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MULTICLASS CLASSIFICATION BASED ON BINARY CLASSIFIERS:
ON CODING MATRIX DESIGN, RELIABILITY AND MAXIMUM NUMBER OF CLASSES

Sviatoslav Voloshynovskiy, Oleksiy Koval, Fokko Beekhof and Taras Holotyak

University of Geneva
Department of Computer Science

7 route de Drize, CH 1227, Geneva, Switzerland

ABSTRACT

In this paper, we consider the multiclass classification prob-
lem based on independent set of binary classifiers. Each
binary classifier represents the output of quantized projec-
tion of training data onto a randomly generated orthonormal
basis vector thus producing a binary label. The ensemble of
all binary labels forms an analogue of a coding matrix. The
properties of such kind of matrices and their impact on the
maximum number of uniquely distinguishable classes are
analyzed in this paper from an information-theoretic point
of view. We also consider a concept of reliability for such
kind of coding matrix generation that can be an alternative
way for other adaptive training techniques and investigate
the impact on the bit error probability. We demonstrate
that it is equivalent to the considered random coding matrix
without any bit reliability information in terms of recogni-
tion rate.

1. INTRODUCTION

In this paper we will address the multiclass categorization
problem in a Machine Learning formulation requiring the
assignments of labels to instances that belong to a finite set
of classes (M > 2). While multiclass versions of most clas-
sification algorithms exist (e.g., [1]), they tend to be com-
plex [2]. Therefore, a more common approach is to con-
struct the multiclass classifier by combining the outputs of
several binary classifiers [3, 4] that also extends toerror
correcting output codes(ECOC).

The ECOC framework consists of two main steps: a
codingstep, where the codeword or some representation of
entry is assigned to a row of a coding matrix, and adecod-
ing step, where a given observation is mapped into the most
similar codeword of coding matrix. There are many meth-
ods of coding matrix design based on the predefined set of
codewords that follow different heuristics with the overall
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idea to maximize the inter-codeword Hamming distances
that is believed to correspond to the most robust coding
matrix design in terms of classification accuracy. However,
these predefined coding matrices are problem-independent
and can not cover a broad class of varying models. The
design of an optimal decoder minimizing the overall mis-
classification error probability is also mainly accomplished
based on the minimum Hamming distance decoder that is
a form of hard decoding. Although several score-based de-
coding rules (e.g., loss-based and loss-weighted decoding)
attempt to consider the effect of binary classification reli-
ability in the overall fusion rule, the theoretically justified
probabilistic fusion rules are still missing. Despite several
recent remarkable exceptions [5, 6, 7], these problems are
little studied and the problem of joint coding matrix de-
sign and probabilistic decoding maximizing the number of
uniquely recognizable classes is of great practical interest.

2. PROBLEM FORMULATION

In this paper we will follow the information-theoretic ma-
chine learning approach thus providing the link with the
coding theory for optimal joint coding matrix and decoder
design and estimation of the maximum number of uniquely
distinguishable classes.

Assuming that the data are independent or weakly de-
pendent and can be treated as almost identically distributed,
one can use the definition ofinformation density:

IN =
1

N
log2

p(x,y)

p(x)p(y)
, (1)

wherex is the template for the learning set andy is a tem-
plate of the data to be classified,N is the template length,
and p(x,y), p(x) and p(y) are joint probability density
of X andY and their marginals, respectively. When the
template distributions are known, a so-calledrecognitionor
identification capacity[8] can be used:

Ī(X;Y ) = lim
N→∞

E[IN ], (2)

provided that the limit is well defined and the expectation
is taken with respect to the joint distribution ofX andY



that reduces to the Kullback-Leibler Distance (KLD) be-
tweenp(x,y) andp(x)p(y). This also corresponds to the
Bayesian multiclass classifier minimizing the average prob-
ability of misclassification and is invariant under linear in-
vertible transformations. In this case, the maximum number
of classes that can be recognized with vanishing probability
of error under the above conditions is limited as [9]:

M ≤ 2NĪ(X;Y ). (3)

For the case of i.i.d. Gaussian dataX ∼ N (0, σ2
XIN )

and the memoryless additive white Gaussian model of inter-
actiony = x + z with Z ∼ N (0, σ2

ZIN ), the recognition
capacity is readily found as:

Ī(X;Y ) =
1

2
log2

1

1 − ρ2
XY

=
1

2
log2

(

1 +
σ2

X

σ2
Z

)

, (4)

whereρ2
XY =

σ2
X

σ2
X

+σ2
Z

is a squared correlation coefficient
(SCC) betweenX andY . The results can be extended to
a more general model of interaction with training model
p(v|x) and observation modelp(y|x). For the i.i.d. Gaus-
sian case with the training data modelv = x + zt and ob-
servation modely = x + zr with Zt ∼ N (0, σ2

Zt
IN ) and

Zr ∼ N (0, σ2
Zr

IN ), the recognition capacity is:

Ī(V ;Y ) =
1

2
log2

1

1 − ρ2
V Y

, (5)

whereρ2
V Y =

σ4
X

(σ2
X

+σ2
Zt

)(σ2
X

+σ2
Zr

)
is the SCC betweenV

andY that transformsρ2
V Y = ρ2

XY for v = x.

3. PROPOSED APPROACH

Instead of following the above discussed construction of
coding matrix and training the classifiers, we will consider
a scheme that targets maximization of the number of cor-
rectly distinguishable classes based on the binary classifica-
tion. We will demonstrate that the structure of the coding
matrix that corresponds to the above objective and simulta-
neously maximizes minimum distance is obtained directly
from the training stage by mapping each vector of a training
set into a row of the coding matrix.

Without loss of generality, we will assume at this stage
that we have a mapper/encoding functionf(.) that maps
the training set and observation entries asf : XN → BL

x
,

Bx ∈ {0, 1}, andf : YN → BL
y

, By ∈ {0, 1}, respectively.
Therefore, the link between the binary representationbx of
vectorx and its noisy counterpartby of vectory is defined
according to abinary symmetric channel(BSC) model [9].
We assume that noise in the direct domain might cause a bit
flipping in the binary domain with a certain average prob-
ability P̄b. The corresponding maximum number of recog-
nizable classes (3) can be readily found as [9]:

Mb ≤ 2LĪ(Bx;By). (6)

Extending the mutual information between binary represen-
tations or classifiers outputs, one obtains:

Ī(Bx;By) = H(Bx) − H(Bx|By). (7)

It can be immediately noticed that to maximize theMb,
one needs to maximizeI(Bx;By) for a givenL that can be
achieved by: (a) maximization ofH(Bx) and (b) minimiza-
tion of H(Bx|By). In the considered binary case, the max-
imum value of termH(Bx) is 1, that can be achieved for
equiprobable independent data, i.e.,Pr(0) = Pr(1) = 0.5.
This suggests that the multi-class rate maximization coding
matrix should have equiprobable independent binary entries
that is known as a random coding matrix.

The second termH(Bx|By) is defined by the average
error probability of binary classification̄Pb andH(Bx|By) =
H2(P̄b) = −P̄b log2 P̄b − (1 − P̄b) log2(1 − P̄b) that is
the binary entropy. In the considered setup it is not possi-
ble to controlP̄b. Therefore, we will consider an alterna-
tive design whereP̄b can be considerably reduced due to
basis adaptation based on decision reliability information.
At the same time, we will demonstrate that this decrease
of bit error probability comes in price of increased size of
coding matrix that equivalently reduces the recognition rate.
In fact, we will demonstrate that these two approaches are
equivalent in terms of recognition rate and simply represent
different designs of coding matrices. The only increase of
recognition rate can be achieved due to the change of fusion
rule based on reliability information for a fixed size of the
random coding matrix.

3.1. Design of coding matrix

According to the above analysis the coding matrix should
maximizeH(Bx). Simultaneously, we have assumed the
existence of a generic encoding functionf(.) that maps the
real-data entries into binary representations stored in the
coding matrix. To achieve the maximum ofH(Bx) = 1,
Bx should be equiprobable and independent. In this section,
we will consider a possible design of such kind of encoding
function based on random projections and binarization.

The random projections are considered as a dimension-
ality reduction step and are performed as:

x̃ = Wx, (8)

wherex ∈ R
N , x̃ ∈ R

L, W ∈ R
L×N andL ≤ N and

W = (w1,w2, · · · ,wL)T consists of a set of projection
basis vectorswi ∈ R

N with 1 ≤ i ≤ L. Instead of fol-
lowing a particular consideration of mappingW, we will
assume thatW is a random matrix. The matrixW has
elementswi,j that are generated from some specified dis-
tribution. AnL × N random matrixW whose entrieswi,j

are independent realizations of Gaussian random variables
Wi,j ∼ N (0, 1

N
) is of a particular interest for our study.



In this case, such a matrix can be considered as an almost
orthoprojector, for whichWWT ≈ IL. 1

The second step uses labeling or Grey codes to ensure
closeness of labels for close vectors. Such kind of labeling
is known assoft hashing. When only the most significant
bit of the Grey code is used, it is known as binary orhard
hashing.

The most simple quantization or binarization of extracted
features is known assign random projections:

bxi
= sign(wT

i x), (9)

wherebxi
∈ {0, 1}, with 1 ≤ i ≤ L andsign(a) = 1, if

a ≥ 0 and0, otherwise. The vectorbx ∈ {0, 1}L computed
for all projections represents a binary label of class com-
puted from the vectorx. The ensemble of all binary labels
bx(m) with 1 ≤ m ≤ M forms a coding matrix.

It can be readily validated that due to the independence
of projections the results of projections will be independent
and almost equiprobable that satisfies the necessary condi-
tions of entropy maximization.

At the same time, one can notice that the binary labels
are deduced directly from the training data and stored in the
coding matrix thus avoiding the additional stage of match-
ing binary label deduced from the training vector with the
closest row of the coding matrix as it is done for the methods
discussed in the introduction.

3.2. Minimization of average error probability for bi-
nary classifiers: reliability function

The bit error probability indicates the mismatch of signs be-
tweenx̃i andỹi, i.e.,Pr[sign(x̃i) 6= sign(ỹi)]. For a given
x andwi, one can find the probability of bit error as:

Pb|x̃i
=

1

2
(Pr[Ỹi ≥ 0|X̃i < 0]+Pr[Ỹi < 0|X̃i ≥ 0]), (10)

or by symmetry as:

Pb|x̃i
= Pr[Ỹi < 0|X̃i ≥ 0]. (11)

For a givenx̃i and Gaussian noise2, the distribution of the
projected vector is̃Yi ∼ N (x̃i, σ

2
ZwT

i wi) that reduces to
Ỹi ∼ N (x̃i, σ

2
Z) for the orthoprojection case (wT

i wi = 1)
and:

Pb|x̃i
=

∫ 0

−∞

1
√

2πσ2
Z

e
−(ỹi−x̃i)

2

2σ2
Z dỹi = Q

(

x̃i

σZ

)

. (12)

The origin ofPb|x̃i
for a given configuration ofx andwi

is shown in Figure 1. The vectorx forms the angleθXWi

with the basis vectorwi and the projection results into the
scalar valuẽxi. The closer angleθXWi

to π/2, the smaller

1Otherwise, one can apply special orthogonalization techniques to en-
sure perfect orthogonality.

2In the case of assumed Gaussian random basis vectorswi any distri-
bution will be mapped into Gaussian one for both entry and noise data.

value x̃i. This leads to the larger probability that the sign
of ỹi will be different from the sign of̃xi that is shown by
the gray area under the curve ofp(ỹi). One can immediately
note that since the projections are generated at random there
is generally no guaranty that two vectors can be collinear.
However, at the same time some of the projections might
form angles withx that deviate fromπ/2 thus leading to a
smaller probability of binary classification error. This ob-
servation makes it possible to assume that some projections
can be more preferable than others and the equation (12)
can be a good measure of bitreliability. We will denote
the reliability of theith bit computed fromx for projec-

tion wi asRx(i) = 1 − Pb|x̃i
= 1 − Q

(

x̃i

σZ

)

. Obviously,

the larger the value of̃xi is obtained in the result of pro-
jection, the closerRx(i) is to 1. The above analysis refers
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Fig. 1. The bit error probability for a givenx and somewi.

to only one realizationx. SinceX is a random vector fol-
lowing some distributionp(x), one should find the average
probability of error for all possible realizations. Assuming
X ∼ N (0, σ2

XIN ), the statistics of data in the projection
domain areX̃i ∼ N (0, σ2

X) (Figure2,a) and the average bit
error probability is:

P̄b = 2

∫ ∞

0

Pb|x̃i
p(x̃i)dx̃i (13)

= 2

∫ ∞

0

Q

(

x̃i

σZ

)

1
√

2πσ2
X

e
−x̃2

i

2σ2
X dx̃i =

1

π
arccos(ρXY ).

(14)

Remarkably, the average probability of error depends on
the correlation coefficient between the direct domain data
and is determined by the channel and source statistics. It
can be easily verified for the more general model that the
average bit error probability (13) is:

P̄b = π−1 arccos(ρV Y ), (15)

that coincides with (13) for the noiseless training case. Ob-
viously, this sort of ambiguity during training causes an ad-
ditional increase in probability sinceρXY ≥ ρV Y , this will
be demonstrated by the results of computer simulation.

It is also important to note that all possible valuesx̃i in
(13) originating from both “unreliable”, i.e., values are close
to zero, and “reliable”, i.e., values are far away from zero,
projections are taken into account with the same weight to



form the resulting binary vectorbx and corresponding cod-
ing matrix. Obviously, for a given set of training data one
can always find a set of vectorswi, 1 ≤ i ≤ L that min-
imizes the overall bit error probability. However, keeping
in mind the facts that (a) the number of classes might be of
order of millions; and (b) it can be constantly updated; such
an optimization problem looks highly unfeasible.

Therefore, in the scope of this paper we will consider
another approach when one generates theovercomplete set
of projectionsJ and selects among them only thoseL pro-
jections that are the largest in the absolute magnitude, if a
fixed number of bits is requested, or those that are higher
then a certain thresholdTx̃ for a givenx.

In case of the above thresholding approach (Figure 2,b),
the corresponding average probability of bit error is:

P̄bT
=

1
∫ ∞

T x̃
p(x̃i)dx̃i

∫ ∞

Tx̃

Pb|x̃i
p(x̃i)dx̃i (16)

= Q−1

(

T x̃

σX

)
∫ ∞

T x̃

Q

(

x̃i

σZr

)

1
√

2πσ2
X

e
−x̃2

i

2σ2
X dx̃i, (17)

where the multiplier is the normalization constant corre-
sponding to the fraction of distribution behind the threshold.

The practical application of this approach is facing three
main concerns: (a) which number of overcomplete projec-
tionsJ is needed for anyx to guarantee the necessaryL?;
(b) what is a possible gain in̄PbT

versusP̄b?; (c) what is
the impact onP̄b of a mismatch between the reliable pro-
jections extracted fromv at the training stage and those ex-
tracted fromy at the classification stage? We will address
the issues (a) and (b) in this section to demonstrate the feasi-
bility of the proposed approach and possible increase in the
classification accuracy and investigate the remaining issue
(c) in the experimental part of the paper. At the same time,
one should take into account the increase of the coding ma-
trix sizeL to store the information about reliable projections
that might affect the achievable recognition rate.

 

( )ip xɶ
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Fig. 2. Bit error reliability framework: (a) all values̃xi are
taken into account and (b) only the most reliable values are
taken for the basis selection (to be normalized to 1).

It is easy to verify that the number of coefficientsL of
random variablẽXi following Gaussian distribution and ex-
ceeding the thresholdTx̃ in J projections satisfies with high
probability the following equation:

Pr[L ≥ ℓ] = 1 − FBX
(J, ℓ,Pr[X̃i > Tx̃]), (18)

whereℓ is the necessary number of reliable coefficients in
the coding matrix (like 32, 64 or 128),FBX

(J, ℓ,Pr[X̃i >
Tx̃]) designates binomial cumulative distribution function

andPr[X̃i > Tx̃] = Q
(

Tx̃

σX

)

. For practical applications,

one can assume that to ensure the existence of desiredℓ with
high probability1− ǫ, the quantityFBX

(J, ℓ,Pr[X̃i > Tx̃])
should be bounded by a smallǫ that will be further assumed
not to exceed10−10. This result is shown in Figure 3. Ob-
viously, the larger the number of reliable bits is requestedin
the coding matrix, the more projectionsJ should be gener-
ated for a given threshold. At the same time, the increase of
the threshold leads to the exponential number of projections
J . Although these numbers seem to be quite high, for exam-
ple forL = 64 andTx̃ = 2.5, the neededJ is about2 · 104,
this can be compared to the discrete Fourier transform of
image of size512 × 512 for the optimal feature selection
out of about2.6 · 105 transform coefficients. Therefore, this
problem is computationally feasible. To answer the second

0 0.5 1 1.5 2 2.5 3
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10
4
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T
x

J

L=32
L=64
L=128

Fig. 3. The estimation of necessary number of projections
J for the desired number of reliable bits in coding matrix
for σ2

X = 1.

question about the possible gain in̄PbT
versusP̄b, we will

plot the corresponding results (13) and (16) for different
Tx̃ as a function of signal-to-noise ratio (SNR) defined as

SNR = 10 log10
σ2

X

σ2
Zr

. The results are shown in Figure 4.

The proposed optimization strategy to the reliable projec-
tion selection clearly demonstrates a considerable increase
in the accuracy of binary classifiers with respect to the blind
projection selection. The results coincide forTx̃ = 0 that
confirms the fact that all projections are blindly taken into
account for the coding matrix generation.

3.3. Practical decoders

There are several possible practical implementations of the
proposed framework. The first approach consists in gener-
ating J projections and selecting only theL most reliable
ones thus producing aM × L coding matrix and aM × L′
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Fig. 4. The average bit error probability for blind and reli-
able projections selection for various thresholds.

matrix storing information about reliable components’ posi-
tions. For one entry the reliable components’ position vec-
tor consists ofPx = 1(Rx) ∈ {0, 1}J , with L non-zero
components and1(.) denotes the indicator function taking
value1, if the the reliability function corresponds to the re-
liable bit and0, otherwise. If the information is encoded
encoded directlyL′ = H(Px) = JH2(PpX

), wherePpX

is the probability of1 in the position vector. Another alter-
native consists in the fact thatPx and its counterpartPy

are correlated and one can use a distributed source coding
technique based on binning [9] thus reducing the equiva-
lent length toL′ = H(Px|Py) = JH2(PpX |pY

), where
PpX |pY

is the probability of bit mismatch betweenPx and
Py. Disregarding the storage format, the reliability based
decoder filters out all unreliable bits in the distance metric
preserving onlyL reliable bits:

m̂ = arg min
1≤m≤M

J
∑

j=1

dH(bxj
(m), byj

)Pyj
, (19)

wherebx ∈ {−1, 1}J andby ∈ {−1, 1}J . We will show
that indeed one can achieve a considerable decrease in the
bit error probability in cost of the coding matrix size in-
crease. We will demonstrate in the next section that the
recognition rate of this approach is equivalent to those based
onM × L blind random coding matrix proposed in the pa-
per.

4. RESULTS OF COMPUTER SIMULATION AND
CONCLUSIONS

In this section, we will first demonstrate the maximum num-
ber of uniquely distinguishable classes in terms of recogni-
tion rates computed for the best achievable case of direct
domain classification̄I(X;Y ) according to (4) and based
on a set ofL equivalent binary classifiers with the blind se-
lection of projections̄I(Bx;By) and reliability based pro-
jection selectioñI(Bx;By). In the second part of model-
ing, we present empirical bit error probabilities for different

classification strategies and highlight the mismatch in train-
ing and recognition data models on the average probability
of bit error.

The recognition rates for the above classifiers are shown
in Figure 5 for the dimensionality reduction factorL/N =
32/1024. All results are obtained by simulation of 100 class
realizations, 100 projection matrices and 100 noise realiza-
tions. The recognition rate of the optimal Bayesian multi-
class classifier denoted as “Direct: dim. N” with the data
dimensionalityN represents the best achievable limit under
the completely known distributions. The dimensionality re-
duction based on random projections leads to decrease of
this rate by a factorL/N that is denoted as “Direct: dim.
L”, while all classifiers based on the set of binary classifiers
achieve their limit equal to1 at high SNR. We tested two
classes of multiclass classifiers based on binary classifiers,
i.e., blind and reliability-based, for two models of training
data(x,y) and(v,y). The number of reliable projections
was varying to keep the overall coding matrix and position
information matrix length equal toL based onJ = 1500
random projections for the reliability based binary classi-
fication. The proposed blind classifier achievable recogni-
tion rate coincides with the one of reliability based classi-
fier. It should be also pointed out that the Bayesian clas-
sifier requires the knowledge of actual priors models while
the proposed classifiers are based on the binary model and
Gaussian statistics of reliability function in the discussed
projected domain. The rate for noisy training datav based
on the binary classifiers represent the lower bound in the
performed modeling. It is interesting to emphasize that the
rates for the reliability based classifiers with the reliability
estimation based onRx andRy coincide.

The empirical average bit error probabilities for differ-
ent classification strategies are shown in Figure 6. To in-
vestigate the impact of the above mismatch on the train-
ing data, we performed tests for three different cases when
the reliability function is computed from the original train-
ing datax, training noisy datav and directly observation
datay. Obviously, two first cases are just presented for il-
lustration purposes since they assume that the class index
m is known at the classifier for the optimal projection ba-
sis selection that is not the case for the practical systems.
Nevertheless, it is interesting to note that the impact of mis-
match in the accuracy of optimal projections selection based
on the reliability functionsRx and Ry and Rv and Ry

in the corresponding models(x,y) and (v,y) is negligi-
ble and the curves practically coincide. The reason for that
is explained by a small number of wrongly identified op-
timal projections directly from noisy data with respect to
two training models. The mismatch in the number of cor-
rectly estimated projections forJ = 1500 random projec-
tions based on the distance between the indicator functions
Py vsPx, andPy vsPv is shown in Figure 7. This repre-



sents a small (less than 5%) mismatch that does not have any
practically significant impact on the average bit error and
demonstrates the high robustness of the proposed method
to training and model errors. Finally, it considerably out-
perfroms the blind binary classifier for both models(x,y)
and(v,y) in terms of bit error rate. However, this advan-
tage is equilized for the achieveable recognition rate due
to the storage of reliable bits’ position information. The
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Fig. 5. The maximum number of uniquely distinguishable
classes in terms of recognition rates for the direct and ran-
dom projections domains multiclass classifier and classifiers
based on a set of binary classifiers with blind and reliability
based projections selection.

proposed approach also considerably outperforms in terms
of the classification rate both the one-vs-one coding matrix
designRo-v-o = 1/N log2 L/L and the one-vs-all design
R o-v-a = 1/N log2 L/((L2 − L)/2). Therefore, being built
into the multiclass classification framework the proposed
methods automatically suggest the optimal design of cod-
ing matrix that maximizes the number of uniquely recog-
nizable classes, do not need retraining of binary classifiers
for the addition of new classes and are robust to the train-
ing and model errors. The proposed approach based on bit
reliability can be extended to create new more powerful fu-
sion rules based on real values of the projected coefficients
mapped into the corresponding weights and to reduce the
complexity of the multiclass classification with largeM .
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