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Abstract

Many eukaryotes form multinucleated cells during their devel-
opment. Some cells persist as such during their lifetime, others
choose to cleave each nucleus individually using a specialized
cytokinetic process known as cellularization. What is cellula-
rization and how is it achieved across the eukaryotic tree of
life? Are there common pathways among all species support-
ing a shared ancestry, or are there key differences, suggesting
independent evolutionary paths? In this review, we discuss
common strategies and key mechanistic differences in how
cellularization is executed across vastly divergent eukaryotic
species. We present a number of novel methods and non-
model organisms that may provide important insight into the
evolutionary origins of cellularization.
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Introduction

Multinucleated cells, formed by cell fusion (syncytia) or
by nuclear division without cytokinesis (coenocytes), are
widely present across cukaryotes. In animals, these cells
can either persist during development allowing for cell
size increase, efficient activation of gene expression and
improved resistance to mechanical constraints and forces
[1—7], or be cleaved into individual cells using a
specialized form of cytokinesis known as cellularization

[8,9]. Here, we aim to review some of the recent dis-
coveries regarding the cellularization process with an
emphasis on the similarities and differences in diverse
eukaryotic taxa, including animals, close animal relatives,
amoebozoans, apicomplexans and plants (Figure 1).

The formation of the syncytial blastoderm during the
early development of the fruit fly Drosophila melanogaster
represents the best-studied model for cellularization;
however, such a process is common during the devel-
opment of animals, plants and unicellular eukaryotes
[10—12]. To date, it is still unclear how comparable the
cellularization process is across these organisms, or why
cellularization has been under selective pressure during
evolution. This review aims to provide an overview of
the cellularization process across eukaryotic cells that
transit synchronously from multinucleated cells to
multiple uninucleated cells. We will take advantage of
the extensive work done on D. melanogaster embryos
(recently reviewed in the studies by Hamm et al., Sokac
etal. [13,14]) and use it as a benchmark to compare with
other insects, flowering plants and protists and detail
the key steps of cellularization from nuclear positioning
to cytoskeletal and transcriptional regulation. We apol-
ogize to our colleagues whose work on the development
of animal multinucleated germline cells [15—17], and
septation of multinucleated filamentous fungi [18—20]
were not included due to space and scope constraints.

Preparing to cellularize: Nuclear positioning
and spacing

A universal, necessary precursor to coenocyte cellulari-
zation is achieving proper nuclear position within the
embryo and spacing between nuclei. In the systems
where this has been examined, insects, Sphaeroforma
arctica, and Arabidopsis thaliana, a highly conserved theme
is cytoskeletal functions and actin-microtubule
(MT) crosstalk.

In the Drosophila embryo, the first nine synchronous
nuclear cycles (preblastoderm, NC 1-9) occur without
cytokinesis in the central cytoplasm (Figure 1). Although
the early fly embryo is by definition a coenocyte, it is
conventionally described as syncytial. During these first
NCs, the nuclei maintain regular spacing while
dispersing along the A—P axis (axial expansion, NC 4-6)
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The phylogenetic position (left; LECA = last eukaryotic common ancestor), life cycles (center) and the known cytoskeletal components (right) of three

distinct eukaryotic species undergoing cellularization. In D. melanogaster, cell
bules, an actomyosin network, extensive plasma membrane remodeling, and

ularization, which occurs at nuclear cycle (NC) 14, is driven by microtu-
cadherin-dependent cell—cell junctions. In S. arctica, microtubules coor-

dinate nuclear positioning and actomyosin drives plasma membrane invaginations; however, the subcellular cytoskeletal localization at the membrane
remains uncertain (dotted lines). In A. thaliana, microtubule-dependent actin asters regulate nuclear positioning whereas a radial microtubule system

coordinates cell wall formation around individual nuclei [116].

and migrating to the cortex (NC 7-9). The result is a
single layer of uniformly spaced cortical nuclei at NC 10
(Figure 1). Some “yolk nuclei” remain in the central
cytoplasm and consequently are not cellularized [21].

Cortical actomyosin contractions generate cytoplasmic
flows that propel the nuclei during axial expansion
[22,23]. While it was well established that this nuclear
movement is tightly linked to the cell cycle [24], recent
elegant experiments employing biosensors and opto-
genetics in live embryos have yielded unprecedented
molecular insight [22]. They revealed that local oscil-
lations of Cdk1/PP1 activity begin around the synchro-
nously dividing nuclei in the central cytoplasm. These
oscillations spread outward resulting in localized PP1
activity at the cortex, approximately 40 pm above the
nuclear cloud. This cell cycle dependent localized PP1
was highly correlated with and required for the Rho
activity and localized myosin-2 accumulation necessary
for the cortical contractions and cytoplasmic flows that
disperse the nuclei [22].

M'T-based mechanisms maintain proper nuclear spacing
and appear to contribute to both axial expansion and
cortical migration [25—28]. A novel cell-free nucleo-
plasm explant technique was used to demonstrate that
nuclear distribution and separation distance is an
“intrinsic property” of the preblastoderm nucleoplasm
that depends on both central spindle elongation and
cytoplasmic actin dependent aster migration [29]. A
recent exciting extension of that initial study showed
that M'T-dependent repulsion is key to nuclear spacing
[25]. Their data suggest that interdigitated anti-parallel
MTs from neighboring asters re cross-linked by Feo/Prc1
and the kinesin-4 homologue Klp3A. That crosslinking
may enable other M'T motors to slide the M'Ts past each
other thus separating the nuclei [25,30]. Nuclear
migration to the cortex is postulated to be dependent on
similar Feo-Klp mechanism [30].

In Drosophila, the cortical arrival of hundreds of nuclei
creates the syncytial blastoderm (NC 10-13; Figure 1)
and triggers the assembly of an actin “cap” above each
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nucleus (reviewed in the study by Blake-Hedges et al.
[31]). Disruption of actin via inhibitors or gene muta-
tions produces abnormal nuclear clustering suggesting
that actin caps are necessary to maintain spacing. It has
long been appreciated that actin cap assembly is
dependent on the centrosomes located between the
nucleus and the cortex [32,33]. Although the molecular
mechanism connecting actin and centrosomes is still
unclear, the best candidate is the ELMO/Ced-12-
Sponge complex [30]. In the syncytial blastoderm, nu-
clear spacing and mitotic fidelity are achieved at a cortex
increasingly crowded with dividing nuclei in part
through the production of “pseudo-cleavage furrows”.
These dynamic actin-rich plasma membrane in-
vaginations extend starting in prophase and retract
during telophase to separate spindles and prevent col-
lisions (reviewed in the study by Schmidt et al. [34]).
Interestingly, syncytial cortical divisions are accompa-
nied by a “yo—yo” movement of the nuclei—nuclei are
driven apart by elongating spindles during telophase and
then restored to their proper positions by Diaphanous
(Dia)-dependent cortical F-actin [35]. Such a “visco-
clastic feature” results in part from the pseudo-
synchronous nature of these cortical divisions that pro-
ceed in a wave across the embryo.

Recent work in the cricket, Gryllus bimaculatus, has
revealed that even among insects with syncytial em-
bryos, there are fascinating differences in how the
problem of nuclear distribution and movement is solved
[36]. Whereas in Drosophila the nuclei divide synchro-
nously, move in concert, and arrive at the cortex simul-
taneously, in cricket the nuclei lack cell cycle synchrony,
exhibit variability in nuclear movement, and nuclear
arrival at the cortex is staggered [36]. Remarkably, these
highly variable properties predictably correlate with
local nuclear density and movement appears to be
coupled to the cell cycle. The variability in the move-
ment of neighboring cricket nuclei is inconsistent with a
role for cytoplasmic flows like those in Drosophila.
Given the newly described connections between cell
cycle synchrony and cytoplasmic flow in flies [22], it is
perhaps not surprising that the asynchronous cricket
embryo doesn’t employ them. Further, in contrast to the
nuclear repulsion observed in Drosophila [25], the au-
thors’ coupled empirical and modeling approach sug-
gests that a “local, asymmetric, active pulling force on
each nucleus” can explain most of the nuclear behaviors
in the cricket embryo.

Cellularization also occurs in ichthyosporeans-a lineage
of unicellular protists known to be among the closest
living relatives of animals [37,38]. In Sphaeroforma arctica
(Figure 1), the best-studied ichthyosporean model to
date, multiple rounds of nuclear division produce
multinucleated coenocytes [12,39,40]. These coeno-
cytes then undergo synchronous cellularization pro-
ducing a transient epithelial-like cell layer [12]. This
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brief multicellular stage concludes with cell detachment
and release to repeat the life cycle. During the pre-
cellularization growth and nuclear division phase of
S. arctica development, actin patches dot the cortex,
some of which expand via Arp2/3 creating actin “nodes”
[12]. This is followed by the assembly of formin-
dependent cortical actin filament networks that sepa-
rate the nuclei prior to furrow initiation. This network of
actin barriers is reminiscent of the transient pseudo-
cleavage furrows in Drosophila which require the
formin Dia, as well as the Dia interactors APC2, Rhol,
and RhoGEF2 [41—43]. They differ in that the fly
metaphase furrows contain both membrane and actin,
while the actin barriers in §. arctica do not appear to
include membrane until the initial phase of invagination
begins. In addition, loss of the actin barriers resulting
from inhibition of actin, formins, or Arp2/3 did not cause
nuclear collisions. Instead, inhibition of MTs produced
abnormal nuclear clustering suggesting an MT-only-
based mechanism to maintain nuclear spacing. It is
tempting to speculate that this system may employ M'T
sliding like that recently described in the pre-
blastoderm fly embryo [25].

In flowering plants, dual fertilization of the oocyte and
the endosperm by two independent sperm triggers the
development of both the embryonic plant and the
endosperm that nourishes it [44—46]. As in the
Drosophila embryo, nuclear division in the endosperm
proceeds without cytokinesis and the timing of cellula-
rization determines seed size [47—54]. In Arabidopsis,
cellularization begins when the endosperm contains
approximately 100 nuclei and moves from one end of the
tissue to the other, producing a large multicellular area
(Figure 1). A new study has yielded an unprecedented
look at cytoskeletal dynamics in the endosperm prior to
cellularization [55]. Nuclear spacing in the coenocyte
appears to be established and maintained by an aster-
shaped network of actin cables, the assembly of which
is dependent on a co-aligning M'T network (Figure 1).
Radial MT arrays have been previously described in
Arabidopsis and their disruption correlates with uneven
nuclear spacing and cellularization defects [56]. Inter-
estingly, Drosophila embryos also form actin-asters
during anaphase and telophase in the syncytial blasto-
derm. The formation of these asters is dependent on
centrosomes and M'Ts, but their role is not known [57].

Cellularization: Initiation, extension, and
termination

With the nuclei in proper position, cellularization can
commence. Drosophila and §. arezica deploy a conserved
cytoskeletal tool kit for building new cells in the
coenocyte but they do so in distinct ways. In fly, furrow
formation uses the remnants of the cycle 13 pseudo-
cleavage furrows [58,59] to generate the “old furrows”
that separate adjacent non-daughter nuclei. To separate
the daughter nuclei produced in cycle 13, “new furrows”
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are established through the action of the centrosomes
located above each daughter nucleus and their M'T
asters that extend toward the membrane. Myosin-2 fil-
aments are initially recruited to the new furrows by a
transient tension-driven cortical flow that is biased
toward the sites of astral M'T overlap [58]. In §. arctica,
inhibition of MTs produces cells that vary in size and in
the number of nuclei, suggesting that M'Ts may play a
role in establishing the sites of furrow formation. But
because MTs are required for nuclear spacing, this effect
may be a secondary consequence of nuclear clustering.
In this case, a non-MT driven mechanism for estab-
lishing the sites of furrow formation is needed that could
rely on the nuclei themselves, or possibly MTOCs. In
both systems, actin assembly is absolutely required for
furrow formation: inhibiting actin assembly with
Latrunculin, an Arp2/3 inhibitor, or a formin inhibitor
eliminates membrane furrow formation in . arctica.
Similarly, actin inhibitors or mutants in actin assembly
and organization block furrow formation in Drosophila
[14]. The rapid creation of hundreds to thousands of
new cells creates a tremendous demand for plasma
membrane—the cell surface of the fly embryo is esti-
mated to expand by a remarkable 25-fold during cellu-
larization [14]. Fascinating ways to satisfy this demand
have been discovered in Drosophila, but as this problem
has not been examined in any other system we do not
cover it here.

How the force is generated to invaginate and extend
membranes is a significant difference between the two
systems. The F-actin network separating the . arctica
nuclei assembles in the presence of the Myosin inhibitor
blebbistatin, but instead of a tight network of actin
“hexagons” the actin network appears loose and sinuous
consistent with contractility loss [12]. Blebbistatin
treatment blocks membrane invagination and causes the
striking retreat of membrane furrows that have already
initiated, suggesting that actomyosin contractility pro-
vides the force for membrane extension. Furrow exten-
sion in Drosophila takes advantage of the inverted MT
basket surrounding each nucleus that positions MTs
parallel to the plane of the growing furrow (Figure 1).
Here, the M'T motor Pavarotti-KLP (a mitotic kinesin-
6) provides the force to pull the membrane between
the nuclei in the first, “slow phase” of furrow exten-
sion [60,61].

Drosophila myosin-Z2 does not provide the driving force
for furrow initiation and extension as it does in . arctica
or during conventional cytokinesis in many, but not all
organisms [12,62,63]. However, both direct and indirect
fine-tuning of myosin-2 activity play a critical role in
Drosophila cellularization. The basal ends of the furrows
create an interconnected array of actomyosin rings that
change shape as the furrows extend [14]. Initiated as
circular rings, they become rigid hexagons throughout
the slow phase. As the final fast phase begins, the actin

network again transforms into circular rings that will
constrict to close the basal ends of the new cells.
Myosin-2 activity shapes the initial circular rings, is
silenced during the hexagonal slow phase, and is reac-
tivated in the fast phase to shape and ultimately
participate in the closure of the re-circularized rings
[14]. The timing of myosin-2 reactivation is critical:
premature constriction of the rings traps the nuclei in
their grip resulting in catastrophic cellularization failure.
Krueger et al. (2019) elegantly demonstrated that the
actin network is not competent to respond to myosin-2
activation during the hexagonal phase. This resistance
to contractility is the result of the synergistic activity of
actin crosslinkers, maternally provided Cheerio (fly
Filamin) and transiently expressed Bottleneck, that
promote the rigid hexagonal F-actin network and may
block actin filament sliding [64]. Surprisingly, re-
circularizing the network and enabling actomyosin
contractility requires fimbrin, a third actin crosslinker
[64]. While some crosslinkers curtail contractility, their
functions are supported by the action of RhoGAPs
(Cumberland GAP [65] and GRAE [66]) that suppress
Rhol activity upstream of Myosin-2 activation during
cellularization. Interestingly, myosin-2 is only required
for the first phase of ring closure when the hexagons are
re-circularized and constriction begins. The rapid ring
constriction characterizing the second and final phase of
ring closure is myosin-2 independent and instead is
driven by cofilin and F-actin disassembly [67] similar to
ring constriction during budding yeast cytokinesis [68].

Little is known about the mechanics of cellularization
initiation, extension and termination in non-animal
species, but the role of myosins is an emerging theme.
Through unknown mechanisms, myosin-2 drives furrow
initiation and extension in S. arctica while maintaining
open rings to navigate the nuclei [12]. Chytrid fungi
have myosin-2 that may play a role in their cellulariza-
tion [69]. The class VI-like myosin, Myo], drives basal
constriction in the apicomplexan parasite Zoxoplasma
gondii but is not required to complete their specialized
cellularization (endodyogeny) that occurs within a host
vacuole [70,71]. Even less is known about the cyto-
skeletal mechanisms governing plant endosperm cellu-
larization. While cellularization defective mutants have
been identified [72], some of which support a role for
M'Ts [49,73], these have not shed much light on cyto-
skeletal mechanisms.

An important feature of cellularization is the establish-
ment of cortical domains required for epithelial polarity
and developmental coordination. In animals, including
fly embryos, these domains are enriched with conserved
polarity factors such as par proteins, cell adhesion mol-
ecules, and lateral membrane components scribbled and
Disc large 1 (Dlgl) (reviewed in the study by Schmidt
et al. [34]). In Drosophila, the scribble/DIlg module or-
chestrates the initial formation of the cadherin/catenin-
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based cell-cell junctions (basal junctions) concomitant
with furrow canal formation and growth [74—76].
Although not directly needed for the formation or
maintenance of the furrow canals [77], basal junctions
are thought to maintain the specific composition of the
furrow canal throughout its progression [77] and are
essential for subsequent activation of the key Notch
developmental pathway [78]. In ichthyosporeans
including Sphaeroforma, par proteins, cadherins, scribble,
Dlg, and notch proteins have not been identified [79,80]
but multiple - and a-catenin homologs are present and
highly expressed during cellularization [12]. These
observations strongly suggest that ichthyosporeans rely
on a divergent program that may include cadherin-
independent catenin-based junctions to establish po-
larity and provide structural integrity to the furrow. This
hypothesis is consistent with previous work identifying
catenin-based cell junctions during the aggregative
multicellular life stage of the slime mold Ductyostelium
discoideum, which also lacks cadherins [81,82]. One key
question remains, however: did the animal cortical po-
larity pathway evolve gradually with catenins having the
ancestral role followed by increased cell-junction
complexity? Or did ichthyosporeans and amoebozoans
evolve independent polarity programs with analogous
cell-adhesion structures?

Triggering cellularization

In Drosophila, cellularization is concomitantly triggered
by multiple processes including cell cycle progression,
maternal product degradation and zygotic genome
activation (ZGA) making it difficult to assess the spe-
cific contribution of each process (reviewed in the
studies by Sokac et al., Hamm et al., Schulz et al.
[14,83,84]). Nonetheless, extensive work has shown
that cellularization relies on the timely degradation of
maternal products by RNA binding proteins (RBPs)
such as Smaug [85], a poorly defined developmental
oscillator that measures the time interval between
fertilization and NCI14 [86,87], Cdkl-dependent
mitotic waves ensuring synchronized nuclear posi-
tioning along with ploidy [22,88,89], and a critical set of
both maternally provided and early zygotic genes [14].
The initial machinery required for cellularization,
including actin network components (Myosin-2 (Zip),
Anillin, and Dia), major regulators of cell polarity (Rhol,
Rok, RhoGEFZ) and membrane trafficking (RabS, Rab5,
Rabll, Pld), are all maternally supplied [14]. However,
their function is locally orchestrated by a small set of
early zygotic genes (Buk, Dunk, Nullo, Slam, Sry-o)
expressed shortly before the extensive ZGA [14].
Although the regulation of these genes is poorly un-
derstood, their activation depends on the develop-
mental oscillator, the key ZGA activator named Zelda
(Zld) and the nuclear-to-cytoplasmic (N/C) ratio
[13,89—92]. Most of the above-mentioned genes have
been shown to be conserved and expressed during the
early embryonic development of various insects arguing

Cellularization across eukaryotes McCartney and Dudin 5

for a single evolutionary origin in this lineage [93,94].
Nonetheless, key differences have also been reported,
including various patterns of blastoderm formation and
diverse adoption of signaling pathways, implying a
certain capacity for adaptation [95—97].

In flowering plants and unicellular eukaryotes, the path-
ways triggering cellularization remain mostly unknown.
Arabidopsis endosperm cellularization only occurs after a
defined number of nuclear divisions [98] and depends on
the tight regulation of the major plant regulator auxin
[99]. This suggests the presence of at least two regula-
tors, a plant-specific switch reliant on auxin and a possibly
ancestral mechanism conditional on nuclear ploidy and/or
cell cycle progression. In ichthyosporea, cellularization
occurs in parallel with an extensive transcriptional wave
of cytoskeletal and cell adhesion genes [12], but the
mechanisms triggering such a wave are still unknown.
Previous work has shown that, as in insect embryos, the
periodicity of the nuclear division cycles during the
coenocytic growth of §. arcsica is maintained by a timer
which is independent of cell volume and growth rate
[40]. Moreover, S. arctica cells exhibiting increased nu-
clear number-to-volume ratio, caused by nutrient limi-
tation [40] or by sedimentation selection [100],
cellularize earlier, arguing for a possible link with the N/C
ratio. This nuclear control of cellularization has also been
shown in earlier diverged unicellular species. For
instance, in the multinucleated life stage of apicom-
plexan parasites also known as Schizonts, nuclear division
occurs first asynchronously but is completed with a final
synchronous cycle coinciding with cellularization [101].
Such development in parasites undergoing schizogony
implies again that a nuclear-constrained and cell cycle-
regulated signal may be in play [101,102]. This nuclear
restricted regulation has also been shown to occur in the
single-celled amoebozoan slime mold Physarum poly-
cephalum, where nuclei are proposed to act like mobile
processors promoting spatio-temporal function in
absence of membrane compartmentalization [103].
Altogether, these studies demonstrate that although the
pathways triggering cellularization seem to be species-
specific, they all share an intimate relationship with nu-
clear number and position. Such a local regulation at the
level of single nuclei represents an interesting parallel
with a local nuclear community effect previously reported
in Drosophila [86]. Recent work has shown that nuclear
communities can sense the N/C ratio and may influence
neighboring nuclei in a Cdkl-dependent manner [89],
suggesting that nuclei may represent a signaling center
around which spatio-temporal regulation of cellulariza-
tion across species may have evolved.

Outlook

Cellularization represents an exciting process relying on
a sophisticated interplay between cytoskeletal dy-
namics, structural coordination, and transcriptional
regulation. As reviewed here, despite being present
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across many species spanning the eukaryotic tree of life,
cellularization seems to employ distinct species-
dependent mechanisms, even between the closest rel-
atives discussed here; Drosophila and the cricket G.
bimaculatus. 'This suggests that cellularization has prob-
ably evolved independently multiple times, nonethe-
less, two mechanisms were repeatedly employed for
faithful cellularization across species: i) the cytoskel-
eton (be it actin, microtubules or both) for partitioning
multinucleated cells into individual ones, and ii) the
nuclei as sites of transcription and local signaling, and as
a means of counting. As these features were present in
the last common ancestor of all eukaryotes, it suggests
that multinucleated cells may have used the ancestral
cytokinetic machinery and gradually increased its
complexity by integrating the capacity to synchronize
the cell cycle, coordinate cytoskeletal components and
establish overall structural integrity. This idea raises its
own questions: why did multinucleated cells repeatedly
emerge in the first place, what are the selective pres-
sures driving this, and how did the ancestral cytoskeletal
and transcriptional pathways adapt to it? All these
fundamental questions have yet to be addressed.

Extensive work is still needed to support the convergent
nature of cellularization. The renewed enthusiasm for
non-model organisms and the extensive efforts to
develop genetic tools represent an exciting path for the
future. For instance, the recent development of Agro-
bacterium-mediated transformation of the chytrid
fungus Spizellomyces punctatus is a significant step in the
right direction [104]. Indeed, Chytrid fungi, which un-
dergo cellularization to produce flagellated zoospores,
have both animal/amoeboid and fungal characteristics at
different points in their life cycles placing them in a
unique position to investigate the evolutionary origin of
cellularization. Similarly, a new method for stable
transfection in another animal relative undergoing
cellularization occasionally, the corallochytrean Corallo-
chytrium limacisporum [105], will enable the investigation
of an exciting novel species for future comparisons.

Aside from the evolutionary origins of cellularization,
several mechanistic questions remain unanswered, even
in model systems such as Drosoplila. For example, the
spatio-temporal order of the triggering events (i.e. tran-
scriptional activation, local nuclear signaling, and readout
of the N/C ratio) is not known. For that, the emergence of
novel single cell and single nucleus sequencing methods
will be useful [103,106,107]. Also, long-term and low-
phototoxic imaging together with novel optogenetic
methods to locally activate or degrade specific genes
[108—110] will reveal the mechanisms of spatial coordi-
nation, and the different compensatory checkpoints pre-
sent across the AP axis. Moreover, the recent development
of expansion microscopy methods will also be beneficial in
characterizing the ultrastructural dynamics of cellulari-
zation across many species [111,112]. The mechanical

forces locally required to complete cellularization are not
well understood, but the innovative use of injected mag-
netic beads to assess those forces is already generating
novel insight into the mechanics of cellularization
[113—115]. Taken together, we believe that these new
methods and novel organisms promise to yield exciting
discoveries about the origins and mechanisms of cellula-
rization for years to come.
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