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Emanuele Pravatà, MD; Johannes Weber, MD; Philippe C. Cattin, PhD; Claudio Gobbi, MD; David Leppert, MD; Ludwig Kappos, MD;
Jens Kuhle, MD, PhD; Cristina Granziera, MD, PhD

IMPORTANCE The mechanisms driving neurodegeneration and brain atrophy in relapsing
multiple sclerosis (RMS) are not completely understood.

OBJECTIVE To determine whether disability progression independent of relapse activity
(PIRA) in patients with RMS is associated with accelerated brain tissue loss.

DESIGN, SETTING, AND PARTICIPANTS In this observational, longitudinal cohort study with
median (IQR) follow-up of 3.2 years (2.0-4.9), data were acquired from January 2012 to
September 2019 in a consortium of tertiary university and nonuniversity referral hospitals.
Patients were included if they had regular clinical follow-up and at least 2 brain magnetic
resonance imaging (MRI) scans suitable for volumetric analysis. Data were analyzed between
January 2020 and March 2021.

EXPOSURES According to the clinical evolution during the entire observation, patients were
classified as those presenting (1) relapse activity only, (2) PIRA episodes only, (3) mixed
activity, or (4) clinical stability.

MAIN OUTCOMES AND MEASURES Mean difference in annual percentage change (MD-APC) in
brain volume/cortical thickness between groups, calculated after propensity score matching.
Brain atrophy rates, and their association with the variables of interest, were explored with
linear mixed-effect models.

RESULTS Included were 1904 brain MRI scans from 516 patients with RMS (67.4% female;
mean [SD] age, 41.4 [11.1] years; median [IQR] Expanded Disability Status Scale score, 2.0
[1.5-3.0]). Scans with insufficient quality were excluded (n = 19). Radiological inflammatory
activity was associated with increased atrophy rates in several brain compartments, while an
increased annualized relapse rate was linked to accelerated deep gray matter (GM) volume
loss. When compared with clinically stable patients, patients with PIRA had an increased rate
of brain volume loss (MD-APC, −0.36; 95% CI, −0.60 to −0.12; P = .02), mainly driven by GM
loss in the cerebral cortex. Patients who were relapsing presented increased whole brain
atrophy (MD-APC, −0.18; 95% CI, −0.34 to −0.02; P = .04) with respect to clinically stable
patients, with accelerated GM loss in both cerebral cortex and deep GM. No differences in
brain atrophy rates were measured between patients with PIRA and those presenting
relapse activity.

CONCLUSIONS AND RELEVANCE Our study shows that patients with RMS and PIRA exhibit
accelerated brain atrophy, especially in the cerebral cortex. These results point to the need to
recognize the insidious manifestations of PIRA in clinical practice and to further evaluate
treatment strategies for patients with PIRA in clinical trials.
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M ultiple sclerosis (MS) is a chronic disease of the cen-
tral nervous system characterized by inflamma-
tory, demyelinating, and neurodegenerative

processes.1 Despite significant progress in the clinical man-
agement of patients with MS, the mechanisms driving disabil-
ity accumulation are not fully understood.

While it is widely accepted that disability accrual may re-
sult from the neuroinflammatory events occurring in clinical
relapses (relapse-associated worsening),2 it is much less clear
why some patients experience disability progression indepen-
dent of relapse activity (PIRA).

Notably, while the insidious accumulation of disability is
characteristic of the progressive MS disease courses,3 PIRA has
recently emerged as a crucial clinical feature also in relapsing
MS (RMS).4-6 Indeed, PIRA has been shown to occur in typi-
cal RMS populations, challenging the traditional distinction
between an early exclusively relapsing phase and a late sec-
ondary progressive MS (SPMS). The pathophysiological deter-
minants of PIRA remain elusive, although it is plausible that
PIRA is associated with increased diffuse neuroaxonal loss.

Assessment of brain atrophy by magnetic resonance
imaging (MRI) enables the in vivo quantification of ongoing
neurodegenerative processes. Accelerated brain tissue loss is
a critical phenomenon in MS, presenting close association
with clinical disability, and involving multiple central ner-
vous system compartments with as yet poorly understood dif-
ferences in regional magnitude and temporal evolution.7 Brain
tissue loss may be the consequence of acute focal neuroin-
flammatory events as well as more diffuse primary or second-
ary neurodegenerative processes that occur independent from
lesion activity.8 These include chronic focal “smoldering”
activity,9,10 progressive loss of chronically demyelinated axons
outside MS lesions, astrocyte damage and microglia activa-
tion in the normal-appearing white matter (WM) tissue,11 and
meningeal inflammation leading to subpial gray matter (GM)
pathology.12

In this work, we aimed at investigating whether PIRA is as-
sociated with brain volume loss and whether the pace and pat-
tern of brain volume loss in patients with PIRA are distinct
from those observed in patients with clinical relapse-
associated worsening. In a large cohort of patients with RMS,
we therefore assessed the association between global and re-
gional rates of brain atrophy and (1) focal inflammatory activ-
ity (evaluated both clinically and radiologically) and (2) PIRA.

Methods

Participants
This longitudinal retrospective investigation included pa-
tients prospectively followed up in the Swiss Multiple Sclero-
sis Cohort, an observational multicentric study with standard-
ized collection of demographics, clinical, and MRI data.13 The
study was approved by the local ethics committee. Written in-
formed consent was obtained from all participants before study
enrollment. The study follows the Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE)
guideline for reporting observational studies.14

Patients participating in the Swiss Multiple Sclerosis
Cohort study were enrolled in the present study according to
the following inclusion criteria: (1) availability of at least 2 brain
MRIs, including 1-mm isotropic magnetization-prepared rapid
gradient-echo (MPRAGE) and T2/fluid-attenuated inversion
recovery (FLAIR), separated in time by at least 6 months; (2)
diagnosis of RMS fulfilling the 2017 revisions of the McDonald
criteria15; (3) availability of at least 1 annual clinical follow-
up, with temporal proximity between MRI acquisition and
neurological evaluation (≤2 months); and (4) age between 18
and 80 years. All clinical and MRI data acquired as part of the
Swiss Multiple Sclerosis Cohort study between January 2012
and September 2019 from patients fulfilling eligibility crite-
ria were included. MRI scans with insufficient image quality
were excluded.

Clinical Data
Demographic and clinical data included sex, age, disease du-
ration (defined as time since first symptom), and current and
previous disease-modifying therapies (DMTs). Standardized
clinical assessments with Expanded Disability Status Scale
(EDSS) calculation were performed by certified raters every 6
or 12 months.13,16 The occurrence of relapses (defined accord-
ing to the McDonald criteria15) was recorded at each visit.

Confirmed disability progression was defined as an EDSS
score increase, confirmed at least after 6 months, of (1) 1.5 or
more points if baseline EDSS was 0, (2) 1.0 or more points if
baseline EDSS was 1.0 to 5.5, or (3) 0.5 or more points if base-
line EDSS was greater than 5.5. PIRA was defined as an epi-
sode of confirmed disability progression with no relapse
during the 90 days before the EDSS increase and during the
6-month period between the EDSS increase and the confirma-
tion of disability progression.

According to the longitudinal clinical evolution, we dis-
tinguished:
1. Patients with relapse activity and without PIRA: present-

ing at least 1 relapse (irrespective of whether it was associ-
ated with confirmed disability progression) and without
PIRA events during the entire observation;

2. Patients with exclusive PIRA: presenting at least 1 event of
PIRA and without relapses during the entire observation;

Key Points
Question Is disability progression independent of relapse activity
(PIRA) in relapsing multiple sclerosis associated with increased
rates and specific patterns of brain atrophy?

Findings In this cohort study that included 516 patients with
relapsing multiple sclerosis and 1904 brain magnetic resonance
imaging scans, PIRA was associated with significantly increased
brain volume loss. With respect to clinically stable patients,
patients with PIRA presented an accelerated total brain atrophy,
which was particularly evident in the cerebral cortex.

Meaning The association between PIRA and brain atrophy points
at the need to identify insidious disease progression in patients
with relapsing multiple sclerosis and to further investigate
therapeutic approaches to prevent irreversible brain tissue loss
in these patients.
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3. Patients with mixed activity: presenting at least 1 relapse and
1 episode of PIRA;

4. Stable patients: without relapses or PIRA during the entire
observation.

The study design is outlined in Figure 1.

MRI Acquisition
Brain MRI scans were performed at each center using proto-
cols optimized for homogeneous signal-to-noise ratio (eTable 1
in the Supplement). All protocols included a 3-dimensional
(3-D), T1-weighted, 1-mm isotropic MPRAGE and a 3-D, 1-mm
isotropic FLAIR.

MRI Analysis
Brain MRI analysis was conducted in Basel, Switzerland. Be-
fore analysis all native images were visually assessed to en-
sure sufficient quality.

T2 lesion volume (T2LV) was calculated automatically on
FLAIR images using the multidimensional gated recurrent units
algorithm,17 and results were manually reviewed. Longitudi-
nal changes of WM lesions were automatically assessed with
LeMan-PV,18 and the outputs, in terms of new and enlarged
lesions, were manually reviewed (A. Cagol, R.A.T., N.S.).

Volumetric analysis was performed on MPRAGE images
after lesion filling.19 Volumetric segmentation and cortical re-
construction were obtained with the longitudinal stream of
FreeSurfer (version 6.0).20-24 Results were reviewed (A. Ca-
gol) and, if needed, manually corrected according to Free-
Surfer recommendations.

Estimations for the regions of interest, including total brain
volume (TBV) and volumes of total GM, total WM, cerebral cor-
tex, deep GM, thalamus, cerebellum, and ventricular system,
were obtained from FreeSurfer; for symmetric structures, left
and right volumes were summed. Mean cortical thickness (CTh)
was quantified for the whole cortex, as well as for each lobar
and regional cortical area (according to the Desikan-Killiany
atlas25), as the average of the thickness obtained in the 2 hemi-
spheres. Total intracranial volume (TIV) was used as a covar-
iate in the analyses to adjust for between-patient differences
in head size. SPM1226 was preferred to FreeSurfer for measur-
ing TIV because it provides a direct quantification instead of
an indirect estimation.27

In this study, we chose the longitudinal pipeline of Free-
Surfer to explore brain volume changes over time because (1)
it gives the opportunity to consider several brain regions, in-
cluding structures characteristically affected in MS pathol-
ogy, and (2) it provides measures of global and regional CTh.
In FreeSurfer, the inherent variability associated with the in-
dependent analysis of each time point of a patient is ad-
dressed with a dedicated longitudinal pipeline by creating an
unbiased, robust, within-patient template.24 Such approach
proved to increase sensitivity and statistical power in detect-
ing subtle longitudinal changes.24

To support the reliability of brain volumetric measures in
our data set, TBV and deep GM volume were quantified in all
MRI scans also using SPM1226 and FIRST,28 respectively, and
brain atrophy rates were obtained also with Structural Image
Evaluation, using Normalization, of Atrophy (SIENA).29 The

Figure 1. Study Design

516 Patients (1923 scans) screened

334 Patients (1164 scans) with
clinical stability during entire
follow-up (no PIRA events
or relapses) 

1:1 Propensity score matching for
group comparison in longitudinal

brain atrophy rates

1:1 Propensity score matching for
group comparison in longitudinal

brain atrophy rates

1:1 Propensity score matching for
group comparison in longitudinal

brain atrophy rates

122 Patients (487 scans) with
≥1 relapse and no PIRA events
during entire follow-up

46 Patients (191 scans) with
≥1 PIRA event and no relapses
during entire follow-up

14 Patients (62 scans) with
≥1 PIRA event and ≥1 relapse
during entire follow-up

516 Patients (1904 scans) assessed
Association at baseline between MRI volumetric measures
and (1) EDSS score and (2) T2LV
Estimation of longitudinal rates of brain atrophy
Association between longitudinal rates of brain atrophy
and (1) baseline BPF and (2) baseline T2LV
Association between longitudinal rates of brain atrophy
and (1) rate of T2LV change during follow-up,
(2) rate of new or enlarged WMLs during follow-up,
(3) annualized relapse rate during follow-up, and
(4) rate of EDSS score change during follow-up

19 Scans excluded because of insufficient quality

BPF indicates brain parenchymal fraction; EDSS, Expanded Disability Status Scale; PIRA, progression independent of relapse activity; T2LV, T2 lesion volume;
WMLs, white matter lesions.
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agreement between software packages is reported in the
eMethods in the Supplement.

Statistical Analysis
All statistical analysis was conducted in R version 3.6.3.30 Data
were analyzed between January 2020 and March 2021. Lin-
ear mixed-effect models31 were performed using the lme4
package32 to do 5 types of analyses. First, we investigated the
cross-sectional association at baseline between brain volu-
metric measurements (dependent variable) and (1) EDSS score
and (2) T2 lesion load (estimated as the logarithmic transfor-
mation of T2LV). Models included TIV, sex, age, and disease
duration as covariates and MRI protocol (defined by the com-
bination of center and scanner) as random intercept.

Second, a linear mixed-effect model was used to quan-
tify the longitudinal rates of atrophy during follow-up. Brain
measurements at each given time point were used as depen-
dent variables. To estimate annual percentage change in brain
volume from the slope over time, brain measurements were
log-transformed.33 Models included as covariates time (to es-
timate the rate of volume/thickness change), sex, TIV, age and
disease duration at baseline, as well as the interactions be-
tween sex and baseline disease duration with time (to adjust
the rate of change for sex and disease duration). In addition,
both random intercepts (for participants and MRI protocols)
and a random slope (on time) were included.

Third, we assessed the association between longitudinal
rates of atrophy and (1) brain parenchymal fraction (calcu-
lated as the ratio between TBV and TIV) at baseline and (2) T2
lesion load at baseline. The association was investigated by in-
troducing in the model the interaction term between time and
the variables of interest.

Fourth, we explored the association between rates of
volume/thickness change (dependent variable) and (1) the
rate of change in lesion burden, (2) the annualized relapse
rate, and (3) the rate of change in EDSS score. The association
was investigated by introducing in the model the interaction
term between time and the variables of interest.

Fifth, the rates of brain atrophy were compared between
(1) patients with exclusive PIRA activity and stable patients;
(2) patients with relapse activity but no PIRA and stable pa-
tients; and (3) patients with exclusive PIRA activity and pa-
tients with relapse activity but no PIRA. The mean difference
in annual percentage volume/thickness change (MD-APC) was
assessed as the interaction term between patient group and
time. The 3 comparisons were performed after a 1:1 nearest-
neighbor propensity score matching, including duration of
follow-up, age, sex, disease duration, number of scans avail-
able, and treatment with DMTs as criteria. The balance be-
tween groups was assessed with Pearson χ2 and Mann-
Whitney U tests. Comparisons of demographic, clinical, and
MRI measures between groups were investigated with Welch
t test, Pearson χ2 test, and Mann-Whitney U test as appropriate.

Results were corrected for multiple comparisons using the
false discovery rate approach; reported P values are adjusted
for false discovery rate. The threshold of statistical signifi-
cance was set at P < .05. Graphical results for CTh analysis were
displayed with the fsbrain package.34 To assess the reliability

of brain volumetric measures obtained with different soft-
ware packages, an intraclass correlation coefficient was
calculated.35,36 As a sensitivity analysis, the effect of DMTs on
brain atrophy rates was investigated.

Results
A total of 1904 brain MRI scans from 516 patients were in-
cluded; 19 scans had to be excluded because of insufficient
quality. No patients were excluded. Median (IQR) follow-up was
3.2 (2.0-4.9) years, with a median (IQR) number of scans per
patient of 4 (2-5). During the observation period, 46 patients
experienced only PIRA events and no relapses, 122 patients re-
lapse activity without PIRA, 14 patients both PIRA and re-
lapse activity, and 334 patients remained clinically stable. The
cohort’s characteristics are summarized in Table 1.

Association of EDSS Score and T2LV
With Brain Measurements at Baseline
At baseline, both EDSS score and T2LV were associated with
TBV (β, −0.081; 95% CI, −0.134 to −0.028; P = .01, and β, −0.136;
95% CI, −0.186 to −0.087; P < .001, respectively), as well as with
total GM (β, −0.074; 95% CI, −0.133 to −0.017; P = .04, and β,
−0.094; 95% CI, −0.149 to −0.039; P = .001, respectively), and
total WM (β, −0.069; 95% CI, −0.125 to −0.012; P = .04, and
β, −0.154; 95% CI, −0.207 to −0.101; P < .001, respectively). The
strongest regional association was detected with thalamic
volume (β, −0.187; 95% CI, −0.255 to −0.120; P < .001, and β,
−0.354; 95% CI, −0.412 to −0.295; P < .001, respectively)
(eTable 2 in the Supplement).

Rates of Atrophy
All brain parenchymal volumes, except total WM, showed a sig-
nificant rate of tissue loss during follow-up. The annual rate
of TBV loss was −0.35% (95% CI, −0.49 to −0.20), and the
highest regional rate was detected in the thalamus (−1.17%;
95% CI, −1.47 to −0.89). A significant longitudinal thinning was
evident for whole CTh (−0.30%; 95% CI, −0.53 to −0.07), as
well as for parietal, occipital, frontal, and insular cortical areas
(Figure 2).

Association Between MRI Measures at Baseline
and Rates of Atrophy
Higher brain parenchymal fraction at baseline was associated
with subsequent lower rates of loss in TBV (β, 0.087; 95% CI,
0.042 to 0.132; P = .009), total GM volume (β, 0.131; 95% CI,
0.042 to 0.220; P = .01), and cerebellar volume (β, 0.176;
95% CI, 0.110 to 0.244; P < .001) and with a lower rate of ven-
tricular enlargement (β, −0.63; 95% CI, −0.100 to −0.027;
P = .005) (eTable 3 in the Supplement).

Increased T2 lesion load at baseline was associated with
subsequent higher rates of tissue loss of TBV (β, −0.098;
95% CI, −0.167 to −0.030; P = .03), total WM volume (β,
−0.110; 95% CI, −0.168 to −0.053; P = .002), and thalamic
volume (β, −0.130; 95% CI, −0.225 to −0.033; P = .03) and
with accelerated ventricular enlargement (β, 0.171; 95% CI,
0.106 to 0.237; P < .001) (eTable 3 in the Supplement).
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Association Between MRI Lesion Activity
and Rates of Atrophy
The rate of change in T2LV during follow-up was associated
with the rates of loss of TBV (b, −0.13; 95% CI, −0.18 to −0.08;
P < .001), total GM (b, −0.13; 95% CI, −0.22 to −0.05; P = .009),
cortical GM (b, −0.14; 95% CI, −0.24 to −0.05; P = .009),
deep GM (b, −0.11; 95% CI, −0.18 to −0.03; P = .01), total WM
(b, −0.20; 95% CI, −0.25 to −0.14; P < .001), and thalamus
(b, −0.17; 95% CI, −0.27 to −0.07; P = .003). Moreover, the
accumulation of T2LV was associated with accelerated
ventricular enlargement (b, 0.40; 95% CI, 0.20 to 0.61;
P < .001). Similar results were obtained considering the annu-
alized number of new and enlarged WM lesions (eTable 4 in
the Supplement).

Association Between Clinical Activity and Rates of Atrophy
The annualized relapse rate was associated with the rate of
deep GM atrophy (b, −0.59; 95% CI, −0.97 to −0.20; P = .047).
The rate of EDSS change during observation was associated
with accelerated atrophy in the thalamus (b, −0.86; 95% CI,
−1.35 to −0.37; P = .01) and faster ventricular enlargement
(b, 1.69; 95% CI, 0.62 to 2.76; P = .01) (eTable 4 in the Supple-
ment).

Comparison Between Patients With PIRA
and Stable Patients
During observation, 46 patients presented only PIRA activity
with a total of 49 events of PIRA resulting in a median (IQR)
annualized increase in EDSS score of 0.20 (0.11-0.50) points;
this population was propensity score–matched with 46 stable
patients (eTable 5 in the Supplement). The matched groups
did not differ at baseline in disability and T2LV. Baseline brain
parenchymal fraction was lower in patients with PIRA than in
stable patients (median [IQR] in PIRA, 0.756 [0.715-0.788]; me-
dian [IQR] in stable, 0.769 [0.747-0.807]; P = .045). There was
no difference in T2LV change during follow-up between groups.

Compared with stable patients, accelerated volume loss
was detected in patients with PIRA for TBV (MD-APC, −0.36;
95% CI, −0.60 to −0.12; P = .02), total GM (MD-APC, −0.59;
95% CI, −1.00 to −0.18; P = .02), and cortical GM (MD-APC,
−0.71; 95% CI, −1.18 to −0.24; P = .02); faster ventricular
enlargement was also observed (MD-APC, 1.50; 95% CI, 0.47
to 2.55; P = .02). In addition, accelerated thinning was
detected in the whole cortex (MD-APC, −0.62; 95% CI, −1.06
to −0.16; P = .02), as well as in each of the following cortical
areas: temporal, frontal, parietal, insular, and cingulate
(Table 2, Figure 3, and eFigures 1 and 2 in the Supplement).

Table 1. Clinical and MRI Characteristics in the Entire Cohort and in the 4 Groups of Patients

Cohort (n = 516) PIRA (n = 46) Relapsing (n = 122) PIRA + Relapsing (n = 14) Stable (n = 334)
Demographic and clinical data

Female, No. (%) 348 (67) 34 (74) 94 (77) 11 (79) 209 (63)

Age at baseline,
mean (SD), y

41.4 (11.1) 45.5 (10.8) 39.0 (9.8) 39.9 (13.6) 41.7 (11.2)

Disease duration
at baseline, mean (SD), y

9.5 (8.1) 11.1 (9.0) 9.6 (8.2) 11.5 (6.8) 9.1 (8.0)

EDSS score at baseline,
median (IQR)

2.0 (1.5 to 3.0) 2.0 (1.5 to 2.875) 2.0 (1.5 to 3.0) 2.5 (2.0 to 3.375) 2.0 (1.5 to 3.0)

Patients taking DMTs
at baseline, No. (%)

423 (82) 37 (80) 103 (84) 12 (86) 271 (81)

Group 1 DMTs
at baseline, No.

77 4 17 3 53

Group 2 DMTs
at baseline, No.

253 27 66 7 153

Group 3 DMTs
at baseline, No.

93 6 20 2 65

Follow-up duration,
median (IQR), y

3.2 (2.0 to 4.9) 4.0 (2.0 to 5.0) 4.0 (3.0 to 5.0) 5.0 (3.8 to 5.6) 3.0 (1.5 to 4.3)

ARR, mean (SD) 0.12 (0.30) 0 (0) 0.48 (0.43) 0.31 (0.16) 0 (0)

Annualized ΔEDSS rate,
median (IQR)

0 (0 to 0) 0.20 (0.11 to 0.50) 0.00 (−0.06 to 0.23) 0.19 (0.11 to 0.32) 0 (0 to 0)

MRI data

Brain MRI scans, total No. 1904 191 487 62 1164

No. of scans per patient,
median (IQR)

4 (2 to 5) 4 (3 to 5) 4 (3 to 5) 4 (4 to 5) 3 (2 to 5)

BPF at baseline,
median (IQR)

0.762 (0.725 to 0.792) 0.756 (0.715 to 0.788) 0.789 (0.764 to 0.812) 0.773 (0.753 to 0.797) 0.775 (0.738 to 0.807)

T2LV at baseline,
median (IQR), mL

4.0 (1.6 to 11.9) 5.7 (1.8 to 15.1) 4.5 (1.1 to 12.1) 5.8 (2.9 to 11.4) 3.8 (1.6 to 11.5)

Annualized ΔT2LV,
median (IQR), mL

0.04 (−0.22 to 0.48) −0.02 (−0.20 to 0.73) 0.10 (−0.12 to 0.85) 0.16 (−0.08 to 1.20) 0.03 (−0.28 to 0.37)

Annualized No. of
new/enlarged T2 lesions,
median (IQR)

0.17 (0 to 1.25) 0.20 (0 to 1.40) 0.62 (0 to 3.28) 1.21 (0.17 to 4.13) 0 (0 to 0.828)

Abbreviations: ARR, annualized relapse rate; BPF, brain parenchymal fraction; ΔEDSS, change in EDSS score; ΔT2LV, change in T2 lesion volume; EDSS, Expanded
Disability Status Scale; DMTs, disease-modifying therapies; DMTs group 1: interferon beta, glatiramer-acetate; DMTs group 2: teriflunomide, dimethyl fumarate,
fingolimod; DMTs group 3: natalizumab, rituximab, ocrelizumab, alemtuzumab; MRI, magnetic resonance imaging; PIRA: progression independent of relapse
activity; T2LV, T2 lesion volume.
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Accelerated atrophy rates were also observed in the
subgroup of patients with PIRA who did not have radiological
inflammatory activity during the entire follow-up (n = 26) when
compared with a matched group of stable patients.

Comparison Between Patients With Relapse Activity
and Stable Patients
During follow-up, 122 patients had relapse activity without
PIRA events; this population was propensity score–matched
with 122 stable patients (eTable 6 in the Supplement). There
were no differences between groups at baseline in disability,
T2LV, and brain volumetric measurements. Mean (SD) annu-
alized relapse rate in the group with relapses was 0.48 (0.43).

Compared with clinically stable patients, patients with only
relapse activity showed increased atrophy rates in TBV (MD-
APC, −0.18; 95% CI, −0.34 to −0.02; P = .04) and total GM (MD-
APC, −0.32; 95% CI, −0.59 to −0.06; P = .04), which were
evident both in cortical GM (MD-APC, −0.33; 95% CI, −0.61 to
−0.04; P = .04) and deep GM (MD-APC, −0.31; 95% CI, −0.57
to −0.06; P = .04). Accelerated thinning was detected in the
whole cerebral cortex (MD-APC, −0.31; 95% CI, −0.57 to −0.04;
P = .04), as well as in the cortex of the temporal, parietal, oc-
cipital, insular, and cingulate lobes (Table 2 and Figure 3).
Among the 122 patients with only relapse activity, 35 had con-
firmed disability progression during follow-up. Atrophy rates
did not differ between patients with and without confirmed
disability progression in any of the regions investigated.

Comparison Between Patients With PIRA and Patients
With Relapse Activity
After propensity score matching (eTable 7 and eTable 8 in the
Supplement), no significant differences in atrophy rates were
detected between patients experiencing only PIRA events
and patients who had only relapse activity (Table 2).

Discussion
In this large longitudinal cohort study, we show that patients
with RMS and PIRA exhibit increased rates of tissue loss in
several brain areas compared with patients who are clinically
stable. Our data also indicate that patients with RMS and PIRA
are subject to global brain tissue loss similar to that of pa-
tients experiencing relapse activity.

To selectively investigate PIRA, we identified patients with
confirmed disability progression who were free from re-
lapses during the entire observation period. When compared
with a propensity score–matched population of clinically stable
patients, patients with PIRA showed a remarkable increase in
TBV atrophy, mainly driven by GM loss. Accelerated tissue loss
was evident in cortical volume and cortical thickness, espe-
cially in frontal and parietal areas. Notably, the 2 groups did
not differ in longitudinal radiological inflammatory activity.
Moreover, the results were confirmed in a subgroup of pa-
tients with PIRA who were completely free from radiological
inflammatory activity for the entire follow-up. In clinical prac-
tice, the occurrence of PIRA in patients with RMS often re-
mains unrecognized because patients with low levels of dis-

ability are infrequently considered to potentially present a
progressive disease course.4,6

Our results showing an association between PIRA and dif-
fuse neurodegeneration provide strong evidence of the need
to promptly recognize PIRA, to prevent the accrual of irrevers-
ible central nervous system tissue damage. Approved DMTs
may differ in the ability to prevent disability accumulation due
to PIRA,4 and escalation/induction strategies have not yet been
assessed in patients with PIRA. Future clinical trials should
therefore aim at identifying the best therapeutic strategy for
these patients, both those with and those without relapses.

By reflecting ongoing tissue damage and destruction, brain
volumetry has emerged as a useful measure to understand
disease progression in MS: in fact, neuroaxonal loss exceed-
ing the reserve capacity of the central nervous system is
thought to be the ultimate driver of disability accumulation.37,38

Because of this, assessing brain volume loss is now recom-
mended in trials evaluating drugs with potential neuropro-
tective effect, even as a primary outcome measure in progres-
sive MS.39 Nonetheless, various technical and biological factors
limit the measurement of longitudinal brain volume changes
in the clinic.39,40 On the other hand, the association between
baseline brain atrophy and the risk of PIRA suggests that cross-
sectional measures of brain volume may help identify pa-
tients at risk of neurodegeneration.6

Figure 2. Annual Percentage Change in Volume
and Regional Cortical Thickness

Thalamus

Cortical GM

Total GM

Deep GM

Whole brain

Cerebellum

Total WM

Ventricles

–2 0 1 2

Annual rate of volume loss, %
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Rate of annual percentage volume change by brain regionA

 Annual percentage change in regional cortical thicknessB

–1.0 1.00

Change in cortical thickness, %
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GM indicates gray matter; TBV, total brain volume; WM, white matter.
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Several studies have previously failed in detecting signifi-
cant longitudinal differences in atrophy rates between pa-
tients with RMS and those with progressive MS.41-43 Eshaghi
et al36 reported increased atrophy but limited to temporal cor-
tical GM in SPMS with respect to RMS. It might be speculated
that the lack of striking differences between RMS and SPMS
results from the uncertainty in the clinical definition of the
disease course. Indeed, the traditional distinction between an
initial relapse only and a secondary progressive course has been
called into question by the evidence of PIRA in RMS.4 Concor-
dantly, our results showed that patients with RMS may have
excess neurodegeneration. Moreover, our data showing that
patients with RMS and PIRA exhibit more pronounced brain
atrophy than stable patients with RMS support the associa-
tion of brain volume loss and disability progression in MS. Fur-
ther, the fact that patients with PIRA show significantly in-
creased brain atrophy compared with stable patients with RMS
provides additional important evidence that neurodegenera-
tive changes are more pronounced in a subgroup of patients
with RMS than in others. Whether the presence of PIRA rep-
resents an early phase of SPMS or a milder form of progres-
sion should be investigated in future longitudinal studies.

As described previously,44,45 we found an association also
between focal inflammatory activity and diffuse and regional
atrophic changes. Lesions in MS may result in brain volume
loss through (1) direct inflammatory damage leading to loss

of myelin, oligodendrocytes, and axons within lesions and
through (2) indirect tissue loss after Wallerian degeneration.38,46

Besides,inourcohort,higherT2LVatbaselinewasrelatedtolower
brain volumes and cortical thinning. Longitudinally, MRI lesion
activity was linked to a diffuse increase in rates of tissue loss, in-
volving both WM and GM, with the strongest association in the
thalamus.

The association between acute inflammatory activity and
atrophy was further corroborated by the evidence of acceler-
ated tissue loss in patients exhibiting only relapse activity. In-
deed, this population showed increased TBV loss with re-
spect to a propensity score–matched clinically quiescent
population. Interestingly, the acceleration in tissue loss was
not seen with WM volume and was driven by both deep GM
and cortical GM atrophy. As previously reported,6 we also
found that patients with relapse activity with and without as-
sociated confirmed disability progression did not differ in at-
rophy rates.

Remarkably, no significant differences were detected
when atrophy rates were compared between patients experi-
encing PIRA only and patients experiencing relapse activity
only. Our findings are in line with and expand the results of
Cree et al,6 who reported increased TBV loss in association
to both silent disease progression and overt inflammatory
activity, without significant differences between the two.
Our study also showed that accelerated brain atrophy in

Figure 3. Differences in Rates of Regional Cortical Thinning Comparing Stable Patients vs Patients With Only Progression Independent of Relapse
Activity (PIRA) or Patients With Only Relapse Activity

Patients with PIRA events vs stable patientsA Patients with relapse events vs stable patientsB
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The effect size, expressed as mean difference in annual percentage cortical thickness change (MD-APC), is graphically displayed in different shades of blue for each
of the Desikan-Killiany atlas25 regions presenting significant differences between groups after correction for multiple comparisons.

Brain Atrophy in Patients With Relapsing Multiple Sclerosis Original Investigation Research

jamaneurology.com (Reprinted) JAMA Neurology July 2022 Volume 79, Number 7 689

Downloaded From: https://jamanetwork.com/ by a Université de Genève User  on 12/22/2022

http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2022.1025


patients with PIRA and in patients with relapse activity is
mainly driven by GM atrophy, with involvement of the cere-
bral cortex in both patient groups and involvement of deep
GM in relapsing patients only.

Strengths and Limitations
Strengths of our investigation include the large sample size
and the availability of prospectively performed standardized
neurological assessments. In addition, brain volumetric analy-
sis was performed with a pipeline optimized for longitudinal
analyses,24 requiring long computational processes and manual
editing but providing sophisticated evaluations and represent-
ing the gold standard in CTh measurements.47

Our study also presents some limitations. First, the inclu-
sion of MRI data acquired with different protocols may have
represented a confounding factor. However, as part of the
Swiss Multiple Sclerosis Cohort study, optimization was per-
formed of scans’ signal-to-noise ratio among different cen-
ters. Moreover, statistical analysis accounted for heteroge-
neity in MRI protocols as a confounding factor.

In our study, we did not include measurements of spinal
cord atrophy and cortical lesions. Both may help further char-
acterize the mechanisms underlying PIRA, as they have been

previously shown to predict physical disability and disease
progression,48,49 silent progression, and conversion to
SPMS.50,51 In addition, the criterion used to determine
PIRA was based only on EDSS score. Given the absence of
measures of upper and lower extremity function in our co-
hort, subtle neurological worsening that did not result in EDSS
score increase may have been overlooked. Furthermore, DMTs
may have constituted a bias in our study, which we tried to
overcome by performing propensity score matching for treat-
ment status and considering treatment groups in sensitivity
analyses.

Conclusions
Our data show that events of insidious PIRA are associated with
increased atrophy rates, likely reflecting ongoing diffuse
neurodegenerative processes, especially in cortical GM. These
results point to the need to promptly identify patients with
PIRA in clinical practice, because they may benefit from op-
timized therapeutic regimens. In this context, clinical trials to
assess the potential benefit of treatment escalation/
induction in patients with RMS and PIRA are warranted.
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