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 Electron transport in nanoscale structures is strongly infl uenced by the Coulomb interaction 

that gives rise to correlations in the stream of charges and leaves clear fi ngerprints in the 

fl uctuations of the electrical current. A complete understanding of the underlying physical 

processes requires measurements of the electrical fl uctuations on all time and frequency 

scales, but experiments have so far been restricted to fi xed frequency ranges, as broadband 

detection of current fl uctuations is an inherently diffi cult experimental procedure. Here we 

demonstrate that the electrical fl uctuations in a single-electron transistor can be accurately 

measured on all relevant frequencies using a nearby quantum point contact for on-chip real-

time detection of the current pulses in the single-electron device. We have directly measured 

the frequency-dependent current statistics and, hereby, fully characterized the fundamental 

tunnelling processes in the single-electron transistor. Our experiment paves the way for future 

investigations of interaction and coherence-induced correlation effects in quantum transport.         
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 T
he electrical fl uctuations in a nanoscale conductor reveal a 
wealth of information about the physical processes inside 
the device compared with what is available from a conduct-

ance measurement alone 1 – 3 . Zero-frequency noise measurements 
are now routinely performed using standard techniques, but, more 
recently, the detection of higher order current correlation func-
tions, or cumulants, has attracted considerable attention in experi-
mental 4 – 19  and theoretical 20 – 22  studies of charge transport in man-
made sub-micron structures. Measurements have, for example, 
been encouraged by the intriguing connections between current 
fl uctuations and entanglement entropy in solid-state systems 23,24  
as well as by the possibility to test fl uctuation theorems 25 – 27  at the 
nanoscale that are now a topic at the forefront of non-equilibrium 
statistical physics. 

 Experiments on current fl uctuations have mainly focused on zero-
frequency current correlations 4 – 16  whereas measurements of fi nite-
frequency cumulants of the current have remained an outstanding 
experimental challenge. However, noise detection in a restricted fre-
quency band gives only partial information about corre lations and 
measurements that cover the full frequency range are necessary to 
access all relevant timescales that characterize the transport process  . 
In a zero-frequency measurement, correlation eff ects are integrated 
over a long period of time and important information about charac-
teristic timescales are lost. To observe the dynamical features of the 
correlations, fi nite-frequency measurements are required 2,3,28 – 34 . 
It has even been shown theoretically that the frequency-dependent 
third cumulant (the skewness) of the current may contain further 
information about correlations and internal timescales of a system 
compared with the fi nite-frequency noise alone, for instance in cha-
otic cavities 29  and diff usive conductors 30 . 

  Figure 1a – c  shows a typical time trace of the currents in our 
nanoscale single-electron transistor (SET) consisting of a quantum 
dot (QD) coupled through tunnelling barriers to source and drain 
electrodes. Th e QD is operated close to a charge degeneracy point 

in the Coulomb blockade regime, where only a single extra elec-
tron at a time can enter from the source electrode and leave through 
the drain electrode. Th e applied voltage bias  eV  is larger than the 
electronic temperature  k   B   T  which prevents electrons from tunnel-
ling in the opposite direction of the mean current. While a stream 
of electrons is driven through the QD, a separate current is passed 
through the nearby quantum point contact (QPC) whose conduct-
ance is highly sensitive to the presence of extra electrons ( Δ  q     =    0,1) 
on the QD 35,36 . By monitoring the switches of the current through 
the QPC, we can thus detect, in real-time, single electrons tunnelling 
through the left  (L) and right (R) barriers and thereby determine the 
corresponding pulse currents  I  L ( t ) and  I  R ( t ). Th e time trace of the 
currents illustrates the electrical fl uctuations of interest here. 

 We now analyse the current fl uctuations obtained from data 
measured over 24   h during which 300 million electrons passed 
through the SET. Our high-quality measurements allow us to 
develop a complete picture of the noise properties of the SET, which 
not only focuses on the zero-frequency components of the fl uc-
tuations, but also contains the full frequency-resolved information 
about the noise and higher order correlation functions  . From the 
measured fi nite-frequency noise spectrum, we extract the correla-
tion time of the current fl uctuations. Th e noise spectrum, however, 
is a one-frequency quantity only which does not refl ect correlations 
between diff erent spectral components of the current  . To observe 
such correlations, we employ bispectral analysis and consider the 
fi nite-frequency skewness (or bispectrum) of the current. Th e skew-
ness shows that the current fl uctuations are non-gaussian on all 
relevant time and frequency scales owing to the non-equilibrium 
conditions imposed by the applied voltage bias. Our measurements 
are supported by model calculations that are in excellent agreement 
with the experimental data. Th e results presented here provide a 
fundamental understanding of the electrical fl uctuations in SETs 
that are expected to constitute the basic building blocks of future 
nanoscale electronics.  
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           Figure 1    |         SET and fi nite-frequency noise spectra. ( a , b ) Fluctuations of the current through the left (red curve) and right (blue curve) tunnelling barriers of 

the SET. ( c ) Atomic force microscope topography of the SET consisting of a Coulomb blockade QD coupled through tunnelling barriers to left (L) and right 

(R) electrodes. The scale bar corresponds to 250   nm. A bias difference between the electrodes drives a stream of electrons through the QD from L to R. An 

electron entering the QD from L causes a suppression of the current through the nearby QPC until the electron tunnels out of the QD to R. The occupation 

of the QD ( Δ  q     =    0, 1) is inferred from the time-dependent current through the QPC (shown with black in  a ). The corresponding pulse currents through the 

left (red) and right (blue) barriers are discretized in time steps of  Δ  t     =    40     μ  s and shown displaced for clarity in  a . In  b  the same currents are shown on a 

much longer timescale and discretized in time steps of  Δ  t  (grey spikes) and 20 Δ  t  (full lines), respectively. ( d ) Noise spectrum (blue curve) of the current 

through the right barrier (RR) and cross-correlations (green curve) between the two currents (LR). The thickness of the lines indicate experimental error 

estimates. Model calculations (dashed lines) of the spectra are in excellent agreement with the experiment using   Γ   L     =    13.23   kHz and   Γ   R     =    4.81   kHz for the 

tunnelling rates across the barriers and a detector rate of   Γ   D     =    0.3   MHz. The mean dwell time of electrons on the QD is  td R= −Γ 1 210�       μ s and the correlation 

time is   τ   c     =    (  Γ   L     +      Γ   R )     −    1  � 55    μ s. The inset shows a schematic model of the charge transport process.  
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 Results  
  Noise spectrum   .   Th e measured noise spectrum for the right tunnelling 
barrier is presented in  Figure 1d . Th e fi nite-frequency current-
correlation function  Sab w( )( )2    is defi ned in terms of the noise power as 1 

 
〈〈 ′ 〉〉 = + ′˘ ( )˘ ( ) ( ) ( ),( )I Ia b abw w pd w w w2 2Sˆ ˆ

  

where  ̆ ( )Ia wˆ   ,   α      =    L,R, is the Fourier-transformed current and double 
brackets  〈〈 〉〉…    denote cumulant averaging over many experimental 
realizations.  Figure 1d  shows the Fano factor  F S eI( ) ( )( ) ( )/2 2w w= RR    
for the right tunnelling barrier with the mean current  
I I t I t= 〈 〉 = 〈 〉L R( ) ( )    being constant in the stationary state. Th e 
noise is symmetric in frequency,  S SRR RR

( ) ( )( ) ( )2 2w w= −   , and results are 
shown for positive frequencies only. For uncorrelated transport, the 
noise spectrum would be white, that is,  F  (2) (  ω  )    =    1 on all frequencies, 
corresponding to a Poisson process. Our measurements, in contrast, 
show a clear suppression of fl uctuations below the Poisson value at 
low frequencies. Th is is due to the strong Coulomb interactions on the 
QD that introduce correlations in the stream of electrons propagating 
through the SET: each electron spends a fi nite time on the QD during 
which it blocks the next electron entering the QD. Th e measured noise 
spectrum has a Lorentzian shape whose width is determined by the 
inverse dynamical timescale of the correlations. Our measurements 
of the fi nite-frequency noise thereby enable a  direct  observation of the 
correlation time   τ   c  � 55    μ  s  of the transport ( Fig. 1d ). 

 To corroborate our experimental results, we calculate the noise 
spectrum of the schematic model in the inset of  Figure 1d . Single 
electrons tunnel from the left  electrode onto the QD at rate  Γ  L  and leave 
it through the right electrode at rate  Γ  R . Th e Fano factor is then 1 
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where theoretically   τ   c     =    ( Γ  L     +     Γ  R )     −    1  is identifi ed as the correlation 
time. Th is expression qualitatively explains the measured noise spec-
trum. Quantitative agreement is obtained by also taking into account 
the fi nite detection rate  Γ  D  of the QPC charge-sensing scheme 13,37   . 
Th e three parameters  Γ  L ,  Γ  R , and  Γ  D  can be independently extracted 
from the distribution of waiting times between detected tunnelling 
events 14,38,39 . Th e model calculations (see Methods) are in excellent 
agreement with measurements over the full range of frequencies, 
demonstrating the high quality of our experimental data.   

  Cross-correlations   .   Cross-correlations between the left   I  L ( t ) and the 
right  I  R ( t ) currents can also be measured ( Fig. 1d ). For the schematic 
model, the (cross-correlation) Fano factor  F S eILR LR

( ) ( )( ) Re[ ( )]/2 2w w≡
  reads
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which in the zero-frequency limit coincides with the noise spec-
trum,  F FLR

( ) ( )( ) ( )2 20 0=   , as a consequence of charge conservation on 
the QD. Th e two currents are clearly correlated at frequencies that 
are lower than the inverse correlation time  tc

−1  , but the cross-corre-
lator eventually reaches zero at higher frequencies. Interestingly, the 
cross-correlations of the detected pulse currents are slightly nega-
tive at high frequencies. Th is is due to the fi nite resolution of the 
QPC charge-sensing protocol that is not able to distinguish current 
pulses that are separated in time by an interval that is shorter than 
the inverse detector rate  ΓD

−1  .   

  Higher order cumulants   .   We now turn to measurements of higher 
order fi nite-frequency cumulants. Th e  m th fi nite-frequency current 
correlator corresponding to a time-dependent current  I ( t ) is defi ned as

 〈〈 〉〉 = + + −
˘( ) ˘( ) ( ) ( , , )( )I I Sm m

m
mw w pd w w w w1 1 1 12… … …ˆˆ

  

where translational invariance in time implies frequency 
conservation as indicated by the Dirac delta function   δ  (  ω  ) and 

 S  ( m ) (  ω   1 , … ,  ω    m     −    1 ) is the polyspectrum 40,41 . In the case  m     =    2, the 
polyspectrum yields the noise power spectrum  S  (2) (  ω  ), whereas 
the skewness (or bispectrum) is given by  m     =    3 with the correspond-
ing Fano factor  F  (3) (  ω   1 ,  ω   2 )    =     S  (3) (  ω   1 ,  ω   2 ) /  e  2  I . We focus here on the 
frequency-dependent skewness  S  (3) (  ω   1 ,  ω   2 ), although our experi-
mental data in principle allows us also to extract cumulants of even 
higher orders. 

 Th e measured skewness ( Fig. 2a ), shows a much richer struc-
ture and frequency dependence compared with the noise spec-
trum. Th e skewness obeys several symmetries following from the 
defi nition ( Fig. 2b ). We exploit the mirror symmetry with respect 
to interchange of frequencies,  S  (3) (  ω   1 ,  ω   2 )    =     S  (3) (  ω   2 ,  ω   1 ), to com-
pare mea surement and model calculations: experimental results are 
presented above the diagonal (  ω   1     =      ω   2 ), while model calculations 
are shown below ( Fig. 2a ). Th e nonzero bispectrum indicates non-
Gaussian statistics on all frequencies and shows strong correlations 
between diff erent spectral components of the current. Importantly, 
these correlations are not a consequence of non-linearities in the 
detection scheme, but are solely due to the physical non-equilibrium 
conditions imposed by the applied voltage bias. Th e pulse currents 
are directly derived from the tunnelling events, and the infl uence of 
external noise sources, including the amplifi cation of the QPC cur-
rent, is thereby explicitly avoided. Intuitively, one would expect the 
correlations to vanish, if the observation frequency is larger than the 
average frequency of the transport. Surprisingly, however, a certain 
degree of correlation persists even if one frequency is large, while 
the other is kept fi nite. Th is is in stark contrast to the second Fano 
factor  F  (2) (  ω  ) that approaches unity in the high-frequency limit 
( Fig. 1d ), corresponding to uncorrelated tunnelling events. 

 For the schematic model in  Figure 1d , the fi nite-frequency 
skewness reads 32 
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having defi ned  g 1
2 2 2= +Γ ΓL R  ,  g 2

2 23= +( )Γ ΓL R   , and   ω   3     =      ω   1     +      ω   2 . 
Th is expression qualitatively explains the measured fi nite-frequency 
skewness and shows that the skewness has a complex structure that 
is not just a simple Lorentzian-shaped function of frequencies. 
We note that the third Fano factor  F  (3) (  ω   1 ,  ω   2 ) reduces to the zero-
frequency limit of the noise  F  (2) (0) in the limit   ω   2     =    0 and  | |w t1

1� c
−   . 

Th is is immediately visible in  Figure 2c . Again, quantitative agree-
ment is achieved by including the fi nite detection rate   Γ   D  in the 
model calculations, as illustrated explicitly in  Figure 2c – e . Th e ana-
lytic expression shows that the frequency dependence of the skew-
ness, unlike the auto- and cross-correlation noise spectra, is not only 
governed by the correlation time   τ   c . Th e skewness has an involved 
frequency dependence, given by several frequency scales, which 
cannot be deduced from the noise spectrum alone.   

  Higher order cross-correlations   .   In  Figure 3a , we fi nally consider 
the cross-bispectrum  F S e ILRR LRR

( ) ( )( , ) Re[ ( , )]/3
1 2

3
1 2

2w w w w≡   , mea-
suring the third-order correlations between tunnelling electrons 
entering and leaving the SET. Th e three non-redundant permuta-
tions of the left  and right pulse currents lead to a reduced symmetry 
of the cross-bispectrum, as visualized in comparison with the auto-
correlation bispectrum in  Figure 3a . Th e cross-bispectrum coincides 
with the auto-bispectrum on the line   ω   2     =    0, where they approach 
the zero-frequency correlation of the shot noise for  | |w t1

1> −
c    

( Fig. 3b ). In contrast, for |  ω   2 | ≠ 0, the cross-bispectrum shows a 
frequency dependence similar to the cross-correlation shot noise 
and the anti-correlations due to the detection process become visible 
( Fig. 3c ).    
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 Discussion 
 We have measured the current statistics of charge transport in an 
SET and directly determined the dynamical features and timescales 
of the current fl uctuations. From the measured frequency-depend-
ent noise power, we extracted the correlation time of the fl uctuations. 

Th e noise power is a single-frequency quantity only, and to investigate 
the correlations between diff erent spectral components of the current 
using bispectral analysis, we measured the  frequency-dependent 
third order correlation function (the skewness). Th e skewness 
shows that the current statistics are non-gaussian on all frequen-
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        Figure 2    |         Finite-frequency skewness. ( a ) Experimental results and model calculations of the third Fano factor (the frequency-dependent skewness) 

 F  (3) (  ω   1 ,   ω   2 )    =     S  (3) (  ω   1 ,   ω   2 ) /  e  2  I . Experimental results are shown above the diagonal (  ω   1     =      ω   2 ) and model calculations below. Contour lines indicate 

 F  (3)     =    0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. The parameters for the model calculations are given in the caption of  Figure 1 . ( b ) Symmetries of the bispectrum 

 F  (3) (  ω   1 ,   ω   2 ). Several important symmetry conditions follow from the defi nition, 40  including symmetry with respect to interchange of frequencies 

 S  (3) (  ω   1 ,   ω   2 )    =     S  (3) (  ω   2 ,   ω   1 ). Knowledge of the bispectrum in any of the regions 1 – 12 is suffi cient for a complete description of the bispectrum. We have 
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cies owing to the applied voltage bias. Our experimental results are 
supported by model calculations that are in excellent agreement with 
measurements. Th e results presented here are important for future 
applications of SETs in nanoscale electrical circuits operating with 
single electrons. Our accurate and stable experiment also facilitates 
several promising directions for basic research on nanoscale quan-
tum devices. Th ese include experimental investigations of fl uctua-
tion relations at fi nite frequencies and higher order noise detection 
of interaction 42  and coherence-induced correlation eff ects 43  in 
quantum transport under non-equilibrium conditions.   

 Methods  
  Device fabrication   .   Th e device was fabricated by local anodic oxidation 
techniques using an atomic force microscope on the surface of a GaAs / AlGaAs 
heterostructure with electron density 4. 6 × 10 15    m     −    2  and a mobility of 64   m 2  / Vs. 
Th e two-dimensional electron gas residing 34   nm below the heterostructure 
surface is depleted underneath the oxidized lines, allowing us to defi ne the QD 
and the QPC.   

  Measurements   .   Th e experiment was carried out in a  3 He cryostat at 500   mK with 
an applied bias of 900    μ V across the QD to ensure unidirectional transport and 
to avoid the infl uence of thermal fl uctuations. Th e QPC detector was tuned to the 
edge of the fi rst conduction step. Th e current through the QPC was measured with 
a sampling frequency of 500   kHz. Th e tunnelling events were extracted from the 
QPC current using a step detection algorithm and converted into time-depend-
ent pulse currents: Time was discretized in steps of  Δ  t     =    40    μ s and in each step the 
number of tunnelling events  Δ  n  in (out) of the QD was recorded. Th e current into 
(out of) the QD at a given time step is then  I ( t )    =    (    −     e ) Δ  n /   Δ  t .  

  Error estimates   .   We estimated the errors of the measured spectra by dividing 
the experimental data into 30 separate batches. Th e spectra were determined for 
each batch individually and their standard deviation was used as a measure of the 
experimental accuracy.   

  Finite-frequency cumulants   .   To defi ne the fi nite-frequency cumulants of the 
current, we consider the  m -time probability distribution 32,33   P  ( m ) ( n  1 ,  t  1 ; … ; n   m  ,  t   m  ) 
that  n   k   electrons have been transferred during the time span [0,  t   k  ] for  k     =    1, … , m . 
Th e corresponding cumulant generating function is

 

F ( ) ( )( , ) log ( ; )m mPt n t in≡
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∑ ⋅

n

e�
�

  

with    �       =    (  χ   1 , … ,  χ    m  ),  t     =    ( t  1 , … , t   m  ), and   n      =    ( n  1 , … , n   m  ). (An equivalent defi nition 
uses only a single but time-dependent counting fi eld 44 .  ) Th e  m -time cumulants of 
 P  ( m ) (  n  ;   t  ) are then

 �〈〈 〉〉 = ∂ ∂ →n t n tm i i m
m( ) ( ) ( , ) | ,( )

1 1
… …c c F t 0�   

with the corresponding  m -time cumulants of the current

 〈〈 〉〉 ∂ ∂ 〈〈 〉〉I t I t n t n tm t tm m( ) ( ) = ( ) ( ) .1 1 1� � �   

Th ese equations defi ne the cumulant averages denoted by double brackets  〈〈…〉〉  . 
In the Fourier domain, the current cumulants can be expressed as

 〈〈 〉〉 = + + −I I Sm m
m

m( ) ( ) ( ) ( , , ).( )w w pd w w w w1 1 1 12… … …ˆ ˆ
  

as the sum of frequencies is zero in the stationary state. Th e Fourier-
transformed current is denoted as  I( )wˆ    and  S  ( m ) (  ω   1 ,   ω   2 , … ,   ω    m     −    1 ) is the poly-
spectrum 40 , which for  m     =    2 and  m     =    3 yields the noise spectrum  S  (2) (  ω  ) (second 
cumulant) and the bispectrum (third cumulant)  S  (3) (  ω   1 ,   ω   2 ), respectively. We note 
that the noise spectrum  S  (2) (  ω  ) in the stationary state is a single-frequency quantity 

that can be related directly to the one-time probability distribution  P  (1) ( n ,  t ) 

according to MacDonald ’ s formula 45   S t t
t

n t( )( ) sin( ) ( )2

0

2w w w= 〈〈 〉〉
∞
∫ d

d

d
  . 

Th e bispectrum  F  (3) (  ω   1 ,  ω   2 ) in contrast is a two-frequency quantity that refl ects 
correlations of the current beyond what is captured by  P  (1) ( n ,  t ) alone.    

  Theoretical model   .   We consider the probability vector 
| p ( t ) 〉     =    [ p  00 ( t ),  p  10 ( t ),  p  01 ( t ),  p  11 ( t )]  T  , where the fi rst index denotes the number of 
(extra) electrons on the QD,  i     =    0, 1, and the second index denotes the detected 
number of (extra) electrons on the QD as inferred from the current through the 
QPC,  j     =    0, 1. Th e probability vector evolves according to the rate equation

 

d

d
L R L R L R

t
p t p t| ( , ; ) ( , ) | ( , ; ) ,c c c c c c〉 = 〉M

  

having introduced separate counting fi elds   χ   L  and   χ   R  that couple to the number of 
detected electrons that have passed the left  and the right barriers, respectively 44 . 
Th e matrix  M (  χ   L ,   χ   R ) reads 13,14,37 
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where factors of  e
i L Rc ( )   in the off -diagonal elements correspond to processes that 

increase by one the number of detected electrons that have tunnelled across the left  
(right) barrier ( Fig. 1c,d) . Th e detector rate  Γ  D  of the QPC detector scheme tends 
to infi nite for an ideal detector only, but is fi nite otherwise.   

  Calculations   .   For the calculations of the fi nite-frequency cumulants it is useful to 
write the matrix as

 M M I I( , ) ( ) ( ) ,c c c c
L R

i L
L

i R
Re e= + − + −0 1 1   

where  M  0     =     M (0, 0) and  I  L(R)  is the super operator for the detected current through 
the left  (right) barrier 46 . Additionally, we need the stationary state  | 0〉〉  , found by 
solving  M0 0 0| 〉〉 =    and normalized such that  〈〈 〉〉 =�0 0 1|   , where  〈〈 =�0 1 1 1 1| ( , , , )  . 
We defi ne the projectors 46   P = 〉〉〈〈| |0 0�    and  Q     =     1     −     P  and the frequency-
dependent pseudoinverse 47   R (  ω  )    =     Q [i  ω      +     M  0 ]     −    1  Q , which is well-defi ned even 
in the zero-frequency limit   ω   → 0, since the inversion is performed only in the 
subspace spanned by  Q , where  M  0  is regular. Th ese objects constitute the essential 
building blocks for our calculations. Th e frequency-dependent second and third 
cumulants,  S  (2) (  ω  ) and  S  (3) (  ω   1 ,  ω   2 ), can then be evaluated following refs   47,48 
and 33, respectively.                                                                                                                                                                      
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