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Second Harmonic Generation (SHG) from BiFeO3 nanocrystals is investigated for the first time to

determine their potential as biomarkers for multiphoton imaging. Nanocrystals are produced by

an auto-combustion method with 2-amino-2-hydroxymethyl-propane-1,3-diol as a fuel. Stable

colloidal suspensions with mean particle diameters in the range 100–120 nm are then obtained

after wet-milling and sonication steps. SHG properties are determined using two complementary

experimental techniques, Hyper Rayleigh Scattering and nonlinear polarization microscopy.

BiFeO3 shows a very high second harmonic efficiency with an averaged hdi coefficient of

79 6 12 pm/V. From the nonlinear polarization response of individual nanocrystals, relative values

of the independent dij coefficients are also determined and compared with recent theoretical and

experimental studies. Additionally, the particles show a moderate magnetic response, which is

attributed to c-Fe2O3 impurities. A combination of high nonlinear optical efficiency and magnetic

response within the same particle is of great interest for future bio-imaging and diagnostic applica-

tions. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4895836]

I. INTRODUCTION

Harmonic nanoparticles (HNPs) are new types of exoge-

nous contrast agents, which have been recently proposed as

biomarkers for multiphoton imaging.1–6 They are based on

noncentrosymmetric nanocrystals where efficient bulk sec-

ond harmonic generation (SHG) is allowed by the crystal

symmetry. Due to the non-resonant nature of SHG, these

biomarkers show very attractive properties for in vitro or

in vivo imaging such as extreme photostability4 and excita-

tion wavelength tunability.7 As underlined in recent

reviews,8,9 HNPs can complement usual fluorescent probes

(i.e., dyes or quantum dots) for specific demanding applica-

tions like regenerative medicine.

From a material point of view, ideal HNPs must have

high nonlinear optical (NLO) properties, low cytotoxicity

but also easy processing for an effective control of the nano-

particles size, shape, and surface properties. Up to now, vari-

ous types of noncentrosymmetric nanoparticles have been

produced, among which are numerous oxides such as

Fe(IO3)3,10 LiNbO3,11,12 KNbO3,13 KTP,14 and BaTiO3
6,15

with typical diameters at about 100 nm or semiconductors

like ZnO (Ref. 16) and CdTe.17 We showed in a recent

comprehensive survey18 that the harmonic conversion effi-

ciency of most of these nanoparticles is close to the value for

the corresponding bulk materials and thus, the responses of

the different oxide nanoparticles are relatively similar.

Moreover, we demonstrated that these nanoparticles have

low cytotoxicity with the exception of ZnO particles.18

Finally, it was demonstrated that CdTe17 quantum dots have

noticeably higher intrinsic nonlinear efficiency but the

known toxicity of these cadmium-based dots may appear as

a limitation for in vivo applications.19

On the other hand, BiFeO3 (BFO) is a widely investi-

gated compound since it is, to date, the only known room

temperature multiferroic material. Being extensively studied

for its magnetoelectric behavior, BFO also has attractive fer-

roelectric properties with high spontaneous polarization.20

Moreover, recent studies give evidences of a very promising

nonlinear optical efficiency,21,22 which was found to be supe-

rior to the standard oxide materials previously introduced.

Second, bulk BFO is antiferromagnetic but nanoparticles

show weak ferromagnetism which was attributed to various

possible causes: size effects,23 extrinsic effects due to c-

Fe2O3 impurities,24 or oxygen vacancies.25

It is well-established that magnetic nanoparticles are

essential for the biomedical field with key applications such

as magnetic separation, Magnetic Resonance Imaging

(MRI), or hyperthermia.26 Accordingly, multifunctional

a)Authors to whom correspondence should be addressed. Electronic mail
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BFO nanoparticles present a unique combination of potentially

high nonlinear optical properties and magnetic characteristics,

which make them promising for the targeted bio-imaging appli-

cations and possible therapeutic applications.27

Here, we describe an extensive study on BFO nanopar-

ticles preparation followed by nonlinear optical and mag-

netic characterization. BFO nanoparticles were produced by

an original combustion synthesis with the aim of using a

scalable production method and of lowering the annealing

temperature. Indeed, to eliminate undesirable secondary

phases during BFO preparation, the temperature must be

high enough to form BiFeO3;28 but at the same time, it

should stay low enough to prevent the thermal decomposi-

tion to Bi2Fe4O9 and Bi25FeO39
29 or the partial reduction of

Fe3þ to Fe2þ.30 In addition, a low temperature process pre-

venting particle growth by Ostwald ripening is desirable, an

aspect which is generally important for the synthesis of

nanocrystals. After the preparation step, Hyper Rayleigh

Scattering (HRS) measurements and SHG microscopy were

used to determine the second order nonlinear optical proper-

ties of the particles in order to evaluate their potential as

HNPs. Finally, vibrating sample magnetometry was used to

measure their magnetic response.

II. SYNTHESIS OF BFO NANOPARTICLES BY
COMBUSTION METHOD

Different processes have been described for BFO prepa-

ration in the literature. Low process temperatures can be

achieved by hydrothermal synthesis31,32 also combined with

microwave assisted heating.33 Another method is the polyol-

mediated synthesis in poly-alcohols like ethylene glycol or

diethylene glycol.23,34,35 However, these approaches remain

undemonstrated for producing large amounts of material and

a reduction of Fe3þ by oxidation of the polyol was also

observed.36 On the other hand, widely used methods for the

preparation of nanocrystalline BFO are sol-gel reactions like

chelate assisted or Pechini reactions with citric acid37 or tar-

taric acid.38,39 As described in the original patent,40 the

Pechini method needs an annealing step to decompose the

amorphous organic precursor and to promote crystallization.39

A cross-linked network is indeed first produced where the

metal ions are bonded to organic radicals by oxygen bonds.

With this in mind, the formation of a crystalline or par-

tially crystalline precursor would appear to be a desirable

improvement. For this purpose, the classical chelating

agents can be substituted by the fuel 2-amino-2-hydroxy-

methyl-propane-1,3-diol (TRIS). Such combustion synthe-

ses are known for oxide materials.41 Briefly, this method is

based on the highly exothermic redox reaction between an

oxidizing agent such as metal nitrates and a reducing agent,

i.e., the fuel.41 During the ignition of the fuel, local tempera-

tures can reach up to 2000 K.42 In the case of BFO, sucrose-

assisted synthesis has been described in the literature43

where a stoichiometric amount of sucrose (fuel) was adapted

to the metal ion concentration. The mixture was subse-

quently dried to a resin and auto-ignited on a magnetic stir-

rer. In another work on the auto-combustion synthesis of

BFO, glycine44 was used as a fuel.

The goal of the present work is to take advantage of the

combustion method for the direct formation of a crystalline

precursor of BFO following the first reaction step. With

respect to standard sol-gel reactions, lower annealing tem-

peratures can be expected to obtain phase pure BFO, pre-

venting Ostwald ripening and resulting in powder with

smaller crystallites and better crystallinity.

All reagents were of analytical grade and were used

without further purification or treatment. Iron(III) nitrate non-

ahydrate [Fe(NO3)3*9H2O], 99.5% purity (Merck) and bis-

muth nitrate pentahydrate [Bi(NO3)3*5H2O], ASC 98% (Alfa

Aesar) were used as starting materials. The iron and bismuth

contents were experimentally determined by complexometric

titration. The precursor solutions of bismuth and iron are pre-

pared by adding stoichiometric proportions (10 mmol) of the

raw materials in diluted nitric acid under heating and stirring.

Gradually, 18 g of TRIS is added to the solution. The solvent

is evaporated at 105 �C on a heating plate, forming a dried

resin which ignites itself. The combusted resin is then ground

in a mortar and calcined at temperatures between 400 and

600 �C for 1 h to eliminate secondary phases. The combustion

and annealing processes were conducted in air. The as-

obtained powder is wet milled on a rolling bench for up to 5

days to deagglomerate the primary particles in a gentle man-

ner without destroying the crystallites. The block diagram of

the general protocol is given in Fig. S1.45

The XRD pattern of the resulting synthesis product,

obtained directly after the combustion step (i.e., without any

annealing) is shown in Fig. 1(a). Interestingly, the BiFeO3

phase is already predominant, with only a few minor peaks

originating mainly from the parasitic phases b-Bi2O3 and c-

Bi2O3. After an annealing step at 400 �C, those residual

impurities are still present together with the a-Fe2O3 phase

after the decrease of the amorphous background. Phase pu-

rity is then improved with temperature increase to 600 �C.

Nonetheless, batch-to-batch variability was identified by the

presence of differences in the impurity phases between sam-

ples. This is mainly associated with the timing and detailed

FIG. 1. (a) XRD patterns of BFO samples following the initial step of the

combustion synthesis and after two subsequent annealings at 400 �C and

600 �C. Peaks denoted as *, o, and � belong to the parasitic phases c-Bi2O3,

b-Bi2O3, and a-Fe2O3, respectively, while the others are in good agreement

with the BFO reference profile (ICSD#15299) shown at the bottom of the

graph. (b) Schematic illustration of the BiFeO3 structure in the hexagonal

system showing one oxygen octahedron around the iron atom (Red: Fe;

Brown: Bi; Blue: O, done with the CaRIne Crystallography software).

114306-2 Schwung et al. J. Appl. Phys. 116, 114306 (2014)
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procedure of the auto ignition which is difficult to control

(see for instance samples BFO-HT1 and BFO-HT2 in Fig.

S2).45 After the combustion step, powder is wet milled on a

rolling bench to reduce the particle size. Representative

image in Fig. 2 reveals nanoparticles without well-defined

shape and typical dimension in the 100–250 nm range.

III. BFO COLLOIDAL SUSPENSION

Preparation of stable colloidal suspensions is needed for

HRS studies and they are prepared using the following proto-

col: (i) Nanopowders are first dispersed into deionized water

(pH¼ 7) with a typical concentration of 0.4 mg/ml. (ii)

Dispersions are exposed to ultrasonication for 25 min (Vibra

Cell 75043, Bioblock Scientific) at a maximum input power

of 750 W and a frequency of 20 kHz. A pulsed irradiation (1 s

on and 4 s off) at room temperature was found to be optimal

for the preparation of homogeneous dispersions.46 (iii)

Solutions are then left to settle for about one week to allow

sedimentation of the larger particles and aggregates. (iv) The

nanocrystal concentration at the end of the sedimentation pe-

riod is estimated by weighing the residual fraction (assuming

spherically shaped nanoparticles). It corresponds to 10%–30%

of the initial concentration.

Typical colloidal suspensions appear yellowish (Fig. 3(b)),

due to partial absorption of BFO below 600 nm.47 Suspensions

are stable with values of zeta potential below �30 mV at pH 7.

Mean particle sizes were estimated by Dynamic Light

Scattering (DLS) at about 100–120 nm for most of the samples

as also confirmed through SEM observations (Figs. 3(a) and

3(c)). Finally, it can be noticed that the particle size and shape

polydispersity are reduced after this dispersion step, a necessary

improvement for correct HRS measurements.

IV. NONLINEAR OPTICAL PROPERTIES

BFO belongs to space group R3c and the SHG tensor

can be described with four nonzero independent components:

d22, d15, d31, and d33.48 Very few studies have focused on the

BFO optical second harmonic properties but, recently, the

relative values of the dij tensor coefficients were determined

at 1064 nm from single crystal measurements.49 In another

study,22 a careful determination of the absolute dij

coefficients was performed at 1550 nm in the case of both

rhombohedral and strain-induced tetragonal thin films.

Experimental results were found to be consistent with ab ini-
tio calculations.21,50 Interestingly, the magnitude of the coef-

ficients of BFO appears higher than the values known for

commonly used nonlinear optical materials, making BFO a

very good candidate for frequency conversion applications.

In addition, a significant result of this study is that a large

increase of the NLO response was observed for tetragonal

films in agreement with other reported enhanced properties

in such films.51 In the present work, two different experimen-

tal techniques, namely HRS measurements and nonlinear

polarization microscopy, were used to quantitatively assess

the nonlinear optical response of BFO nanocrystals.

A. Hyper Rayleigh scattering

HRS is an ensemble measurement, well-suited to readily

determine the averaged nonlinear optical coefficients of nano-

crystals. This technique was applied following the procedure

previously detailed for the characterization of several noncen-

trosymmetric oxide nanocrystals such as BaTiO3, ZnO,

LiNbO3, and KNbO3.18,52,53 HRS intensity results from the

incoherent sum of the scattered SHG radiations emitted by

each nanoparticle in suspension. The signal is thus proportional

to the nanoparticles concentration, N, and can be expressed asFIG. 2. Representative TEM image of BFO particles annealed at 600 �C.

FIG. 3. (a) DLS size distribution by intensity (dashed line) and by number

(full line) and (b) suspension image. (c) SEM micrograph of the particles.

Scale bar is 1 lm.

114306-3 Schwung et al. J. Appl. Phys. 116, 114306 (2014)
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IHRS ¼ GNTnphb2
npiI2

x: (1)

Here, G is an experimental constant and Tnp an internal field

factor which is calculated according to the solvent and nano-

crystal refractive indices (here, nx�2.76 and n2x�3.20 for

BFO (Ref. 47)). hbnpi is the nanoparticle effective hyperpo-

larizability from which the averaged SHG coefficient hdi can

be deduced if the nanoparticle volume Vnp is independently

estimated

hbnpi ¼ hdiVnp: (2)

This expression implicitly assumes that the measured SHG

signal predominantly originates from the bulk contribution

thus omitting any possible surface contribution. For oxide

nanomaterials, this type of behavior was already demon-

strated for several nanoparticles in the 100 nm range53 as

well as more recently for smaller nanocrystals.11,15 In the

above formulae, brackets indicate isotropic orientational

averaging. The relation between hdi and the tensor compo-

nents of BFO can be written, in our experimental configura-

tion, as

hd2i ¼ 6

35
d2

33 þ
32

105
d2

31 þ
8

21
d2

22 þ
44

105
d2

15 þ
4

21
d31d33

þ 4

35
d15d33 þ

16

105
d31d15: (3)

Experimentally, the nanoparticle suspension was excited

with a vertically polarized YAG laser (kx¼ 1064 nm) and

the scattered, unpolarized, SHG signal was detected at 90�

from the laser beam axis with a photomultiplier. Calibration

of the experimental set-up was previously performed with a

molecular solution of para-nitroaniline as an external refer-

ence. For each sample, the HRS intensity was then measured

according to the nanoparticle concentration. Quantitative

values for hbnpi and hdi were finally derived from the nano-

particle concentration and size independently obtained

through weighing and DLS measurements, respectively.53

Fig. 4 shows a representative plot of the HRS intensity

as a function of the BFO nanoparticle concentration. One

can observe a deviation from the expected linear behavior

for the highest concentrations. This is related to the suspen-

sion absorption mostly at the second harmonic frequency.53

There is however a clear linear tendency for low nanoparticle

concentrations, allowing the determination of the experimen-

tal slope which is used to calculate hbnpi and hdi.
Determination of these experimental parameters has

been performed on four independent samples resulting from

the different BFO batches (Table SI).45 The effective hyper-

polarizability is directly proportional to the nanoparticle vol-

ume (Eq. (2)) and thus varies from sample to sample. For

instance, a value of hbnpi¼ 1.2.10�22 esu was found for a

110 nm particle mean size. On the contrary, the averaged

coefficient hdi is an intrinsic physical property of the nano-

material itself, which is not affected by the nanocrystal size.

Experimental values range from 67 to 90 pm/V, depending

on the sample, with a mean value of 79 pm/V. This variabili-

ty is in line with the experimental reproducibility of the over-

all measurement process (estimated at 615%) and is mainly

related to the difficulty in precisely determining the particle

size from DLS, as discussed in Ref. 53. More importantly,

there is no clear correlation between the type and concentra-

tion of impurities and the experimental hdi value, as long as

BFO is the dominant phase in the different synthetized pow-

ders (Fig. S2 and Table SI).45 This finding is in agreement

with the hypothesis of a predominant bulk SHG contribution

related to the noncentrosymmetric structure of the material.

The “actual BFO nanocrystal volume” for each particle is

indeed poorly affected, at first order, by the presence of

minor impurity phases.

Finally, this first quantitative assessment of the NLO

response of BFO nanocrystals is found to be in relatively

good agreement with the dij coefficients extracted from ab

initio calculations.21 At 1064 nm, these theoretical coeffi-

cients lead to a hdi value of 45.4 pm/V (Table SII).45

Valuable comparative information was also gained when

comparing the NLO response of BFO with previously char-

acterized nanomaterials under the same experimental HRS

setup. Interestingly, it was found for instance hdi¼ 7.4 pm/V

and hdi¼ 5.5 pm/V for LiNbO3 and BaTiO3 nanocrystals,

respectively.53 A very good nonlinear optical efficiency is

therefore demonstrated for BFO, which is typically one order

of magnitude higher than for standard NLO materials.

B. Nonlinear polarization microscopy

The SHG images were acquired using an inverted laser

scanning microscope (Nikon TE300), equipped with a

0.6NA 40� objective. The position of the sample was con-

trolled by an XYZ piezo-scanner with 2 nm resolution. The

excitation source was a mode locked Ti:Sapphire oscillator

(Synergy 20, Femtolasers), providing 20 fs pulses at 80 MHz

repetition rate. The incident light polarization was selected

by a rotating half wave plate, while SHG signal was epi-

detected using the same objective. A combination of a

650 nm blocking edge short pass filter (AHF, F37–650) and a

bandpass filter (40 nm bandwidth at 400 nm) ensured an effi-

cient rejection of the 800 nm scatter. After being analyzed by

a Glan–Taylor polarization cube, the signal was measured by

a photomultiplier tube and processed by a lock-in amplifier.
FIG. 4. HRS intensity as a function of the concentration of nanoparticles in

suspension.

114306-4 Schwung et al. J. Appl. Phys. 116, 114306 (2014)
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At first, an SHG raster scan image of a substrate with

isolated nanoparticles was acquired. Then the laser beam

was focused onto selected crystals. During this operation, the

SHG signal was maximized by adjusting the microscope

piezo-scanner displacements. The polarization response was

acquired by measuring the SHG signal as a function of the

polarization angle of the incident light c and of the detection

polarization, setting the analyzer along the X or Y direction

(definitions in Fig. 5).

The experimental SHG polarization response was then

fitted according to the following assumptions:1 the fundamen-

tal beam is assumed to be at normal incidence, with only two

in-plane components Ex
x ¼ Ex cos c and Ex

y ¼ Ex sin c; the

collected SHG intensity in the X direction Ix (or equivalently,

Iy, in the Y direction) is then assumed to be proportional to

P2
x (P2

y), where P is the nonlinear polarization given by

P2 x
i ¼ e0

X

jk

dijkEx
j Ex

k ; (4)

The crystal nonlinear tensor dijk is given here in the labora-

tory reference frame and can be derived from the dmnl tensor

expressed in the crystal frame by

dijk ¼
X

mnl

dmnlSimSjnSkl; (5)

FIG. 5. (a) 2D SHG image of BiFeO3 nanocrystals. (b) Definition of the angles. The crystal orientation is expressed in the laboratory frame X, Y, Z by the

Euler angles u, h, and w. The angle c denotes the polarization of incident laser light on the sample plane. (c) and (d) Polarization emission of BiFeO3 nanocrys-

tals. Each signal is analyzed along two orthogonal directions: X (blue color) and Y (red color). Dots correspond to experimental data, while solid lines repre-

sent the best fit.
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where Sim are the components of the rotation matrix between

the laboratory and crystal axes depending on the Euler angles

u, h, and w. Knowing dmnl elements, four free parameters

remain to be adjusted for the fit: the Euler angles and the ex-

perimental factor K, which accounts for the incident laser in-

tensity, the collection and the detection efficiency and the

crystal size. For the data analysis, the polarization response

of the dichroic mirror and the objective was also taken into

account.

Currently in the literature, a few different sets of relative

dij values for BFO are present, as reported in Table SII.45

The first set (set 1) was derived from BFO single crystal

measurements49 at 1064 nm, the second (set 2)47 and third

(set 3)22 were obtained from BFO thin film measurements at

800 nm and 1550 nm, respectively. A fourth set (set 4) can

also be obtained from ab initio simulation.21 Although

Haislmaier et al.22 correctly pointed out that the set 2 of dij

values does not account for absorption at 400 nm, this set,

which was derived for 800 nm excitation, is the only one

which allowed us to fit our experimental results as shown in

Fig. 5. Two representative results are shown in panel 5(c)

and 5(d), as results of the experimental fitting indicated

above, and the same fitting procedure yielded similar agree-

ment on all the particles in the sample except for large

agglomerates.1 It can be noticed that only the relative dij

coefficients are involved in the fitting procedure. We thus

find that the relative dij values of set 2 correctly fit our exper-

imental response. However, it is to be pointed out that the

averaged <d> coefficient computed from the individual ten-

sor components given in Ref. 47 exceeds by two orders of

magnitude our estimation based on HRS measurements

(Table SII).45

V. MAGNETIC PROPERTIES

Room temperature magnetic response, measured by

vibrating sample magnetometry, for a BFO sample annealed

at 350 �C is shown in Fig. 6(a) (sample BFO-LT2 in Table

SI).45 A clear ferromagnetic behavior is measured with a rel-

atively high saturation magnetization at 3.5 emu.g�1. This

can be related to the presence of impurities.24,44 Pure BFO

nanoparticles only display weak ferromagnetism, with satu-

ration magnetization of about 1 emu.g�1, when the particle

size is below the period of the spiral spin structure at

62 nm.23,54 On the other hand, stronger magnetic responses

were already reported and traced to iron oxide impurities (it

is worth noting that this behavior has already been seen in

samples prepared by combustion synthesis).44 This is in

agreement with the XRD analysis presented in this work that

clearly shows the presence of the c-Fe2O3 phase in the sam-

ple, as shown in Fig. S2.45

Moreover, it should be pointed out that the SHG proper-

ties of the BFO particles are not affected by the presence of

small quantities of impurity phases. For instance, the nonlin-

ear hdi coefficient of the BFO-LT2 sample is 84 pm/V, in

agreement with other samples in this study. Thus, it shows

that careful synthesis optimization can promote both second

harmonic efficiency and high magnetic properties. This latter

is useful for magnetic separation, for instance, as shown in

Fig. 6(b). Therefore, the multimodal potential of the particles

presented in this work could be advantageously applied for

specific biomedical applications.

VI. CONCLUSION

BFO nanoparticles were prepared by the combustion

method and their SHG properties were then determined

through HRS and nonlinear polarization microscopy. The

high SHG efficiency, with a hdi coefficient measured at

79 6 12 pm/V, confirms that BFO is a promising material for

frequency conversion applications. We additionally demon-

strated that the nanoparticles SHG properties are not

quenched when small quantities of impurities are present.

This is due to the bulk nature of the second harmonic process

occurring within BFO particles. Moreover, moderate ferro-

magnetic response was observed for nanoparticles containing

residual c-Fe2O3 impurities, allowing the particles to be

magnetically separated in solution. BFO nanoparticles are

therefore new promising HNPs combining a very high SHG

brightness and a moderate magnetic response. Finally, their

cytotoxicity and internalization mechanism were carefully

evaluated in Ref. 55, showing that they have good biocom-

patibility and are suitable for a wide range of bio-imaging

and diagnostic applications.
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