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We present a consistent framework of coupled classical and quantum dynamics. Our result allows us to
overcome severe limitations of previous phenomenological approaches, such as evolutions that do not preserve
the positivity of quantum states or that allow one to activate quantum nonlocality for superluminal signaling.
A ‘‘hybrid’’ quantum-classical density is introduced, and its evolution equation derived. The implications and
applications of our result are numerous: it incorporates the back-reaction of quantum on classical variables, and
it resolves fundamental problems encountered in standard mean-field theories, and remarkably, also in the
quantum measurement process; i.e., the most controversial example of quantum-classical interaction is consis-
tently described within our approach, leading to a theory of dynamical collapse.

PACS number~s!: 03.65.Bz, 03.65.Sq, 42.50.Lc

Opinions varyabout the coexistence of and interaction
between classical and quantum systems. In orthodox quan-
tum theory, classical macrosystems and quantized microsys-
tems coexist; their interaction is described asymmetrically.
The influence of macrovariables upon microsystems is pre-
cisely taken into account as external forces. Theback-
reactionof quantized microsystems upon classical macrosys-
tems is largely ignored, except fordetector variableswhich
are typically sensitive to certain microvariables. The theory
of this specific back-reaction, called measurement theory@1#,
predicts the statistics of the final states after the interaction.
However, the interpretation of quantized dynamics is exclu-
sively based on this nondynamical model of back-reaction
~cf. collapse of the quantum state!; without it we could not
test the validity of quantized dynamics at all. Possibly, quan-
tization extends to macrosystems, indeed the criteria of being
macroscopic or microscopic are loosely if ever defined. Con-
trary to quantized microvariables, quantized macrovariables
may have significant back-reactions on generic classical
macrovariables as well. This becomes apparent in the widely
used mean-field approximation@2# which, however, has sev-
eral fundamental drawbacks@3#, as we shall recall in this
paper. The measurement theory also describes back-reaction,
but only for idealized detectors. In some attempts to define
quantum gravity, matter and some fields are quantized, while
other fields~gravity in particular! are treated as classical,
thus requiring a definitehybrid—i.e., a coupled classical and
quantum—dynamics. Thus a general model of the back-
reaction is desirable. Such a theory would describe the ‘‘col-
lapse’’ of the wave function dynamically@4#, would replace
mean-field approximations in a systematic way@5–7#, and
could have deep implications for quantum cosmology. The
first conceptual attempts@4–6# were followed by ups and
downs@8#, until severe limitations were clarified@9#. In this
paper we use a straightforward transformation of the problem
which automatically leads to a consistent model of hybrid
dynamics.

The difficultiesto overcome in our paper are unrelated to
the high complexity of the emblematic mean-field equation

of quantum cosmology. Actually, they lie in foundational
principles. To illustrate these difficulties, we assume a quan-
tum Pauli spinŝ interacting with a classical harmonic oscil-
lator of HamiltonianHC(x,p)5 1

2 (p21x2). The spin inter-
acts with the ‘‘magnetic’’ field of the oscillator via the
Hamiltonian

ĤI5kŝ3p. ~1!

RegardingĤ5HC1ĤI as the total Hamiltonian, it is natural
to prescribe the Heisenberg equation of motion] tŝ

5 i @Ĥ,ŝ#5 ikp@ŝ3 ,ŝ# to the spin. The classical oscillator
momentum satisfies the Hamilton equation] tp52]xĤ

52x, but the coordinate cannot satisfy] tx5]pĤ5p

1kŝ3 sincex, being a real number, should not evolve into a
matrix. The obvious way out is to replace the operatorŝ3 by
its quantum expectation value, i.e., to apply some mean-field
approximation. Yet, if taken literally, this implies that quan-
tum expectations can be deduced with arbitrary precision
from a measurement of the classical variablesx andp. Hence
the message is that the classical oscillator should, in some
way, inherit quantum fluctuations from the spin. It comes to
one’s mind thatx andp should be random variables, but not
arbitrary ones. As we shall demonstrate, mathematical con-
sistency imposes that the classical variablesx or p must
never take sharp values: The consistent theory assumes an
unremovable coarse-graining@10,11#.

The mathematical issueis the following. The phase-space
densityrC(x,p) of a classical canonical systemC satisfies the
Liouville equation of motion

] trC~x,p!5$HC~x,p!,rC~x,p!%P , ~2!

where HC(x,p) is the Hamilton function and$ f ,g%P
5]xf ]pg2]pf ]xg stand for the Poisson bracket. On the
other hand, the density operatorr̂Q of a ~canonical, or maybe
discrete! quantum systemQ evolves according to the von
Neumann equation
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] tr̂Q52 i @ĤQ ,r̂Q#, ~3!

whereĤQ is the Hamilton operator. To introduce interaction
betweenQ and C, we assume ahybrid Hamiltonian in the
form

Ĥ~x,p!5ĤQ1HC~x,p!1ĤI~x,p!, ~4!

where the interaction term~and thus the total Hamiltonian
too! is a Hermitian operator forQ, depending on the phase-
space coordinates ofC.

The mean-fieldapproach assumes sharp classical coordi-
natesxt , and pt at each time, and the current quantum ex-
pectation value HMF(x,p;t)5tr @Ĥ(x,p) r̂Q(t)# of the
Hamiltonian is regarded as the effective Hamilton function
for the classical subsystemC. The coupled evolution equa-
tions then take this forms:

] tr̂Q~ t !52 i @Ĥ~xt ,pt!,r̂Q~ t !#, ~5!

] txt5]pHMF~xt ,pt!, ] tpt52]xHMF~xt ,pt!. ~6!

This approach has well-known deficiencies. In particular, it
gives no account of the indeterminacy of the classical states
x and p inherited from the quantum uncertainties ofr̂Q .
There is thus an essential nonlinearity in the mean-field von
Neumann equation~5! which leads to fundamental conflicts
with principles of locality@12#. Furthermore, the mean-field
effective Hamilton functionHMF(x,p) will never be the
proper representative of the interaction when quantum uncer-
tainties inr̂Q are large.

A promisingconceptualapproach@5# uses thehybrid den-

sity r̂(x,p) to represent the state of the composite systemC
3Q. If the subsystems are uncorrelated, then the hybrid den-
sity simply factorizes asrC(x,p) r̂Q . In the general case, the
hybrid densityr̂(x,p) should be an (x,p)-dependent non-
negative operator, satisfying an overall normalization condi-
tion tr *r̂(x,p)dxdp51. One interprets the marginal distri-
bution rC(x,p)[tr r̂(x,p) as the phase-space density of the
classical subsystemC, while the density operatorr̂Q
[*r̂(x,p)dxdp represents the unconditional state of the
quantum subsystemQ. Conditional quantum statesare natu-
ral to introduce at fixed canonical coordinates (x,p) of the
classical subsystem@10#:

r̂xp[r̂~x,p!/rC~x,p!. ~7!

Aleksandrov@5# proposed the following evolution equation
for the hybrid density:

] tr̂~x,p!52 i @Ĥ~x,p!,r̂~x,p!#1
1

2
$Ĥ~x,p!,r̂~x,p!%P

2
1

2
$r̂~x,p!,Ĥ~x,p!%P . ~8!

If ĤI(x,p)50, then this equation splits into the standard
equations~2! and ~3!.

Let us test Aleksandrov’s equation on the spin-oscillator
system~1!. The generic form of the hybrid state is

r̂~x,p!5 1
2 @11sW~x,p!sŴ #rC~x,p!, usWu<1, ~9!

wheresW(x,p) is the spin vector correlated with the oscilla-
tor’s state. We read off the conditional quantum state~7! of

the spin:r̂xp5 1
2 @11sW(x,p)sŴ #. For the hybrid state~9! and

interaction Hamiltonian~1!, Aleksandrov’s equation~8!
reads

] tr̂5~x]p2p]x!r̂2 ikp@ŝ3 ,r̂ #2 1
2 k@ŝ3 ,]xr̂ #1 . ~10!

This equation easily violates the positivity conditionusWu<1
on r̂. That is, the initial normalized polarization vector

sW5
1

x21p211
~2x,2p,x21p221!, ~11!

leads tousWu.1 for all x.0 under the evolution@Eq. ~10!#.
So, the naive Eq.~8! is inconsistent since it does not guar-
antee the positivity of the hybrid densityr̂(x,p) @6#. One
sees that the mathematical textures of the classical (C) and
quantum (Q) systems, though well understood separately,
are not at all trivial to couple.

A royal road offers itself nonetheless. Let us quantize
canonicallyC as well. We do so temporarily and, at the end
of the day, we regard it classical again. The hybrid Hamil-
tonian ~4! transforms into the total Hamilton operator of the
fully quantized systemC^ Q

:Ĥ~ x̂,p̂!ªĤQ1:HC~ x̂,p̂!:1:ĤI~ x̂,p̂!:, ~12!

where : . . . : stand for normal ordering in terms of the usual
annihilation and creation operators (x̂6 i p̂)/A2, respec-
tively. Let the equation of motion for the total system’s den-
sity operatorr̂ be the standard von Neumann one:

] tr̂52 i @ :Ĥ~ x̂,p̂!:,r̂ #. ~13!

Our royal road is based on coherent states@13#. Coherent
statesux,p& are eigenstates of the annihilation operator:

~ x̂1 i p̂ !ux,p&5~x1 ip !ux,p&. ~14!

Using Bargmann’s convention@13#, the coherent states sat-
isfy the following differential relation:

~]x2 i ]p!ux,p&5~ x̂2 i p̂ !ux,p&, ~15!

~]x1 i ]p!ux,p&50. ~16!

The latter relation expresses the fact that the brasux,p& are
entire analytic functions of the complex canonical variable
x1 ip, a crucial fact as we shall see. The coherent states
form an overcomplete basis, with normalization
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I 5E ux,p&^x,pu
exp„2 1

2 ~x21p2!…

2p
dxdp. ~17!

It follows from Eqs.~14! and ~15! that

: f ~ x̂,p̂!:ux,p&5: f S x1 ip1]x2 i ]p

2
,
p2 ix1]p1 i ]x

2 D :ux,p&

~18!

for an arbitrary normal ordered function of the quantized
variables on the left-hand side. On the right-hand side, the
same symbols : . . . : mean that all derivations must be done
first.

We apply a projection to the density operatorr̂ of the
fully quantized systemC^ Q, and thus reintroduce thehybrid
density

r̂~x,p![tr@~ ux,p&^x,pu ^ I !r̂#
exp@2 1

2 ~x21p2!#

2p
. ~19!

Indeed, this can formally be considered the hybrid density of
the composite systemC3Q as if C were unquantized~i.e.,
classical! again. This is what we are going to do. We can
thusderive the closed equation of motion of the hybrid den-
sity ~19! from the exact von Neumann equation~13!. Using
the basic relation~18! and the identity~16!, we obtain the
desired evolution equation

] tr̂~x,p!52 i :ĤS x1
]x1 i ]p

2
,p1

]p2 i ]x

2 D : r̂~x,p!1H.c.

~20!

This hybrid dynamic equationis our proposal to couple clas-
sical systems to quantum ones canonically. Note that the
hybrid densityr̂(x,p) incorporates our statistical knowledge
of Q’s quantum state, ofC’s classical state, and of their
correlations. IfĤI(x,p)50, then by integrating both sides of
Eq. ~20! over x andp we obtain the standard von Neumann
equation~3!, as it should be. The trace of both sides, how-
ever, doesnot lead to the standard classical dynamics@Eq.
~2!#. Instead, we obtain~for obvious reasons! the evolution
equation of a Husimi function@14#. To lowest order in the
derivatives, however, this is the classical Liouville equation
~2!. Hence classical dynamics is recovered if both the Hamil-
ton function and the state distribution change slowly withx
andp ~see, e.g., Ref.@15# and references therein!.

Consistencyof the hybrid equation of motion~20! is, con-
trary to the case of the naive Eq.~8!, assured by construction.
It preserves the positivity of the hybrid densityr̂(x,p) along
with a certain analyticity property. In fact, projection~19!
always leads to hybrid densities of the form

r̂~x,p!5
exp@2 1

2 ~x21p2!#

2p (
n

wn~x2 ip !wn
†~x1 ip !,

~21!

wherewn(x2 ip) are unnormalized nonorthogonal state vec-
tors for Q, being complex entire functions of the combina-

tions x2 ip of C’s classical variables. This positive form is
then preserved by our hybrid equation~20!. The analyticity
condition ~21! restricts the possible hybrid states: sharp val-
ues ofx andp and, generally, characteristic phase-space de-
pendences inside single Planck cells, are excluded.

In particular, the ‘‘pure state’’ form of Eq.~21!, i.e. with
a single ww† dyadic term, is also preserved. The hybrid
Schrödinger equation of the hybrid state vectorw(x2 ip)
follows from Eq. ~20! @16#. For completeness, we mention
that the polarization~11! can be reproduced byw(x2 ip)
5@(x2 ip)u1&1u2&]/A3, whereŝ3u6&56u6&.

A post-mean-field approximation, incorporating some of
the fluctuations of systemQ into its back-reaction on the
systemC, is worth deriving. Consider the first-order expan-
sion of Eq.~20! in the derivatives ofĤ(x,p):

] tr̂~x,p!52 i @Ĥ~x,p!,r̂~x,p!#1
1

2
$Ĥ~x,p!,r̂~x,p!%P

2
1

2
$r̂~x,p!,Ĥ~x,p!%P

2
i

2
@]xĤ~x,p!,]xr̂~x,p!#

2
i

2
@]pĤ~x,p!,]pr̂~x,p!#. ~22!

This equation has two additional terms with respect to~math-
ematically inconsistent! Eq. ~8!. These two additional terms
reduce the domain of inconsistency. More importantly, it can
be shown that the above equation is equivalent to the exact
Eq. ~20! if C is harmonic and its coupling toQ is linear inx
andp. In particular, Eq.~22! gives a mathematically consis-
tent theory of fully quantized atomic systems (Q) interacting
with the fully developedclassicalradiation field (C). More-
over, its physics is equivalent to the true fully quantized
radiation theory@11#.

By taking the trace of Eq.~22! one can show that the
evolution of the classical states is a flow:

] tx5^]pĤ~x,p!&xp , ] tp52^]xĤ~x,p!&xp , ~23!

where^•••&xp stands for the expectation values in the cur-
rent conditional quantum stater̂xp . Obviously this flow re-
sembles locally the naive mean-field equation~6!. Here,
however, the classical state is randomly distributed: it inher-
its the quantum fluctuations ofQ. On the other hand, the
deterministic evolution of the state’s distribution is a remark-
able fact with significant consequences being discussed else-
where.

Dynamical collapseof the quantum state is encoded in
our hybrid evolution equation~20!. It is a most spectacular
feature. The ‘‘presence’’ of standard collapse will be dem-
onstrated on the spin-oscillator model. For the hybrid state
@Eq. ~9!#, our evolution equation~20! reads
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] tr̂5~x]p2p]x!r̂2 ikp@ŝ3 ,r̂ #

2
1

2
k@ŝ3 ,]xr̂ #12

i

2
k@ŝ3 ,]pr̂ #, ~24!

which differs from the naive Eq.~10! by the presence of the
fourth term on the right-hand side. This term guarantees the
positivity of the hybrid stater̂(x,p) for all times. The oscil-
lator plays the role of the Stern-Gerlach apparatus detecting
the quantized spin-componentŝ3. The pointer variable of
the apparatus isx, it is set initially to zero with precisionD
51. Accordingly, we chooserC

0(x,p)5(2p)21exp„2 1
2 (x2

1p2)… for the oscillator’s initial state. We shall switch on the
interaction Hamiltonian att50 for a short timet compared
to the oscillator period, keeping the effective coupling as
strong asg5kt@1. Actually, we replacek by gd(t) @1#.
Let us assume that the spin’s initial state is the superposition
uc&5c1u1&1c2u2&, and the initial hybrid state~9! is the
uncorrelateduc&^curC

0(x,p). Immediately after the interac-

tion the hybrid stater̂(x,p) becomes

uc1u2u1&^1urC
0~x1g,p!1uc2u2u2&^2urC

0~x2g,p!

1c1c2
! u1&^2uexpS 2

1

2
g22 igpD rC

0~x,p!1H.c. ~25!

The trace yields the pointer’s state distribution

rC~x,p!5uc1u2rC
0~x2g,p!1uc2u2rC

0~x1g,p!. ~26!

Since g@1, we shall ignore the overlap between the two
terms on the right-hand side, so we can say that the pointerx
has swung out tog6D or to 2(g6D) with the probabilities
predicted by the standard measurement theory. Invoking Eq.
~7!, we can easily read out the conditional quantum state of
the spin from Eq.~25! @since the off-diagonal terms are
damped by exp(21

2g
2), we ignore them#:

r̂xp5u6&^6u, x'6g, p'0. ~27!

This shows the standard collapse of the spin’s quantum state:
the quantum state is correlated with the classical pointer’s
position.

Discussing this paper’s results, we repeat that we are
aware of the ambiguous contemporary views concerning the
concept of genuine hybrid systems. Nevertheless, the old
Copenhagen interpretation as well as recent quantum gravity
and quantum cosmological models assume such hybrid sys-
tems. We made the necessary compromises to neutralize
strict no-go theorems. Our Eq.~20! is an example of hybrid
dynamics which is both mathematically consistent and physi-
cally relevant. The applications of our equation are numer-
ous, for example as phenomenological models whenever the
mean-field approximation is poor. Moreover, we derive post-
mean-field equations which describe the back-reaction of
quantum fluctuations to first order. On the foundational level,
we point out that our hybrid dynamics@Eq. ~20!# reproduces
the ideal quantum measurement, including the collapse of the
wave functionand the motion of the classical pointer. Let us
also stress the close connection to current phenomenological
theories of dynamic collapse whichfollow from our hybrid
dynamics@16#. Our hybrid theory is likely to be an integrat-
ing concept for treating quantum measurement dynamically
and to overcome the inconsistent mean-field method in quan-
tum cosmology.
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R. Senitzky,ibid. 76, 4089 ~1996!; O. V. Prezhdo and V. V.
Kisil, Phys. Rev. A56, 162 ~1997!.

@9# L. L. Salcedo, Phys. Rev. A54, 3657~1996!; J. Caro and L.L.
Salcedo,ibid. 60, 842 ~1999!.
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