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Abstract

Background: After perinatal brain injury, clinico-anatomic correlations of functional deficits and
brain plasticity remain difficult to evaluate clinically in the young infant. Thus, new non-invasive
methods capable of early functional diagnosis are needed in young infants.

Case Presentation: The visual system recovery in an infant with perinatal stroke is assessed by
combining diffusion tensor imaging (DTI) and event-related functional MRI (ER-fMRI). All
experiments were done at |.5T. A first DTI experiment was performed at 12 months of age. At 20
months of age, a second DTl experiment was performed and combined with an ER-fMRI
experiment with visual stimuli (2 Hz visual flash). At 20 months of age, ER-fMRI showed significant
negative activation in the visual cortex of the injured left hemisphere that was not previously
observed in the same infant. DT maps suggest recovery of the optic radiation in the vicinity of the
lesion. Optic radiations in the injured hemisphere are more prominent in DTI at 20 months of age
than in DTl at 12 months of age.

Conclusion: Our data indicate that functional cortical recovery is supported by structural
modifications that concern major pathways of the visual system. These neuroimaging findings might
contribute to elaborate a pertinent strategy in terms of diagnosis and rehabilitation.

Background

After perinatal brain injury, early assessment of clinico-
anatomic correlations is invaluable for the understanding
of functional deficits and brain plasticity. Cortical visual
impairment (CVI), defined as a visual deficit caused by a
disturbance of the posterior visual pathways, remains dif-

ficult to assess clinically in the young infant [1]. In this
context, new non-invasive methods capable of early func-
tional diagnosis are needed in young infants. Functional
mapping with magnetic resonance imaging (fMRI) was
successfully performed in infants presenting alterations in
the visual system [2,3]. The use of diffusion tensor
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imaging (DTI) was also demonstrated in young infants for
the assessment of structural integrity [4,5]. The combina-
tion of both techniques (fMRI and DTI) has opened up
the opportunity to investigate structure-function relation-
ships non-invasively in children [6,7].

Cerebral reorganization following lesions in the visual
pathways has been documented using a variety of neu-
roimaging techniques. [8-12]. Generally, studies have
compared the activated cortical regions in damaged-brain
subjects with healthy matched-control subjects in order to
characterize the atypically activated regions as major indi-
ces of brain plasticity. An additional, and probably more
interesting, approach consists of longitudinal functional
investigations conducted in the same subjects to identify
reorganization processes after initial lesion. Typically,
these longitudinal studies have been extensively applied
to adult subjects with structural [13,14] and functional
[15-17] approaches. However, longitudinal studies have
been performed in only few pediatric studies using visual
evoked potentials [18,19], but none with functional neu-
roimaging. Furthermore, in previous functional neuroim-
aging studies, brain recovery was mostly described by
visualization of functional activation with little neuroim-
aging evidence about underlying structural modifications
and altered connectivity that concur with functional reor-
ganization (e.g. [20-22]).

Figure |
Routine MRI showing the extent of the lesion in the left hemisphere on an axial view, at (A) 3 months of age with T2-weighted
image, (B) 12 months of age with an inversion recovery T|-weighted image, and (C) 20 months of age with a T|-weighted gra-
dient-echo image.

http://www.biomedcentral.com/1471-2377/5/17

Previously, we have demonstrated the feasibility of com-
bining fMRI and DTI in a very young infant [7]. In this
study, we used such a combination to monitor the struc-
tural-functional correlates of the visual system recovery in
an infant with a prominent left hemispheric lesion involv-
ing the temporo-parieto-occipital regions. Our data show
that functional recovery is supported by structural modifi-
cations that concern the major optical tracts of the visual
system.

Case presentation

An infant boy, born at 37 weeks of gestation, developed
apneic episodes and focal seizures on the third day of life.
Diffusion-weighted images at four days of age showed a
prominent left hemispheric lesion, involving particularly
the temporo-parieto-occipital regions, evolving into tissue
dissolution and local atrophy. The extent of the lesion in
the left hemisphere at different ages is shown in Figure 1.
As clinical evaluation of cortical visual function was diffi-
cult to carry out in an infant, a combined fMRI-DTI eval-
uation was performed at 3 months of age to assess
structural and functional integrity of the visual system.
Visually stimulated cortical activation with fMRI was
absent in the left hemisphere and the DTI showed absence
of fiber tracts in the left occipital lobe (for more details see
[7]). To assess the potential of visual recovery mecha-
nisms in the left occipital lobe, an additional DTI evalua-
tion was performed at 12 months and an fMRI-DTI
combination was conducted at 20 months of age.

C
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This study was approved by the ethical committee of the
University Hospitals of Geneva. All experiments were per-
formed on a 1.5T INTERA system (Philips Medical Sys-
tems, Best, Netherlands). A vacuum pillow (PAR Scientific
A/S, Denmark) was used to minimize head movement.

DTI methods

A SE-EPI sequence (b-factor = 700 s/mm?2, TE = 65 ms)
was used with 6 non-collinear gradient directions plus
one non-diffusion-weighted BO image [23]. 22 contigu-
ous 4 mm slices (in-plane resolution = 1.56 x 1.56 mm?)
were acquired during the DTI experiment at 12 months of
age (noted as DTI-12), and 32 contiguous 3 mm slices (in-
plane resolution = 1.95 x 1.95 mm?2) were acquired dur-
ing the DTI experiment at 20 months of age (noted as DTI-
20). The acquisition was repeated four times to improve
the signal-to-noise ratio. Diffusion was measured in terms
of the apparent-diffusion coefficient (ADC) according to
the Stejskal and Tanner equation. The matrix describing
the directional dependence of the ADC was estimated for
each voxel [24]. For each estimate, the three orthogonal
eigenvectors and their related positive eigenvalues were
calculated. For each voxel, a fractional anisotropy (FA)
index, ranging from 0 to 1, was calculated according to
Basser and Pierpaoli's definition [25]. The principal direc-
tion of diffusion is given by the eigenvector corresponding
to the largest eigenvalue and represents the fiber bundle
direction. White matter tracts were reconstructed with the
streamline-like approach [26], with anisotropy threshold
of 0.27 and angles less than 40° [27].

FMRI methods

During the fMRI examination, conducted in the same ses-
sion as DTI-20, the infant was sedated with Propofolum
(8 mg/kg). Functional imaging consisted of a GRE-EPI
sequence (TR/TE/Flip = 1 s/40 ms/80°, resolution 1.95 x
1.95 mm?, 12 contiguous 5 mm axial slices). An event-
related approach was used, with stimulus (2 Hz visual
flash) duration of 5 sec repeated 15 times with an inter-
stimulus interval of 30 sec. Flashing frequency of 2 Hz was
used as it yields robust visual evoked potentials in young
infants (e.g. [28]). Visual stimuli were presented to the
infant via a video projector, a front-projection screen and
a system of mirrors fastened to the head coil. Throughout
the examination, the eyes of the infant were closed. Data,
after motion correction and spatial smoothing, were ana-
lyzed using SPM99 software package. All activations at p <
0.001 (uncorrected) are reported. In addition, the trans-
formation matrix to co-register the mean functional image
and the non-diffusion-weighted BO image was calculated.
This transformation matrix was then subsequently
applied to the statistical maps in order to have the same
space for both fMRI and fractional anisotropy (FA) maps.

http://www.biomedcentral.com/1471-2377/5/17

Results

In both DTI and fMRI experiments, head movement was
minimal leading to good quality images. The current
results of these longitudinal experiments showed different
new findings from the first fMRI-DTI combination at 3
months of age. Figure 2 illustrates the FA maps for DTI-12
and DTI-20 experiments. Optic radiations in the intact
right hemisphere are visible in both experiments with
comparable anisotropy values. In the injured left hemi-
sphere, optic radiations are more prominent in DTI-20
than in DTI-12 experiment. The reinforcement of fibers in
the left hemisphere is particularly visible in the antero-
posterior direction.

Activations in the ER-fMRI experiment in the visual cortex
have essentially appeared with negative event-related
responses (figure 3B). The strongest activation was found
in the right (intact) occipital lobe (size = 350 voxels, T =
13.5, p < 10-19 corrected), particularly in the anterior part
of the striate cortex (i.e. V1 area). Surprisingly, a signifi-
cant activation was also observed in the left injured hem-
isphere (size = 72 voxels, T = 6.1, p = 0.00002 corrected),
located slightly more laterally and more anterior than vis-
ually activated areas in the right hemisphere (figure 3A).
This left visual activation was located in the lingual gyrus
(Brodmann areas 18/19), corresponding presumably to
visual area V2. Moreover, the site of the left visual activa-
tion was compared to the white matter tracts obtained
during the DTI-20. Figure 3C shows that the cortical activ-
ity lays below the inter-hemispheric fiber tracts from the
forceps major and close to the ipsilateral optic radiation
fibers

Conclusion

At 3 months of age this infant with left-sided perinatal
stroke, had shown activation upon visual stimulation
only in the right intact hemisphere with both block and
event-related fMRI paradigms [7]. At 20 month of age,
functional maps with ER-fMRI showed again strong nega-
tive BOLD response in the right intact hemisphere, impli-
cating principally the anterior part of the right primary
visual cortex (V1). Such anterior negative responses were
also reported previously in infants [2,29]. In addition, ER-
fMRI maps at 20 months of age showed responses in the
left injured hemisphere that were not previously
observed. Before discussing the physiological basis of
these functional modifications, some methodological
aspects should be evoked. The critical issue inherent to
any functional longitudinal studies is the test-retest relia-
bility or the inter-session variability (see [30,31]).
Recently, it was shown that the inter-session variability is
not necessarily high and its magnitude is similar to
within-session variability [32]. Also, the reproducibility of
visual areas in fMRI is very high, even in higher-level vis-
ual areas [33]. Furthermore, to minimize inter-session
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FA maps at 12 months FA maps at 20 months

Figure 2
Fractional anisotropy maps presented with axial slices for the diffusion experiment at 12 months of age (left columns) and 20
months of age (right columns). The optic radiations in the left (injured) hemisphere are indicated by white arrows.

Page 4 of 8

(page number not for citation purposes)




BMC Neurology 2005, 5:17 http://www.biomedcentral.com/1471-2377/5/17

fitted response and PSTH

al change

sign

5 10 15 20 25
time (sec)

Figure 3
(A) fMRI statistically significant areas of activation (at p < 0.001, uncorrected) were projected on axial slices of the anatomical

volume of the infant. Positive activation is shown in red colors and negative activation is shown with blue colors. The strongest
activation is negative, in the occipital lobe. Note the activation in the left (injured) visual hemisphere. (B) The shape of the
event-related hemodynamic response of the left visual cortex activation. (C) Correspondence between the DTI tracts and the
fMRI activation in the left hemisphere is illustrated on three views. The functional activation is indicated with a white cluster
superimposed on the anatomical volume of the infant. The optic radiation is shown with green color and the inter-hemispheric

connections with pink color.

Page 5 of 8

(page number not for citation purposes)



BMC Neurology 2005, 5:17

variability, we have initially used both event-related and
block paradigms at 3 months of age. The block paradigms
were repeated three times and have shown comparable
results with the ER-fMRI paradigm, indicating that the
absence of significant activation in the left injured hemi-
sphere could not be attributed to inter-session variability
only [7]. At 20 months of age, we have also used block
paradigms (data not shown here) and all results of block
and ER-fMRI paradigms confirmed the detection of a sig-
nificant activation in the left injured hemisphere. Further,
the implication of the right hemisphere could be consid-
ered as a "witness" of the weak influence of inter-session
variability, because this right visual cortex activation was
present across sessions with comparable statistical signifi-
cance. The modifications between functional maps at 3
months and 20 months of age could therefore illustrate
functional recovery by plasticity and resilience of the
developing brain.

Functional recovery observed in the left occipital lobe was
supported by structural modifications evidenced in both
DTI-12 and DTI-20 experiments. DTI-20 delineated fibers
in continuity with the optic radiations and immediately
adjacent to the cystic lesion. Thus, our DTI experiments
illustrate the development of optic radiations in the left
hemisphere, initially not visible at 3 month [7], deline-
ated at 12 month, and clearly reinforced at 20 months of
age. The optic radiations recovery in the left hemisphere
might occur in congruence with maturation mechanisms
observed during the early period of life [34]. Indeed, pre-
vious studies have shown that the optic radiation tracts
are clearly visible in the newborn (even in premature new-
borns, e.g. [35]) and their maturation with myelination is
largely achieved during the first year of life (e.g. [36]).
Here, the differences in visibility with DTI across ages
between the optic radiations in left and right hemispheres
indicated that recovery mechanisms might be responsible
for the development of tracts in the injured hemisphere
after perinatal stroke. These arguments support recovered
connectivity in the ipsilateral optic radiations that corre-
lated with some of the observed functional responses.

Moreover, the parallel occurrence of optic radiations
traced with DTI and the activated visual regions detected
with fMRI agreed well with previous findings in healthy
adults [37,38]. The correspondence between optic radia-
tions development and visual cortex activation is in line
with the observed interdependency between these struc-
tures [39]. Thus, the observed functional resilience in this
infant agrees well with observations suggesting that plas-
ticity occurs maximally during the first 2 years of age [40].
Different mechanisms underlying plasticity processes
have been discussed elsewhere (for review see [41,42]),
and include pathway expansion around the area of injury,

http://www.biomedcentral.com/1471-2377/5/17

extending from the retina through the thalamus to extras-
triate cortex.

Visual areas showing functional activation were located
more laterally in the left hemisphere than in the intact
right hemisphere. These more laterally located activation
could be part of extrastriate cortex, mainly in V2 area, as
defined retinotopically in the adult visual cortex [43,44]
and recently shown in children [45]. Although some stud-
ies have suggested that activation of the striate cortex was
a major sign of visual recovery [46,47], activations limited
to extrastriate areas have been reported in patients with
brain lesions. Thus, in patients with occipital lobe epi-
lepsy, extrastriate visual responses to full-field visual stim-
ulation were observed with fMRI [48]. In a child with
cortical dysplasia fMRI, showed that the activity in the
malformed hemisphere was different from that in the
intact hemisphere [9], and visual function was related to
activations in parieto-temporal regions. In two patients
with lesions in striate and prestriate cortex, visual recovery
was observed, particularly in the patient with early-onset
lesion [49], and correlated to weak fMRI activation of iso-
lated foci in the striate cortex [47]. In addition, it was
observed that the stimulation of the scotomatous field in
a patient with abnormal striate cortex yielded significant
activation in extrastriate areas [50], suggesting important
roles of the extrastriate cortex in the process of visual
recovery. Recently, it was further shown that after hemian-
opia, hemianopic hemifield stimulation resulted in bilat-
eral activation restricted to the extrastriate cortex (V2 area)
[11]. At 20 months of age it was impossible to carry out
clinical visual field testing [51] to determine whether this
infant presented a homonymous hemianopic visual field
defect. However, the tracts observed in the injured hemi-
sphere and the bilateral cortical activation suggested that
both visual hemifields were projected into the visual
cortex.

Implication of the injured hemisphere may alternatively
be explained by interhemispheric transfer from the intact
hemisphere (i.e. transcallosal, major forceps, or commis-
sural tracts) [47,52]. Such interhemispheric connections
may play major roles during visual recovery, particularly
after early-onset unilateral lesions, as documented previ-
ously in animal studies [53]. In our patient, the DTI
results showed that the fibers of the optic radiation in the
left injured hemisphere concur closely with the functional
activation, suggesting a preponderant role for intrahemi-
spheric mechanisms of plasticity. Such recovery (i.e.
ipsilesional implication with possible intrahemispheric
mechanisms) was also suggested by previous studies in
children and adults (e.g. [15,54,55]).

In summary, the fMRI responses concur clearly with the

projections of fibers evidenced in DTI maps of both hem-
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ispheres. Consequently, it appears that DTI and fMRI
findings provide relevant information regarding the
recovery of cortical visual processes after early brain
lesions, and might contribute to elaborate a pertinent
strategy in terms of rehabilitation.
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