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Abstract

The aim of this study was to investigate the strategies used by third graders in solving the 81 ele-
mentary subtractions that are the inverses of the one-digit additions with addends from 1 to 9
recently studied by Barrouillet and Lépine. Although the pattern of relationship between individual
differences in working memory, on the one hand, and strategy choices and response times, on the
other, was the same in both operations, subtraction and addition differed in two important ways.
First, the strategy of direct retrieval was less frequent in subtraction than in addition and was even
less frequent in subtraction solving than the recourse to the corresponding additive fact. Second,
contrary to addition, the retrieval of subtractive answers is confined to some peculiar problems
involving 1 as the subtrahend or the remainder. The implications of these findings for developmental
theories of mental arithmetic are discussed.
� 2007 Elsevier Inc. All rights reserved.
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Introduction

When considering the importance of the four basic operations in mathematics, the psy-
chological studies focusing on subtraction solving are surprisingly scarce compared with
those focusing on addition in the literature devoted to cognitive mental arithmetic. The
rare studies focusing on subtraction in primary school children (Robinson, 2001) as well
as in preschoolers (Siegler, 1987) have reported important individual variability in speed,
accuracy, and strategy use. It has been assumed that such variability is comparable to that
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observed in addition (Siegler & Shrager, 1984). Nonetheless, the strategy of direct retrieval
of the answer from memory, which is the fastest and most accurate strategy, seems to be
used less frequently to solve subtractions than to solve additions (Robinson, 2001). How-
ever, so far as we know, no study has systematically compared the strategies used by chil-
dren to solve the two operations and, more precisely, the extent to which children rely on
direct retrieval. The current study fills this gap by exploring the strategies used by children
to solve the 81 basic subtractions that are the inverses of the one-digit additions (operands
form 1 to 9) recently studied by Barrouillet and Lépine (2005).

Mental subtraction and addition

The first study devoted to the strategies used by children in solving single-digit subtrac-
tion problems was conducted by Woods, Resnick, and Groen (1975), who presented second
and fourth graders with 54 m � n = ? problems where 0 6 m 6 9 and 0 6 n 6 8. Following
the method used by Groen and Parkman (1972) in their study of addition, the authors
recorded response times and tested several models of problem solving using linear regression
analyses. These analyses indicated that children either set the counter to m and decrement n

times, with the solution being the final value in the counter, or set the counter to n and incre-
ment until m is reached, with the solution being the number of times the counter has been
incremented. Interestingly, children chose adaptively between the incrementing and decre-
menting strategies, opting for whichever one was faster.

It should not be concluded from this seminal study, however, that subtraction solving
constantly relies on algorithmic strategies. Using basically the same method of response
time analysis in 9- to 11-year-olds, Svenson and Hedenborg (1979) reported that when
m = n, n = 1, and m = 2n (corresponding to additive tie problems), answers are retrieved
from memory. Siegler (1987) presented 5-year-old preschoolers and 6-year-old first graders
with 25 elementary subtractions where both the subtrahend and the remainder ranged
from 1 to 5. Children solved 58% of these small problems using a strategy of retrieval
of the answer from memory, and 12% of them used retrieval exclusively. Several other
studies have reported a mix of algorithmic and retrieval strategies in children when solving
elementary subtractions (Ilg & Ames, 1951; Lankford, 1974; Starkey & Gelman, 1982).
Accordingly, studies on subtraction in adults have also reported frequent use of retrieval
(Barrouillet & Fayol, 1998; Geary, Frensh, & Wiley, 1993).

However, it seems that the strategy of direct retrieval is relatively rare in subtraction
and is less frequent in subtraction than in addition. Some studies report surprisingly
low rates of retrieval; for example, Robinson (2001) observed a maximum of 37% in fifth
graders for very simple problems (minuend ranging from 5 to 9 and subtrahend ranging
from 1 to 3), a result at odds with the comparatively high frequency reported by Siegler
(1987) in preschoolers. Moreover, the rate of retrieval reported by Robinson (2001) was
also lower than that usually reported for additions (e.g., Barrouillet & Lépine, 2005). This
difference between subtraction and addition has also been found in adults. LeFevre, De
Stefano, Penner-Wilger, and Daley’s (2006) participants reported retrieval on 82% of easy
problems (minuend < 10) but on only 42% of hard problems, results echoing those
reported by Campbell and Xue (2001), who observed retrieval on 73 and 42% of easy
and hard problems, respectively. For sake of comparison, LeFevre, Sadesky, and Bisanz
(1996) reported a retrieval rate of 71% in adults solving the 100 additions with operands
from 0 to 9. Seyler, Kirk, and Ashcraft (2003) reported higher rates, with 97% of the easy
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problems and 67% of the hard problems being solved through retrieval, but it should be
noted that these authors grouped genuine retrieval of subtractive answers and the use
of the basic corresponding additive fact (e.g., solving 7 – 3 by retrieving the additive fact
3 + 4 = 7) within the same category. Thus, LeFevre and colleagues (2006) concluded that
‘‘subtraction appears to be the most procedural of the single-digit arithmetic operations”
(p. 214).

Findings and theories

It is worth noting that these facts do not fit very well with the available theories of cog-
nitive arithmetic. The moderate, but not negligible, use of retrieval in subtraction solving
contrasts with the results reported in cognitive neuropsychological research and challenges
the ensuing theories, which assume that subtractive answers are not systematically stored
in long-term memory and, thus, rarely are retrieved. Dehaene and Cohen (1997) reported
the case of a patient suffering from pure anarithmetia who exhibited a dissociation
between addition and multiplication (which were nearly fully preserved), on the one hand,
and subtraction and division (which were found to be nearly impossible), on the other. The
authors accounted for this dissociation by assuming that the answers to simple additions
and multiplications are stored in rote verbal memory, a memory that would be lacking for
subtractions that necessitate the use of an indirect semantic route and reconstructive strat-
egies. More generally, within Dehaene’s triple code model, the verbal code is assumed to
store problem–answer associations for addition and multiplication. In contrast, subtrac-
tion is not normally acquired by rote verbal learning. Thus, subtraction problems would
not be systematically memorized and would require the manipulation of quantities repre-
sented by the operands (Cohen & Dehaene, 2000; Dehaene, 1992). Accordingly, Lee (2000)
identified different cerebral areas activated when solving elementary multiplications and
subtractions in a patient with acalculia. Therefore, it can be considered as surprising that
adults report retrieval on more than 50% of the basic subtractions.

However, the enduring difference in retrieval use between addition and subtraction
questions the available cognitive models. Indeed, although differences have been reported
in the acquisition of addition and subtraction (Fuson, 1992), cognitive psychologists usu-
ally assume that the processes leading to the storage and retrieval of answers from memory
and the mechanisms of strategy choice are the same for both operations. For example,
Siegler (1987) modeled children’s strategy choice in subtraction solving within the same
distribution of associations model used by Siegler and Shrager (1984) to account for addi-
tive problem solving. This model suggests that the learning of subtractions involves both
the acquisition of problem-solving procedures and the acquisition of associations between
problems and answers, with children associating whatever answer they state with the prob-
lem on which they state it. Moreover, every time the system advances an answer, the
strength of the association between that answer and the problem increases. This learning
process results in associations of varying strengths between each problem and possible
answers to the problem. Distributions of associations are characterized by their peaked-
ness, depending on the existence of an answer being far more strongly associated with
the problem than the other answers. Because the probability for the retrieval of an answer
depends on the strength of its association with the problem, and because the associative
strength increases with practice, the retrieval strategy is assumed to become more and
more frequent during development, at least for the easiest and more frequent problems.
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Within this framework, it is difficult to understand why the same mechanisms of learning
and strategy selection result in marked differences between addition and subtraction until
adulthood.

Thus, neuropsychological and developmental theories fail to account for the fact that sub-
traction is more procedural than addition but, nevertheless, is frequently solved through
direct retrieval by adults and even by children. To shed light on this problem, we explored
subtraction solving in children and compared their strategy use with that observed in chil-
dren of the same age when solving the corresponding additions (e.g., the subtraction corre-
sponding to 8 + 4 = 12 is 12 � 8 = 4). For this purpose, we used the material and results
described in the study by Barrouillet and Lépine (2005), who presented third graders with
the entire set of basic additions involving operands from 1 to 9. As we noted above, Dehae-
ne’s and Siegler’s accounts of subtraction lead to opposite predictions.

According to Siegler (1987), addition and subtraction rely on the same mechanisms of
associative learning and retrieval from distributions of associations. If this is correct, the
use of retrieval in both operations should depend on the same problem characteristics
and individual capacities. Of course, one could expect less frequent retrievals in subtractions
than in additions, for example, because the former operations have been practiced less fre-
quently by children. Nonetheless, the difference should be more quantitative than qualita-
tive, and the distribution of retrieval frequencies among the subtraction problems should
reflect what Barrouillet and Lépine (2005) observed for the corresponding additions. In
the same way, the processes underpinning the learning of subtractive facts and their retrieval
should be the same and, therefore, should be affected by the same individual capacities.
Thus, the individual differences in working memory investigated by Barrouillet and Lépine
should affect subtraction as they affect addition solving. As these authors observed, children
with high working memory capacities should rely on retrieval more often, perform faster ret-
rievals and algorithmic procedures, and exhibit smaller size effects than should children with
low working memory capacities. In contrast, according to Dehaene (1992), children rarely
should retrieve answers from memory and often should rely on algorithmic procedures or
use derived facts from the corresponding addition to solve subtractions.

The current study

The predictions issuing from these models were tested by presenting children with the
inverse of the 81 basic addition facts (augend and addend from 1 to 9) studied by Barrouil-
let and Lépine (2005), with the sum standing for the minuend, the augend standing for the
subtrahend, and the addend becoming the remainder; for example, the addition 6 + 3 = 9
corresponds to 9 � 6 = 3 with 9 as the minuend, 6 as the subtrahend, and 3 as the remain-
der. Because there was no difference in strategy use between third and fourth graders in
Barrouillet and Lépine’s study, the current study focused on third graders only. Moreover,
this grade was the level at which Robinson (2001) did not observe any difference in
response times between a ‘‘no report” condition and the retrospective reports of strategy
that we used in this study, suggesting that retrospective reports do not interfere with strat-
egy choice in subtraction at this grade. Because the current study focused on the use of
retrieval, no distinction was made between the different algorithmic strategies described
by children. In contrast, genuine retrieval of subtractive fact and derived fact from the cor-
responding addition were scored as two different strategies. Apart from the strategy used,
the speed and nature of the response were also recorded. The working memory capacities
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of the children were assessed using the same working memory span tasks as in Barrouillet
and Lépine (2005), the counting span task inspired by Case, Kurland, and Goldberg
(1982), and the reading letter span task (Lépine, Barrouillet, & Camos, 2005; Lépine, Ber-
nardin, & Barrouillet, 2005).

Method

Participants

Participants were 48 third graders from suburban French primary schools (28 girls and
20 boys, mean age = 109 months, SD = 7 months, range = 99–127). Parental permission
and the children’s own consent were obtained.

Material and procedure

The material and procedure were essentially the same as those in Barrouillet and Lépine
(2005). Children were presented with two working memory span tasks and a subtraction task
administered individually using PsyScope software (Cohen, MacWhinney, Flatt, & Provost,
1993). During the first session, they performed the counting span task and solved 20 subtrac-
tions. During the second session a week later, they were presented with the reading letter span
task and solved a new series of 20 subtractions. Each session lasted approximately 20 min.

Working memory span tasks

In both tasks, each child was presented with increasingly longer series of one to seven
items to be remembered (letters or digits). Each item was followed by a series of stimuli to
be processed (arrays of dots to be enumerated or series of letters to be read).

In the counting span task, the child memorized series of one to seven letters, with each
letter being followed on-screen by an array of red and green dots among which the child
needed to count out loud the red ones, pointing at them with a finger. There were 5 to 12
red dots among twice as many green dots (0.6 cm diameter) randomly displayed in a
square frame with sides of 14 cm. Each series began with a ready signal that was displayed
on the screen for 1 s, and then the first letter to be remembered appeared after a delay of
500 ms. The letter was presented for 1500 ms and was followed, after a delay of 500 ms, by
an array of dots that the child needed to enumerate. When the child had completed the
counting, the experimenter immediately cleared the screen by pressing a key on the key-
board and a new letter to be remembered was displayed after a delay of 500 ms and so
on until the final letter of the list. The child was instructed to recall the letters of the series
in their order of appearance when the word ‘‘Recall” was displayed on-screen.

In the reading letter span task designed by Lépine et al. (2005), each participant was
presented with series of numbers to be remembered. After the presentation of each num-
ber, the participant was asked to read out loud a string of 4 to 6 letters successively dis-
played on-screen. The letters were randomly drawn from the 26 letters of the alphabet
provided that a given set never contained the same letter twice or two adjacent letters
of the alphabet. The to-be-remembered numbers were randomly drawn from 1 to 16
except for 14, which is a bisyllabic number word in French. Each series of numbers to
be remembered started with a 1-s ready signal. After 500 ms, a first number was displayed
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on-screen for 1500 ms, followed by the first letter to be read. Each letter remained on-
screen for 1000 ms after a delay of 350 ms. After a delay of 500 ms, a new number to
be remembered appeared for 1500 ms, followed by a new string of letters to be read
and so on. The participant was asked to recall the series of numbers presented in the cor-
rect order when the word ‘‘Recall” appeared on-screen.

Before each working memory span task, two one-item and two two-item training series
preceded the experimental series. The experimental series began at length 1, with three ser-
ies of each length, until the child failed to recall the items of all three series at a particular
level. Testing was terminated at this point. Each experimental series correctly recalled was
given a score of one-third, and the thirds were added together to provide a span score
(Barrouillet, Bernardin, & Camos, 2004; Kemps, De Rammelaere, & Desmet, 2000; Smith
& Scholey, 1992). For example, the correct recall of all three series of one and two items
and of two three-item series resulted in a span of 2.67 ([3 + 3 + 2 ] � 1/3).

The subtraction task

Each participant was asked to determine as quickly as possible, without giving up accu-
racy, the answers to elementary subtractions. The problems were formed by reversing the
81 possible single-digit additions (i.e., from 1 + 1 to 9 + 9) used by Barrouillet and Lépine
(2005). For each addition, the first operand became the subtrahend s, the second operand
became the remainder r, and the sum became the minuend m, resulting in the subtraction
m � s = r. For example, 4 + 6 = 10 was reversed into 10 � 4 = 6. As in Barrouillet and
Lépine’s study, the subtraction corresponding to 5 + 5 = 10 (i.e., 10 � 5 = 5) was used
as an example. The 80 remaining problems involved 8 ‘‘ties” where the subtrahend and
the remainder were equal (e.g., 6 � 3 = 3), 32 problems where the minuend was less than
10, 32 problems where the minuend was greater than 10, and 8 problems where the min-
uend was equal to 10. The participant studied one-half of each of these four categories,
with the constraint being that a given participant never received the same calculation with
the subtrahend and remainder reversed (e.g., 8 � 5 and 8 � 3). In the categories where the
subtrahend and remainder were different, the subtrahend was larger than the remainder in
half of the problems. Half of the resulting 40 problems were presented during the first ses-
sion, and the other half were presented during the second session. In line with Barrouillet
and Lépine, who observed a dramatic difference in response times and use of retrieval for
additive problems with a sum greater than 10, on the one hand, and problems with a sum
less than or equal to 10, on the other, we considered the corresponding subtractive prob-
lems with a minuend greater than 10 as large problems and those with a minuend less than
or equal to 10 as small problems (see also Seyler et al., 2003).

Each trial began with a 1-s ready signal and was followed, after a delay of 500 ms, by a
problem (e.g., 8 � 5 = ?) that remained in the center of the screen until the participant’s spo-
ken response. A voice key stopped the timer, and the experimenter typed the participant’s
response as a record of accuracy. The next screen was a picture inviting the child to explain
how he or she had reached the result that was given (i.e., picture of a character who is thinking
with a ‘‘?” on the top), and the experimenter typed whether the response was based on an
algorithmic strategy, on retrieval, or on using the corresponding additive fact. A problem
was considered as being solved through retrieval when the child reported this strategy
(e.g., ‘‘I knew that,” ‘‘I found it in my head”) and the experimenter did not notice any overt
strategy such as finger counting, whispering, or lip moving. A problem was considered as
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being solved through additive derived fact when the child stated explicitly that he or she used
the retrieval of the corresponding additive fact (e.g., for 8 � 5 = 3, ‘‘I know that 8 is 5 + 3”)
and did not exhibit any behavior suggesting counting as mentioned previously for retrieval.
We considered that an algorithmic strategy was being used when the child reported counting
to find the answer or when the child’s behavior revealed multistep calculation by whispering
or keeping track of counting on fingers. The progress of the task was controlled by the par-
ticipant, who made the next trial appear by clicking on the mouse.

Results

Descriptive data

Among the 40 problems studied by each child, a mean of 8% were lost due to voice key
failures, leaving a mean of 36.7 problems per child. Of the 48 children, 3 with rates of correct
responses lower than 70% were discarded from the analyses (only 69, 67, and 54% of correct
responses). The remaining 45 children achieved a rate of 86.7% (SD = 6.7) of correct
responses, suggesting that they paid sufficient attention to the arithmetic task. Subtractions
proved to be slightly, but significantly, more difficult than additions, eliciting 89.6%
(SD = 7.1) of correct responses in Barrouillet and Lépine (2005), t(90) = 2.06, p < .05,
g2 = .05. The difficulty of the problems depended strongly on the size of both the subtrahend,
r = .632, p < .001, and the minuend, r = .581, p < .001, but not on the size of the remainder,
r = .189, p > .10. Not surprisingly, children committed far more errors in large problems
than in small ones (21 and 7%, respectively), t(44) = 6.40 , p < .001, g2 = .48.

So far as the working memory tasks were concerned, the counting span and the reading
letter span were very close (Ms = 1.93 and 1.84, SDs = 1.05 and 0.72, respectively) and sig-
nificantly correlated, r = .476, p < .01. Thus, we calculated a compound working memory
score as the mean of the two z scores. It is worth noting that these working memory spans
were very similar to those observed in Barrouillet and Lépine (2005) (Ms = 1.93 and 1.87
for counting span and reading letter span, respectively), suggesting that the two popula-
tions are highly comparable.

Strategy choice

Overall, children reported using algorithmic strategies in 53% of the problems, derived
facts from the corresponding addition in 28% of the problems, and direct retrieval from
memory in only 19% of the problems1 (Table 1). Strategy choice was strongly influenced

1 We performed a series of analyses to test the validity of the self-reports. First, algorithmic strategies should be
more frequent with large operands. Accordingly, the frequency of use of algorithmic strategies was highly
correlated with the size of the minuend, r = .787, the subtrahend, r = .622, and the remainder, r = .490.
Conversely, the frequency of use of retrieval was fairly well predicted by the size of the minuend, with retrievals
being more rare for larger values, r = �.737. As we will see later, the retrieval strategy was used mainly for
problems in which either the subtrahend or the remainder was 1. When these problems were set aside, the size of
the minuend always was a good predictor of the use of retrieval, r = �.755, and was a fairly good predictor of the
use of the related additive fact, r = �.540. Second, when considering response times, retrievals should be faster
than deriving facts from the corresponding addition, which should in turn be faster than algorithmic strategies.
Accordingly, the observed mean response times were 2328, 3749, and 7516 ms, respectively (ps < .001). Thus, we
assume that the self-reports gathered can be considered as valid.

P. Barrouillet et al. / Journal of Experimental Child Psychology 99 (2008) 233–251 239



Table 1
Percentages of use, mean latencies, and accuracy of the three strategies used to solve subtractions and the two strategies for additions studied by Barrouillet and
Lépine (2005)

Strategy Problem type

Small Large Overall

Use (%) Mean latencies Accuracy (%) Use (%) Mean latencies Accuracy (%) Use (%) Mean latencies Accuracy (%)

Subtraction
Algorithmic 37 5399 85 73 9065 74 53 7516 78
Retrieval 31 2274 97 5 3174 81 19 2328 96
Additive fact 33 3109 98 22 4895 94 28 3749 95

Additiona b b b

Algorithmic 16 3589 — 62 5043 — 35 4639 —
Retrieval 84 1820 — 38 2406 — 65 1972 —

a Data from Barrouillet and Lépine (2005).
b Data on accuracy of each strategy were not available.
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by the size of the problem. Children used algorithmic strategies more frequently for large
problems than for small ones (73 and 37%, respectively), t(44) = 10.91, p < .001, g2 = .73,
with the reverse effect being observed for the additive derived fact strategy (33 and 22% for
small and large problems, respectively), t(44) = 3.99, p < .001, g2 = .27, and direct retrie-
val from memory hardly ever being used for large problems (31 and 5% for small and large
problems, respectively), t(44) = 8.89, p < .001, g2 = .64. Interestingly, the discontinuous
‘‘stair step” function between the values 10 and 11 of the minuend that was reported by
Seyler and colleagues (2003) in adults’ response times, errors, and use of algorithmic strat-
egies can already be observed in children when considering the use of algorithmic strate-
gies (Fig. 1). Strategy choice was also related to working memory capacities. The
propensity to use algorithmic strategies was negatively correlated with the compound
working memory score, r = �.406, p < .01 (�.359 and �.339, ps < .05, with the reading
letter span and counting span, respectively). When considering retrieval-based strategies
the use of additive derived facts correlated with working memory, r = .297, p < .05, but
the frequency of use of direct retrieval did not, r = .100. It is, of course, possible that this
lack of a relationship was due to the rare use of this strategy. Overall, higher working
memory capacities were associated with a more frequent recourse to a retrieval-based
strategy.

Strategy choices for subtractions contrasted with those observed for additions. First,
subtraction elicited a more frequent use of algorithmic strategies than did addition in third
graders (53 and 35%, respectively, for the 80 additions), t(90) = 3.65, p < .001, g2 = .13.
This difference was observed for small problems, where algorithmic strategies were rare
for addition but not for subtraction (16 and 37%, respectively), t(90) = 4.35, p < .001,
g2 = .17, but also for large problems (62 and 73%, respectively), t(91) = 1.99, p < .05,
g2 = .04. Nonetheless, it should be noted that the stair step function discussed above
can also be observed in the use of algorithmic strategies for addition (Fig. 2). Thus, it is
not a peculiarity of subtraction but rather seems to affect both addition and subtraction
in children. Second, there is also a strong difference in the use of direct retrieval of the
answer from memory, a strategy used very frequently in additions (84 and 38% of small
and large problems, respectively, vs. 31 and 5% for subtractions). Actually, when retriev-
ing a number fact to solve subtractions, children relied more often on the corresponding
additive fact than on the subtractive fact (28 and 19%, respectively).

As we stressed above, the main point when comparing retrievals on both operations is
not only to notice that retrievals are rarer in subtraction but also to determine whether
these retrievals present the same pattern of distribution across problems. Two phenomena
suggest that subtraction and addition differ in this respect. First, as Figs. 3 and 4 make
clear, most of the direct retrievals from memory reported by the children in subtraction
concentrated on peculiar problems where either the subtrahend or the remainder is 1
(i.e., m � 1 = r or m � s = 1),2 a result that was not observed in additions (the correspond-
ing additions are those where the minimum addend is 1). These problems, which represent
21% of the entire set of problems studied, concentrated 58% of the retrievals observed in

2 The nature of these answers as genuine direct retrievals of associations between problem and answer can be
questioned. However, these self-reports seem to be reliable. Indeed, children also reported algorithmic strategies
for the problems involving 1. It appears that when children reported counting strategies, the response times were
much longer than when children reported retrieving the answer (2125 and 4047 ms for retrieval and counting
reports, respectively, on the 17 critical problems), t(16) = 4.74, p < .001, g2 = .58.
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subtraction in comparison with only 32% of those observed in addition. The seemingly
smooth decrease of retrieval rate with increasing values of the minuend in Fig. 1 is, there-
fore, an artifact resulting from the structure of our material. The relative weight of the two
critical types of problems decreases progressively when the minuend increases; for minu-
end 3, all of the problems are of this type (i.e., 3 � 1 and 3 � 2), whereas for minuend 10,
only 2 of 9 of the problems are of this type (i.e., 10 � 1 and 10 � 9). Because the subtrac-
tive problems we used were reversed single-digit additions, there was no problem with the
form m � 1 = r or m � s = 1 using minuends larger than 10, hence the quasi-absence of
retrieval for these problems.

This difference between the two operations in the distribution of retrieval rates across
the problems was apparent even when concentrating on small problems. We systematically
compared small subtractions with their corresponding additions; whereas the rates of ret-
rievals for additions with minimum addends of 1, 2, 3, and 4 were 95, 80, 71, and 75%,
respectively, the corresponding rates for subtractions were 51, 21, 14, and 13%. There
was a significant interaction between the size of the minimum addend (or minimum sub-
trahend � remainder) and the type of operation, F(3, 40) = 4.18, p = .01, g2

p ¼ :24.
The second phenomenon concerns ‘‘tie” problems. Whereas tie additive problems

nearly always were solved by third graders through direct retrieval (96%), the correspond-
ing subtractions (i.e., those where s = r) rarely were solved in this way (18%) (Fig. 4), with
children relying more often on the corresponding additive fact (43%).

0

10

20

30

40

50

60

70

80

90

100

1 6

Minimum subtrahend/remainder or minimum addend

Pe
rc

en
ta

ge

Addition
Subtraction
Additionties
Subtraction ties

9875432

Fig. 4. Percentages of direct retrieval for subtractions and additions with tie problems presented separately as a
function of the size of the minimum subtrahend/remainder for subtractions and minimum addend for additions.
(Addition data from Barrouillet and Lépine, 2005).
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Chronometric analyses

The response times for correct answers revealed the ubiquitous size effect in mental
arithmetic. Response times were highly correlated with the sizes of the minuend,
r = .756, and the subtrahend, r = .700, but less strongly with the size of the remainder,
r = .369. Response times were also correlated, but negatively, with working memory
capacities, r = �.382, p < .01 (�.354 and �.314, ps < .05, with the reading letter span
and counting span, respectively). These correlations are not surprising if we consider that
an important part of the size effect is due to the frequent use of slow algorithmic strategies
for large problems, whereas small problems more frequently elicit a fast strategy, and that
children with higher working memory capacities tend to rely more often on a fast retrieval-
based strategy. Indeed, the algorithmic strategy was the slowest, whereas direct retrieval,
as in other operations, was the fastest strategy (Table 1). Retrieving and using the corre-
sponding additive facts takes longer than retrieving the subtractive fact.

Two main differences appeared when comparing subtraction and addition in response
times. First, the algorithmic strategies that are more frequent in subtraction than in addi-
tion are also slower (7516 and 4639 ms for subtraction and addition, respectively),
t(89) = 5.32, p < .001, g2 = .24, a difference that is present even for small problems
(5399 and 3589 ms), t(71) = 3.63, p < .001, g2 = .16, and increases dramatically for large
problems (9065 and 5043 ms), t(89) = 5.51, p < .001, g2 = .25. Second, and even more sur-
prising, the responses reported as relying on direct retrieval from memory are slower in
subtraction than in addition. The mean retrieval time for addition was 1972 ms compared
with 2328 ms for subtraction, t(84) = 2.81, p < .01, g2 = .09. This difference was also
observed when the analyses were restricted to small problems in which retrievals were
more frequent (1820 and 2274 ms, respectively), t(84) = 3.64, p < .001, g2 = .14. The con-
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Fig. 5. Comparison of response times for solving addition and subtraction as a function of the size of the sum for
additions and the minuend for subtractions. (Addition data from Barrouillet and Lépine, 2005).
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clusions remained the same when the analyses concerning subtraction were restricted to
those problems that elicited frequent retrievals (i.e., subtractions with a subtrahend or
remainder of 1). Direct retrievals always were slower for subtraction than for addition
(2072 and 1820 ms, respectively), t(84) = 2.15, p < .05, g2 = .05. Overall, third graders
were far slower in solving subtraction than in solving addition (Fig. 5). This difference
probably has an impact on the age-related changes in the strategy use, as we argue in
the following discussion.

Comparison between children with high and low working memory capacities

The group of 45 children was divided into thirds, with the 15 children with the highest z

compound scores being considered as having high working memory capacities (mean
z = .92) and the 15 children with the lowest z scores being considered as having low work-
ing memory capacities. Actually, due to several children having exactly the same score, this
latter group was reduced to 14 children (mean z = �.85). It is worth noting that these two
extreme groups did not differ significantly on the rate of correct responses (88 and 86% for
low- and high-span groups, respectively, t < 1).

First, we expected that children with high working memory capacities would rely more
often on retrieval. Because retrieval-based strategies were divided into direct retrieval and
retrieval of the corresponding additive fact, the analyses on algorithmic strategies gives a
clearer picture of the results. We performed an analysis of variance (ANOVA) on the fre-
quency of use of algorithmic strategies with the size of the problems (small vs. large) as a
within-participant factor and the span level (high vs. low) as a between-participants factor.
As was observed with additions, the use of algorithmic strategies was more frequent in
children with low working memory span than in children with high working memory span
(61 and 40%, respectively), F(1, 27) = 5.27, p < .05, g2

p ¼ :16. This effect was highly signif-
icant in small problems (47 and 23%, respectively), F(1, 27) = 8.50, p < .01, but not in large
problems (78 and 61%), F(1, 27) = 2.24, p = .15. Nonetheless, there was no significant
interaction, F < 1, g2

p ¼ :02 (Fig. 6). The same analyses were performed on the frequency
of use of direct retrieval and additive derived fact. Although the differences between chil-
dren with high and low working memory spans were in the expected direction for both
strategies (18 and 12% of retrieval and 43 and 27% of additive derived fact for high-
and low-span children, respectively), they did not reach significance, F(1, 27) = 1.34,
p = .26, g2

p ¼ :05, and F(1, 27) = 2.09, p = .16, g2
p ¼ :07, respectively. In summary, children

with high working memory capacities relied less frequently than the others on algorithmic
strategies, mainly in small problems where they more often used a strategy based on retrie-
val, either of the corresponding additive facts or of the subtractive answer.

Working memory capacities were also expected to affect response times. We performed
an ANOVA on the mean response times with the size of the problems (small vs. large) as a
within-participant factor and the span level (high vs. low) as a between-participants factor.
Apart from a strong size effect (3634 and 7646 ms for small and large problems, respec-
tively), F(1, 27) = 70.81, p < .001, g2

p ¼ :72, children with high working memory span were
faster than children with low working memory span (3826 and 6545 ms), F(1, 27) = 16.72,
p < .001, g2

p ¼ :38, an effect that was significant in small problems (2773 and 4495 ms), F(1,
27) = 21.95, p < .001, as well as in large problems (5556 and 9735 ms), F(1, 27) = 12.83,
p < .01. The size of the problems interacted with the groups, F(1, 27) = 6.64, p < .02,
g2

p ¼ :20, testifying for a weaker size effect in children with high working memory span.
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In line with Barrouillet and Lépine (2005), it could also be expected that children with
high working memory span would achieve faster retrievals than children with low working
memory span. In the current study, 2 children with low working memory span and 1 child
with high working memory span did not report any direct retrieval from memory and were
discarded from the following analysis. Actually, there was no significant difference in
response times between children with high and low working memory capacities when they
reported a retrieval strategy (2041 and 2440 ms, respectively), t(24) = 1.69, p = .10,
g2 = .11, even if this difference failed shortly to reach significance when the analysis was
restricted to the small problems (1972 and 2399 ms), t(24) = 1.88, p = .07, g2 = .13. In
contrast, working memory had a significant effect on the response times related to the
use of additive facts (2965 and 4382 ms for high- and low-span groups, respectively),
t(27) = 3.38, p < .01, g2 = .30. This effect was still significant for small problems in which
children with high working memory capacities were faster than those with low working
memory capacities in retrieving the corresponding additive fact (2529 and 4060 ms, respec-
tively), t(27) = 4.20, p < .001, g2 = .40. The pattern of results was roughly the same for
algorithmic strategies. A total of 13 children in both high and low working memory span
groups reported algorithmic strategies for small and large problems. An ANOVA with the
same design as used previously revealed that children with high working memory capac-
ities were faster than children with low working memory capacities (5580 and 7926 ms,
respectively), F(1, 24) = 6.63, p < .02, g2

p ¼ :22, with the interaction with the size of the
problems failing to reach significance, F(1, 24) = 3.68, p = .07, g2

p ¼ :13.
In summary, children with high working memory capacities were faster in solving sub-

tractive problems and exhibited a weaker size effect. They were also faster in running algo-
rithmic strategies and in producing responses derived from additive facts. In contrast, as
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Fig. 6. Rates of algorithmic strategies in subtraction as a function of working memory capacities and the size of
the minuend.
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we observed for frequency of use, the differences related to working memory in direct
retrieval latencies did not reach significance, perhaps because this strategy rarely was used.

Discussion

So far as we know, the current study is the first to systematically investigate the strat-
egies used by children in solving the entire set of elementary subtractions (except those
involving 0) and to compare them with the strategies used to solve the corresponding addi-
tions. Two main theoretical accounts of the development of these strategies have been sug-
gested. According to Siegler (1987), the same mechanisms are responsible for development
and strategy choice in addition and subtraction. Problems initially would be solved
through algorithmic strategies such as counting down and counting up, with the stated
answers being associated with the problem in long-term memory. Working memory capac-
ities would have an impact on these processes because higher working memory capacities
should result in greater efficiency in running algorithmic strategies and in increased prob-
ability and speed of retrieval of the relevant problem–answer associations. In contrast,
according to Dehaene (1992), subtractive answers would not be systematically memorized,
with subtractions necessitating algorithmic strategies or the use of derived facts. Working
memory capacities would, of course, have an impact on the efficiency of these two strat-
egies, but they would not affect the construction of problem–answer associations as in
additions.

Do our results favor one of these accounts? As Barrouillet and Lépine (2005) observed
in addition, children with high working memory capacities were faster in solving subtrac-
tion through algorithmic strategies, even for small problems. They also relied less fre-
quently on algorithmic strategies, reporting more frequently the use of arithmetic facts,
either additive or subtractive, compared with children with low working memory capaci-
ties. The less frequent use of algorithmic strategies combined with faster processing
resulted in a smaller size effect in children with high working memory capacities, exactly
as was observed in addition problem solving by children of the same age. These findings
suggest that the relationship between individual differences in working memory and addi-
tion problem solving extend to subtraction. It could be suggested that these results support
Siegler’s (1987) conception of an identity of mechanisms that underpin the learning and
resolution of addition and subtraction.

However, we also observed strong differences between the two operations that could
cast doubt on the plausibility of common mechanisms responsible for a shift from recon-
structive to reproductive strategies in both operations. First, third graders rarely reported
using the direct retrieval of subtraction answers from long-term memory, whereas this was
the most frequently reported strategy in addition solving by children of the same age stud-
ied by Barrouillet and Lépine (65 and 19% for addition and subtraction, respectively).
Moreover, and contrary to addition, there was no clear relation between working memory
capacities and the frequency and speed of retrieval in subtraction. Second, investigating
the entire set of elementary subtractions revealed that these retrievals present a distribu-
tion very different from that observed with addition. Far from being distributed among
the different small problems as was observed for addition (see Fig. 3), reported retrievals
in subtraction solving concentrated on peculiar problems in which either the subtrahend or
the remainder was 1. Moreover, strategies reported by children as retrievals on these
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problems could correspond to one-step procedures based on browsing the number line
using simple rules such as ‘‘m � 1 is the number preceding m” and ‘‘when n and m are suc-
cessive numbers, m � n is 1.” If this is the case, these answers would not be genuine retri-
evals of stored associations between problems and answers as described by Siegler (1987).
The fact that these ‘‘retrievals” are restricted to some specific problems, are very rare even
for small problems with a subtrahend of 3 (20%) or 4 (16%), do not concern tie problems
contrary to additions, and are slower than the retrievals of the corresponding additive
facts suggests that children used number line-based rules rather than genuine retrieval
in most of the cases. Moreover, it cannot be imagined that children do not use retrieval
because this strategy would be superseded by fast and undemanding algorithmic strategies.
As we have seen, the algorithmic strategies used to solve subtraction are particularly slow
and much slower than strategies used to solve addition. Thus, although it rarely is used,
direct retrieval would be particularly beneficial in solving subtraction.

Does this mean that children do not and cannot store subtractive answers? It might be
premature to endorse such an extreme conclusion. As we noted above, most of the studies
on subtraction in adults have reported the frequent use of retrieval strategies, and in the
current study we observed fast and accurate responses for a limited but existing range of
problems. However, the low rate of retrievals in subtraction solving deserves an explana-
tion. Our hypothesis is that Siegler (1987) was basically correct in assuming that subtrac-
tion solving is based on general mechanisms by which the outcomes of cognitive
processing are stored in long-term memory from which they can be reactivated and
retrieved. However, the peculiarities of the counting strategies for subtraction would, on
the one hand, impair the storage of strong and easily retrievable subtractive facts and,
on the other, contribute to reinforce the corresponding additive facts.

So far as the first point is concerned, we have seen that counting strategies for subtrac-
tion are especially slow, with mean response times longer than 5 s for small problems and 9
s for large problems. These exaggerated delays between the encoding of the problem and
the production of the answer would impair efficient storage of the operand–answer asso-
ciation in long-term memory, as Thevenot, Barrouillet, and Fayol (2001) demonstrated.
Indeed, algorithmic processing leads to the manipulation and temporary maintenance of
many numbers that are, thus, activated in short-term memory. However, these numbers
are irrelevant for operand–answer association and produce representation-based interfer-
ences with the memory traces of operands that suffer a time-related decay. As a conse-
quence, the probability that intact memory traces of the operands are still present in
working memory when the answer is reached decreases as the time needed to arrive at
the answer increases. Thus, it is possible that children are too slow in solving subtraction
to ensure operand–answer associations.

So far as the second point is concerned, the nature of the algorithmic strategies could
prevent the reinforcement of subtractive facts. Two main algorithmic strategies are used
by children to subtract a subtrahend s from a minuend m, namely counting down and
counting up (Fuson, 1992). In counting down, children decrement the minuend s times,
with the solution being the final value they reach. In contrast, in counting up, children
start from s and increment until m is reached, with the solution being the number of times
the counter has been incremented. Many studies have shown that counting down is more
difficult and error prone than counting up (Baroody, 1984; Baroody & Ginsburg, 1983;
Fuson, 1984; Fuson, 1992; Siegler, 1987), with the main reason being that counting back-
ward is more difficult than counting forward (Fuson, Richards, & Briars, 1982). Thus,
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counting down probably is one of the slowest and least accurate algorithmic strategies that
children use to solve arithmetic problems, and it can be imagined that counting down
results in weak associations that probably are difficult to retrieve. Nonetheless, oper-
and–answer associations could be stored from the counting up strategy, which is easier
and probably faster. However, it is unclear whether this strategy favors the storage of a
subtractive fact, as the following example makes clear. Suppose that children are solving
8 � 5 using the counting up strategy. They start from 5 and increment until 8 while mon-
itoring the number of steps. What is stated using this procedure is that 5 and 3 are 8 rather
than that when 5 is subtracted from 8, the remainder is 3. As a consequence, it is possible
that the counting up strategy concurs to reinforce additive facts rather than subtractive
ones, explaining the frequent use of the retrieval of additive facts to solve subtraction.
Thus, both the difficulty and the nature of the algorithmic strategies available to solve sub-
traction could converge to produce the low rate of retrieval we observed in third graders.

To conclude, the current results demonstrate that strategies used by children to solve
subtractions and additions differ not only in frequency of use, as previous studies have
reported (Robinson, 2001), but also, and more important, on distribution across the dif-
ferent problems. As we have suggested, the nature and constraints of the algorithmic strat-
egies used by children to solve subtractions probably impede the fast and easy learning of
problem–answer associations. This difficulty, the low frequency of retrievals concentrated
on few peculiar problems, and the fact that children frequently rely on additive answers
question the high rates of direct retrievals reported by some studies on subtraction in
adults. Therefore, further developmental research is required to investigate how the use
of direct retrieval from memory evolves with age and to determine whether the storage
of subtractive facts is developmentally delayed or impossible.
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