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MULTICLASS CLASSIFICATION BASED ON BINARY CLASSIFIERS:
ON CODING MATRIX DESIGN, RELIABILITY AND MAXIMUM NUMBER OF CLASSES

Sviatoslav Voloshynovskiy, Oleksiy Koval, Fokko Beekhdflaras Holotyak

University of Geneva
Department of Computer Science
7 route de Drize, CH 1227, Geneva, Switzerland

ABSTRACT idea to maximize the inter-codeword Hamming distances
In thi ider th licl lassificatiof that is believed to correspond to the most robust coding
n this paper, we consider the multiclass classificatiompro .y design in terms of classification accuracy. However,

Igm based on independent set of binary class!flers. E.acr}hese predefined coding matrices are problem-independent
binary classifier represents the output of quantized projec and can not cover a broad class of varying models. The

tion of training data onto a randomly generated orthonormal design of an optimal decoder minimizing the overall mis-

basis vector thus producing a binary label. The ensemble Ofclassification error probability is also mainly accompdigh

all bina_ry labels fO”T.‘S an analo_gue ofa cod.in.g matrix. The based on the minimum Hamming distance decoder that is
prop'ertles of such kind o'f matrlc.es.and'thelr impact on the a form of hard decoding. Although several score-based de-
maximum ”“”.‘ber of uniquely @stmgwghable clagses .arecoding rules (e.g., loss-based and loss-weighted decpding
ana_lyzed in this paper from an Informat|or!-th_e_oret|c point attempt to consider the effect of binary classification-reli
of view. We also consider a concept of reliability for such iy i the overall fusion rule, the theoretically jufiid

kind of coding matrix generation that can be an glterngtwe probabilistic fusion rules are still missing. Despite save
Way_for other adaptlye training techmques and investigate recent remarkable exceptions [5, 6, 7], these problems are
the Impact on the bit error pTObab"'W- we demons”a‘? little studied and the problem of joint coding matrix de-
that it is equivalent to the considered random coding matrix sign and probabilistic decoding maximizing the number of

\t,iv:r?(r):tteany bit reliability information in terms of recogni uniquely recognizable classes is of great practical istere

2. PROBLEM FORMULATION
1. INTRODUCTION
In this paper we will follow the information-theoretic ma-
In this paper we will address the multiclass categorization chine learning approach thus providing the link with the
problem in a Machine Learning formulation requiring the coding theory for optimal joint coding matrix and decoder
assignments of labels to instances that belong to a finite setlesign and estimation of the maximum number of uniquely
of classes{/ > 2). While multiclass versions of most clas- distinguishable classes.
sification algorithms exist (e.g., [1]), they tend to be com- Assuming that the data are independent or weakly de-
plex [2]. Therefore, a more common approach is to con- pendent and can be treated as almost identically distdbute
struct the multiclass classifier by combining the outputs of one can use the definition offormation density
several binary classifiers [3, 4] that also extendet@r In = — 1o p(x,y) )
correcting output codeECOC). NT N 82 pxp(y)

The ECOC framework consists of two main steps: a yherex is the template for the learning set apds a tem-
codmgstep,_ where the codeword or some r.epresentatlon Ofplate of the data to be classified is the template length,
gntry is assigned t(_) a row of a cpdmg matrix, a_mikaaod— and p(x,y), p(x) and p(y) are joint probability density
ing step, where a given observation is mapped into the mostyt x andY and their marginals, respectively. When the

similar codeword of coding matrix. There are many meth- o mpiate distributions are known, a so-caltedognitionor
ods of coding matrix design based on the predefined set ofyantification capacity8] can be used:

codewords that follow different heuristics with the ovéral I(XY) = ]\;im E[IN], @)
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that reduces to the Kullback-Leibler Distance (KLD) be- Extending the mutual information between binary represen-
tweenp(x,y) andp(x)p(y). This also corresponds to the tations or classifiers outputs, one obtains:

Ba_y_e3|an rr_1u|t|cla§_s clgssmer minimizing the average pr_ob [(By; By) = H(By) — H(Bx|By). @)
ability of misclassification and is invariant under linear i

vertible transformations. In this case, the maximum number
of classes that can be recognized with vanishing probgbilit one needs to maximizE By; By ) for a givenL that can be

of error under the above conditions is limited as [9]: achieved by: (a) maximization 6f (B,) and (b) minimiza-

M < oNI(X3), (3) tion of H(Bx|By). In the considered binary case, the max-
imum value of termH (By) is 1, that can be achieved for
equiprobable independent data, ilr(0) = Pr(1) = 0.5.
This suggests that the multi-class rate maximization apdin
matrix should have equiprobable independent binary entrie
that is known as a random coding matrix.

It can be immediately noticed that to maximize thg,

For the case of i.i.d. Gaussian d¥a~ N(0,0%1y)
and the memoryless additive white Gaussian model of inter-
actiony = x + z with Z ~ N (0,0%1y), the recognition
capacity is readily found as:

z 1 1 1 o3 The second ternil (B, | By) is defined by the average
I(X;Y)=zlogy ——— = =1 14 =X 4 x| Py o y g
(X3Y) = 5 loga 77— Py 2082 < * a%) @ error probability of binary classificatioR, andH (Bx|By ) =
HQ(Pb) = —-PB 10g2 P, — (1 — Pb) 10g2(1 — Pb) that is

2
wherep%, = a;ﬁ is a squared correlation coefficient the binary entropy. In the considered setup it is not possi-
(SCC) betweenk andY. The results can be extended to ble to control B,. Therefore, we will consider an alterna-
a more general model of interaction with training model tive design whereP, can be considerably reduced due to
p(v|x) and observation modely|x). For the i.i.d. Gaus- basis adaptation based on decision reliability infornratio

sian case with the training data model= x + z;, and ob- At the same time, we will demonstrate that this decrease
servation modey = x + z, with Z; ~ N(0, g% Iy) and of bit error probability comes in price of increased size of
Z, ~ N(0,0% Iy), the recognition capacity is: coding matrix that equivalently reduces the recognitida.ra
B 1 1 In fact, we will demonstrate that these two approaches are
I(VyY) = 5108y 75—, (5) equivalent in terms of recognition rate and simply represen
Pvy different designs of coding matrices. The only increase of
ol . recognition rate can be achieved due to the change of fusion
h 2. = X h S . i ;
Wherepyy (0% +oz,)(0%+0%.) Is the SCC betweei rule based on reliability information for a fixed size of the
andY that transformgo%,y = p?XY for v = x. random Coding matrix.
3. PROPOSED APPROACH 3.1. Design of coding matrix

Instead of following the above discussed construction of According to the above analysis the coding matrix should
coding matrix and training the classifiers, we will consider maximize H(By). Simultaneously, we have assumed the
a scheme that targets maximization of the number of cor-existence of a generic encoding functif) that maps the
rectly distinguishable classes based on the binary cleasifi real-data entries into binary representations stored én th
tion. We will demonstrate that the structure of the coding coding matrix. To achieve the maximum &f(Byx) = 1,
matrix that corresponds to the above objective and simulta- B, should be equiprobable and independent. In this section,
neously maximizes minimum distance is obtained directly we will consider a possible design of such kind of encoding
from the training stage by mapping each vector of a training function based on random projections and binarization.
set into a row of the coding matrix. The random projections are considered as a dimension-
Without loss of generality, we will assume at this stage ality reduction step and are performed as:
that we have a mapper/encoding functif) that maps % = Wx ®)
the training set and observation entriesfas XV — BL, ’
By € {0,1}, andf : V- Bﬁ,By_e {0,1}, respectively.  \harex € RV, % € RE, W € REXN andL < N and
Therefore, th_e I|nk_ between the binary represe_zntdﬂ;_grmf W = (wy,wa, -, wyz)T consists of a set of projection
vectorx and its noisy counterpali, of vectory is defined basis vectorsv; € RN with 1 < i < L. Instead of fol-

according to ainary symmetric chann¢BSC) model [9]. lowing a particular consideration of mappiny, we will
We assume that noise in the direct domain might cause a bit, o\ me thaW is a random matrix. The matriV has

flipping in the binary domain with a certain average prob-
ability P,. The corresponding maximum number of recog- (. ition. AnZ x N random matrixW whose entriesy; ;

hizable classes (3) can be readily found as [9]: are independent realizations of Gaussian random variables
M, < oM (BxiBy) (6) W;; ~ N(0,%) is of a particular interest for our study.

elementsw; ; that are generated from some specified dis-



In this case, such a matrix can be considered as an almostalue z;. This leads to the larger probability that the sign
orthoprojector for whichWwW7T ~ 1.1 of ; will be different from the sign of¢; that is shown by
The second step uses labeling or Grey codes to ensurehe gray area under the curvendfj;). One can immediately
closeness of labels for close vectors. Such kind of labeling note that since the projections are generated at random ther
is known assoft hashing When only the most significant is generally no guaranty that two vectors can be collinear.
bit of the Grey code is used, it is known as binaryhard However, at the same time some of the projections might

hashing form angles withx that deviate fromr /2 thus leading to a
The most simple quantization or binarization of extracted smaller probability of binary classification error. This-ob
features is known asignh random projections servation makes it possible to assume that some projections

by, = sign(wl'x), ) can be more preferable than others and the equation (12)

can be a good measure of bdliability. We will denote
whereb,, € {0,1}, with 1 < i < L andsign(a) = 1, if the reliability of theith bit computed fromx for projec-
a > 0ando, otherwise. The vectds, € {0,1}* computed  tionw, asRy(i) = 1 — Pyz, = 1 — Q (:7) Obviously,
for all projections represents a binary label of class com- 4,4 larger the value aof; is obtained in the result of pro-

puted from the vectox. The ensemble of all binary labels  jaction, the closefy (i) is to 1. The above analysis refers
by (m) with 1 < m < M forms a coding matrix.

It can be readily validated that due to the independence
of projections the results of projections will be indepentde
and almost equiprobable that satisfies the necessary condi-
tions of entropy maximization.

At the same time, one can notice that the binary labels
are deduced directly from the training data and stored in the
coding matrix thus avoiding the additional stage of match-
ing binary label deduced from the training vector with the
closest row of the coding matrix as it is done for the methods Fig. 1. The bit error probability for a giver and somew;.
discussed in the introduction.
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w;

to only one realizatiox. SinceX is a random vector fol-
3.2. Minimization of average error probability for bi- lowing some distributiom(x), one should find the average
nary classifiers: reliability function probability of error for all possible realizations. Assurgi
X ~ N(0,0%1Iy), the statistics of data in the projection
domain areX; ~ N(0,0%) (Figure2,a) and the average bit
error probability is:

The bit error probability indicates the mismatch of signs be
tweenz; andy;, i.e.,Pr[sign(Z;) # sign(g;)]. For a given
x andw;, one can find the probability of bit error as:

1 ~ ~ ~ . P, = 2/ Pz p(Z;)dx; 13
Pyo, = S(PrfYs > 0%, < O+ Poff; <0,z o), o) T2, e )
-2
e T; 1 - 1
or by symmetry as: = 2/ () ————e?Xx di; = — arccos .
7> d = 5 0 Q 0z ) \/2mo% T (pxv)
For a givenz; and Gaussian noidethe distribution of the Remarkably, the average probability of error depends on
projected vector i&; ~ N(#;,0%w; w;) that reduces to  the correlation coefficient between the direct domain data
Y; ~ N (Z;,0%) for the orthoprojection casev{ w; = 1) and is determined by the channel and source statistics. It
and: can be easily verified for the more general model that the
0 —(@i=%)? 5 i i .
1 Ll i average bit error probability (13) is:
Py z, 2/ ——c ¥z dj;=Q (x) - (12) J P 1 y(13)
—oo \/2m0% oz P, = n~ " arccos(pyy), (15)
The origin of Pz, for a given configuration ok andw; that coincides with (13) for the noiseless training case: Ob
is shown in Figure 1. The vector forms the angle xyy, viously, this sort of ambiguity during training causes an ad

with the basis vectow; and the projection results into the ditional increase in probability singexy > pvy, this will
scalar valuer;. The closer angléxw, to 7/2, the smaller be demonstrated by the results of computer simulation.
1otherwise, one can apply special orthogonalization tepfes to en- It IS— qlso_|mportant 0 TOte that al,! pOSSIble valugsn
sure perfect Or‘thogona"ty_ (13) originating f_rom bo;h unreliable”, i.e., values atese
2|n the case of assumed Gaussian random basis vestoasy distri- to zero, and “reliable”, i.e., values are far away from zero,
bution will be mapped into Gaussian one for both entry andendiga. projections are taken into account with the same weight to




form the resulting binary vectds, and corresponding cod-
ing matrix. Obviously, for a given set of training data one
can always find a set of vectovg;, 1 < ¢ < L that min-
imizes the overall bit error probability. However, keeping
in mind the facts that (a) the number of classes might be of
order of millions; and (b) it can be constantly updated; such
an optimization problem looks highly unfeasible.
Therefore, in the scope of this paper we will consider
another approach when one generatetlercomplete set
of projectionsJ and selects among them only thasero-

jections that are the largest in the absolute magnitude, if a
fixed number of bits is requested, or those that are higher

then a certain thresholf; for a givenx.
In case of the above thresholding approach (Figure 2,b),
the corresponding average probability of bit error is:

1 e o\ e
/ Py, p(%;)dT;
Tz

(&)

Jr p(3:)d;
o (2) e
ox Tz
where the multiplier is the normalization constant corre-
sponding to the fraction of distribution behind the thrddho
The practical application of this approach is facing three
main concerns: (a) which number of overcomplete projec-
tions J is needed for any to guarantee the necessdry;
(b) what is a possible gain i, versusP,?; (c) what is
the impact onP, of a mismatch between the reliable pro-
jections extracted frone at the training stage and those ex-
tracted fromy at the classification stage? We will address
the issues (a) and (b) in this section to demonstrate the feas

Py, (16)

z;

52
1 =

6203{ d.f?l, (1;)
0z, 27T0’2X

Pr[L > () =1— Fp (J,{,Pr[X; > Tj]), (18)
where/ is the necessary number of reliable coefficients in
the coding matrix (like 32, 64 or 128z, (J, ¢, Pr[X; >

Tz]) designates binomial cumulative distribution function
andPr[X; > T;] = Q Z—;) For practical applications,
one can assume that to ensure the existence of desirigal

high probabilityl — ¢, the quantityFz, (J, £, Pr[X; > T3])
should be bounded by a smalihat will be further assumed
not to exceed0~1°. This result is shown in Figure 3. Ob-
viously, the larger the number of reliable bits is requested
the coding matrix, the more projectiodgsshould be gener-
ated for a given threshold. At the same time, the increase of
the threshold leads to the exponential number of projestion
J. Although these numbers seem to be quite high, for exam-
ple for L = 64 andT; = 2.5, the needed is about2 - 10*,

this can be compared to the discrete Fourier transform of
image of size512 x 512 for the optimal feature selection
out of abou®.6 - 10° transform coefficients. Therefore, this
problem is computationally feasible. To answer the second

bility of the proposed approach and possible increase in the

classification accuracy and investigate the remainingeissu
(c) in the experimental part of the paper. At the same time,

one should take into account the increase of the coding ma-

trix size L to store the information about reliable projections
that might affect the achievable recognition rate.

i) )

@ ' %

Fig. 2. Bit error reliability framework: (a) all valueg; are
taken into account and (b) only the most reliable values are
taken for the basis selection (to be normalized to 1).

It is easy to verify that the number of coefficiertsof
random variableX; following Gaussian distribution and ex-
ceeding the thresholfl; in J projections satisfies with high
probability the following equation:

Fig. 3. The estimation of necessary number of projections
J for the desired number of reliable bits in coding matrix
foro% = 1.

question about the possible gaini, versusP,, we will
plot the corresponding results (13) and (16) for different
T; as a function of signal-to-noise ratio (SNR) defined as

SNR = 10log;, % The results are shown in Figure 4.
The proposed opti?nization strategy to the reliable projec-
tion selection clearly demonstrates a considerable iserea
in the accuracy of binary classifiers with respect to thedblin
projection selection. The results coincide By = 0 that
confirms the fact that all projections are blindly taken into

account for the coding matrix generation.

3.3. Practical decoders

There are several possible practical implementationseof th
proposed framework. The first approach consists in gener-
ating J projections and selecting only thie most reliable
ones thus producing & x L coding matrix and &/ x L’



classification strategies and highlight the mismatch imira
ing and recognition data models on the average probability
of bit error.

The recognition rates for the above classifiers are shown
in Figure 5 for the dimensionality reduction factby N =
32/1024. All results are obtained by simulation of 100 class
realizations, 100 projection matrices and 100 noise raaliz
tions. The recognition rate of the optimal Bayesian multi-
~ , class classifier denoted as “Direct: dim. N” with the data
e dimensionalityN represents the best achievable limit under

the completely known distributions. The dimensionality re
Fig. 4. The average bit error probability for blind and reli- duction based on random projections leads to decrease of
able projections selection for various thresholds. this rate by a factor,/V that is denoted as “Direct: dim.

L”, while all classifiers based on the set of binary classdfier
matrix storing information about reliable components’ipos ~achieve their limit equal td at high SNR. We tested two
tions. For one entry the reliable components’ position vec- classes of multiclass classifiers based on binary classifier
tor consists ofP, = 1(Ry) € {0,1}”, with L non-zero i.e., blind and reliability-based, for two models of traigi
components and(.) denotes the indicator function taking data(x,y) and(v,y). The number of reliable projections
valuel, if the the reliability function corresponds to the re- was varying to keep the overall coding matrix and position
liable bit and0, otherwise. If the information is encoded information matrix length equal té based on/ = 1500

encoded directhy,’ = H(Py) = JH(P,,), whereP,,, random projections for the reliability based binary classi
is the probability ofl in the position vector. Another alter- fication. The proposed blind classifier achievable recogni-
native consists in the fact th&, and its counterparP,, tion rate coincides with the one of reliability based classi

are correlated and one can use a distributed source codindfer. It should be also pointed out that the Bayesian clas-
technique based on binning [9] thus reducing the equiva- Sifier requires the knowledge of actual priors models while
lent length toL’ = H(Px|Py) = JH>(P,,|,, ), Where the proposed classifiers are based on the binary model and
P, 1pv is the probability of bit mismatch betwed?, and Gaussian statistics of reliability function in the discess
P,. Disregarding the storage format, the reliability based projected domain. The rate for noisy training dathased

decoder filters out all unreliable bits in the distance noetri 0n the binary classifiers represent the lower bound in the

preserving onlyL reliable bits: performed modeling. It is interesting to emphasize that the
7 rates for the reliability based classifiers with the reliapi
7 = arg min Z dH(bxj (m), by, )Py, , (19) estimation based oR, andR,, coincide.
1<m<M #4 .. . e .
j=1 The empirical average bit error probabilities for differ-

5 5 ) ent classification strategies are shown in Figure 6. To in-
whereb, € {—1,1} andby € {-1,1}". We will show  yegtigate the impact of the above mismatch on the train-
that indeed one can achieve a considerable decrease in thi(,a,g data, we performed tests for three different cases when
bit error probaplhty in cost of 'Fhe coding matrix size - the reliability function is computed from the original tnai
crease. We will demonstrate in the next section that thej,g gatax, training noisy datas and directly observation
recognition rate of this approach is equivalent to those®as  gatay. Obviously, two first cases are just presented for il-
on M x L blind random coding matrix proposed in the pa- |ystration purposes since they assume that the class index

per. m is known at the classifier for the optimal projection ba-
sis selection that is not the case for the practical systems.
4. RESULTS OF COMPUTER SIMULATION AND Nevertheless, it is interesting to note that the impact &t mi
CONCLUSIONS match in the accuracy of optimal projections selection Base

on the reliability functionsR, and R, andR. andR,
In this section, we will first demonstrate the maximum num- in the corresponding models, y) and (v,y) is negligi-
ber of uniquely distinguishable classes in terms of recogni ble and the curves practically coincide. The reason for that
tion rates computed for the best achievable case of directis explained by a small number of wrongly identified op-
domain classificatiod (X;Y") according to (4) and based timal projections directly from noisy data with respect to
on a set ofL equivalent binary classifiers with the blind se- two training models. The mismatch in the number of cor-
lection of projections/ (By; By) and reliability based pro-  rectly estimated projections fof = 1500 random projec-
jection selection/(By; By ). In the second part of model-  tions based on the distance between the indicator functions
ing, we present empirical bit error probabilities for dittat P, vs Py, andPy, vs P, is shown in Figure 7. This repre-



sents a small (less thafi® mismatch that does not have any
practically significant impact on the average bit error and
demonstrates the high robustness of the proposed metho
to training and model errors. Finally, it considerably out-
perfroms the blind binary classifier for both modéls y)
and(v,y) in terms of bit error rate. However, this advan-
tage is equilized for the achieveable recognition rate due
to the storage of reliable bits’ position information. The

—e—Direct: dim. N

—=— Direct: dim. L

—— Binary: blind mod. (x.y)

- - - Binary: blind mod. (v.y)
v Binary: Rel. R mod. (x)

Recognition rate, [bit/use]

 Binary: Rel. R mod. (v.y) 3

0 5 10 20 25 30
SNR, [dB]

Fig. 5. The maximum number of uniquely distinguishable
classes in terms of recognition rates for the direct and ran-
dom projections domains multiclass classifier and classifie
based on a set of binary classifiers with blind and religbilit
based projections selection.

d

—aA— Blind: mod. (x,y)
—w—Blind: mod. (v.y)
—— Reliability R/ mod. (v,y)
—»— Reliability Ry: mod. (v,y)

—e—Reliability R : mod. ()]

—e— Reliabity R mod. (x)

5

0 10 20 30
SNR, [dB]

Fig. 6. Average bit error probability for blind and reliability
based binary classifiers with different training strategie

——Rx and Ry|
- =-=-RvandRy

w
S

No of missmatches

201

101

0 10 20 30
SNR, [dB]

Fig. 7. Number of incorrectly identified optimal projections

proposed approach also considerably outperforms in terms, pairsPy-P, andP,-P,, for .J = 1500.

of the classification rate both the one-vs-one coding matrix
designRo.v.o = 1/Nlog, L/L and the one-vs-all design
Rova=1/Nlog, L/((L? — L)/2). Therefore, being built
into the multiclass classification framework the proposed

methods automatically suggest the optimal design of cod- 4

ing matrix that maximizes the number of uniquely recog-
nizable classes, do not need retraining of binary classifier
for the addition of new classes and are robust to the train-
ing and model errors. The proposed approach based on bi
reliability can be extended to create new more powerful fu-

sion rules based on real values of the projected coefficients
mapped into the corresponding weights and to reduce the

complexity of the multiclass classification with largé.
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