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ABSTRACT  

Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based 

fMRI recordings to investigate which neural markers distinguish individuals with autistic spectrum 

disorders (ASD) from controls. While most studies have focused on brain connectivity during resting 

state episodes and regions of interest approaches (ROI), a wealth of task-based fMRI datasets have 

been acquired in these populations in the last decade. This calls for techniques that can leverage 

information not only from a single dataset, but from several existing datasets that might share some 

common features and biomarkers. We propose a fully data-driven (voxel-based) approach that we 

apply to two different fMRI experiments with social stimuli (faces and bodies). The method, based on 

Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained for each 

experiment independently and each output is then combined to obtain a final classification output. 

Second, this RFE output is used to determine which voxels are most often selected for classification 

to generate maps of significant discriminative activity. Finally, to further explore the clinical validity 

of the approach, we correlate phenotypic information with obtained classifier scores. The results 

reveal good classification accuracy (range between 69% and 92.3%). Moreover, we were able to 

identify discriminative activity patterns pertaining to the social brain without relying on a priori ROI 

definitions. Finally, social motivation was the only dimension which correlated with classifiers scores, 

suggesting that it is the main dimension captured by the classifiers. Altogether, we believe the 

present RFE method proves to be efficient and may help identifying relevant biomarkers by taking 

advantage of acquired task-based fMRI datasets in psychiatric populations. 

  



1 INTRODUCTION 

Identifying biomarkers in psychiatry is a challenge that has been the focus of intense research in the 

past decade. Multiple approaches have been used to overcome this challenge, including attempts to 

identify biomarkers in genetics, metabolism or neuroimaging (Goldani et al., 2014). As far as 

functional neuroimaging (fMRI) is concerned, the recent development of multivariate pattern 

classification (MVPA) methods to brain imaging data appears to be a promising approach (Ecker and 

Murphy, 2014). One of the main advantages of these methods is that information sensitivity is much 

higher compared to the standard univariate approaches routinely used in neuroscience. Specifically, 

machine learning makes it possible to retrieve patterns of information within populations of voxels, 

that univariate analyses may fail to reveal (Haxby et al., 2014, 2001). Applied to psychiatry, MVPA is a 

promising method to detect brain states that discriminate patients from controls and thus 

constitutes a valuable tool to identify potential biomarkers (Mourão-Miranda et al., 2005; Pereira et 

al., 2009). In recent years, MVPA has indeed successfully been used on fMRI data to classify patients 

with major depression (Fu et al., 2008) or drug addiction (Zhang et al., 2011) with accuracy rates 

ranging from 70% to 80%. 

However, given the wealth of existing fMRI datasets collected in psychiatry research, there is a need 

for techniques that can go beyond the analysis of single datasets and that allow researchers to 

leverage information from multiple datasets at once. Such methods would increase biomarker 

sensitivity and allow us to make the most of existing data. While there are obvious benefits in 

reanalyzing large datasets, the absence of efficient methods to merge information across datasets 

makes the process quite labour-intensive. Existing methods such as non-parametric permutation 

tests (Nichols and Holmes, 2001) and searchlight methods (Kriegeskorte et al., 2006) cannot be 

directly applied to mine information from several experiments, or when the assumption of sample 

independence does not hold.  

This rationale applies particularly well to Autism Spectrum Disorders (ASD), where large corpuses of 

brain data have been collected and, for a good fraction of them, made publicly available. Autism is a 

neurodevelopmental disorder characterized by a unique profile of impaired social interaction and 

communication which takes the form of an inadequate appreciation and modulation of behavior 

according to socio-emotional information (World Health Organization, 1992). ASD individuals display 

hypo-connectivity in brain networks engaged during rest (Kennedy et al., 2006) and aberrant activity 

in several nodes of the “social brain” (i.e. fusiform gyrus, sulcus temporal superior and amygdala) 

while they process social or emotional information (Dichter, 2012; Pelphrey et al., 2004).  



To date, most ASD fMRI classification studies have used resting-state functional connectivity patterns 

(Anderson et al., 2011; Deshpande et al., 2013; Iidaka, 2014; Murdaugh et al., 2012; Zhou et al., 

2014) and only two have applied task-based paradigms that tap into ASD core social and emotional 

deficits (Coutanche et al., 2011; Deshpande et al., 2013). Using a limited set of a priori regions of 

interest (ROI) pertaining to the social brain, both studies showed hypo-connectivity and hypo-

activation in regions involved in face processing or theory of mind, functions that are indeed atypical 

in ASD participants. While restricting classification to a limited set of ROI is a laudable conservative 

approach, combining information from multiple fMRI datasets may help to improve the detection 

reliability of relevant biomarkers, in particular those having a small spatial extent. This goal requires a 

data-driven approach that can mine information from the entire brain at the voxel-wise level. 

The goal of this paper is to propose a multivariate method that can combine information from 

several studies to detect activity patterns at the voxel-wise level which are significantly predictive of 

autism. We used data from two distinct experiments acquired in the same group of ASD and control 

participants. As in Coutanche et al’s study (Coutanche et al., 2011), the tasks we used were initially 

designed for univariate analysis and were not planned with MVPA in mind. Both tasks required to 

process emotional stimuli under different conditions of social relevance or feature-based attention: 

the first experiment investigated the perception of angry or neutral faces with direct or averted gaze 

(adapted from Conty et al., 2012) ; the second experiment required participants to direct attention to 

or away from angry and neutral body expressions (adapted from Pichon et al., 2012). We report two 

analyses on these datasets. In Analysis 1, we estimated the classifier’s ability to discriminate patients 

from controls after training the classifier on both studies. In Analysis 2, we extended this diagnosis-

based approach to assess whether this classifier is correlated with individual differences in social 

motivation, a dimension of behavior that likely plays an important role in social deficits observed in 

ASD. Moreover, given that recent studies have raised the concern that head motion may introduce 

spurious biases in classification problems (Deen and Pelphrey, 2012; Power et al., 2012), we 

compared the results of our classifiers after regressing out 6 motion parameters (x, y, z, pitch, yaw, 

roll), which is still one standard practice in the field of BOLD imaging, with a more stringent method 

which includes 24 motion parameters that has been used elsewhere (Power et al., 2014; 

Satterthwaite et al., 2013). 



2 General method 

2.1 Participants 

All participants gave their informed written consent and the study was conducted in accordance with 

the Declaration of Helsinki and the local Ethics Committee. The sample comprised 29 adults, 15 with 

ASD and 14 Typically Developing (TD) subjects. All ASD participants had received a formal diagnosis 

of an ASD by licensed psychologists or psychiatrists according to standard diagnostic criteria 

(American Psychiatric Association, 2000) and using module 4 from the Autism Diagnostic 

Observational Schedule (ADOS, Lord et al., 2000). Participants were matched on age and IQ (Table 1). 

As it is often the case, participants in the ASD group had higher trait anxiety scores than controls. 

This potential confound was taken into account in our analyses by ensuring that classification scores 

were uncorrelated to anxiety scores. 

Table 1. Participant variables employed for group-matching and ADOS data. 

 ASD (n=15) Controls (n=14) Group difference 

  Mean SEM Range Mean SEM Range t-test P-Value 

Age 28.6 1.87 19-43 31.6 2.61 19-53 .94 0.35 

IQ 108.06 4.5 77-150 116.78 4.6 84-141 1.35 0.18 

Handedness* 3L/ 12R   4L/10R   .29 0.59 

Gender* 13M/2F   12M/2F   .006 0.94 

ADOS total 10.3 2.46 5-15      

ADOS communication 3.23 1.73 0-7      

ADOS social 
interaction 

7.07 0.95 5-8      

 
*Pearson Khi-2; SEM: Standard error of the mean 

2.2 Experimental procedures 

The static faces task (Experiment1): This experiment aimed at addressing whether ASD participants 

automatically process anger expressions directed at themselves (compared to averted expressions) 

as self-relevant communicative signals. It was adapted from a previous study (Conty et al., 2012) and 

crossed two factors: gaze direction and emotion (see below). Participant’s task was to press a button 

whenever a face was presented upside down. This oddball paradigm has the advantage of leaving the 

trials of interest uncontaminated by motor responses.  

We used color pictures of 10 actors (5 males) for which we manipulated two factors: 1) gaze 

direction (direct gaze condition: head, eye-gaze directed towards the participant; averted gaze 

condition: head, eye-gaze averted by 30°; and 2) emotional expression (angry or neutral). An 

additional picture was taken of each actor, with a neutral expression, arms by their sides with an 

intermediate eye direction of 15°. This position is thereafter referred to as the “initial position”. The 

full description of the stimuli can be found in Conty et al. (2012). In the scanner, each trial began by a 



uniform gray screen (800ms) followed by a fixation area (500ms) consisting of a central red fixation 

point and four red angles. We instructed participants to fixate the central point and to keep their 

attention inside the fixation area at the level of the central point. An apparent movement was then 

created by the consecutive presentation of two pictures. The first picture showed the actor in the 

initial position during a random time (mean duration = 450 ms, range 300-600ms) and was 

immediately followed by a second picture of the same actor in one of the 4 conditions of interest 

(Figure 1.A.). This second stimulus remained on the screen for 1300 ms. A total of 230 trials were 

presented including, in addition to the 160 trials of interest (10 actors*4 conditions*2directions*2 

repetitions), 20 oddballs (the second picture is upside-down) and 50 null events (mean duration = 

3050 ms). 

The dynamic bodies attention task (Experiment2): This experiment aimed at drawing attention 

toward or diverting attention from the emotional meaning of movie-clips depicting angry, fear and 

neutral body actions. It was adapted from a previous study (Pichon et al., 2012) and crossed two 

factors: attention (to emotion stimuli/to color dots) and emotion (anger/fear/neutral). Attention was 

manipulated using instruction screens and alternated every six trials. During the emotion-naming 

instruction, subjects were asked to judge whether the action expressed anger, fear or was neutral. 

During the color-naming instruction, subjects viewed the same video-clips but were requested to 

detect the color of a small dot (red, green, blue, visual angle = 0.3°) that was briefly flashed during 

40ms. To minimize shifts in spatial attention between tasks, the location of the color dot was 

carefully chosen so that it always fell on the actor’s upper body. Colors were randomized across 

emotional expressions and appeared in both tasks. The experiment was divided into two successive 

scanning runs of 21 minutes each. Within each run, stimuli were blocked by task and blocks 

alternated between series of attention to emotion or attention to color conditions. Each block 

contained 6 trials (including 5-seconds null events). A total of 36 blocks per attention condition was 

presented (142 video-clips + 74 null events per task). At the beginning of each block, subjects were 

instructed by a text on the screen lasting 2 seconds whether they had to recognize emotions or 

detect colors. Stimuli and null events were randomly mixed within blocks. After each stimulus 

presentation, subjects were instructed by a response screen (fear/anger/neutral or red/green/blue) 

to push the corresponding button using a response pad placed in their right hand. Subjects had a 

delay of 2 seconds to give their answer. The order of response options on the screen was randomized 

between trials to avoid motor anticipation related effects.  

We used 73 movie-clips (24 anger, 23 fear and 24 neutral) with a length of 3 secs for the present 

experiment. The full description and validation of this set of stimuli can be found in previous studies 

(Pichon et al., 2012, 2009, 2008). Briefly, actions were performed by professional actors who were 



filmed opening a door while they enacted different scenarios corresponding to angry, fear or neutral 

situations. Actors were facing the camera and facial expressions were blurred at the post-processing 

stage such that only information from the body was available. In the present manuscript, we only 

focused our analyses on anger and neutral stimuli, thus only the four conditions of interest of 

experiment 2 are presented in Figure 1.B. 

 

Figure1. The two paradigms and examples of stimuli. A) In 

Experiment 1 (static faces), participants observed angry or 

neutral facial expressions with direct or averted gaze. 

Participants were instructed to observe each picture attentively 

and to press a button whenever they perceived an upside-

down oddball picture (Conty et al., 2012). B) In Experiment 2 

(dynamic bodies), participants observed short video-clips 

showing angry or neutral body expressions with a color-dot 

appearing briefly for 40 ms onto the actor’s upper body. 

Depending on the instruction, subjects categorized the emotion 

or the color of the dot (Pichon et al., 2012) 

 

2.3 fMRI data acquisition 

For both experiments, gradient-echo T2*-weighted transverse echo-planar images (EPI) with BOLD 

contrast and a high-resolution T1-weighted anatomical image were acquired with a 3T. Each volume 

contained 40 axial slices (TR/TE/Flip angle=2000ms/27ms/78°, resolution=64x64, voxels size 3x3 mm 

with 3 mm thickness, Parallel Acquisition Technique (PAT) factor 2). A shimming procedure 

minimized inhomogeneity of the static magnetic field. Image acquisition started after the recording 

of three dummy volumes to avoid T1 saturation. For each subject and for each task, we collected 370 

functional volumes. In addition, we collected a high-resolution T1-weighted anatomical image 

(TR/TI/TE/Flip angle=2300ms/ms/4.18ms/9°, resolution=256x256x64, voxels size 1x1 mm with 1 mm 

thickness, no IPAT acceleration, 176 sagittal slices). 

Preprocessing of functional images. Image processing and analyses were carried out using SPM8 

(Wellcome Dept. of Cognitive Neurology, London, UK). Functional images were realigned to the first 

volume by rigid body transformation, corrected for time differences, spatially normalized to the 

standard Montreal Neurological Institute (MNI) EPI template, resampled to an isotropic voxel size of 



2 mm, and spatially smoothed with an isotropic 8 mm full-width at half-maximum (FWHM) Gaussian 

kernel.  

Subject-wise fMRI analysis. At the individual level, we performed standard analyses using the 

general linear model (GLM) in SPM8. Each task was modeled separately and included 4 conditions of 

interest as described above (exp.1 crossed gaze orientation x emotion and exp.2 crossed attention x 

emotion). For each condition, a covariate was calculated by convolving stick functions at the onset of 

stimulus presentation with the canonical hemodynamic response function (HRF). The length of each 

event encompassed the stimulation and the fixed response period (exp.2 only). Estimation of models 

resulted in the calculation of a beta map for each experimental condition (i.e. a total of 8 beta maps / 

conditions per participant) that was used for classification. 

Regression of motion parameters. We gave careful consideration to the issue of residual head 

motion-related artifacts which may contaminate results even after volume realignment and lead to 

spurious patterns biasing the classification. We regressed out the effect of head motion by including 

the realignment parameters estimated at the preprocessing stage in all GLM models. We compared 

the results of our classification using models which included two flavors of motion parameters. In a 

first set of models, we followed a standard procedure and included the 6 raw realignment 

parameters (referred here as rawrp6 models). In a second set of models (referred here as Friston24 

models), we applied a more conservative method proposed by (Friston et al., 1996), which takes into 

account the participant’s movement in the current but also in the previous scan and that has been 

used elsewhere (Power et al., 2014; Satterthwaite et al., 2013). The later method takes 24 motion 

regressors into consideration: the 6 raw realignment parameters, the same 6 regressors shifted-back 

by one time point to take into account the movement during the preceding scan (to capture a 

“memory” effect as in Volterra expansions), and each of the 12 regressors squared. We could have 

used other regression method, yet our goal was more to ensure that classification results remained 

high despite a more stringent control of motion artifact, rather than investigating the influence of 

different motion correction methods on classification per se. 

3 Analysis 1 - Classification of autistic individuals and controls 

3.1 Method 

Our first goal was to train classifiers to discriminate patients from controls and to evaluate the 

classifier’s performance. The proposed classification method took into account the specificity of our 

dataset, which consists of non-uniformly distributed beta maps generated from different tasks and 



experiments. Secondly, feature selection was applied to improve classification performance and to 

identify the most discriminative voxels across the two experiments. 

We used the beta maps of each condition estimated at the individual step level as inputs for the 

classification to verify the hypothesis that fMRI brain activity discriminates ASD individuals from the 

controls. The space formed by the beta map voxels was directly used as the feature space for 

classification, without including any prior information such as a priori ROIs. Hence, our classification 

method was fully data-driven and aimed to find the most discriminative voxels. Indeed, using the 

information of the entire brain in an explorative approach may allow for: A) more accurate 

classification than restricting classification to a limited set of a priori regions; and B) identifying brain 

activity patterns which may not have been identified using a ROI approach, for instance because the 

discriminative activity would lie at the boundary of two ROIs. 

Voxels that were not available due to brain volume differences between participants were rejected, 

still leading to a high dimensional space represented by N=186217 features (i.e. beta map voxels). 

Many machine learning algorithms are available and applicable to fMRI data (Pereira et al., 2009). 

We opted for a Support Vector Machine (SVM), as implemented in Matlab 2014a (The MathWorks 

Inc.), given its ability to perform well in high dimensional spaces (Bishop, 2006). Since the number of 

samples employed for training the SVM is rather low compared to the dimension of the feature 

space, the two classes are always separable by a linear hyperplane and employing non-linear decision 

boundaries is of limited interest. We used a linear SVM with a model of the form: 

𝑓(𝒙𝒊) = 𝒘𝑇𝒙𝒊 + 𝑏 

where 𝒙𝒊represent a feature vector (i.e. a 3D beta map flattened into a vector). When minimizing its 

cost function to obtain the weights 𝒘, the SVM relies on the parameter 𝐶 that adjusts the tradeoff 

between misclassification and regularization. Following the advices in Laconte et al. (2005), 

regularization was achieved by setting the 𝐶 parameter to 1. The class 𝑦𝑖  associated to a given 

feature vector 𝒙𝒊 is determined by the nature of the corresponding participant with: 

𝑦𝑖 = {
−1 
1 

𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑖𝑠 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 𝑤𝑖𝑡ℎ 𝐴𝑆𝐷
 

It follows that 𝑓(𝒙𝒊) will be negative (respectively positive) for samples classified as controls 

(respectively ASD). 

As for most classification methods, SVMs make the assumption that the input data is identically and 

independently distributed. In our case, the assumption of identically distributed data is violated since 



beta maps come from several experimental conditions which can activate different brain regions. For 

this reason a classifier was trained on the data of each condition independently (2 experiments * 4 

conditions per experiment = 8 conditions) and the decisions of these classifiers were subsequently 

combined to obtain a final decision for each participant. This fusion of classifiers decisions was 

achieved by averaging the outputs  𝑓(𝒙𝒊) of each condition 𝑖 belonging to a given participant 𝑗, which 

gives a final decision score 𝑓̅(𝑗). For one participant where an experiment was missing, the decision 

was taken using the available conditions. The sign of 𝑓̅(𝑗) then determined the class assigned to the 

participant 𝑗. 

 

Figure 2: Classification and feature selection frameworks. a) For each participant and each condition 
a classifier was trained using the data of the other participants (on the same condition). Next, the 
outputs of the classifiers were averaged across conditions and a final decision was taken for each 
participant based on the sign of the average classification score. b) Cross-validated feature selection 
was applied to select the most discriminative features and to find discriminative patterns of brain 
activity. 

SVM training and leave-one-participant out cross-validation method. This method was employed to 

test the performance of the classification method on unseen data. For each participant and each 

condition, a classifier was trained using the data of all other participants (on the same condition); the 

obtained model was then applied on the beta map of the tested participant. As described above 

average fusion was performed to combine the models of both experiments and obtain a final 

decision per participant. Finally performance was computed. Two types of fusion were employed by 

combining different conditions together to assess: 

1. whether the combination of all models (i.e. both experiments) improved the classification 

accuracy; the performance obtained from combining the conditions of all experiments (i.e. 8 



conditions in total) was compared with the performance obtained from combining the 

conditions separately for each experiment (i.e. 4 conditions per experiment); 

2. whether models trained on emotional versus neutral information improved classification 

accuracy; the performance obtained from combining the conditions corresponding to angry 

expressions was compared with the performance obtained with combining the conditions 

corresponding to neutral expressions (independently of the experiment, 4 conditions in both 

cases). 

The complete classification framework, in the case data from the two experiments was used, is 

depicted in Figure 2. Using this method, 8 classifiers were trained (4 conditions per experiment * 2 

experiments) at each cross validation loop. Given the high accuracy variance of the leave-one-out 

cross-validation method, a leave-pair-out cross-validation was also employed. As results from both 

methods were very similar, only the leave-one-out results are reported here. 

Classification using SVM Recursive Feature Elimination. Although SVMs achieve good performance 

in high dimensional spaces, they can still benefit from feature selection methods. Therefore we 

employed a modified version of the SVM Recursive Feature Elimination (SVM RFE) algorithm (Guyon 

et al., 2002) to restrain the classification to a subset of discriminant voxels. In SVM RFE the 

classification is first achieved on the whole set of features using a linear SVM classifier. The feature 

with the lowest weight 𝑤𝑖 is eliminated and the procedure is iterated on the remaining features up 

to the point where no feature remains. The features are then ranked according to their order of 

elimination, the first eliminated feature being the worse. Because the number of features is very 

high, we chose to speed up the RFE algorithm by removing 10% of the remaining features at each 

iteration. Hence, many features are rejected at the first iteration while during subsequent iterations, 

the algorithm rejects fewer and fewer features and becomes more and more specific in feature 

ranking. The value of 10% was chosen to obtain a reasonable processing time while trying to keep 

the number of rejected features low. Once features are ranked, it is possible to select the best (b*) 

features on the training set to perform the classification. The number b* was chosen by nested cross-

validation (Figure 2) among several possible bi values. For computational speed, the 𝑏i numbers were 

following the geometric progression defined bellow: 

{
𝑏0 =

𝑁

2

𝑏𝑖 =
𝑏𝑖−1

2

      𝑖 ∈ [0,11] 

The 𝑏i’s were rounded to select an exact number of features. Using this method the number of 

selected features ranged from 𝑏11 = 45 to 𝑏0 = 93109. 



Classification performance. The classification performance was measured using accuracy 

(percentage of correctly classified participants), sensitivity (i.e. recall) and specificity. The significance 

of the classification accuracy was tested using a binomial test with the null hypothesis that the class 

labels are estimated randomly and equiprobably. Given that Binomial tests can be too lenient when 

applied on small datasets (Noirhomme et al., 2014), we also performed permutation tests. The two 

tests were found to be very similar and only the Binomial tests are presented. 

Visualization of the most discriminative voxels. After testing the classification performance, we 

sought to identify the most discriminative voxels across experiments to render them on a whole-

brain anatomical volume. A possibility is to employ permutation tests to find which of the classifier 

weights 𝑤 are significantly high or low. However this method is suboptimal because spatial 

correlation drives the weights of correlated (but discriminative) voxels toward zero (Pereira et al., 

2009). This is particularly problematic for our data-driven approach considering all voxels of the brain 

volume. Another solution could be to combine correlated voxels together using, for instance, a 

searchlight algorithm (Kriegeskorte et al., 2006). Here, we propose to perform the voxel analysis 

using the output of the previously described SVM RFE algorithm. The basic idea is that voxels which 

are often well ranked by SVM RFE are significantly discriminative, while those which are not well 

ranked or only occasionally well ranked are not very discriminative. As proposed in Breitling et al 

(2004), the rank product test can be used to determine which features (i.e. voxels) are better ranked 

than chance. When the number of features and the rank products are high, it is possible to use an 

accurate and cost effective approximation (gamma distribution based) of the rank product test 

(Eisinga et al., 2013; Koziol, 2010). Since we are dealing with N=186217 voxels, this Gamma test was 

employed. As defined in Koziol (Koziol, 2010), the test consists of computing the z statistic from k 

rankings. The z statistic follows a Gamma distribution under the null hypothesis that the features are 

ranked equiprobably with: 

𝑧 =  − ∑ log
𝑟𝑖

𝑁+1
𝑘
𝑖=1  (2) 

𝑍~Γ(𝑘, 1) 

where ri is the rank of the tested feature for ranking i. It is necessary to generate k independent 

rankings of voxels to apply the test. This was achieved by building a model for each condition. As 

described previously, the SVM RFE algorithm was applied 8 times (one time per condition), each 

iteration generating a unique ranking of voxels. The Gamma test was then applied to sets of rankings 

to find the most discriminative voxels. More precisely, this test was applied on the conditions of each 

experiment independently (k=4) and on both experiments (k=8) leading to the generation of 3 maps 



representing discriminative brain activities for experiment 1, experiment 2 and the fusion of the two 

experiments. Since the number k of rankings can be different (4 or 8), we adjusted the gamma test so 

that the z statistics are comparable by replacing the sum in equation (2) by an average: 

𝑧′ =  −
∑ log

𝑟𝑖
𝑁 + 1

𝑘
𝑖=1

𝑘
 

𝑍′~Γ(𝑘,
1

𝑘
) 

This method allows finding voxels which are discriminative among all conditions and experiments by 

selecting voxels where 𝑝(𝑍′ ≥ 𝑧′) <
𝛼

𝑁
. In our study 𝛼 was set to 0.05. Note that the proposed 

modification does not change the statistical significance of the test since 𝑝(𝑍′ ≥ 𝑧′) = 𝑝(𝑍 ≥ 𝑧). 

However, the proposed test is not informative of the direction of the effect. To circumvent this issue, 

we retrieved voxels’ weights signs by training a unique SVM model on the full dataset and we 

displayed in Figure 3 the z statistics (which are always positive) multiplied by the sign of the 

associated weights to visualize the main direction of the effect. Anatomical labeling was performed 

with reference to the anatomy toolbox (Eickhoff et al., 2005). Coordinates of homologue regions in 

both hemispheres were pooled together in Table 4 when distance was less than 10mm. Rendering 

was made using MRIcron (Rorden et al., 2007) and the standard Colin brain available in SPM8. 

3.2 Results 

Classification accuracy. The accuracy, sensitivity and specificity of the different classification 

methods and movement correction are reported in Table 2. For better readability, sensitivity and 

specificity are reported only for the SVM RFE feature selection algorithm, which performed best in 

most cases. 

Table 2. Classification performance for the fusion of conditions belonging to each or both 
experiments. 

Fusion / 
experiment 

Motion 
correction 

Accuracy (%) Sensitivity (%) Specificity (%) 

    SVMnoFS SVM RFEFS SVM RFEFS SVM RFEFS 

Both 
experiments 

Rawrp6 72.4* 89.7*** 100 80 

Friston24 82.8*** 79.3** 78.6 80 

Exp1 (faces) Rawrp6 62.1 69.0* 71.4 66.7 

Friston24 65.5 69.0* 57.2 80 

Exp2 (bodies) Rawrp6 76.9** 92.3*** 92.3 92.3 

Friston24 80.8** 80.8** 92.3 69.2 

Significance values assessing that the classification achieved best than chance are indicated only for 
the accuracy columns (FS: features selection, : p < 0.1, *: p <0.05, **: p < 0.01, ***: p < 0.001). *Exp1 



stands for the experiment where static faces were used. Exp2 stands for the experiment where 
dynamic bodies were used. 

 

When both experiments were considered together for classification, and no feature selection was 

applied, the Friston24 motion correction method reached a better performance than the Rawrp6 

method (Friston24: 82.8%, Rawrp6: 72.4%). This suggests that regressing out residual motion helps 

improving the classification. When applying feature selection (RFE), the accuracy remained relatively 

unchanged for the Friston24 method but improved considerably for the Rawrp6 method (Friston24: 

79.3%, Rawrp6: 89.7%). While specificity (true negative rate) was equivalent for both methods (80%), 

sensitivity (true positive rate) was much higher in the rawrp6 method than in the friston24 method 

(100% versus 78.6%), possibly because of the influence of residual motion artifacts that were less 

well accounted for by the Rawrp6 method than by the Friston24 method. 

When experiments were considered separately, the best accuracy was achieved with experiment 2 

(performance: 92.3%, sensitivity: 92.3%, specificity: 92.3%) which manipulated attention toward or 

away from emotional bodily actions. In conclusion, these results confirmed that potential residual 

motion in the signal has a relatively low but non-null influence on classification and indicates that the 

Friston24 correction method helps to reduce spurious classification linked to residual head-motion. 

Moreover, our results indicate that there seem to be an advantage of using SVM RFE to increase 

classification accuracy (mostly for the Rawrp6 models) since performance improved in 4 analyses 

(out of 6), was left unchanged in 1 analysis, and marginally decreased in 1 analysis. This also 

demonstrates that brain activity was discriminative in all experiments, despite the explorative 

method we employed. 

To ensure that RFE and fusion are not selecting features related to movement, we computed 

correlations between the continuous output of classifiers and 13 motion parameters. Importantly, 

we observed no correlations for the fusion of both experiment after Friston24 motion correction 

and/or the application of RFE feature selection (all p > 0.05 uncorrected). Furthermore, the RFE 

algorithm helped reducing the influence of motion on classifiers’ output. For additional details, see 

Supplementary Figure 1 and results. 

Finally, since it has been proposed that ASD individuals have a specific deficit in processing emotional 

cues, we tested whether or not classification performed on “anger” conditions achieved a better 

accuracy than when it was performed on “neutral” conditions. To do so, we combined the classifier 

scores of the two experiments for anger and neutral conditions separately. Results indicate that 

accuracy for anger or neutral conditions was very similar with an average accuracy difference of 1.7% 



(table 3). It is important to note, however, that the fact that classification with emotional stimuli was 

only marginally better than the one with neutral stimuli does not necessarily mean that emotions are 

not beneficial to classification. The use of a diverse set of social stimuli probably increases subjects’ 

attention, which benefits to classification overall. 

 

Table 3. Classification accuracy (%) after the fusion of either the Anger conditions or the Neutral 
conditions from both experiments. 

Motion correction Classification 
method 

Accuracy (%) for 
anger conditions 

Accuracy (%) for 
neutral conditions 

Rawrp6 SVMnoFS 69 75.9 

Friston24 SVMnoFS 82.8 72.4 

Rawrp6 SVM RFEFS 89.7 89.7 

Friston24 SVM RFEFS 79.3 75.9 

Mean accuracy (±STD) 80.2 (±8.6) 78.5 (±7.7) 

The mean accuracy and standard deviation were computed across all movement correction and 
classification methods. 

 

Visualization of the most discriminative voxels. The most discriminative voxels (see Figure 3) across 

experiments were found in regions related to social cognition, namely regions involved in the 

processing of faces and bodies [FFA: fusiform face area, OFA: occipital face area, EBA: extrastriate 

body area - (Kanwisher et al., 1997; Puce et al., 1996), and STS: sulcus temporal superior - (Allison et 

al., 2000; Giese and Poggio, 2003; Pitcher, 2014)], active during mentalizing [TPJ: temporo-parietal 

junction and precuneus - (Castelli et al., 2000; Samson et al., 2004)] or during action and emotion 

perception [PM: premotor cortex - (Grèzes et al., 2007; Pichon et al., 2012, 2008)]. These regions 

consistently showed reduced contribution in ASD participants compared to controls. The fusion of 

both experiments dramatically increased the significance of discriminative features, which is 

probably due to the increased sample size with a stable effect size. The fusion of both experiments 

increased the number of significant discriminative voxels by roughly 50%, with 139 significant voxels 

for Experiment 1 (gaze), 219 for Experiment 2 (bodies) and 546 for the fusion of both experiments. 

 

Table 4. Discriminative voxels across experiments using SVM RFE.         

    Both 
experiment

s 

Experiment1 
(faces) 

Experiment2 
(bodies) R/L Anatomical region MNI 

coordinates 
MNI 

coordinates 
MNI 

coordinates     x y z  x y z  x y z  

TD > ASD 
  

              

R Premotor cortex 52 10 46   

 

  

  

  

R Temporo-parietal junction (TPJ) 54 -36 24   

 

  

  

  



R Supramarginal gyrus 68 -42 26   

 

  

  

  

R & L Fusiform face area (FFA) ±44 -54 -16 ±
3
9 

-52 -23 

  

  

L Superior temporal sulcus (STS) -54 -56 10   

 

  

  

  

L Lingual gyrus -18 -58 0   

 

  

  

  

L Superior parietal lobule (SPL) 
   

  

 

  -
1
6 

-56 70 

R & L Calcarine sulcus ±12 -68 16   

 

  ±
1
4 

-70 16 

R Occipital face area (OFA) 44 -70 -4   

 

  4
4 

-70 -2 

R & L Extrastriate body area (EBA) -52 -72 6   

 

  -
5
4 

-68 14 

R Precuneus 14 -72 62   

 

  1
4 

-70 60 

L Superior occipital gyrus -20 -76 38   

 

  -
1
8 

-78 -40 

R Lunal gyrus 
   

  

 

  2
0 

-80 -6 

L Occipito-temporal face area (OFA) -42 -80 -6   

 

  

  

  

L Middle / superior occipital gyrus -20 -82 16   

 

  -
1
8 

84 18 

R & L Occipital pole ±18 -92 -8 ±
2
2 

-95 -6 

  

  

R & L Occipital pole ±32 -96 -10 3
0 

-95 -7 

  

  

ASD > TD 
   

  

 

  

  

  

L Angular gyrus / inferior parietal lobule 
(IPL) 

-36 -70 40   

 

  -
3
6 

-70 38 

R Angular gyrus / inferior parietal lobule 
(IPL) 

48 -60 50   

 

  4
8 

-62 52 

L Posterior cingulate cortex (PCC) -14 -40 38 -
1
6 

-44 36 

  

  

R Inferior temporal gyrus 64 -30 -18 5
2 

-20 -26 

  

  

R Middle temporal gyrus       6
4 

-38 -10       



 

Figure 3. Visualization of the most discriminative voxels. These voxels were found in regions related 

to social cognition and consistently showed reduced contribution in ASD participants compared to 

controls. Overall, the fusion of both experiments increased the size of the largest significant clusters 

while smaller clusters disappeared. Results were corrected for multiple comparisons (FWE p<0.05). 

 



4 Analysis 2 – Dimensional approach 

4.1 Methods 

In analysis 1, we focused on the accuracy of the classifier to discriminate participants based on their 

diagnosis and we examined discriminative brain activity patterns between patients and controls. This 

first step was useful to compare the benefits of our cross-experiment MVPA methodology with 

classification performed on single tasks. However, recent recommendations in psychiatry have 

emphasized the need to go beyond diagnostic boundaries and to adopt a more dimensional 

approach for a finer understanding of the neurobiological substrate of psychiatric conditions. The 

rationale is that until the formulation of clinical diagnosis is improved, research in neuroscience 

should focus on discrete dimensions of behavior which are likely to be more directly linkable to 

neurobiology (London, 2014). One promising dimension in the domain of ASD research is social 

motivation (Chevallier et al., 2012b). Social motivation can be described as a set of biological 

mechanisms driving individuals to preferentially orient their attention to the social world and to treat 

social interactions as rewarding. Social motivation can be assessed using a number of tools including 

self-report questionnaires (Eckblad et al., 1982). In analysis 2, we therefore departed from the 

standard diagnosis-based approach in order to assess whether the classification outputs 𝑓̅(𝑗) were 

related to social anhedonia (SAS) and other personality or diagnostic measures. Since the classifiers 

were trained to distinguish participants with ASD from control participants, we expected that 

correlations would be driven by mere group differences. Hence we used partial correlations to 

remove the group effect. We computed additional correlations within each group whenever the 

partial correlation was marginally correlated (p<0.1). 

Questionnaires: Participants completed the revised-Social Anhedonia Scale (Kosmadakis et al., 1995), 

which is a 40-item true/false scale commonly used to assess the ability to anticipate and experience 

interpersonal pleasure (e.g., being with people, talking, exchanging expressions of feelings, doing 

things with others, etc.). High scores reflect diminished pleasurable responses, hence greater social 

anhedonia. We recently revealed selective social anhedonia (deficit in social desire and drive) in 

adolescents with ASD, with ASD severity (ADOS scores) correlating positively with the level of social 

anhedonia (Chevallier et al., 2012a). In addition to the ADOS, autistic traits were assessed using the 

AQ questionnaire (Baron-Cohen et al., 2001). 

Participants also filled the STAI (form Y) questionnaire assessing state and trait anxiety (Spielberger 

et al., 1983). Indeed, anxiety is one of the most common psychiatric co-morbidities in ASD, with as 

many as 40-50% of individuals with ASD meeting conditions for clinical anxiety (Kerns et al., 2015). 

Since anxiety influences brain responses to emotional stimuli (Bishop, 2007; Pichon et al., 2015) and 



interferes with social motivation (Nettle and Bateson, 2012), we tested whether classification scores 

were related to inter-individual differences in anxiety.  

4.2 Results 

Given that the SVM RFE algorithm performed the best, we used its classification outputs f(j) to 

estimate correlations with questionnaires and ASD scores in Table 6. A first glance at the correlations 

shows that the Rawrp6 and Friston24 methods gave very similar results. 

Interestingly, social anhedonia scores predicted classification scores in Experiment 2 (bodies) for the 

ASD group (r=0.76, p<.01, see Figure 4) and for all subjects after removing the effect of group (r=.56, 

p<.01). Importantly, neither trait (p=.09) nor state anxiety (p=.60) was related to classification scores 

when considering both groups. Multiple regression confirmed that social anhedonia predicted 

classification scores in ASD participants (t(6)=2.57, p=.04) while anxiety state (p=.31) or trait (p=.21) , 

IQ (p=.32) and age (p=.13) were not significant. Our result supports the suggestion that social 

motivation is an important factor to consider in autism research (Chevallier et al., 2012b). 

Table 5. Participant scores for social anhedonia (SAS) and anxiety. 

5  

ASD (n=15) TD (n=14) Group difference 

  Mean SEM Range Mean SEM Range T 
(ASDvsTD) 

P-Value 

Social Anhedonia 
SAS 

18.76 2.19 8-31 7.42 0.84 2-13 -5.39 <0.001 

Anxiety (trait) 47.5 2.96 29-77 38 2.98 23-63 -2.2 <0.05 

Anxiety (state) 36.3 2.69 20-51 32 2.48 20-52 -1.14 0.26 

 

Table 6. Pearson r values for partial correlations (both) and correlation in each group (ASD and TD) 
between the averaged SVM outputs (with SVM RFE feature selection) and scores from scales. 

Rawrp  Social anhedonia (SAS) Autism quotient (AQ) Anxiety (trait) 

  Both ASD TD Both ASD TD Both ASD TD 

Both 
exp 

Rawrp6 0.3 - - .36 0.46 0.14 0.15 - - 

Friston24 .32 0.29 .49 .33 0.45 0.14 0.11 - - 

Exp1 
(gaze) 

Rawrp6 0.15 - - .38 0.35 .46 0.2 - - 

Friston24 0.01 - - 0.23 - - 0.14 - - 

Exp2 
(bodies) 

Rawrp6 .50* .65* 0.05 0.28 - - 0.15 - - 

Friston24 .56** .76** 0.14 0.3 - - 0.11 - - 

The “Both” column indicates that a partial correlation was employed to remove the effect of group. 
The columns ASD and TD refer to the correlations performed in either group (: p <= 0.1, *: p <0.05, 
**: p < 0.01, Two-tailed positive Pearson correlation). Correlations within each group were further 
computed when the partial correlation approached significance (p<0.1).  

 



 

5.1.1 Figure 4. Correlations for experiment2 (bodies) for which classification scores best 
predicted social anhedonia in the ASD group. Anxiety scores were unrelated to 
classification scores (we used classification scores from the SVM RFE feature selection 
and the Friston24 movement correction methods). 

 

 



6 Discussion 

The data-driven method proposed in this paper combines BOLD measures from two heterogeneous 

experiments in order to classify ASD subjects and controls without any prior information such as the 

definition of ROIs. The originality of our approach is that the discriminative maps rely on feature 

selection rather than on the standard statistical methods commonly used in multivariate fMRI 

analyses. An advantage of this approach is that the computed statistic is only based on the rank of 

the feature. Consequently this method can be employed to combine heterogeneous data sources 

such as different fMRI experiments, different BOLD-related signals (beta maps, functional 

connectivity, etc.) or even different brain imaging modalities (i.e. structural MRI, voxel-based 

morphometry, functional MRI, PET, etc.). The only requirement is that the brain images should be co-

registered and have the same spatial resolution, a constraint that can easily be achieved at the 

preprocessing stage using realignment and interpolation methods. 

Importantly, we show that the usage of a more stringent motion correction method than the classic 

inclusion of the 6 motion parameters in regression models helps to reduce potential residual 

influences of head motion on classification results. The use of SVM RFE improved classification 

accuracy for the rawrp6 models, and this increase of performance was not due to motion artifacts 

since RFE reduced the correlation of classifiers’ output with motion parameters observed in 

experiment 1 (but not in experiment 2 or after the fusion of both experiments). Taken together, 

these results hold the promise that the present method may become a valuable tool to help remove 

any potential residual influence of head movements in classification problems that involve comparing 

ASD Subjects (and more generally patients) with controls. 

In the past few years, most fMRI classification studies relied on resting-state functional connectivity 

patterns and/or ROI analyses and reached categorization accuracy ranging from 79% to 96% 

(Anderson et al., 2011; Deshpande et al., 2013; Iidaka, 2014; Murdaugh et al., 2012; Wang et al., 

2012; Zhou et al., 2014). Our method achieved accuracies in a similar range (between 69% and 

92.3%) than the studies above relying on resting state connectivity measures. Note that even though 

RFE was not associated with obvious gains in all conditions, the best accuracy was obtained with this 

method (92.3%). These results are all the more encouraging that we faced a number of 

methodological challenges: 1) we relied on tasks that were not designed with multivariate pattern 

analysis in mind; 2) the samples we classified did not have the same distribution (i.e. they derived 

from different tasks and experiments); 3) we relied on relatively small samples lying in a highly 

dimensional space, which might have raised a curse of dimensionality issue. In response to this last 

challenge, our results indicate that feature selection with SVM RFE reduces the impact of the curse of 



dimensionality by selecting discriminant subsets of voxels. In response to the second challenge, the 

proposed fusion approach allowed to build a model for each task and condition thus solving the 

problem of non-identically distributed samples. Taken together, the present study confirms that 

classifiers can be successfully applied to mine information from multiple BOLD datasets without 

relying on a priori ROIs and even if they are not originally designed for multivariate pattern analysis.  

Our second goal was to evaluate whether the fusion of heterogeneous data sources improved 

classification performance and revealed new additional topological information. We found that 

accuracy remained approximately the same when fusing the classifier outputs of our two 

experiments. However, the fusion method revealed 50% more significant voxels compared to the 

method taking each experiment separately. Specifically, the fusion led to an increase in the size of 

the largest significant clusters and to a disappearance of the smallest clusters. This suggests that the 

fusion method favors the selection of discriminative features that are common across experiments 

and validates the proposed method. Identified areas were astonishingly consistent with brain regions 

of the “social-brain” known to show aberrant functioning in ASD (Castelli et al., 2002; Pierce et al., 

2004; Schultz, 2005; Zilbovicius et al., 2006). More specifically, we found a hypo-contribution of the 

fusiform gyrus and the occipital face area (OFA), which are both involved in face perception 

(Kanwisher et al., 1997; Puce et al., 1996); of the posterior STS, which plays a role in processing gaze 

direction (Allison et al., 2000), emotional displays (Pitcher, 2014) and biological motion (Giese and 

Poggio, 2003); and of the TPJ which is part of the mental state attribution network (Castelli et al., 

2000; Samson et al., 2004). 

Finally, to explore the clinical validity of our classifiers, we correlated classifier scores and phenotypic 

information. We focused on social motivation deficits, which are arguably an important dimension of 

the ASD phenotype and found that the classifier scores of the fusion method correlated with social 

motivation scores. In contrast to this dimensional approach past studies have often focused on 

overall diagnosis. Anderson et al. (Anderson et al., 2011) and Coutanche et al (2011), for instance, 

found that their classifier scores correlated with ADOS total scores. Similarly, Deshpande et al. 

(Deshpande et al., 2013) found that top rank features of connectivity measures were positively 

correlated with autistic traits’ scores (AQ). In line with the RDoC framework (NIMH Research Domain 

Criteria), we would like to highlight that looking at relevant dimensions of behavior instead of overall 

diagnosis is a promising approach to understand the biological roots of ASD and, ultimately, to 

identify biomarkers.  

 

In conclusion, the present study indicates that RFE is an interesting method to leverage information 

from several datasets and explore potential brain atypicalities in ASD or other psychiatric conditions 



(e.g. depression). In this paper, social brain areas were identified as most discriminative. This finding, 

however, is only a first step in the identification of potential biomarkers: first, our sample size was 

relatively limited, which prevents us from grasping the heterogeneity that is so characteristic of 

ASDs; second, and perhaps more importantly, we only compared participants with ASD to typically 

developing controls, which means that we cannot know whether the discriminative brain pattern we 

identified is specific to ASD. These cautionary notes have been underlined recently and suggest that 

“we must be patient when searching for an autism biomarker” (Goldani et al., 2014; Tager-Flusberg, 

2014).  
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Supplementary materials 



 

Supplementary figure 1. Correlation (group level) of classifiers’ output with the average temporal RMS of 

movement parameters over translations and rotations, for experiment1 (faces), experiment 2 (bodies) and 

their fusion. 

In order to control that RFE is not selecting features related to movement, we computed correlations 

between the continuous output of classifiers (separately for the rawrp, friston24 and the fusion 

models) and 13 motion parameters: the maximum absolute and the mean absolute motion over 

translations (x,y,z) and rotations (pitch, rolls, yaw) as well as the temporal average RMS over 

translations and rotations. Correlations were mainly observed in experiment 1 (faces), for the mean z 

motion, the maximum z motion and the mean RMS. Since these correlations behaved similarly, we 

only present the most significant one in Supplementary figure 1, which corresponds to the 

correlation with RMS scores. Results show that for both movement correction methods, RFE helps to 

reduce the correlation between the classifiers’ output and the motion parameters (RMS) observed in 

experiment 1. In other words the features selected by RFE are not related to motion which indicate 

that motion activity is not as discriminative as the activities highlighted in figure 3. These results 

demonstrate that the increase of accuracy observed when using SVM RFE with rawrp6 movement 

correction is not due to head motion. Furthermore, the accuracy drop from 89.7% with rawrp6 

movement correction to 79.3% with the Friston24 methods might indicate that the later has 

regressed out brain activity valuable for autism assessment. Importantly, no significant correlations 

were observed anymore for Friston24 motion correction and SVM RFE after the fusion of the two 

experiments. Note finally that the most discriminative voxels were all found in specific regions 



pertaining to the social brain (rather than at the periphery of the brain), that are known to be hypo-

functional in ASD subjects (figure 3). 


