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ABSTRACT
Nodal-line semimetals are topologically nontrivial states of matter featuring band crossings along a closed curve, i.e., nodal-line, in momen-
tum space. Through a detailed analysis of the electronic structure, we show, for the first time, that the normal state of the superconductor
NaAlSi, with a critical temperature of Tc ≈ 7 K, is a nodal-line semimetal, where the complex nodal-line structure is protected by nonsym-
morphic mirror crystal symmetries. We further report on muon spin rotation experiments revealing that the superconductivity in NaAlSi is
truly of bulk nature, featuring a fully gapped Fermi-surface. The temperature-dependent magnetic penetration depth can be well described by
a two-gap model consisting of two s-wave symmetric gaps with Δ1 = 0.6(2) meV and Δ2 = 1.39(1) meV. The zero-field muon experiment indi-
cates that time-reversal symmetry is preserved in the superconducting state. Our observations suggest that, notwithstanding its topologically
nontrivial band structure, NaAlSi may be suitably interpreted as a conventional London superconductor, while more exotic superconducting
gap symmetries cannot be excluded. The intertwining of topological electronic states and superconductivity renders NaAlSi a prototypical
platform to search for unprecedented topological quantum phases.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5124242., s

I. INTRODUCTION

In the course of the advent of topological insulators, several
classes of nontrivial topological semimetals have been proposed
and experimentally sought after: Weyl semimetals, Dirac semimet-
als, and nodal-line semimetals.1–5 In their essence, all these types
of topological matter arise from band inversion, often along with
nonsymmorphic symmetries. As opposed to insulators, the topo-
logical nature of a semimetal is given by a more intricate version
of topological bulk invariants and bulk boundary correspondence.
For the most elementary instance, the surface Fermi arcs of a Weyl

semimetal are localized away from the Weyl cone projection points
at the surface and derive their localization length scale from the
direct gap between the underlying bulk and valence bands at the
given surface momentum. For nodal-line semimetals, the surface
states feature intriguing structures referred to as drumhead states.
Additional complexity can arise if the closed nodal-line takes on
more complicated forms in momentum space, which yields struc-
tures called nodal knot semimetals. The higher the semimetallic
topological complexity, the harder it appears to find quantum matter
realizations of such states, so classical metamaterial platforms often
seem to be the only viable alternative.6,7
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In many respects, however, only quantum material realiza-
tions of topological semimetals promise a complete unfolding of
their rich phenomenology.8,9 The interplay of emergent quantum
effects such as magnetism, charge-ordering, and superconductiv-
ity, together with nontrivial band topology, has been identified
as a promising platform for the realization of exotic quasiparti-
cles, such as, e.g., Majorana fermions.10–13 Recently, several can-
didates for topological materials with bulk superconductivity have
been experimentally realized. Among those are topological insula-
tors, namely, CuxBi2Se3

14 or Tl5Te3;15 Dirac semimetals, namely
Cd3As2,16 Au2Pb,17 and 2M-WS2;18,19 Weyl semimetals such as
MoTe2;20,21 and also the nodal-line semimetal PbTaSe2.22 Supercon-
ducting instabilities of nodal-line semimetals promise to be a partic-
ularly interesting class of compounds as the nodal-lines can induce a
Berry phase picked up for a closed path along the Fermi surface and
thus constrain possible electronic pairing.23 The only known nodal-
line semimetal superconductor, i.e., PbTaSe2,24 corresponds to an
intercalated derivative of TaSe2. This parent compound is a platform
for complex charge ordering. Upon intercalation of lead, the charge
ordering is suppressed and superconductivity is observed at a critical
temperature of Tc ≈ 3.8 K.25

The ternary compound NaAlSi investigated here crystallizes
in the centrosymmetric space group P4/nmm of PbFCl structure-
type, as shown in Fig. 1(a). This compound is isostructural to the
“111” Fe-based superconductors LiFeAs and LiFeP.26 NaAlSi has
been reported to be a type-II superconductor with a critical tem-
perature of Tc ≈ 7 K at ambient pressure,27 while the isostruc-
tural and isoelectronic NaAlGe is not superconducting. NaAlSi and
NaAlGe have almost exactly the same band structure except for one
missing piece of small Fermi surface. This small Fermi surface is
rather unusual and further obscured by the small but seemingly
important interlayer coupling along the crystalline c-axis.28 Even
though one expects the phonon spectra for these two compounds
to be fairly similar, and as such the onset of superconductivity if
phonons were responsible for the pairing, the isoelectric cousin

NaAlGe does not exhibit any kind of superconductivity down to low
temperatures.

Rhee et al. have shown by first-principles electronic struc-
ture calculations that NaAlSi is what they refer to as “a naturally
self-doped semimetal,” with charge-transfer between the covalent
bands within the substructure and two-dimensional free-electron-
like bands within the Al-Si layers.28,29 This electronic structure
results in an unusually small Fermi surface and a very low density
of states at the Fermi level. Both characteristics, together with the
reasonably high critical temperature of NaAlSi, are contradictory
to conventional BCS theory predictions, where the critical tempera-
ture Tc depends exponentially on the density of states at the Fermi-
level. Given these special electronic features, it was proposed that the
superconductivity in this material may not be of phononic origin.
Hence, the microscopic origin of superconductivity still remains to
be unambiguously identified. It calls for a detailed study of the elec-
tronic structure of this nodal-line semimetal and, in particular, of
how small electronic deviations between NaAlGe and NaAlSi might
affect unconventional pairing tendencies from a weak coupling per-
spective. An unconventional pressure dependence of the supercon-
ductivity in NaAlSi has been reported: The critical temperature was
found to slightly increase up to a transition temperature of Tc ≈ 9 K
under an external pressure and to disappear abruptly at a pressure of
p = 4.8 GPa in the absence of a structural transition.30

Here, we report on detailed band structure calculations, show-
ing that NaAlSi is a nodal-line semimetal for the first time, and on its
superconducting order parameter analysis. Our muon spin rotation
measurements reveal that the superconductivity in NaAlSi is truly of
bulk nature and that the Fermi-surface is fully gapped with an s +
s-wave symmetrical gap in the absence of time-reversal-symmetry
breaking. Our observations suggest that superconductivity in this
topologically nontrivial material may be explained as a conventional
London superconductor. The results, however, do not exclude some
more exotic superconducting gap symmetries either, which we will
also briefly discuss in this work.

FIG. 1. (a) Crystal structure of NaAlSi and (b) band structure of NaAlSi along high-symmetry points. Blue color indicates contributions from Si-p-orbitals, whereas red color
indicates Al-s-character. The size of the dots is proportional to the contribution of the orbitals at each k-point, and the inset shows the effect of spin-orbit coupling along the
line ΓZ close to the Fermi-level. (c) Density of states of bulk NaAlSi between −2 eV and 2 eV from the Fermi-level.
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II. METHODS
A. DFT calculations

The density functional theory (DFT) calculations were per-
formed using the VASP package31 using the standard pseudopo-
tentials for Na, Si, and Al. The experimental geometries were taken
from Ref. 30. The reducible Brillouin zone was sampled by a 9 × 9
× 9 k-mesh for the self-consistent calculations. A Wannier interpo-
lation using 18 bands was performed by projecting onto an atomic-
orbital basis centered at the atomic positions, consisting of Na-3s,
Al-3s and 3p, as well as Si-3s and 3p orbitals. The nodal-lines were
calculated via the package WannierTools32 based on this Wannier
interpolation.

B. Sample preparation
Blue-metallic, highly crystalline samples of NaAlSi were pre-

pared by solid-state synthesis. In a first step, the elements Na (purity
99.99%), Al (purity 99.999%), and Si (purity 99.9999%) were mixed
in a ratio of Na:Al:Si = 3:1:1. The excess of Na is necessary for obtain-
ing phase pure products; it partly acts as a sodium flux. This mixture
(2 g) was sealed in an argon-filled tantalum tube in order to min-
imize Na loss during the reaction. The tantalum tube was sealed
in a quartz ampule in order to prevent the oxidation of the tanta-
lum reaction vessel. The reaction was carried out at 700 ○C for three
days (heating rate 50 ○C/h). To increase the crystallinity of the prod-
uct, the sample was slowly cooled (5 ○C/h) to 600 ○C, held for three
days at this temperature, and finally cooled to room temperature
(5 ○C/h). In a second step, the excess sodium was removed by distil-
lation of the product under a dynamic vacuum at 200 ○C for 100 h.
The phase purity and crystal structure of the sample were verified by
powder and single crystal x-ray diffraction using a D8 Focus diffrac-
tometer with Cu Kα1 radiation (Bruker AXS GmbH, Karlsruhe,
Germany).

C. μSR measurements
Spin-polarized muons (μ+) are extremely sensitive local mag-

netic probes that were here used to investigate the field distribution
of the vortex state in the type-II superconductor NaAlSi. Trans-
verse field (TF) and zero field (ZF) μSR experiments were carried
down to T = 250 mK, well below the superconducting transition
temperature of NaAlSi. Pressed pellets of NaAlSi were transferred
under inert atmosphere with a portable glovebox into the cryostat.
The μSR spectra have been analyzed using the MUSRFIT software
package.33

III. RESULTS AND DISCUSSION
A. Electronic structure of NaAlSi

Charge balanced materials with 8 valence electrons of the form
XAlSi (X = Li, Na) are expected to be semiconductors due to a com-
pletely filled Si p-shell that is separated by a gap from the empty
s-shells of Li+ and Al3+. While LiAlSi, which crystallizes in the cubic
half-Heusler structure, is indeed a semiconductor with a large direct
bandgap, NaAlSi shows metallic transport behavior and becomes
superconducting below 7 K. This can be attributed to the fact that
NaAlSi does not crystallize in a half-Heusler structure but in the

tetragonal space group P4/nmm, which consists of edge-sharing
AlSi4 tetrahedra with short Al-Al distances of about 2.9 Å.

The short distance leads to considerable bonding between the
Al-atoms in the x–y plane, which is indicated by a dispersive Al-
s-band close to the Fermi energy (EF) with a bandwidth of over
4 eV, as shown in Fig. 1(b). As expected from the ionic picture dis-
cussed above, the band structure close to the Fermi level consists
mostly of bands derived from the Si-p-orbitals, which are almost
completely filled. However, in contrast to LiAlSi, the large band-
width of the Al-s-bands leads to a band inversion between the two
sets of bands and results in a metallic band structure with multiple
linear band crossings close to EF in NaAlSi. These band crossings
form a complex nodal-line structure, protected by the crystalline
symmetries of the space group P4/nmm, namely, the nonsymmor-
phic mirror symmetry Mz = {Mz ∣ 12 1

2 0}, the mirror Mxy, the spatial
inversion {I|000}, and the two screw symmetries C2x = {C2x∣ 12 00}
and C2y = {C2y∣0 1

2 0}. While nodal-lines and band inversion are a
common feature in this space group, the origin of the nodal-lines
in NaAlSi is of different origin than those found in, e.g., the ZrSiS-
family34–36 and FeTe1−xSex.37 Spin-orbit coupling (SOC) could in
principle open gaps at the nodal crossings—due to the low nuclear
masses of Na, Si, and Al; however, the effect of SOC on the nodal
line is negligible. Our calculations show that the strongest effect of
SOC can be seen along the ΓZ line close to the Fermi-level, where
the twofold degenerate bands that transform as the E representation
of the little group C4v split by about 20 meV, as shown in the inset of
Fig. 1(b).

Figure 2(a) shows the resulting nodal-line structure. It consists
of two nodal-lines in the kz = 0 and the kz = π plane, which are
interconnected by nodal-lines along the kz direction. The nodal-line
shows dispersion, i.e., the gap closing points do not all occur at one
energy but in a window of about 200 meV around EF . The nodal lines
in the kz = 0 plane are protected by Mz , while the nodal crossings in
the kx = 0 and ky = 0 plane are protected by C2xI and C2yI. Cross-
ings in the (kx = ky, kz) plane are protected by Mxy. Our calculations
show that the nodal lines are part of the Fermi surface displayed in
Fig. 2(b), which suggests that the topological states of the nodal line
could contribute to the superconducting state.

B. Temperature dependent magnetic penetration
depth

In Fig. 3(a), we show the transverse-field (TF) μSR-time
spectra for NaAlSi, measured in an applied magnetic field of
μ0H = 20 mT. The spectra above (8 K) and below (0.25 K) the super-
conducting transition temperature Tc are depicted. In the normal
state, the oscillations show a small relaxation due to the random
local fields from the nuclear magnetic moments. Below the critical
temperature Tc, the relaxation rate strongly increases with decreas-
ing temperature due to the presence of a nonuniform local magnetic
field distribution as a result of the formation of a flux-line lattice
(FLL) in the superconducting state. This is the first reported evi-
dence, in the absence of specific heat measurements, for the bulk
nature of the superconductivity in this material.

Magnetism, if present in the samples, may also enhance the
muon depolarization rate. Therefore, we have carried out ZF-μSR
experiments above and below Tc to search for magnetism (static or
fluctuating) in NaAlSi. As shown in Fig. 3(b), no sign of either static
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FIG. 2. (a) Nodal-lines derived from the
overlap of the highest energy Si-p-band
with the Al-s-band. The energy of the
crossing point is given relative to EF . (b)
Top and side views of the Fermi surface
in the full Brillouin zone.

or fluctuating magnetism could be detected in ZF time spectra down
to 0.25 K. The spectra are well described by a weakly damped Kubo-
Toyabe depolarization function,38 reflecting the field distribution at
the muon site created by the nuclear and weak electronic moments.
Moreover, no change in ZF-μSR relaxation rate [see Fig. 3(c)] across
Tc was observed, pointing to the absence of any spontaneous mag-
netic fields associated with the time-reversal symmetry breaking
pairing state in NaAlSi (compare Refs. 39–41).

The temperature dependence of the muon spin depolarization
rate σsc, which is proportional to the second moment of the field
distribution (see Sec. II), of NaAlSi in the superconducting state is
shown in Fig. 3(d). Below Tc, the relaxation rate σsc starts to increase
from zero with decreasing temperature due to the formation of the
FLL. Interestingly, the form of the temperature dependence of σsc,
which reflects the topology of the superconducting gap, shows the
saturation upon lowering the temperature below approximately 2 K.
We show in the following how these behaviors indicate the presence
of the two isotropic s-wave gaps on the Fermi surface of NaAlSi.

C. Probing the nonuniform field distribution
in the vortex state

In order to investigate the symmetry of the superconducting
gap, we note that λ(T) is related to the relaxation rate σsc(T) by the
equation42

σsc(T)
γμ

= 0.06091
Φ0

λ2(T) , (1)

where γμ is the gyromagnetic ratio of the muon and Φ0 is the
magnetic-flux quantum. Thus, the flat T-dependence of σsc observed
for low temperatures [see Fig. 3(d)] is consistent with a nodeless,
fully gapped superconductor, in which λ−2(T) reaches its zero-
temperature value exponentially.

To proceed with a quantitative analysis, we consider the local
(London) approximation (λ ≫ ξ, where ξ is the coherence length)
and employ the empirical α-model. The model widely used in pre-
vious investigations of the penetration depth of multiband super-
conductors43–47 assumes that the gaps occurring in different bands,
besides a common Tc, are independent of each other. The superfluid
density is calculated for each component separately48 and added

together with a weighting factor. For our purposes, a two-band
model suffices, yielding

λ−2(T)
λ−2(0) = ω1

λ−2(T,Δ0,1)
λ−2(0,Δ0,1) + ω2

λ−2(T,Δ0,2)
λ−2(0,Δ0,2) , (2)

where λ(0) is the penetration depth at zero temperature, Δ0,i is the
value of the ith superconducting gap (i = 1, 2) at T = 0 K, and ωi is
the weighting factor that measures their relative contributions to λ−2

(i.e., ω1 + ω2 = 1).
The results of this analysis are presented in Fig. 4, where the

temperature dependence of λ−2 for NaAlSi is plotted. We consider
two different possibilities for the gap functions: either a constant gap,
Δ0,i = Δi, or an angle-dependent gap of the form Δ0,i = Δi cos 2φ,
where φ is the polar angle around the Fermi surface. The dashed and
the solid lines represent a fit to the data using an s-wave and an s +
s-wave model, respectively. The two gap s + s-wave scenario with a
small gap Δ1 ≃ 0.6(2) meV and a large gap Δ2 ≃ 1.39(1) meV (with
the weighting factor of ω2 = 0.91) describes the experimental data
slightly better than the single gap s-wave model, while the relative
weight of the small gap is only approximately 10%. This result might
also correspond to a single anisotropic gap with s-wave symmetry,
and this analysis is insensitive to these different scenarios (compare,
e.g., Refs. 21 and 45–47).

Even though a phonon-driven mechanism for superconductiv-
ity appears likely, and from there a conventional s-wave type order
parameter, the experimental evidence reported by us for NaAlSi
raises the question of what kind of superconducting order param-
eter symmetries can in principle be imagined for such a compound.
The reported bulk gap excludes nodes in the superconducting phase,
and the absence of a zero field signal in μSR strongly implies pre-
served time reversal symmetry in the superconductor. The given
space group, combined with the co-dimension p = 2 of the Fermi
surface in the normal state, does not exclude alternative pairings
to trivial s-wave. Naively, the point group D4h of NaAlSi possesses
three irreducible representations, A1g , B1g , and B2g , that are consis-
tent with singlet paring in the case of vanishing spin-orbit coupling.
Since all evidence disfavors line nodes in the superconducting phase
and time-reversal symmetry is kept, A1g is the likeliest of possible
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FIG. 3. (a) The transverse-field μSR time
spectra for NaAlSi, obtained above and
below Tc (after field cooling the sample
from above Tc). The solid lines repre-
sent fits to the data. (b) Zero-field μSR
time spectra for NaAlSi recorded above
and below Tc. The line represents the
fit to the data of the combination of the
Lorentzian and Gaussian Kubo-Toyabe
depolarization function.38 (c) The tem-
perature dependence of the ZF Gaus-
sian and Lorentzian depolarization rates.
(d) The temperature dependence of the
superconducting muon spin depolariza-
tion rate σsc for NaAlSi, measured in an
applied magnetic field of μ0H = 20 mT.

two-dimensional irreducible representations. In terms of uncon-
ventional pairing, the options are therefore reduced to very exotic
superconducting symmetries, such as, e.g., helical superconductors,
or (slightly more realistically) a relative sign change between the two
s-wave sheets. The experiments at hand cannot alone distinguish
between sign changing s+−, hence topological, and s++ trivial pairing
states. Generally, s++ can be considered as more likely. However, the

FIG. 4. The temperature dependence of λ−2 for NaAlSi. The solid line corresponds
to a two-gap (s + s)-wave model, and the dashed line represents a fit using a single
gap s-wave model.

high sensitivity of the superconducting state in NaAlSi to disorder
might suggest that an s+− might be realized in this material. Further
surface probes, e.g., the Kerr effect or phase sensitive measurements,
however, would be needed to reach conclusive statements on such
questions.

IV. CONCLUSION
In summary, we have reported on a detailed analysis of the

electronic structure of the compound NaAlSi. We here describe,
for the first time, that the superconductor NaAlSi has a topological
nontrivial nodal-line band structure. Its complex nodal-line struc-
ture is thereby protected by the symmetry of its crystal structure,
in particular, by the nonsymmorphic mirror symmetries of space
group P4/nmm. We have characterized the microscopic supercon-
ducting properties of NaAlSi by a series of μSR experiments. The
TF μSR experiments reveal, for the first time unambiguously, that
the superconductivity in NaAlSi is of bulk nature. The measured
temperature-dependent magnetic penetration depth λ corresponds
to a fully gapped Fermi-surface. In our analysis, an s + s-wave sym-
metrical gap with Δ1 = 0.6(2) meV and Δ2 = 1.39(1) meV was suf-
ficient to explain the observed behavior. The ZF μSR experiments
above and below the critical temperature indicated the preservation
of time reversal symmetry.

Our results indicate that superconductivity in this topologi-
cally nontrivial material may be explained as a conventional Lon-
don superconductor. These results, however, also do not exclude
some more exotic superconducting gap symmetries, e.g., an s+−
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symmetric gap. It may be speculated whether the observed dis-
appearance of superconductivity under pressure or the absence of
superconductivity in isoelectronic and isostructural NaAlGe could
be tied to the change in topological class in this material. Fur-
ther theoretical as well as experimental (especially measurements
of the band structure and thermodynamic measurements of the
superconducting properties) work is crucial for understanding the
interplay of superconductivity and topology in this material. We
expect the results at hand to generally motivate significant additional
studies into materials that couple topology to emergent quantum
effects.
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