
2. For α ∈ H1(T

2;Z2), let Zα denote the corresponding partial partition
function, that is

Zα =
∑

γ∈E (G),[γ]=α

x(γ),

where the sum ranges over all paths with homology class equal to α.

Proposition 2.1 ([9]). We have the following equalities:

P 1,1(G,x) = (Z00 − Z10 − Z01 − Z11)
2, P−1,1(G,x) = (Z00 + Z10 − Z01 + Z11)

2,

P 1,−1(G,x) = (Z00 − Z10 + Z01 + Z11)
2, P−1,−1(G,x) = (Z00 + Z10 + Z01 − Z11)

2.

In particular, this shows that for z, w = ±1, P z,w(G,x) is the square of a polynomial in the
weight variables x. By construction, the constant coefficient (with respect to the variables x)

of the polynomial P z,w(G,x) is equal to 1. Denoting by P z,w(G,x)1/2 the square root of the
polynomial with constant coefficient +1, we get the following formula.

Theorem 2.2 ([9]). The Ising partition function for a toric weighted graph (G,x) is given

by

Z(G,x) =
1

2

(
− P 1,1(G,x)1/2 + P 1,−1(G,x)1/2 + P−1,1(G,x)1/2 + P−1,−1(G,x)1/2

)
.

3. Relation to dimers and consequences

The aim of this section is to show that the Kac-Ward determinant Pϕ(G,x) is proportional
to the Kasteleyn determinant of an associated bipartite weighted graph (CG, y) (see Theo-
rem 3.1 below). By Kenyon and Okounkov’s [21, Theorem 1], it follows that the curve defined
by the zero-set of Pϕ(G,x) is a (simple) Harnack curve. It also implies some new avatar of
Kramers-Wannier duality (Corollary 3.3).

Let (G,x) ⊂ T
2 be a weighted graph, and let us parametrize xe ∈ (0, 1) by xe = tan(θe/2)

with θe ∈ (0, π/2). Following Fan-Wu [14] and Dubédat [11], let us consider the associated
weighted graph (CG, y) ⊂ T

2 obtained from G as follows. Replace each edge e of G by a
rectangle with the edges parallel to e having weight sin(θe) while the other two edges have
weight cos(θe). In each corner of each face of G ⊂ T

2, we now have two vertices; join them
with an edge of weight 1. This is illustrated in Figure 4. Note that since the torus is orientable,
the graph CG is bipartite: its vertices can be split into two sets B ⊔W (say, black and white
vertices) such that no edge of CG joins two vertices of the same group.
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G CG

tan(θ/2)
sin(θ)

sin(θ)

cos(θ) cos(θ)

1

1

1

1

Figure 4. The weighted bipartite graph CG associated to the weighted graph G.

Recall that a Kasteleyn orientation [17, 18, 19] on a bipartite graph C embedded in an
orientable surface can be understood as a map ω : E(C) → {±1} such that for each face f of
C,

(δω)(f) :=
∏

e∈∂f

ω(e) = (−1)
|∂f |
2

+1.

The associated Kasteleyn operator K(C, y) : CB → C
W can be defined by its matrix elements:

for w ∈W and b ∈ B, set

Kwb =
∑

e:w→b

ω(e)ye,

the sum being over all edges of C joining w to b. If C ⊂ T
2 is endowed with a map

ϕ : E(C) → C
∗ (for example, a 1-cocycle), then one can extend this definition to an op-

erator Kϕ(C, y) : CB → C
W by multiplying the coefficient corresponding to the edge e by

ϕ(e), where e is oriented from the white to the black vertex.

The main result of this section is the following.

Theorem 3.1. For any weighted graph (G,x) ⊂ T
2, there is a Kasteleyn orientation on

CG ⊂ T
2 such that

Pϕ(G,x) = 2−|V (G)|
∏

e∈E(G)

(1 + x2e) det(K
ϕ(CG, y))

for all ϕ ∈ H1(T2;C∗) ≃ (C∗)2.

Proof. The strategy of the proof is to gradually transform the Kac-Ward matrix for (G,x)
into the Kasteleyn matrix Kϕ(CG, y) while keeping track, at each step, of the effect of the
transformation on the determinant. Let us begin with some notation. We shall write L (E)
for the complex vector space spanned by the set E of oriented edges of G. Obviously, E

can be partitioned into E =
⊔

v∈V (G)Ev, where Ev contains all oriented edges e with origin

o(e) = v. Now, let us cyclically order the elements of Ev by turning counterclockwise around
v. (As T2 is orientable, this can be done in a consistent way.) Given e ∈ Ev, let R(e) denote
the next edge with respect to this cyclic order, as illustrated in Figure 5. This induces an
automorphism R of L (E). Also, let J denote the automorphism of L (E) given by J(e) = ē.
Finally, we shall write x for the automorphism of L (E) given by x(e) = xe e, and similarly
for any weight system and for ϕ.
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e

R(e)

R2(e)R3(e)

...

R−1(e)

βe

Figure 5. The endomorphism R of L (E), and the angle βe.

Let Succ ∈ End(L (E)) be defined as follows: if e is an oriented edge with terminus t(e) = v,
then

Succ(e) = ϕ(e)xe
∑

e′∈Ev

ω(e, e′) e′,

where ω(e, e′) = exp( i2α(e, e
′)) for e′ 6= ē ∈ Ev with α(e, e′) as in Figure 3, and ω(e, ē) = −i.

Also, let T ∈ End(L (E)) be the endomorphism given by T = Succ + iJϕx. By definition,
the Kac-Ward matrix is equal to I − T . Now, consider the matrix

A = (I − T )(I + iJϕx) = I − Succ + Com ,

where

Com(e) = −iϕ(e)xeT (ē) = −ix2e
∑

e′∈Ev
e′ 6=e

ω(ē, e′) e′

if e has origin o(e) = v. Since

det(I + iJϕx) =
∏

e∈E

det

(
1 iϕ(ē)xe

iϕ(e)xe 1

)
=

∏

e∈E

(1 + x2e),

we get the equality

(4) Pϕ(G,x) = det(I − T ) =
∏

e∈E

(1 + x2e)
−1 detA.

We now focus on the computation of detA. We shall transform the matrix A by multiplying
it to the left with some well-chosen matrix N , whose determinant is easy to compute. Let
Q ∈ End(L (E)) be defined by

Q(e) = exp
(
i
2βe

)
e,

where βe = π − α(J(R(e)), e) ∈ (0, 2π) denotes the angle between e and R(e) (see Figure 5).
Obviously, the endomorphism N := I − RQ decomposes into N =

⊕
v∈V (G)Nv with Nv ∈

End(L (Ev)), and one easily computes

detNv = 1−
∏

e∈Ev

exp
(
i
2βe

)
= 2.
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Hence, the determinant of N is 2|V (G)|. Now, let us compute the composition NA. If e has
terminus t(e) = v, then

NSucc(e) = (I −RQ)ϕ(e)xe
∑

e′∈Ev

ω(e, e′) e′

= ϕ(e)xe
∑

e′∈Ev

(
ω(e, e′)− ω(e,R−1(e′)) exp

(
i
2βR−1(e′)

))
e′

= −2iϕ(e)xe ē.

Therefore, we have the equality NSucc = −2iJϕx. Similarly, given e with origin o(e) = v,

NCom(e) =(I −RQ)(−i)x2e
∑

e′∈Ev\{e}

ω(ē, e′) e′

=− ix2e
∑

e′∈Ev\{e,R(e)}

(
ω(ē, e′)− ω(ē, R−1(e′)) exp

(
i
2βR−1(e′)

))
e′

− ix2e
(
ω(ē, R(e))R(e) − ω(ē, R−1(e)) exp

(
i
2βR−1(e)

)
e
)

=− x2e(I +RQ)(e).

These two equalities lead to

NA = N(I − Succ + Com)

= (I −RQ) + 2iJϕx − (I +RQ)x2

= (1− x2) + 2iJϕx −RQ(1 + x2).

Since the determinant of N is 2|V (G)|, the equality displayed above together with Equation (4)
give

(5) Pϕ(G,x) = 2−|V (G)|
∏

e∈E(G)

(1 + x2e) detM,

where M is given by

M =
1− x2

1 + x2
+ iJϕ

2x

1 + x2
−RQ = cos(θ) + iJϕ sin(θ)−RQ,

using the paramatrization xe = tan(θe/2) of the weights.

The final step is now to show that this matrix M is conjugate to the Kasteleyn matrix
Kϕ(CG, y). The theorem will then follow from Equation (5). Let ψB : E → B (resp. ψW : E →
W ) denote the bijection mapping each oriented edge e of G to the unique black (resp. white)
vertex of CG immediately to the right (resp. left) of e, as illustrated below. Observe that the
three maps ψB ◦ ψ−1

W , ψB ◦ J ◦ ψ−1
W and ψB ◦ R ◦ ψ−1

W associate to a fixed w ∈ W the three
black vertices of CG adjacent to w.

e = ψ−1

W
(w)

R(e) ψB(R(e))

ψB(e)

ψB(J(e))w
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Therefore, the operator

K̃ϕ = (ψB ◦M ◦ ψ−1
W )∗ : CB → C

W

is given by the coefficients

K̃ϕ
wb =





cos(θe) if the edge (w, b) is perpendicular to e ∈ E;

ϕ(e)i sin(θe) if (w, b) is to the left of e ∈ E;

− exp
(
i
2βe

)
if (w, b) is in the “corner” of e and R(e);

0 if w and b are not adjacent in CG.

This is illustrated below.

e

R(e)

ϕ(e)i sin(θe)

ϕ(e)−1i sin(θe)
cos(θe)

cos(θe)

− exp
(
i

2
βe
)

In other words, K̃ϕ is precisely the Kasteleyn operator of (CG, y) associated to the 1-cocycle
ϕ̃ : E(CG) → C

∗ given by

ϕ̃(w, b) =

{
ϕ(e) if (w, b) runs parallel to e ∈ E;

1 else,

and to the map ω̃ : E(CG) → S1 ⊂ C
∗ given by

ω̃(w, b) =





1 if (w, b) is perpendicular to e ∈ E;

i if (w, b) is to the left of e ∈ E;

− exp
(
i
2βe

)
if (w, b) is in the corner of e and R(e).

Since the 1-cocycles ϕ and ϕ̃ induce the same class in H1(T2;C∗), it only remains to handle
the map ω̃. Extend it to a 1-cochain ω̃ : E(CG) → S1 by setting ω̃(b, w) = ω̃(w, b)−1. Now,
observe that for any face f of CG ⊂ T

2,

(δω̃)(f) :=
∏

e∈∂f

ω̃(e) = (−1)
|∂f |
2

+1.

This is obvious for the rectangular faces; for the faces corresponding to vertices of G, use the
fact that the angles βe add up to 2π around each vertex; for the faces corresponding to faces
of G, use the fact that the angles α(e, e′) add up to 2π around each face. Furthermore, since
we are working on the flat torus, one easily checks that ω̃(γ) = ±1 if γ denotes a 1-cycle in
CG ⊂ T

2. Therefore, ω̃ is cohomologous to a Kasteleyn orientation ω. In other words, ω̃
can be transformed into ω by a sequence of the following transformation: multiply all the
edges adjacent to a fixed vertex of CG by some complex number of modulus 1. Therefore, a

Kasteleyn matrix Kϕ(CG, y) can be obtained from K̃ϕ by multiplying lines and columns by
complex numbers of modulus 1, and the equality

Pϕ(G,x) = 2−|V (G)|
∏

e∈E(G)

(1 + x2e) det(K
ϕ(CG, y))
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holds up to multiplication by a fixed complex number of modulus 1. For ϕ taking values in
{±1}, both sides are real; therefore, the equality holds up to sign. One can then choose a
Kasteleyn orientation such that the identity holds. �

Let us now fix a geometric basis of H1(T
2;Z). As explained in Section 2, this allows to

identify any element ϕ of H1(T2;C∗) with a pair of non-zero complex numbers (z, w) and
to write Pϕ(G,x) = P z,w(G,x). The Newton polygon of such a polynomial P z,w(G,x) =∑

n,m∈Z anmz
nwm is the convex hull of {(n,m) ∈ Z

2 ; anm 6= 0}. Recall that a weighted

graph (G,x) ⊂ T
2 is non-degenerate if all the weights are positive and the complement of G

in the torus consists in topological discs. Using (3), one easily checks that for such graphs,
the Newton polygon of P z,w(G,x) has positive area. Theorem 3.1 and [21, Theorem 1] then
immediately imply that (the real part of) the associated spectral curve

A = {(z, w) ∈ (C∗)2 ; P z,w(G,x) = 0} ⊂ (C∗)2

is a (possibly singular) Harnack curve. This means that the curve A ⊂ (C∗)2 intersects each
torus T2(r, s) = {(z, w) ∈ (C∗)2 ; |z| = r, |w| = s} in at most two points (see [30]).

Recall that an element (z0, w0) of a complex curve A = {(z, w) ∈ (C∗)2 ; P (z, w) = 0} is
called a singularity of A if ∂

∂zP (z, w) =
∂
∂wP (z, w) = 0. As shown in [30, Lemma 6], Harnack

curves only admit (a very specific type of) real singularities, meaning that both coordinates
are real. In our case, this translates into the following corollary:

Corollary 3.2. The spectral curve associated to a non-degenerate weighted graph embedded

in the torus has no singularities other than real ones.

We now turn to Kramers-Wannier type duality for the Kac-Ward determinants. Again,
these results hold for the more general case of an arbitrary weighted graph embedded in a
closed orientable surface. For the simplicity of this exposition, we shall only consider the
special case of the torus.

If G is embedded in the torus, its dual is the graph G∗ ⊂ T
2 obtained as follows: each face

of G ⊂ T
2 defines a vertex of G∗, and each edge of G bounding two faces of G ⊂ T

2 defines
an edge between the two corresponding vertices of G∗. Note that (G∗)∗ = G. Finally, if G is

endowed with weights x = (xe) ∈ (0, 1)E(G), define the dual weights x∗ = (x∗e) ∈ (0, 1)E(G) via
the condition x+ x∗ + xx∗ = 1. If we use the parametrization x = tan(θ/2), x∗ = tan(θ∗/2),
then θ and θ∗ are simply related by θ+ θ∗ = π/2. Therefore, the weighted graph (CG∗ , y(x∗))
associated to (G∗, x∗) is equal to the weighted graph (CG, y(x)) associated to (G,x). Hence,

Theorem 3.1 together with the equality 1+x2

1+x = 1+(x∗)2

1+x∗ immediately lead to the following.

Corollary 3.3. For any toric weighted graph (G,x) and any ϕ ∈ H1(T2;C∗),

2|V (G)|
∏

e∈E(G)

(1 + xe)
−1Pϕ(G,x) = 2|V (G∗)|

∏

e∈E(G)

(1 + x∗e)
−1Pϕ(G∗, x∗). �

As mentioned in Proposition 2.1, for ϕ = (z, w) ∈ {±1}2, Pϕ(G,x) is the square of a
polynomial in the weight variables xe. As the constant coefficient of Pϕ(G,x) is equal to 1,

we can pick such a square root Pϕ(G,x)1/2 by requiring its constant coefficient to be +1.
Taking a closer look at the sign leads to the following duality.

Corollary 3.4. For any toric weighted graph (G,x) and any ϕ ∈ H1(T2; {±1}),
2|V (G)|/2

∏

e∈E(G)

(1 + xe)
−1/2Pϕ(G,x)1/2 = (−1)A(ϕ)2|V (G∗)|/2

∏

e∈E(G)

(1 + x∗e)
−1/2Pϕ(G∗, x∗)1/2,
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where A(ϕ) = 1 if ϕ = (1, 1), and A(ϕ) = 0 else.

Proof. By Corollary 3.3, we only need to determine the sign A(ϕ) in the equation above.
Setting x = 1 (and therefore, x∗ = 0) leads to

Pϕ(G, 1)1/2 = (−1)A(ϕ)2(|V (G∗)|+|E(G)|−|V (G)|)/2 = (−1)A(ϕ)2|V (G∗)|,

using the fact that |V (G)|− |E(G)|+ |V (G∗)| is equal to the Euler characteristic of the torus,
i.e. zero. Furthermore, the Ising partition function Z(G,x) with weights x = 1 is nothing but
the cardinality of the Z2-vector space of 1-cycles modulo 2 in G. Since G is connected, the
dimension of this space is classically equal to |E(G)|− |V (G)|+1 = |V (G∗)|+1. Theorem 2.2
now reads

2|V (G∗)|+1 =
1

2

(
− (−1)A(1,1) + (−1)A(1,−1) + (−1)A(−1,1) + (−1)A(−1,−1)

)
2|V (G∗)|.

The term in parentheses is therefore equal to 4, a fact which determines the sign of the four
terms. The corollary follows. �

4. The critical temperature

Consider a planar non-degenerate locally-finite weighted graph (G , J) invariant under a
lattice Λ ≃ Z ⊕ Z. Alternatively, we will use (G , x) when working directly with the high-
temperature expansion. Recall that G = G /Λ. For integral positive n,m, let Λnm ≃ nZ⊕mZ

and let Gnm denote the toric weighted graph given by G /Λnm. Note that G11 = G.

Let us introduce the free energy per fundamental domain as follows:

(6) logZx := lim
n→∞

1

n2
logZ(Gnn, x).

This definition is justified by classical super-multiplicative properties of partition functions.
The strategy of the proof of Theorem 1.1 is the following. We express the free energy in
terms of the Kac-Ward determinant, and we show that for any x such that P z,w(G,x) has
a zero on T

2 := {(z, w) : |z| = 1, |w| = 1}, the free energy logZx is not twice differentiable
at x. We then harness standard arguments on the Ising model to show that logZx is twice
differentiable except possibly at criticality. We begin by a classical lemma.

Lemma 4.1. For any (z, w) ∈ T
2 and x ∈ R

E(G),

P z,w(Gnm, x) =
∏

un=z

∏

vm=w

P u,v(G,x).

Proof. The proof of [22, Theorem 3.3] applies almost verbatim. �

The next lemma shows that the only zeros of P z,w(G,x) are localized at (1, 1).

Lemma 4.2. For any (z, w) ∈ T
2 \ {(1, 1)} and x ∈ (0, 1)E(G), P z,w(G,x) > 0.

Proof. The proof is divided into four steps.

Step 1. P z,w(G,x) > 0 for any (z, w) ∈ {(−1, 1), (1,−1), (−1,−1)}. Proposition 2.1 shows
that

Z00(G,x) =
1

4

(
P 1,1(G,x)1/2 + P 1,−1(G,x)1/2 + P−1,1(G,x)1/2 + P−1,−1(G,x)1/2

)
.
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Corollary 3.4 and Theorem 2.2 then give the equality Z00(G,x) = C · Z(G∗, x∗), where

C := 2|V (G∗)|/2−|V (G)|/2−1
∏

e

(
1 + xe
1 + x∗e

)1/2

.

In the same way, Z10(G,x) can be expressed as a linear combination of P 1,1(G∗, x∗)1/2,

P 1,−1(G∗, x∗)1/2, P−1,1(G∗, x∗)1/2 and P−1,−1(G∗, x∗)1/2. Using Proposition 2.1 again, we
obtain the equality

Z10(G,x) = C · (Z00(G
∗, x∗) + Z10(G

∗, x∗)− Z01(G
∗, x∗)− Z11(G

∗, x∗)) ,

which leads to Z10(G,x) ≤ C · Z(G∗, x∗) = Z00(G,x). This argument can be carried out for
any homology class α, so

Zα(G,x) ≤ Z00(G,x) for any α ∈ {00, 01, 10, 11}.
The assumption that G is non-degenerate implies that all Zα(G,x)’s are strictly positive. The
statement now follows from the inequality displayed above, and Proposition 2.1.

Step 2. P z,w(G,x) 6= 0 for any (z, w) such that zm = −1 and wn = −1 for some (m,n) ∈ N
2.

This follows immediately from the first step applied to Gmn and Lemma 4.1.

Step 3. P z,w(G,x) ≥ 0 for any (z, w) ∈ T
2. Recall that P z,w(G,x) is real for any (z, w) ∈ T

2.
Let us fix (z, w) with zn = −1 and wm = −1. By the second step,

X = {x ∈ (0, 1)E(G) | P z,w(G,x) ≥ 0} = {x ∈ (0, 1)E(G) | P z,w(G,x) > 0}.
By continuity of x 7→ P z,w(G,x), X is therefore both closed and open. It is also non-empty

since P z,w(G,x) tends to 1 as x tends to 0. By connexity of (0, 1)E(G), X is this whole space.
By continuity of (z, w) 7→ P z,w(G,x), the statement follows.

Step 4. P z,w(G,x) = 0 implies (z, w) = (1, 1). Assume that P z,w(G,x) = 0. Then, (z, w)
must be a singularity (i.e. satisfy ∂

∂zP
z,w(G,x) = ∂

∂wP
z,w(G,x) = 0); otherwise, P z,w(G,x)

would take negative values near (z, w), contradicting the third step. By Corollary 3.2, (z, w) ∈
T
2 is real, i.e. (z, w) ∈ {(−1,−1), (−1, 1), (1,−1), (1, 1)}. By the first step, (z, w) must be

equal to (1, 1), and the lemma is proved. �

The free energy can be expressed in terms of P as follows:

Lemma 4.3. For any x ∈ (0, 1)E(G),

logZx =
1

2(2πi)2

∫

T2

log P z,w(G,x)
dz

z

dw

w
.

Proof. The proof is inspired by the proof of [22, Theorem 3.5]. First note that P z,w(G,x) > 0
for any (z, w) 6= (1, 1) by Lemma 4.2, and that

log P z,w(G,x) = O
[
log(|z − 1|+ |w − 1|)

]
,

which legitimates the integral on the right-hand side. Lemma 4.1 and the bounded conver-
gence theorem imply that for (ε, η) ∈ {(−1,−1), (−1, 1), (1,−1)},

1

n2
log P ε,η(Gnn, x) =

1

n2

∑

zn=ε

∑

wn=η

logP z,w(G,x) −→ 1

(2πi)2

∫

T2

logP z,w(G,x)
dz

z

dw

w
.

Now, Proposition 2.1 and Theorem 2.2 imply the inequalities

P−1,1(Gnn, x) ≤ Z(Gnn, x)
2 ≤ 9/4max{P−1,−1(Gnn, x), P

−1,1(Gnn, x), P
1,−1(Gnn, x)},
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which lead to the claim. �

For the next theorem, let us adopt the terminology of the high-temperature expansion. For
(G , x) biperiodic, let µ+

G ,x be the Ising measure on G with edge-weights x and + boundary

conditions. Let x∗ such that x + x∗ + xx∗ = 1 be the dual weights obtained by Kramers-
Wannier duality.

Theorem 4.4. Let G be a non-degenerate locally-finite doubly periodic graph and r ∈ V (G ).
Then,

(i) If µ+
G ,y(σr) = 0 for any weights y in a neighborhood of x, then there exists c = c(x) > 0

such that µ+
G ,x(σaσb) ≤ exp(−c|a− b|), for any a, b ∈ V (G );

(ii) If µ+
G ,y(σr) > 0 for any weights y in a neighborhood of x, there exists c′ = c′(x) > 0

such that µ+
G ∗,x∗(σuσv) ≤ exp(−c′|u− v|), for any u, v ∈ V (G ∗).

While this theorem is not surprising and follows from very classical ingredients, the proof
does not appear in the literature. We therefore recall it here.

Proof of Theorem 4.4. Let us prove (i). Choose β and J in such a way that xe = tanh(βJe).
The condition implies that β < βc for (G , J). We conclude by harnessing [1, Theorem 1].
Note that this theorem applies in the very general context of finite range Ising models on Z

d

with periodic coupling constants. In our case, the model is only biperiodic but as discussed
by the authors, the proof extends very easily to this framework.

Let us now deal with (ii). We aim to apply (i) to the dual measures. For this rea-
son, it is sufficient to prove that µ+

G ,y(σr) > 0 implies µ+
G ∗,y∗(σu) = 0 or equivalently that

µfree
G ∗,y∗(σuσv) → 0 as |u−v| → ∞ (u, v ∈ G ∗), where “free” refers to free boundary conditions.

Intuitively, this claim is valid since there cannot be a positive spontaneous magnetization for
both the primal and dual Ising models. This is best seen in the context of random-cluster
models. We thus harness the Edwards-Sokal coupling [13].

Let φ1
G ,p,2 be the random-cluster measure on G with cluster-weight 2, edge-weights given

by

pe =
2ye

1 + ye
and wired boundary conditions; see [16, Section 4.2]. The Edwards-Sokal coupling [16, Section
1.4] shows that

φ1G ,p,2(r is connected to infinity) = µ+
G ,y(σr) > 0

which implies the existence of an infinite cluster φ1
G ,p,2-almost surely. Let (φ1

G ,p,2)
∗ be the dual

measure, see [16, Section 6.1]. Since the random-cluster model satisfies the FKG inequal-
ity [16, Theorem 3.8], Corollary 9.4.6 of [34] implies that there cannot be coexistence of an
infinite cluster and an infinite dual cluster φ1

G ,p,2-almost surely. Thus, there is no infinite clus-

ter on G ∗ for the dual random-cluster model (φ1
G ,p,2)

∗-almost surely. Now, (φ1
G ,p,2)

∗ = φfree
G ∗,p∗,2

and µfree
G ∗,y∗ are also coupled via the Edwards-Sokal coupling. We obtain

µfreeG ∗,y∗(σuσv) = (φ1G ,p,2)
∗(u connected to v) −→ 0

as |u− v| → ∞ (u, v ∈ G ∗). �

Remark 4.5. For (ii), one can also invoke (with some modifications) the result of Lebowitz
and Pfister [24] together with duality.
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Proof of Theorem 1.1. Fix (G , J). Define xβ = (tanh(βJe))e where β > 0. First, Proposi-

tion 2.1 implies that Equation (2) is equivalent to P 1,1(G,xβ)
1/2 = 0. Note that P 1,1(G,xβ)

1/2

tends to 1 as β tends to 0 (by definition), and to −2|V (G∗)| as β tends to ∞ (by Corollary 3.4),
so that there exists at least one solution (in β) to this equation. We now show that there
exists a unique such solution by proving that P 1,1(G,xβ) = 0 implies β = βc.

We first show that βc ≤ β by assuming that β < βc, or equivalently xβ < xβc , and by seeking
for a contradiction. Since P 1,1(G,x) is not constant on a neighborhood of xβ (for instance
P 1,1(G,xβ′) > 0 for β′ close enough to β), there exist e ∈ E(G) and xβ ≤ x < xβc such
that P 1,1(G,x) = 0 and xe 7→ P 1,1(G,x) is non constant. Fix such an edge e and weights
x, and let x(t) be defined by x(t)e′ = xe′ if e′ 6= e and x(t)e = xe + t. By Equation (3),
t 7→ P 1,1(G,x(t)) is a polynomial of degree exactly 2. Furthermore, since P 1,1(G,x(0)) = 0,

P eiθ,eiη(G,x(t)) = P e−iθ,e−iη
(G,x(t)) and P eiθ,eiη(G,x) ≥ 0 for any (θ, η, t) in a neighborhood

of the origin (Lemma 4.2), we obtain the following development near (0, 0, 0):

P eiθ ,eiη(G,x(t)) = (a11t
2 + a22θ

2 + a33η
2 + a23θη)f(t, θ, η),

where f(t, θ, η) = 1 + o(|t, θ, η|2) is a non-vanishing analytic function, and the coefficients
satisfy a22a33 − 1

4a
2
23 ≥ 0 and a11 > 0. Now,

t 7−→
∫ π

−π

∫ π

−π
log f(t, θ, η)dθdη

is twice differentiable in t, so that logZx is twice-differentiable in xe at x if and only if

t 7−→
∫ π

−π

∫ π

−π
log(a11t

2 + a22θ
2 + a33η

2 + a23θη)dθdη

is twice differentiable at 0. For t 6= 0, the second derivative in t of this function equals
∫ π

−π

∫ π

−π

2a11(a11t
2 + a22θ

2 + a33η
2 + a23θη)− 4a211t

2

(a11t2 + a22θ2 + a33η2 + a23θη)2
dθdη.

As t tends to 0, this integral tends to
∫ π

−π

∫ π

−π

2a11
(a22θ2 + a33η2 + a23θη)

dθdη,

that is, to ∞, since a11 > 0 and a22a33 − 1
4a

2
23 ≥ 0. But this is in contradiction with the

assumption that x < xβc since in this case, exponential decay implies that logZx is twice
differentiable. We now justify this last statement. Fix a representative {a, b} ∈ E(G ) of the
edge e. Let Gnn be a fundamental domain of the action of Λnn on G . Further assume that Gnn

contains the edge e. Let En (resp. E) be the set of translates of e in E(Gnn) (resp. E(G )).
Since the definition of the free energy does not depend on the boundary condition, one has

logZx = lim
n→∞

1

n2
logZ(Gnn, x),

where Z(Gnn, x) is the partition function on Gnn with free boundary conditions. Set xe =
tanh(βJ ′

e). The high temperature expansion (1) shows that

logZx = lim
n→∞

1

n2
logZJ ′

β (Gnn)−
∑

e∈E(G)

log(cosh(βJ ′
e))− |V (G)| · log(2),
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where ZJ ′

β (Gnn) is defined in the introduction. Since J ′
e depends smoothly on xe, it is sufficient

to show that limn→∞
1
n2 logZ

J ′

β (Gnn) is twice differentiable with respect to J ′
e. We obtain

1

n2
∂2

∂J ′
e
2
logZJ ′

β (Gnn) = β2
∑

{u,v}∈En

(
µGnn,x(σaσbσuσv)− µGnn,x(σaσb)µGnn,x(σuσv)

)
,

where µGnn,x is the measure on Gnn with free boundary conditions. Lebowitz’s inequality [25,
Remark (i), p. 91] then yields

|µGnn,x(σaσbσuσv)−µGnn,x(σaσb)µGnn,x(σuσv)|
≤ µGnn,x(σaσu)µGnn,x(σbσv) + µGnn,x(σaσv)µGnn,x(σbσu).

The comparison between boundary conditions implies µGnn,x(σaσu) ≤ µ+
G ,x(σaσu), which,

together with Lebowitz’s inequality and Property (i) of Theorem 4.4, leads to
∑

{u,v}∈En

∣∣∣µGnn,x(σaσbσuσv)− µGnn,x(σaσb)µGnn,x(σuσv)
∣∣∣ ≤ 2

∑

{u,v}∈E

exp(−c(x)|u − a|).

The term on the right-hand side is therefore bounded uniformly in n and in x, provided that
x takes value in a compact subset of {x < xβc}. The bounded convergence theorem then
implies that logZx is twice differentiable in J ′

e, and thus in xe. In conclusion, x cannot be
smaller than xβc , and we obtain that β ≥ βc.

Let us conclude the proof by showing that β ≤ βc. Corollary 3.3 shows that P 1,1(G,xβ) = 0
implies P 1,1(G∗, x∗β) = 0. Now if β > βc, or equivalently x

∗
β < x∗βc

, one can run the previous

argument for the dual model, using Property (ii) of Theorem 4.4 in place of Property (i). �

Proof of Corollary 1.2. When β 6= βc, P
z,w(G,xβ) > 0 for any (z, w) ∈ T

2 and β 7→
log P z,w(G,xβ) is analytic. By Lemma 4.3, the free energy is a parameter-dependent integral
which is analytic at β 6= βc. �
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[34] S. Sheffield. Random surfaces, volume 304 of Astérisque. Société mathématique de France, Paris, 2005.
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