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Summary
Objective: To perform a review of recent research in clinical data 
reuse or secondary use, and envision future advances in this field.
Methods: The review is based on a large literature search in 
MEDLINE (through PubMed), conference proceedings, and the 
ACM Digital Library, focusing only on research published between 
2005 and early 2016. Each selected publication was reviewed by 
the authors, and a structured analysis and summarization of its 
content was developed.
Results: The initial search produced 359 publications, reduced 
after a manual examination of abstracts and full publications. 
The following aspects of clinical data reuse are discussed: 
motivations and challenges, privacy and ethical concerns, data 
integration and interoperability, data models and terminologies, 
unstructured data reuse, structured data mining, clinical practice 
and research integration, and examples of clinical data reuse 
(quality measurement and learning healthcare systems).
Conclusion: Reuse of clinical data is a fast-growing field 
recognized as essential to realize the potentials for high 
quality healthcare, improved healthcare management, reduced 
healthcare costs, population health management, and effective 
clinical research.
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I   Introduction
The growing adoption of Electronic Health 
Records (EHRs) in the U.S. healthcare 
system [1] and worldwide [2] fuels a 
fast growth of clinical data available in 
electronic format. This growth offers tre-
mendous potential for the use of clinical 
data beyond its primary intent (i.e., patient 
care and healthcare operations). Secondary 
use (or reuse) of clinical data is defined 
as “non-direct care use of personal health 
information including but not limited to 
analysis, research, quality/safety measure-
ment, public health, payment, provider cer-
tification or accreditation, and marketing 
and other business including strictly com-
mercial activities.”[3] Reuse of clinical 
data is essential to fulfill the promises for 
high quality healthcare, improved health-
care management, reduced healthcare 
costs, population health management, and 
effective clinical research. The existing 
and often biased and underspecified diag-
nostic and procedure codes assigned for re-
imbursement and administrative purposes 
are the easiest to reuse but are insufficient 
for policymakers, public health officials, 
funding agencies, scientists, clinicians, 
citizens, and industry, who need accurate 
and detailed clinical information, as found 
in patients’ EHRs. Access to rich and de-
tailed clinical information on diagnoses, 
treatments, and outcomes is also required 
for the Positive Predictive Value Medicine 

proposed by the U.S. National Academy of 
Sciences [4]. Further, the U.S. National 
Health Information Infrastructure (NHII) 
roadmap suggests that “…a comprehensive 
set of Patient Medical Record Information 
(PMRI) standards can move the Nation 
closer to a healthcare environment where 
clinically specific data can be captured 
once at the point of care with derivatives 
of this data available for meeting the 
needs of payers, healthcare administrators, 
clinical research, and public health. This 
environment could significantly reduce the 
administrative and data capture burden on 
clinicians; dramatically shorten the time 
for clinical data to be available for public 
health emergencies and for traditional pub-
lic health purposes; profoundly reduce the 
cost for communicating, duplicating, and 
processing healthcare information; and, 
last but not least, greatly improve the qual-
ity of care and safety for all patients.”[5]

Early clinical data reuse efforts often 
consisted of electronic databases, with 
manual entry of clinical data from patient 
paper charts. A good example was the 
ARAMIS databank founded in 1974, a 
consortium of North American rheumatic 
disease data banks used for multiple clin-
ical trials [6]. This manual transcription 
from paper to electronic databases was 
time-consuming, error prone, and costly. 
Several EHR systems already existed at 
that time, but their rarity and the afore-
mentioned costly manual translation of 
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data strongly limited clinical data reuse 
efforts for many years. The development 
of the electronic submission of diagnos-
tic and procedure codes, as required for 
Medicare and Medicaid reimbursement in 
the U.S. since 2003 [7], strongly enhanced 
the availability of this information in 
electronic format, and these codes quickly 
became the only electronic clinical data 
that were routinely reused. 

In the past five years, the Health In-
formation Technology for Economic and 
Clinical Health (HITECH) Act of 2009 
[8] resulted in a dramatic increase in EHR 
implementation and use in U.S. hospitals 
and physician off ices [9], and in large 
quantities of electronic clinical infor-
mation becoming available in electronic 
format, a very appealing prospect for 
clinical data reuse. Incentives also spurred 
adoption of EHRs by general practitioners 
in the U.K.[10] Recent initiatives such as 
EHR4CR, [11] the Clinical and Transla-
tional Science Awards (CTSA) [12], the 
Strategic Health IT Advanced Research 
Projects (SHARP) program [13], and the 
Electronic Medical Records and Genomics 
(eMERGE) consortium [14] further added 
to this opportunity, contributing to the 
surge in clinical data reuse projects and 
publications observed. The fast growing 
quantity of clinical information available 
in electronic format makes reused clinical 
data a candidate for “big data” solutions 
[15]. As defined by Gartner, “Big data 
is high-volume, -velocity, and -variety 
information assets that demand cost-effec-
tive and innovative forms of information 
processing for enhanced insight and deci-
sion making” [16]. Massive quantities of 
unstructured data (e.g., images, scanned 
documents, narrative text clinical notes) 
from various sources and formats can be 
analyzed in their native state and integrated 
with structured data in real-time [17] to 
generate new information and knowl-
edge that can then be delivered as “small 
data” (limited volume, in batches or near 
real-time, and structured) for patient-spe-
cific analysis and decision support.

The objective of this paper is to perform 
a review of recent research in clinical data 
reuse or secondary use, and envision future 
progress in this field.

II   Materials and Methods 
A   Study Setting and Materials 
Selection
This review is based on an extensive 
literature search in several databases: 
MEDLINE (through PubMed), confer-
ence proceedings, and the ACM Digital 
Library. Keywords used for querying these 
databases included all permutations of 
‘reuse’ or “secondary use” with “clinical 
data,” “clinical information,” “electronic 
health record,” ‘EHR,’ “electronic medical 
record”, ‘EMR’, “patient record,” “medical 
record,” or “clinical record.” Databases 
were queried in February 2016. Our review 
focused only on research published recently 
(between 2005 and early 2016) in English 
language. We also added topic-specific 
publications referenced in papers that were 
already included.

B   Selected Materials Review
Each selected publication was reviewed by 
the authors, and a structured analysis and 
summarization of its content was created 
and added to this review. The objective of 
this review was to provide readers with a 
large overview of published clinical data 
reuse research since 2005, without aiming 
at providing a comprehensive review of all 
publications in this field. 

III   Results
A   Study Setting and Materials 
Selection 
The initial literature search produced 359 
publications (282 publications from MED-
LINE and 77 distinct publications from the 
ACM Digital Library) using the criteria 
described above. After a manual examina-
tion of these publication abstracts, 35 were 
considered irrelevant and removed from 
the set, leaving 324 publications for further 
review. This detailed review was realized 
by each of the authors, focusing on specific 
sections and topics presented below.

B   Motivations and Challenges for 
Clinical Data Reuse
The benefits of reusing clinical data have 
been well recognized for decades [3,18-21] 
and a detailed study by PricewaterhouseC-
oopers explained how reuse could enable 
improvements of health outcomes and costs 
[22]. To improve healthcare management and 
quality, clinical data has already been reused 
to measure and improve quality [23,24], 
predict patients length of stay, discharge, 
readmission, and death [25-28], and improve 
infection control [29-31]. Data has also 
been reused for early detection of diseases, 
pharmacovigilance, and post-market and 
public health surveillance [32]. In clinical 
research, data has been reused to accelerate 
and increase patient recruitment in trials 
[33], enable in-silico hypothesis testing 
[34], and enable faster and cheaper access 
to a richer variety of clinical information 
for various types of clinical research appli-
cations such as comparative effectiveness 
research and patient phenotype combination 
with genomic data. As discussed by Co-
orevits and colleagues, clinical data reuse 
“will optimize research and development 
platforms, processes, and timelines”, will 
generate “high-quality clinical evidence 
faster through better protocol feasibility 
assessment, improved patient identification 
and recruitment, and more efficient clinical 
study conduct, including for reporting se-
rious adverse events”, “will maximize the 
value to customers and diversify revenue 
streams” of research organizations, and en-
able the participation of clinical investigators 
and physicians in a larger number of clinical 
trials [35]. This topic is discussed in more 
detail in the Clinical Data Reuse Examples 
given below. Combining biomedical knowl-
edge with reused clinical data is required for 
rapid “learning health systems” that would 
accelerate the “progression of knowledge 
from the laboratory bench to the patient’s 
bedside and provide a cornerstone for health 
care reform.”[36] This topic will also be 
addressed in more detail below. Clinical 
data reuse also offers important commercial 
value [37]. Clinical data is used by public and 
private payers for cost-effectiveness research 
and assistance with optimal reimbursement 
decisions; healthcare organizations store 
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increasing quantities of clinical data for 
internal applications realizing that this data 
could soon become a very valuable asset. 
For the healthcare IT industry, research 
platforms allowing clinical data reuse open 
new business opportunities facilitated by 
sustainable business models [35]. 

Although offering multiple potential 
advantages, reuse of clinical data also faces 
multiple challenges from the observational 
and clinically-motivated data collection pro-
cess, data quality issues, data integration and 
interoperability limitations, and socio-organi-
zational constraints [21, 38-40]. Clinical data 
are collected for clinical use and for billing 
purposes. These observational data (rather 
than experimental data) are more process-re-
lated and frequently lack outcome data needed 
for effective research [21]. Clinical data are 
also biased by the incentives for clinicians to 
“upcode”, by the non-random assignment of 
treatments, by systematic differences between 
patients and the general population, by the 
healthcare system complexity causing mul-
tiple confounders, and the large variability of 
measurement instruments and methods [40, 
41]. The quality of data is often problematic 
or insufficient for research applications 
[42-44]. Data are often incomplete (e.g., 
outcomes are frequently missing) [45] or 
simply not randomly complete [46], patient 
records are fragmented, data entry errors are 
common, and the timeliness or currency of 
the data can be difficult to establish. These 
limitations have motivated several research 
teams to propose approaches for data quality 
assessment [47-49].

Reuse of clinical data typically implies 
combining heterogeneous and multidimen-
sional sets of data into common repositories, 
data warehouses, or networks, with chal-
lenges in integration, interoperability, and 
shared meaning [21]. This topic is discussed 
further below. Among socio-organizational 
constraints, patient privacy, data ownership, 
intellectual property, and organizational in-
centives and policies are the most important. 
Clinical data reuse for research purposes is 
inevitably challenged both by legal and ethical 
considerations, trying to find a balance en-
abling scientific research within a framework 
in which the privacy of patients is protected 
[3, 50, 51]. Finally, the sale of clinical data 
remains an unresolved policy issue [3, 21, 52].

Recognizing the multiple potential 
benefits of clinical data reuse, but also 
the numerous aforementioned difficulties, 
several organizations and researchers have 
proposed recommendations for successful 
(or at least informed) clinical data reuse. The 
American Medical Informatics Association 
has published a white paper listing recom-
mendations for a national framework for the 
secondary use of clinical data [3]. A similar 
European initiative proposed recommenda-
tions for the trustworthy reuse of health data 
[52], and Hersh and colleagues published 
recommendations [53] and caveats for clin-
ical data reuse in comparative effectiveness 
research [54].

C   Privacy and Ethical Concerns 
Related to Clinical Data Reuse
While in most countries, consent is not legal-
ly required to collect clinical patient data and 
in most U.S. states (except New Hampshire) 
patients do not legally own their medical data 
[55], from an ethical standpoint, patients 

consent indirectly to the collection, storage, 
transmission, access, and manipulation of 
their data in EHRs because they perceive 
the direct benefit of such data for their own 
care. For example, the ability of an EHR to 
reduce drug-drug or drug-allergy adverse 
events [56] or to avoid having to repeat the 
same medical history to every new provider 
[57] are tangible benefits to patients which 
lead to their consent for their data to be 
collected in the first place and then reused. 
While some patients express altruistic inten-
tions and want their data to be used “so that 
another person might be helped,” in general 
such behavior may not be assumed. Most 
advantages of data reuse benefit others (e.g., 
payers, providers, researchers, politicians, 
and society at large), than the patient. Thus, 
ethically, it is mandatory that the originator 
(from an ethical point of view which may be 
different than the legal point of view) and 
the original owner of the data - the patient - 
who may not be the direct beneficiary of the 
data reuse be properly protected in her/his 
rights. Table 1 explores general principles 
of informatics ethics applicable to clinical 
data reuse.

Table 1   General principles of informatics ethics (adopted from the IMIA Code of Ethics for Health Information Professionals[58]) and their 
impact on data reuse

Principles

Principle of Information- 
Privacy and Disposition

Principle of Openness

Principle of Security

Principle of the Least 
Intrusive Alternative 

Principle of Accountability

Definitions

The fundamental right of a person to privacy and with it 
the right to control data about her/himself including the 
collection, storage, transmission, access, modification, 
disposition, and most importantly use of the data.

The collection, storage, transmission, access, 
modification, disposition, and use of a person’s data 
must be disclosed to the person in an appropriate and 
timely fashion. 

Collected data must be protected by all reasonable 
and appropriate measures against loss, degradation, 
unauthorized access or destruction, use, manipulation, 
modification, or transmission.

Any infringement of privacy rights or the individual’s 
right to control her/his data may only occur in the least 
intrusive fashion and with a minimum of interference 
with the rights of the affected person. 

Any infringement of privacy rights or of the individual’s 
right to control her/his data must be justified to the af-
fected person in a timely manner and in an appropriate 
fashion. 

Impact on Reuse

 Reasonable protection against any 
disclosure of patient data.

 Patient right to have data expunged 
or modified.

 Required notification of patients (and 
raising of awareness) that their data 
are collected and stored, transmitted, 
modified, and reused.

 Security for systems allowing 
secondary use of data must be at or 
above the level of security provided for 
systems designed for the original use.

 Required analysis of planned reuse of 
data to avoid infringement or more 
than minimal interference.

 Violations of the above principles 
require the individuals working with 
reused data (not the primary data 
collectors) to disclose such events.
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In the United States, the confidentiality of 
patient data is protected by the 1996 Health 
Insurance Portability and Accountability Act 
(HIPAA), the 2000 Privacy Rule (codified as 
45 CFR §160 and 164) [59], and the Common 
Rule [60]. In the European Union, the Europe-
an Convention on Human Rights and the Data 
Protection Directive Article 8 (95/46/ EC [61]) 
offer similar legal bases, with corresponding 
national legislations in each member states 
(e.g., Data Protection Act 1998 (DPA) in the 
UK [62]). These laws typically require the in-
formed consent of the patient and approval of 
the Internal Review Board (IRB) to reuse data 
for research purposes. The informed consent 
requirement is sometimes extremely difficult 
or even impossible to fulfill (e.g., retrospec-
tive studies of large patient populations who 
moved, changed healthcare system, or died). 
This requirement can be waived if data is 
“de-identified”. For clinical data to be consid-
ered de-identified, the HIPAA act and Privacy 
Rule require either that there is only a very 
small risk that the information could be used to 
identify the individual, subject of the informa-
tion, (“Expert determination” method) or that 
18 protected health information (PHI) iden-
tifiers are removed (“Safe Harbor” method) 
[59]. A meaningless identifier can be retained 
to permit re-identification of the de-identified 
data by a Honest Broker. The terms “ano-
nymization” and “de-identification” are often 
used interchangeably, but de-identification 
only means that explicit identifiers are hidden 
or removed, while anonymization implies that 
the data cannot be linked to identify the patient 
and addresses all data, not only identifiers (i.e., 
de-identified data can be far from anonymous). 
Pseudonymization and scrubbing are two 
synonyms for de-identification.

The de-identification of structured data 
typically consists in removing or replacing 
data in each of the 18 PHI categories. Several 
commercial applications currently offer this 
functionality in databases (e.g., IBM Optim 
Data Privacy Solution, Oracle Data Masking 
Pack). Applications to research and public 
health networks [63, 64] or as a service based 
on the ISO 13606 EHR semantic interoper-
ability standard [65] are examples requiring 
more complex implementations. Besides PHI 
removal or replacement, de-identification can 
also be achieved by segmenting [66] or ‘disas-
sociating’ patient records [67]. De-identifying 

unstructured clinical text is a far more complex 
endeavor because of the difficulty to identify 
PHI in text [68]. It is often realized manually 
and requires significant resources [69]. For 
more scalable approaches, several authors 
have investigated automated text de-identifi-
cation based on natural language processing 
(NLP) [70] using various methods. Methods 
are usually based on pattern matching and dic-
tionaries, or on machine learning algorithms. 
Some are more generalizable than others, and 
certain methods perform better with some 
types of PHI than others [71, 72]. Recent ex-
amples such as MIST [73], BoB [74], Anonym 
[75], and several systems developed for the 
i2b2 NLP challenges [76, 77], allow for good 
accuracy and very limited impact on clinical 
information.[78] Replacing PHI with realistic 
surrogates [79] and adding biomedical scien-
tific literature text [80] allowed for improved 
performance. Applications to French [81, 82] 
and Swedish [83] clinical texts have shown 
good or promising performance. 

The anonymization of structured data has 
been realized with a variety of algorithms 
such as k-anonymity [84] or l-diversity [85] 
to learn useful information about a population 
but none about an individual, reaching ε-differ-
ential privacy [86] or other privacy protection 
definitions. El Emam and colleagues authored 
a good overview of anonymization [51]. A 
good detailed review of anonymization algo-
rithms was authored by Gkoulalas-Divanis 
and colleagues[87]. Recent algorithms have 
focused on enhancing the utility of anonymized 
data [88-90] and applying anonymization to 
distributed data networks [91]. Anonymizing 
unstructured text is a far more difficult endeavor 
than structured data anonymization, similarly to 
data de-identification, but the impact on clinical 
information is potentially far more destructive. 
Chakaravarthy et al. [92] and Jiang et al. [93] 
have applied privacy models, the K-safety mod-
el for the former (prevents matching documents 
to entities based on terms that co-occur in a doc-
ument), and t-plausibility for the latter (requires 
documents to be associated with at least t other 
plausible documents, any of which could be the 
original one, using word ontologies).

As discussed, de-identified data is often 
not anonymous, and the risk of re-identifi-
cation, i.e. of linking a patient identity with 
de-identified data, can sometimes be import-
ant. For example, more than 96% of 2,700 

patient records involved in a genome-wide 
association study were shown to be uniquely 
re-identifiable based on diagnosis codes [94]. 
However, the risk for patient re-identification 
in de-identified structured data sets has been 
assessed as low or very low. [95-98] Methods 
to estimate this risk with anonymized data sets 
were proposed by Dankar and colleagues [99]. 
Evaluating this risk for unstructured text has 
not been attempted using similar statistical 
approaches, but the empirical risk for a phy-
sician to recognize his patients in de-identified 
clinical notes was measured as very low [100].

D   Data Integration, Interoperability, 
and Systems Federation 
Data integration is an essential prerequisite in 
order to obtain clinical data from EHR sys-
tems. Current EHRs, depending on the clin-
ical site, comprise up to 400-600 different IT 
systems which are networked using standards 
such as Health Level 7 (HL7) for textual data 
and Digital Imaging and Communications in 
Medicine (DICOM) for imaging data, often 
via commercial communication engines (e.g., 
eGate, Cloverleaf, or successors) [101, 102]. 
Integrating the Healthcare Enterprise (IHE) 
profiles, starting with clinical use cases, has 
successfully demonstrated how information 
transactions based on existing standards can 
be used to integrate the healthcare enterprise 
[103, 104].

Interestingly, most published data reuse 
projects do not use this type of horizontal data 
integration between operative quantity-based 
systems such as Patient Data Management 
Systems (PDMS), laboratory systems, Ra-
diology Information Systems (RIS), and 
Picture archiving and communication systems 
(PACS). Instead, data reuse relies on vertical 
data integration which is typically reflected in 
data warehouse architectures, to be filled from 
source systems with copied data using an ETL 
(extraction-transformation-loading) process 
[105-107]. This approach is chosen because 
source data can thus be cleansed and filtered. 
Routine EHR data, for example, may comprise 
temporary data items, preliminary data items, 
and administrative data which are not desired 
within the research database. The process of 
copying data in a data warehouse architecture 
implies modification of both the source data 
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structure and the data storage scheme. While 
routine EHR systems are transaction-oriented 
and must ensure data consistency when new 
data items are stored, extracted data in data 
warehouse structures is typically query-orient-
ed. Instead of inserting single data items into 
the data warehouse, the ETL process will rather 
copy either the complete data source, or the 
delta since last import into the data warehouse. 
In addition, the ETL process supports the 
integration of data items from many different 
source systems as long as a common identifier 
such as a patient ID or case number can be used 
to join this data. Within the ETL process, it is 
typically possible to deal with missing data 
and data that does not fulfil consistency rules. 

Data warehouse applications and ETL 
functionalities are available from many 

commercial vendors. For clinical data reuse 
however, it may be desirable to use open 
source toolsets to allow for cross-institutional 
data exchange. These tools offer several ad-
vantages such as unlimited access of many 
researchers in terms of licensing and the 
option for researchers to create their own 
specific queries, which is often limited in a 
commercial data warehouse environment. It 
can be observed that open source platforms 
such as i2b2 (Informatics for Integrating 
Biology and the Bedside) combined with 
open source ETL tools such as Talend Open 
Studio have been used in several data reuse 
projects [106-108]. Figure 1 depicts the 
architecture developed within the German 
Integrated Data Repository Toolkit (IDRT) 
to support integration of various operative 

source systems and different terminologies 
into an i2b2 research database.

Due to the privacy concerns mentioned 
above, the need for a scaled architecture may 
arise which ensures that local and pseud-
onymized data do not leave the source site. 
Such scaled architectures have been proposed 
e.g. within the EHR4CR project [109] to sup-
port the cooperation between local and central 
data warehouse structures using a so called 
“EHR4CR endpoint.” Thus, it is possible to 
support cohort selection of appropriate study 
patients across various sites and to collect pa-
tient informed consent only in a second step for 
the finally selected patients. Another technical-
ly interesting approach from the Scandinavian 
countries relies on the use of openEHR to 
extract data from several source EHRs [110].

Fig. 1   Example of data extraction process from operative systems and source terminologies into an i2b2 research database infrastructure. Figure adapted from the IDRT project [107].
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E   Data Models and Terminologies 
Enabling Clinical Data Reuse
 It has long been recognized that data transfer 
between different EHR systems relies on both 
syntactic and semantic constraints (Fig 2) 
[111, 112]. Data reuse projects face a similar 
problem. It is insufficient to simply transfer 
data into the research database without con-
textual knowhow of their meaning at that 
time. First generation interfaces used for EHR 
data transfer such as HL7 version 2.x covered 
the syntactic part of data transport only. In 
comparison, HL7 v3 defined a reference in-
formation model (RIM) to ensure a common 
understanding between the interfaced systems 
regarding transferred data contents. But its 
use has been hampered when existing EHR 
systems had different data models. 

A powerful tool to improve semantic 
interoperability is the use of controlled 
terminologies [113]. Medicine has sought 
to ensure a common understanding by de-
fining a growing number of classifications, 
nomenclatures, and ontologies such as the 
International Classification of Diseases 
(ICD) for diagnoses, the International 
Classification of Procedures in Medicine 
(ICPM) and many national procedure clas-
sifications, Logical Observation Identifiers 
Names and Codes (LOINC) for laboratory 
values, and the Systematized Nomenclature 
of Medicine (SNOMED) as an international 
nomenclature, to mention a few examples. 
Most medical terminologies have been de-
veloped for a specific purpose such as death 
statistics, health statistics, or billing. The use 
of terminologies for a common understand-
ing of research data is essential to improve 
semantic interoperability. This can be seen 
in Figure 1 where the research database is 
constructed using such terminologies.

The Clinical Data Interchange Standards 
Consortium (CDISC [114]) is a non-profit 
organization developing standards for the 
exchange of digital clinical study data among 
associations. The principal software compo-
nent within clinical studies is the electronic 
case report form (eCRF). An eCRF typically 
contains fields for data to be collected for one 
study subject according to the study protocol 
in a single clinical trial encounter [115]. 
There are many different options to structure 
a clinical trial, thus an electronic data cap-

ture (EDC) system must support a flexible 
definition of eCRFs. The CDISC consortium 
defined a set of standards for data capture, 
data transfer, and data analysis to facilitate 
data exchange between different study sites 
and their respective EDC systems. These 
standards include the XML-based Opera-
tional Data Model (ODM) to construct and 
model customized eCRF, and the Clinical 
Data Acquisition Standards Harmonization 
(CDASH) model, which defines the recom-
mended data collection fields for 16 domains 
(version 1.1) such as patient demographics, 
concomitant medications, laboratory test 
results, or adverse events [116, 117].

The following consequences arise for clin-
ical data reuse: the research data warehouse 
should have an appropriate data scheme which 
maps source data during the ETL process to 
existing classifications and nomenclatures 
such as ICD, LOINC, Medical Dictionary 

for Regulatory Activities (MedDRA), An-
atomical Therapeutic Chemical (ATC), or 
SNOMED. The Observational Health Data 
Sciences and Informatics (OHDSI) collabo-
rative tries to force such mapping to common 
domain vocabularies [118, 119]. If data is to 
be reused for cohort identification only, this, 
in combination with the NLP methods men-
tioned in the following section could already 
be sufficient. The Patient-Centered Out-
comes Research Institute (PCORI) has been 
launched in 2013 in the U.S. with a national 
Patient-Centered Clinical Research Network 
(PCORNet) to support interoperable clinical 
data research networks (CDRN) integrating 
patient-generated data and electronic health 
information for comparative effectiveness 
research [120,121]. For example, the New 
York City CDRN focuses on diabetes mellitus 
as common condition, and cystic fibrosis as 
rare condition [122].

Fig. 2   Requirement for syntactic and semantic mapping when transferring data from one Electronic Patient Record (EPR) to another (adapted 
from [112]).
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F   Extraction of Information from 
Unstructured Clinical Data
The majority of clinical information is stored 
in unstructured text format. In a recent survey 
of U.S. hospitals equipped with advanced 
EHRs, only about 35 % of their clinical data 
was captured in structured format, and 65% in 
unstructured text [123]. Reuse of this unstruc-
tured data requires either manual abstraction, 
or automated information extraction ap-
proaches based on NLP [124]. Most informa-
tion extraction efforts focused on phenotyping 
and chart abstraction improvement [125], 
research subjects recruitment and cohort 
identification for retrospective studies, and 
patient identification for improved treatment 
and follow-up. The extraction of phenotypes 
and other types of information include diseas-
es and problems, investigations, treatments, 
combined in the 4th i2b2 NLP challenge 
[126], or medication details for example 
[127]. Various data and attribute values were 
extracted to support peripheral artery disease 
and heart failure research in the eMERGE 
network [128], and to support obesity re-
search [129]. Study subjects recruitment is a 
constant struggle, and adding more detailed 
information extracted from unstructured data 
to existing diagnostic codes significantly 
improves it [130]. Pakhomov and colleagues 
used it to identify patients suffering from 
angina pectoris [131] or heart failure [132]. 
Ni and colleagues used it to improve oncology 
trial eligibility screening [130], and Weng and 
Boland to represent and extract trial eligibility 
criteria [133, 134]. Extracting information to 
improve treatment and follow-up of patients 
has been applied to pancreatic [135] and colon 
neoplasms detection [136], thromboembolism 
and incidental findings [137], adverse events 
and errors detection [137], and patients acuity 
prediction [138]. Finally, information extract-
ed from unstructured clinical data has been 
used to enable other examples of data reuse 
discussed below.

In several studies, NLP is used in combi-
nation with text- and data-mining. Typically, 
NLP is performed as the first processing step 
to extract medical concepts from narrative 
and unstructured portions of EHRs, while 
text- and data-mining techniques are ap-
plied to the data previously extracted with 
NLP. Some studies applied standard NLP 

techniques, such as cTAKES, MedLEE, and 
MetaMap, others applied ‘custom-made’ 
NLP techniques. Examples of the com-
bined use of standard NLP and text- and 
data-mining are found in [139-141] where 
cTAKES is used with Boolean logic to per-
form phenotyping and to extract drug-side 
effects. MedLEE was applied for: 1) adverse 
drug reaction (ADR) signaling, where the 
association between a drug and an ADR was 
obtained by using disproportionality analysis 
[142, 143] or Boolean logic [144], or by 
building and analyzing statistical distribu-
tions of concepts (i.e., diseases, symptoms, 
medications) extracted from the narrative text 
[145]; 2) EHR-data driven phenotyping using 
Boolean logic on MedLEE-extracted concepts 
[136, 146]; 3) automated classification of 
outcomes from the analysis of emergency 
department computed tomography imaging 
reports using machine learning methods, 
such as decision trees [147]. MetaMap has 
been used with logistic regression in [148] to 
discover inappropriate use of emergency room 
based on information on drugs, psychological 
characteristics, diagnoses, and symptoms. 
Finally, a review of the application of standard 
NLP methods combined with data mining can 
be found in [149].

In other cases, NLP is implemented us-
ing basic text search of a list of ‘key words’ 
identified by the authors and subsequent 
analysis of the set of terms extracted with 
Boolean logic [150,151], disproportionality 
analysis [152], contingency tables,[153] 
logistic regression [154], and classification 
methods [155]. Fields of applications include 
EHR-data driven phenotyping, ADR signal-
ing, and the assessment of effects of mood 
instability on clinical outcomes. Finally, 
an example of use of ‘custom-made’ NLP 
systems is given in [156] where a NLP tool 
based on the French medical lexicon and 
UMLS is used with Boolean logic to analyze 
medical reports and automatically detect 
surgical site infections in neurosurgery. 

G   Mining Structured Clinical Data
The following is a brief description of the 
rationale and typical methods used for EHR 
data mining. Methods are clustered in 10 
categories as discussed below.

Boolean logic extracts data using que-
ries made by Boolean combinations of a set 
of conditions. Boolean logic was applied 
in many studies, i.e., [157] and [158], 
ranging from the analysis of EHRs for the 
evaluation of the effectiveness of triage 
models used in mass casualty research to 
the identification of emergent endotracheal 
intubation in ICU patients.

Fuzzy logic is used to solve problems 
where it is more convenient to consider the 
concept of ‘partial truth’: a variable might be 
partially true or partially false. An example 
is given in [159] where EHRs are analyzed 
to detect potential ADR signals.

Regression analysis models the relation-
ships between a dependent variable and one 
or more independent variables. In logistic 
regression, the relationship between the 
dependent and the independent variable(s) 
is modeled with a cumulative logistic dis-
tribution. This method has been applied to 
predict crush syndrome from a set of risk 
factors,[160] to improve the performance 
of severity of illness scores [161], to model 
factors associated with overweight and 
obesity [162], to characterize differences in 
co-morbid profiles between different cohorts 
[163], to determine the association between 
nurse continuity and hospital-acquired 
pressure ulcers [164], to discover how the 
patient and the characteristics of support and 
intervention systems affect the improvement 
in urinary and bowel incontinence [165], 
and, finally, to detect ADR signals from 
EHRs [166]. In orthogonal regression, the 
relationship between the dependent and 
the independent variable(s) is the one that 
minimizes the orthogonal distances from the 
observed values of the dependent variable 
and the corresponding values on the fitting 
line. Sun and colleagues used orthogonal 
regression to identify risk factors related to 
an adverse condition[167].

The Apriori algorithm is the most widely 
known association rule algorithm using an 
iterative approach to find the most frequent 
associations between two or more items 
and gives a measure of the frequency with 
which that particular association has been 
found. The algorithm has been applied in 
[168] to discover associations between di-
agnoses of different sub-groups of patients. 
Association rule mining has been applied in 
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[169] to identify the associations between 
combination of diagnoses, demographics, 
and lab results to predict high risk of diabe-
tes. In [170] association rule was applied to 
discover medical correlations, characterize 
data trends, and perform predictive analysis 
on data trends and medical correlations.

Classification is the process of assigning 
a new observation to a specific pre-defined 
category or class. In decision tree classifi-
cation, a decision tree is used to predict the 
value of a target variable (or item) based on 
the observations of several input variables. 
Classification And Regression Tree (CART) 
analysis, a particular type of decision tree, 
has been applied to detect ADRs [171, 172]. 
The k-Nearest Neighbors (k-NN) algorithm, 
another classification method, assigns an 
object to the most common class among its 
k nearest neighbors. k-NN is used in [173] 
for retrieving patients with similar charac-
teristics by analyzing EHRs. Fuzzy neural 
networks are the combination of neural 
networks and fuzzy logic. Skevofilakas and 
colleagues used fuzzy neural networks to 
predict the risk of Type I Diabetes Mellitus 
patients to develop diabetic retinopathy 
[174]. Finally, Support Vector Machines 
(SVM) aim at assigning a new observation 
into one of two possible categories. It was 
applied in combination with Bayesian 
networks and k-NN in [175] to predict pan-
creatic cancer.

Clustering aims at finding hidden patterns 
- the clusters - in a data set. In fuzzy-cluster-
ing, data are assigned to more than one clus-
ter and are associated to a set of membership 
levels corresponding to the strength of the 
association between that data element and a 
particular cluster. In [176], fuzzy-clustering 
is used for the identification of rare-cases in 
post-operative pain management. Hierarchi-
cal clustering builds a hierarchy of clusters 
to find which clusters should be combined/
agglomerated and which should be split or 
divided. In addition to [176], hierarchical 
clustering has been applied in [177] to identify 
periodic/seasonal patterns in incidence of 
diseases. Non-negative tensor factorization 
(NTF) is a technique to decompose large di-
mension data tensors containing non-negative 
elements as a product of two non-negative 
tensors of smaller size. Ho and colleagues 
applied NTF for EHR data-driven pheno-

typing based on the interaction between 
diagnoses and medications [178].

Relational data mining is the application 
of data mining techniques to relational 
databases. Chen and colleagues described 
the application of relational data mining to 
detect anomalies in the accesses to commu-
nities information systems [179]. The study 
by Peissig and colleagues used Inductive 
Logic Programming (ILP) - a method that 
infers an hypothesis from the analysis of the 
background knowledge and examples - to 
derive phenotypes from EHR data [180].

Disproportionality analysis (DPA) is a 
method typically used in the investigation of 
ADR signals. The information component, 
one of the most common DPA methods, 
measures the disproportionality between 
the association of two variables, such as a 
drug and an ADR, as in a study by Norén 
and colleagues[181].

Probabilistic graphical models, such as 
Bayesian networks, are a widely used class of 
structured prediction models. Graphic models 
describe the underlying relations between the 
variables with a graph: the links between the 
different variables represent the conditional 
dependencies between the variables. Bayesian 
networks together with k-NN and SVM were 
used in [175] to predict pancreatic cancer by 
using knowledge-base from PubMed research 
papers and experimental observations derived 
from EHRs. Graphic modeling is found also 
in [182] to identify which user accesses to 
EHR data deviate from the accesses found 
during typical patient care.

Topic modeling relies on statistical mod-
els for extracting the “topics” that occur in 
a set of documents. One of the models used 
in topic modeling is the Latent Dirichlet 
Allocation (LDA) where the statistical 
information is assumed to have a Dirichlet 
distribution. LDA was used in [183] for 
EHR-driven phenotyping and in [184] to 
discover which user accesses to EMR data 
differ from the typical access pattern.

Finally, some studies applied simultane-
ously multiple data mining methods, such as 
in [185] where different approaches ranging 
from disproportionality analysis to logistic 
regression are compared and used to detect 
ADR signals from EHRs. In [186], knowl-
edge-base is used for EHR data-driven phe-
notyping for gene-disease association finding.

H   Clinical Practice and Research 
Integration
While there are huge expectations at reusing 
data produced during care processes, there 
are also important challenges. Clinical 
documentation is a paramount activity of 
clinicians to track patient’s conditions and 
communicate with other health profession-
als. However, measures to progressively 
improve and increase secondary usage of 
clinical data, from billing to quality assess-
ment or from clinical research to public 
health, have increased purposes beyond the 
direct care of the patient. This has led to 
an important increased workload for care 
professionals [187]. Clinical documentation 
requires 25-50% of clinicians’ time and, in 
a recent narrative review by Clynch and 
Kellett, there has been almost no formal 
research to assess its value, or on whether 
the time spent on it has negative effects on 
patient care [188]. There are now numerous 
reports about information and alerts overload 
using EHRs and its consequences [189, 190].

The integration of clinical practice and 
research can be considered from three major 
points of view: clinical practice to leverage 
clinical research, support for bedside clin-
ical research, and data reuse to improve 
clinical practice.

For clinical practice to leverage clinical 
research, using common semantics is a major 
challenge. There are numerous publications 
and works that have tried to leverage clinical 
research in reusing data directly extracted 
from care records. This challenge is getting 
even more important with the increasing 
need of precise phenotype information for 
genomics and personalized medicine. Unfor-
tunately, the lack of definition for phenotype 
descriptions has led to the proliferation of 
numerous definitions for most phenotypic 
information, including problems, patient 
history, physical examinations, conditions, 
and clinical profiles in general, among 
researchers, care providers, and for admin-
istration requirements. For example, Gregg 
and colleagues have reported in 2014 that 
the prevalence of some important compli-
cations of diabetes, such as neuropathy, 
chronic kidney disease, peripheral vascular 
disease, could not properly be assessed due 
to inconsistent EHR documentation and 
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definitions across the United States for the 
1990-2010 period [191]. There is still a lot 
of literature about addressing the challenge 
of unified semantics. Two different trends 
can be seen. The first trend is going to-
wards semantic-centered EHR rather than 
data-centered systems, such as developing 
EHR systems based on openEHR [192-194] 
or robust semantic encoding using semantic 
rich resources, such as SNOMED [195]. 
However, both approaches remain relatively 
marginal and resource intensive, though they 
most probably offer the better perspectives. 
The second trend consists in bridging the 
EHR with external analytical tools through a 
complex ETL process that involves both data 
normalization and semantic alignment. Most 
systems available today, either in research & 
developement such as EHR4CR [11, 196], 
DebugIT [197], and i2b2, or as commercial 
products are based on such types of bridges. 
An important challenge is about the nature 
of data. For numerous reasons, EHRs tend 
to increase the amount of data. On one side, 
there is a strong push towards increasing the 
structuration of patient records. Structured 
data have a lot of nice characteristics, most of 
them can be re-used for decision-support in 
direct care, but also for numerous secondary 
usages. On the other side, need for speed and 
efficiency promotes (semi)-automatic pro-
duction of documents, such as summaries, 
discharge documents, reports, and progress 
notes. When automatically processed, new 
documents are usually built from “co-
py-pasted” part of documents already ex-
isting in the patient record, thus increasing 
the volume of data without increasing the 
quantity of information [198].

Bedside clinical research is an important 
pillar of research in life sciences and the 
widespread adoption of EHRs provides a 
new opportunity to improve the efficiency 
of clinical research. However, the clinical 
research made “on a daily and pervasive“ 
manner tends to be difficult for clinicians, 
mostly due to the pressure of efficiency and 
to the increasing number of requirements 
needed for clinical research. Providing ef-
ficient tools for clinicians to support their 
own clinical research, to build cooperative 
and collaborative networks of clinical re-
searchers beyond the border of academic 
settings, and to do research in real settings, 

are major goals to be achieved. There are 
many initiatives that try to address these 
challenges, such as i2b2 in the U.S. [199] or 
EHR4CR in Europe [200]. Clinicians have 
been early adopters of EHRs to support their 
own clinical research, including in clinical 
practices [201]. However, this tends to be 
less the case, probably because of the reasons 
discussed above: efficiency pressure, over-
load of information, and higher requirements 
for clinical research.

How can data reuse improve clinical 
practice? Data is a major asset that should 
be considered as strategic for any clinical 
organization. This implies, for example, 
that data should never be only available in 
a legacy, proprietary repository. Data must 
be available under the full control of the 
organization with all the metadata required 
to allow data processing and analytics. One 
of the reasons for this is that clinical data of 
an organization behaves like a local and pro-
gressive knowledge about the presentation, 
conditions, and evolution of patients specific 
to this organization, considering the preva-
lence of presentation and conditions of this 
cohort of patients, in relation with the care 
and means available in the organization. It 
allows to implement the paradigm quoted by 
Ilias Iakovidis “Medicine is a global science 
and a local art.”[202] There are several ways 
data reuse can improve clinical practice: 
1) Improve the patient record and decision 
support: this is the reuse of data within the 
same patient record, avoiding duplicates, 
connecting data, supporting inferences and 
decision-support, coupling knowledge with 
external sources of information, amongst 
others; 2) Cases/peers comparison for a 
continuous learning process: cases and peer 
comparison could be a much more powerful 
instrument in EHR. It can be used in re-
al-time and has been shown to be effective by 
several authors, i.e., Milchak and colleagues 
[203]. 3) Build contextualized case-based 
database and improve the predictive values 
of decision support: most EHRs implement 
decision support in various forms, however 
they rarely consider the prevalence of con-
ditions used in decision support. Predictive 
values, especially the positive predictive 
value in the case of CPOEs, is closely linked 
to the prevalence of the alert considered. This 
has been demonstrated for drug-drug inter-

actions decision support that has a very low 
positive predictive value [204, 205]. Using 
the characteristics of the local population of 
patients of a given organization can provide 
precise and real-time prevalence, thus allow-
ing to adapt decision support and improve 
its positive predictive value. Data-driven 
approaches using large datasets have also 
been tested, e.g., for computing risk factors 
[206]. 4) Engage patients: this point is now 
receiving a large audience with the Blue But-
ton initiative, that allows patients to access, 
or download, their own patient record [207].

I   Clinical Data Reuse Examples
a) Quality measurements extraction: Clin-

ical Quality Measures (CQMs) are 
used for assessing processes, access, 
outcomes, structure, experience, man-
agement, or efficiency of patient care. As 
defined by the U.S. Centers for Medicare 
& Medicaid Services (CMS), CQMs 
assess “the degree to which a provider 
competently and safely delivers clinical 
services that are appropriate for the 
patient in an optimal timeframe.”[208] 
The CMS Quality Measures Inventory 
[209] lists more than 1,500 measures (in 
February 2016), and the National Quality 
Measures Clearinghouse (NCQM [210]) 
more than 2,100 (in February 2016). 
Among these measures, about 400 are 
endorsed by the National Quality Forum 
(NQF [211]). Several CQMs are required 
by the U.S. Medicare and Medicaid incen-
tive program to demonstrate “meaningful 
use” of EHRs. The automatic extraction 
of CQMs from clinical notes has been 
attempted with only a few clinical note 
types (e.g., colonoscopy reports) or dis-
ease categories (e.g., heart failure). Ex-
amples focused on colonoscopy reports 
included assessing the reports’ quality 
[212], and detecting patients with polyps 
or adenomas. Gawron and colleagues de-
veloped a NLP application reaching 94% 
recall and precision when detecting the 
location and histology of adenomas, and 
69% when counting their number [213]. 
Raju and colleagues compared a manual 
abstraction with an NLP-based process to 
extract screening information, correctly 
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identifying 91.3% of them with NLP, and 
87.8% manually [214]. Studies focused 
on heart failure targeted the extraction of 
mentions and values of left ventricular 
ejection fraction [24], a key functional 
test for assessing heart failure, and added 
heart failure treatment information to 
functional testing to automatically detect 
patients not treated according to pub-
lished recommendations. The latter study 
was based on the Congestive Heart fail-
ure Information Extraction Framework 
(CHIEF), an application based on NLP 
to automatically extract left ventricular 
functional testing results [215, 216], heart 
failure treatment medications [217], and 
reasons not to prescribe these medica-
tions, eventually detecting patients not 
treated according to recommendations 
with 98.9% sensitivity, and 98.7% posi-
tive predictive value [218].

b) Learning healthcare systems: The 
concept of Learning Healthcare Sys-
tem (LHS), defined by the American 
Institute of Medicine (IOM) in 2007 is 
emerging as a perfect example of clini-
cal data reuse stimulating improvement 
of healthcare services. LHS is often 
characterized as a continuous loop of 
health data collection, knowledge ex-
traction and its application in clinical 
practice, which starts a new iteration 
of the LHS [219]. Fast progression of 
knowledge into health service deliv-
ery, improved adaptation to individual 
patient needs, and support for shared 
clinical decision-making are highlighted 
as major advantages originating from 
health data reuse.

 A review of activities transforming 
healthcare services into agile and 
adaptive learning systems highlighted 
a relatively low success rate currently 
reflected in literature. Even though the 
interest on exploring the ideas of LHS is 
global, implementations in practice are 
few [220]. Many initiatives including 
several IOM meeting reports focus on 
conceptual challenges hindering the 
adoption of LHS [221-223]. Getting 
access to EHR data and making use of 
structured and unstructured information 
trigger an avalanche of problems without 
a straightforward solution. Development 

of comprehensive data models enabling 
semantic interoperability of data accu-
mulated in various healthcare systems is 
pursued by many research groups [224-
226], promising a solid foundation for 
clinical data reuse (as discussed in more 
details in sections E and F). However, 
much research is still needed to turn 
these ideas into reality.

 Regardless of many challenges, several 
research initiatives managed to demon-
strate the principles of the LHS in prac-
tice. The scale of reported studies varies 
from hundreds [227] to millions [228] 
individual patient records processed by 
distributed or centralized infrastructures. 
EHR data is often combined with patient 
reported outcomes to better address the 
aims of the LHS paradigm [220]. It pro-
vides a better understanding of “patient 
data shadow” [229] enabling personaliza-
tion of care. The aforementioned projects 
suggest that health data can and will be 
used for improving the performance and 
quality of healthcare, lowering costs, and 
addressing the individual needs of the 
patient to a larger extent in the future.

 While successful implementations of 
LHS are reported, their impact remains 
poorly documented [220]. The benefits 
for patients, health services, and society 
are difficult to measure, however, know-
ing them could lead to faster adoption of 
data reuse practices and improve their 
acceptance by healthcare professionals. 
Currently, much effort is directed to-
wards succeeding in technology devel-
opment (semantic interoperability, data 
access, and processing mechanisms), 
while mapping this effort to the aims 
of a modern healthcare (improved pa-
tient care experience, better population 
health, and reduced costs) often remains 
unclear [230].

IV   Discussion and Potential 
Future Progress
As explained earlier, reuse of clinical data is 
crucial for healthcare quality, management, 
reduced costs, population health manage-

ment, and effective clinical research. This 
need has been widely recognized and nu-
merous efforts have been reported in the sci-
entific literature and included in this review. 

As limitations, this review only includes 
the works reported in scientific publications 
and focuses on a selection of some aspects 
of clinical data reuse that were considered 
important by the authors. It was not in-
tended to do a comprehensive review of 
all published works in this field. Only a 
selection of bibliographic databases was 
used (MEDLINE, Web of Science, and 
conference proceedings). We used a con-
ceptual model of clinical data reuse that 
was developed for this review only. This 
conceptual model is partly reflected in the 
sections included in this review. Legal and 
policy issues framing clinical data reuse 
and examples of clinical data reuse (clinical 
research, clinical research subject recruit-
ment, public health surveillance) are some 
additional important aspects of clinical data 
reuse that were included in the conceptual 
model but not in the final review.

In a recent review focused on the reuse 
of structured data, Vuokko and colleagues 
found that most publications report how clin-
ical data reuse should impact care processes, 
productivity and costs, patient safety, care 
quality, or health outcomes, rather than what 
actual studies did realize when reusing clini-
cal data [231]. Most research demonstrating 
each of these possible advantages of clinical 
data reuse still lies in our future.

Opportunities for future progress are 
numerous, ranging from new legislations 
easing clinical data reuse while protecting 
patient privacy, to the addition of other types 
of observational data (e.g., consumer-provid-
ed data, personal and quantified self sensor 
data, genomic and microbiota data, environ-
ment data), and larger-scale applications. 
As a good example of the latter, the OHDSI 
collaborative [118] growing infrastructure 
is making very large scale studies based on 
reused observational data, potentially includ-
ing hundreds of millions or even billions of 
research subjects!
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