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1 Section S1 Connection to Optimal Transport

In this section, we detail how Optimal Transport (OT) theory [1, 2, 3, 1] supports the two
criteria (a, b) related to changes in cell expression and cell density, which are presented in
Section 2.1 of the main text and serve as the basis for TimeFlow.

While some Trajectory Inference (TT) methods study in vivo developmental processes
using a single static snapshot taken at a specific time point, other methods target in vitro
processes or time-course experiments, where multiple, independent cell snapshots are taken
at a few different physical time points (tp =0 < ... <t; < ... < tg = T). Methods falling in
the latter category, usually model the developmental process as a time-varying probability
distribution (i.e., stochastic process) to account for the available temporal labels [5, 6, 7, &].
We borrow the notation of the main text, where a cell state is referred as x; € X € RP, and X
is the D-dimensional marker space. In addition, we denote the distribution of cells receiving
a pseudotime value t by f; : X — R*,t € [0, T]. A reasonable question is how the stem cell
distribution u = fy at t = 0 evolves into a mature cell distribution v = fr at t = T. OT-based
methods for TI have addressed this question by computing transport plans or probabilistic
mappings between cells at consecutive time points that move the source distribution to the
target distribution (static OT) or by learning a time-continuous model that connects the
marginal cell distributions over the time course (dynamic OT) [9]. A transport plan y moves
the probability mass between two distributions p and v with some arbitrarily chosen cost.
Assuming the Euclidean setting prevails in the markers’ space, the cost function of moving a
unit mass from the source x € X to target y € X is usually set to be the squared Euclidean
distance d(x,y) = ||x — y||*>. Based on the Kantorovich formulation of OT [1], for any two
probability measures p, v on X, the Kantorovich or Wasserstein distance of order p between
u and v, is defined by the formula

W)= nt [ ey dvi) 1)

YEI(1,v)

where p € [1,00) and TI(i, v) the set of all couplings y on X x X with marginals are w, v [1].
For consistency with the Euclidean setup, we consider p = 1. The optimal transport plan
v* € II (fo, f1) is the plan which achieves the minimum of the equation 1. By definition [1, 3,

| for the given distributions fy and fr, the constant speed geodesic (here shortest path) is
given by the pushforward measure f; := (), v*, where (1, v) = (1-%)p+ v and y*
the optimal transport plan with fy and fr marginals. In this context, the geodesic term refers
to a curve in the Wasserstein space of the probability measures that connects distributions
fy and fr in the most cost-efficient way. Intuitively, this means that the temporal sequence
of distributions f;(t € [0, T]) over X smoothly deforms (evolves) f; onto fr, while minimizing
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the cost function d. Thus, for two cells close in differentiation with representations x; and x;
at t and t + 0t, respectively, as mentioned in the main text, we expect:

a. d(x;,%j) < €, for a small value of €: the representations of the cell at t and t + 0t to
have similar marker expression,

b. |fitse (x5) — fi (x3)] < €2, for a small value of €;: the pointwise changes between the
marginal temporal distributions of the cells to be smooth and translated by the markers’
evolution.

Unlike other OT-based TI methods, which can access both fy and fr, in our single static
snapshot setup, there are no temporal labels that would allow explicit estimation of transport
maps. Instead, we only assume access to the stem cell distribution fy based on some prior
biological knowledge (e.g., CD34™* haematopoietic stem and progenitor cells (HSPCs)). The
implementation of TimeFlow, presented in the main text Section 2.2, is a greedy solution
that reconstructs cell paths by adapting the above two criteria in the single static snapshot
setup. This snapshot is a sample of the t-marginal distribution f = Z;F:o f; into the marker
space X. Assuming a localized mass split for f;, the density at x; is dominated by the value of
fi, (x;). We characterize the geodesic of distribution f as many pointwise cell geodesics under
the form of shortest paths in the snapshot, computed by the Dijkstra [I11] algorithm. We
limit the evolution of a cell to its k-Nearest Neighbours (k-NN) in the marker space (criterion
a) and compute the shortest paths by minimizing the changes in the density space (criterion
b). Dijkstra is by nature a greedy algorithm that provides a locally optimal solution to the
shortest path problem. In the context of TimeFlow, the shortest paths show the most likely
and least cost cell evolution routes in the snapshot. This is a greedy solution on a discrete
graph structure that approximates the smooth variations of the cell density in the continuous
space and agrees with the OT approach, where the objective is to minimize the total cost of
transporting cell mass between consecutive experimental time points.

2 Section S2 Background on the Real NVP transform

TimeFlow uses the Real Non-Volume Preserving transformation (Real NVP) [12] to model
the probability density function of the cells. Here, we follow the notation of Section 2.2 in the
main text and detail the Real NVP transformation. Transforming a multivariate Gaussian
base distribution with an affine transformation x = g(z) = Az+ b, where A an invertible
square matrix and z = g~!(x) = A7!(x — b) the inverse transformation, results in another
Gaussian target distribution. Real NVP exploits the invertibility of an affine transformation,
while also allowing for non-Gaussian target distributions by stacking multiple affine coupling
layers. Each of these layers transforms a subset of the input dimensions with a scaling and a
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translation operation, whose parameters are learnt by neural networks. Real NVP splits the
vector z into two disjoint parts z = [21.4, Za4+1.p] of dimensionality d and D — d, respectively,
and then maps z into a vector x, partitioned as x = [X1.4, Xa+1.p]. The first part of the output
vector, X1.q4, remains unchanged, while the second part x4 1.p receives an affine transformation
whose coefficients are given by nonlinear functions of z;.q. The mapping is given as

X1:d = Z1.d
Xd+1:D = €Xp (S (ledu es)) ®© Z4+1:D +t (led,et) 3

(2)

where ® the elementwise Hadamard product, s(-) and t(-) : R — RP~9, the scaling and
translation operations of the transformation. These operations are implemented by neural
networks with learnable parameters 0 = [0g, 0;]. The inverse mapping is computed as

Z1.4 = X1d

Zd+1:D = €Xp (—S (Xl:da es)) ®© (Xd+1;D —t (X1;d,7 et)) .

(3)

If the observed data are independent and identically distributed, then the training objec-
tive of flow-based models is the average negative log likelihood function, given as

N
1
argming By [—log fy(x)] = N Z log fx (xn | 0)
n=1

(55}

The density module in TimeFlow assumes a multivariate standard Gaussian distribution
N(z|0,1Ip) for the Z variable and implements K Real NVP coupling layers, forming a deep
neural network architecture that ensures an expressive transformation. The training objective

function in 4 becomes
N K

1 D 1 2 0 gt (xu)

— — log(2 —| et (%, log |det | =2k 12 . 5
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As mentioned in the main text, evaluating the density function at each data point x;

requires the Jacobian matrix of the inverse transformation. For one Real NVP transform,
this Jacobian matrix is computed as

— Id !
J = [ 821% diag (exp [—s (x1.4)]) } ' .

— iN Z {log f7 (g5 " (xn)) + log

n=1




This is a lower triangular matrix whose determinant simplifies to the product of the diagonal
elements

d d
det J = HeXp (—s (x14)); = exp [Z —s (Xlzd)j] : (7)
j=1 =1

For K coupling layers, the log of the Jacobian determinant is given by the sum of the
log determinants for each layer. It is recommended to shuffle the order of dimensions after
each coupling layer to ensure that each dimension is subject to an affine transformation. For
further information on the theoretical background and the application of normalizing flows,
we refer the reader to [13, 14, 15, 16].

3 Section S3 Technical implementation of TimeFlow

TimeFlow consists of two modules: the density estimation, written with PyTorch [17], and
the pseudotime computation module, written with Python 3.11.3. In the density estimation
module, we followed the educational paradigm from [I1&] to implement the Real NVP archi-
tecture and infer the log probability density function of the input data. The architecture
included ten coupling layers implemented as feed-forward neural networks. For the shift op-
eration, the networks used four fully connected hidden layers, followed by the Leaky ReLLU
function. For the scaling operation, the networks used three fully connected hidden layers,
followed by Leaky ReLU and Tanh functions (this combination has been found to perform
best [19]). The data were split into a 70% training set and a 30% validation set for density
estimation on a specific dataset with early stopping. To compare different architectures, we
recommend the user to include a test set. Our models were trained for a maximum of 500
epochs, and early stopping with a 15-epoch patience was applied if there was no improvement
on the validation set after 15 consecutive epochs. The order of input dimensions was reversed
after each coupling layer. All experiments were run using CPUs, but GPUs may also be used
to accelerate the training. In the pseudotime module, we constructed a k-Nearest Neighbour
Graph in the original space using the pairwise FKuclidean distances between the cells. We
initially set the value of k to five to preserve the local geometry information and increased
it by one if there were disconnected components in the graph to avoid non-existing shortest
paths (TimeFlow targets connected differentiation processes). We weighted the graph based
on the absolute difference of the log probability density at the endpoints of each edge and
computed the density-driven shortest paths using the Python version of the igraph package
[20]. Following the example of other TT methods [21, 22], the root cell of each trajectory was
manually chosen based on high CD34 expression, which is characteristic to hematopoietic
stem and progenitor cells (HSPCs). Then, we accumulated the Euclidean distances between
the nodes that comprise each path. The sum of a cell’s path corresponds to its pseudotime



and describes the evolution of its marker expression from the onset of differentiation. To
model the evolution of the markers for a specific lineage, we selected the Generalized Addi-
tive Model (GAM) with a cubic spline from the mgev R package [23] or PyGAM [21]. We
examined the sensitivity of TimeFlow and found it robust the root selection (results not
presented here). As a good practice, we recommend pseudotime estimation with multiple
roots and pseudotime averaging for more reliable results.

4 Section S4 Datasets

4.1 S4.1 In-house hematopoietic datasets

The panel of CD markers for the in-house flow cytometry datasets, includes the following
20 markers: CD200, CD45, CD45RA, CD64, CD3, CD15, CD133, CD117, CD56, HLA.DR,
CD19, CD33, CD34, CD371, CD7, CD16, CD123, CD36, CD38. Supplementary Table S1
presents the cell counts for each population.

4.2 S4.2 Levine-13 dataset

The Levine-13 mass cytometry dataset [25] measures the expression of 13 CD markers on
167,044 cells, out of which 81,747 have been manually gated for 24 immune cell populations.
The remaining 85,297 cells are labelled as unassigned. The 13 surface markers are: CD45,
CD45RA, CD19, CD11b, CD4, CDS8, CD34, CD20, CD33, CD123, CD38, CD90, and CD3.
Table S2 presents the cell counts for each population. To evaluate the Pearson Correlation
between pseudotime and markers, we selected CD45, CD45RA, CD20 and CD19 for the
B-cells lineage and CD11b for the monocytic lineage.

4.3 S4.3 Levine-32 dataset

The Levine-32 mass cytometry dataset [26] measures 265,627 cells from the bone marrow of
two healthy patients and consists of 32 CD markers: CD45RA, CD133, CD19, CD22, CD11b,
CD4, CD8, CD34, FIt3, CD20, CXCR4, CD235abh, CD45, CD123, CD321, CD14, CD33,
CD47, CD11¢, CD7, CD15, CD16, CD44, CD38, CD13, CD3, CD61, CD117, CD49d, HLA-
DR, CD64, CD41. In total 104,184 cells have been manually gated for 14 cell populations
and 161,443 cells remain unassigned. Table S3 presents the cell counts for each population.
To evaluate the Pearson Correlation between pseudotime and markers, we selected CD45,
CD45RA, CD20 and CD19 for the B-cells lineage and CD11b for the monocytic lineage.



4.4 Wishbone dataset

The Wishbone [22] mass cytometry dataset measures 25,000 cells for 13 surface-protein mark-
ers (CD27, CD4, CD5, CD127, CD44, CD69, CD117, CD62L, CD24, CD3, CD8, CD25 and
TCRDb). Table S4 shows the cell counts for each population. To evaluate the Pearson Cor-
relation between pseudotime and markers, we selected CD8 and CD4 for the CD8' SP and
C'D4* SP lineages, respectively.

5 Section S5 Data pre-processing

Our new in-house hematopoietic datasets were pre-processed with the R packages PeacoQC
[27] and flowCore [28] for standard steps such as removal of marginal events, compensation,
logicle transformation, removal of doublets and debris cells. The public mass cytometry
datasets of Levine-13, Levine-32 and Wishbone were arcsinh-transformed with cofactor of
5. Clean data were also scaled to [0,1] with min-max scaling for numerical stability during
density estimation with Real NVP.

6 Section S6 Trajectory Inference methods used for
comparisons

We compared the pseudotemporal orderings of TimeFlow to eleven other methods for pseu-
dotime and trajectory inference. We provide a brief description of the selected TT methods.

1. Wanderlust

Wanderlust [21] is designed for flow and mass cytometry datasets and models lin-
ear trajectories. It represents the cells with nodes on a k-nearest neighbour graph
(k-NNG) in the high-dimensional space defined by the markers. To address short cir-
cuits—spurious edges between cells that are close in the marker’s space but distant in
maturation—Wanderlust introduces stochasticity. Specifically, it randomly discards a
few connections from each node in the original graph to generate a set of sub-graphs.
For each generated sub-graph, Wanderlust computes the shortest path distance from
the root cell to every other cell by summing the edge weights (Euclidean distances).
To further mitigate the problem of noisy paths, Wanderlust also introduces waypoints,
which are randomly sampled cells. It computes the shortest path distance of each cell
from all waypoints and calculates a weighted average of these distances. Waypoints
closer to the cell are assigned with higher weights to influence more the overall dis-



tance. Finally, Wanderlust averages the shortest path distances obtained from each
sub-graph to derive a robust pseudotime estimate for each cell.

. SCORPIUS

SCORPIUS [29] is designed for RNA-seq data and models only linear trajectories. It
finds a low-dimensional representation of the data using multi-dimensional scaling and
groups the cells into clusters using k-means. Then, it connects the cluster centroids
with a minimum spanning tree (MST) that serves as the initial backbone for the lin-
ear trajectory. SCORPIUS further refines the trajectory by iteratively applying the
principal curve algorithm. After each iteration, cells are orthogonally projected onto
the trajectory, and a new curve is constructed by locally averaging the cells. The cell
pseudotime is determined based on the cell’s geodesic distance from the root cell.

. Component 1

Component1 [30] models only linear trajectories. It applies PCA on the input data and
returns the first component as a linear trajectory.

. scShaper

scShaper [31] is designed for RNA-seq data and models only linear trajectories. sc-
Shaper proposes an ensemble approach that applies k-means clustering multiple times
and combines the cell clusters into one consensus solution. To find a linear trajectory
through the cluster centroids, scShaper solves the shortest Hamiltonian path problem.
Finally, it assigns the cell clusters with discrete pseudotime values and the individual
cells with a continuous estimate.

. Diffusion Pseudotime (DPT)

DPT [32] constructs a k-NN graph whose edge weights are given by Gaussian ker-
nel convolutions centered at nearby cells. These weights correspond to cell transition
probabilities and are stored in a transition matrix, whose eigenvectors are known as
diffusion components, and may be used for dimensionality reduction. However, DPT
uses the full-rank transition matrix. By raising this matrix to different powers, DPT
computes random walks of any length between the root cell and any other cell. DPT
finds branching points using a heuristic based on the Kendall’s Tau correlation between
DPT distances of cells. Branching points are detected when anti-correlated distances
start showing increasing correlation.

. Partition-based Graph Abstraction (PAGA)

PAGA [33] targets RNA-seq data with complex trajectories and creates an abstracted
graph representation of cell pathways based on a connectivity statistical hypothesis test.



PAGA initially constructs a k-NN graph and uses the Louvain community detection
algorithm to find cell partitions (groups). These partitions represent the nodes of
the abstracted graph and can be computed at different resolutions. To determine the
connectivity between cells partitions, PAGA uses a statistical test based on the actual
number of inter-edges between cell partitions on the k-NNG. These inter-edges are
compared to the inter-edges expected under a random graph model. PAGA weighs the
edges based on a confidence score, which serves as a threshold to discard edges when
lower resolution for abstractness is desired. Pseudotime is computed at single cell level
based on the random walk diffusion distance described earlier for DPT.

. Palantir

Palantir [31] is designed for RNA-seq data and models cell differentiation as a stochastic
process on a graph. It finds branching trajectories and provides a solution for auto-
mated lineage detection. Initially, Palantir embeds the data into a low-dimensional
space using diffusion maps and constructs an undirected k-NN graph. Then, it calcu-
lates cell pseudotime using the shortest path distances from the root cell, and adopts
Wanderlust’s waypoints concept to refine the cell positions. Furthermore, it discards
several graph edges pointing from “later” to “earlier” cells and gives directionality to
the graph. This allows Palantir to simulate random walks on the directed graph and
compute a Markov chain transition matrix. Palantir uses this matrix to identify cells
where random walks converge and marks them as terminal states (fully differentiated
cells—extrema of the diffusion components). Finally, it removes all the outgoing edges
from the terminal cells and computes the probability (differentiation potential) of each
cell to reach every terminal state.

. EIPiGraph and ElPiLinear

ElpiGraph [35] is a principal graph algorithm for tree-shaped or disconnected trajecto-
ries from RNA-seq data. It begins with a random graph and modifies it using graph
grammar rules such as edge bisection or node addition to generate a set of candidate
graphs. EIPiGraph solves iteratively an optimization problem to converge to the opti-
mal graph structure that represents the differentiation trajectory. The objective is to
minimize the sum of the elastic principal graph energy and the mean squared distances
between the data (cells) and the injected nodes. The elastic energy term consists of
the total length of the edges and the graph harmonicity. This objective function allows
EIPiGraph to select the graph structure that best balances the reconstruction error and
the graph complexity. Once EIPiGraph converges to the final structure, cells are pro-
jected onto their closest nodes or edges. ElPiLinear is a variant of EIPiGraph tailored
for linear trajectories.
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9. TinGa

TinGa [30] is designed for RNA-seq data with complex trajectories. TinGa reduces
the data dimensionality and uses the Growing Neural Gas method to grow a graph
and fit the data. The initial graph structure is iteratively updated to homogeneously
cover the data (cells). After convergence to the final graph structure, TinGa fits an
MST to remove triangles from the graph and refines the tree with further heuristics
and post-processing steps.

10. CytoTree

CytoTree [37] takes as input flow or mass cytometry datasets and infers linear or tree-
shaped trajectories. CytoTree first runs a workflow that includes dimensionality re-
duction, cell clustering, and data downsampling. Then, it fits an MST on the cluster
centroids to represent the trajectory backbone. Using the Louvain algorithm, it detects
clusters into the MST branches and identifies differentially expressed markers in each
branch. CytoTree further constructs a k-nearest neighbours (k-NN) graph to calculate
the shortest path distances from the root cell to all other cells. These distances are
converted into pseudotime estimates.

The well-known methods of Slingshot [35] and Monocle3 [39] for branching RNA-seq trajec-
tories showed prohibitive time and memory costs on the large cytometry datasets and were
not included in this study. To derive the pseudotemporal orderings of Section 3.4 in the main
text for all the above TI methods, we run each method at its default parameters. We applied
Wanderlust, ElPiLinear, Componentl, SCORPIUS, scShaper, EIPiGraph and TinGa using
the R packages dynmethods and dyno from the dynverse collection: https://dynverse.org/
[30]. Results for Palantir, CytoTree, DPT and PAGA were obtained based on the follow-
ing tutorials or documentations: https://github.com/dpeerlab/Palantir/tree/master/
notebooks, https://ytdai.github.io/CytoTree, https://scanpy.readthedocs.io/en/
stable/generated/scanpy.tl.dpt.html, and https://scanpy-tutorials.readthedocs.
io/en/latest/paga-paullb.html.

7 Section S7 More results on branching and linear tra-
jectories from in-house datasets

We discuss the results of TimeFlow, EIPiGraph, PAGA, Palantir and TinGa on the P1/2/3-
BM datasets, which are illustrated in Supplementary Figures S6-S11 and reported in Sup-
plementary Table S6. As verified in Supplementary Table S6 TimeFlow, PAGA, EIPiGraph
and Palantir achieved high mean scores for all evaluation metrics in the P1-BM monocytic
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trajectory, and as seen in Supplementary Figure S6 (first and second rows) these methods
made evident the stage transitions along pseudotime. All methods except for Palantir re-
sulted in correct stage ordering for P1-BM Neu (Supplementary Figure S6). We note that
PAGA made barely visible the transition between the final three maturation stages due to
multiple duplicate pseudotime assignments (Supplementary Figure S6). Regarding P1-BM
Erythrocytes, Palantir, PAGA and TimeFlow spread the cells in line with their matura-
tion stage, while EIPiGraph and TinGa failed to position most mature erythrocytes after
intermediate II cells (Supplementary Figure S7). Similarly, as seen in Supplementary Fig-
ure S7 (third and fourth rows), EIPiGraph did not clearly resolve the transitions between
intermediate and mature B-cells, and TinGa assigned disproportionally many mature cells
with early pseudotime values. While all methods agreed in the stage ordering for P2-BM
Mono (Supplementary Figure S8, Supplementary Table S6), we noticed that mature mono-
cytes tended to be concentrated within a narrow range of pseudotime values for EIPiGraph,
PAGA, Palantir and TinGa, as implied also by their low entropy scores in Supplementary
Table S9. The same phenomenon was observed for the P2-BM Neu trajectory for PAGA
and Palantir (Supplementary Figure S8). PAGA resulted in less errors between intermediate
and mature erythrocytes in P2-BM Ery trajectory compared to the other methods. Palan-
tir, TinGa and EIPiGraph clearly assigned more mature erythrocytes before intermediate 11
erythrocytes compared to TimeFlow (Supplementary Figure S9, first and second rows). EIPi-
Graph and TinGa were the only methods that did not distinguish between the intermediate
and mature B-cell transitions (Supplementary Figure S9). All methods ordered monocytes
in agreement with their maturation stages in the P3-BM Mono trajectory (Supplementary
Figure S10, first and second rows). TinGa, EIPiGraph, TimeFlow and Palantir respected the
neutrophilic maturation stages in P3-BM Neu (Supplementary Figure S10, third and fourth
rows), but Palantir concentrated most mature neutrophils within a narrow pseudotime range,
as also indicated by its low entropy score (Supplementary Table S9). PAGA assigned mature
neutrophils before intermediate I and IT neutrophils (Supplementary Figure S10). TimeFlow
clearly distinguished between intermediate II and mature erythrocytes of the P3-BM Ery.
PAGA assigned several mature erythrocytes with early pseudotime values but on average
respected the known stage transitions, and Palantir distinguished accurately the stage tran-
sitions (Supplementary Figure S11, first and second rows). EIPiGraph and TinGa failed in
positioning mature erythrocytes later than intermediate II cells (Supplementary Figure S11,
first and second rows). PAGA wrongly shifted mature P3-BM B-cells ahead of intermediate
B-cells, and TinGa positioned all mature B-cells in the beginning of the pseudotime axis
(Supplementary Figure S11, third and fourth rows). TimeFlow, EIPiGraph and Palantir
captured more accurately the B-cell progression along pseudotime.

Supplementary Figures S12-S23 illustrate the results of different methods on the linear
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trajectories of P1/2/3-Mono/Ery /B-cells/Neu datasets and Supplementary Tables S7-S8 pro-
vided the analytic scores. Supplementary Figures S12-S14 show the monocytic trajectories.
TimeFlow captured the smooth increase in the CD14 expression for all three patients. More-
over, Compl, DPT, ElPiLinear, and CytoTree had CSC=1 for each monocytic trajectory.
Wanderlust struggled with positioning late-stage monocytes after mid-stage monocytes, and
scShaper yielded variable scores for different random seeds. Supplementary Figures S15-S17
present the results on the P1/2/3-B-cells datasets. TimeFlow finely resolved the cell transi-
tions and captured the increase in CD45 as cells progressed from immature to mature stages.
Despite the overlap between immature and intermediate B-cells, Compl also captured the
CD45 increase. DPT consistently yielded valid transitions but produced unexpected gaps in
the trajectory. Wanderlust and SCORPIUS had a mean CSC score of 1 for the P1/2-B-cells
datasets, but performed poorly for P2 B-cells. ElPiLinear produced accurate and highly
resolved B-cell trajectories. CytoTree respected the stage transitions but estimated discrete
pseudotime values. scShaper tended to produce accurate orderings (except for P3 B-cells)
but was found prone to the random seed selection. Supplementary Figures S18-S20 show the
results on the erythrocytic differentiation. TimeFlow found the expected CD36 non-linear
pattern for each trajectory and was not affected by the overlap between intermediate IT and
mature erythrocytes of P2. The linear approach of Compl (PCA) was not sufficient to re-
solve the transitions between erythrocytes, particularly towards the end of the trajectory.
DPT performed very well on all three erythrocytic trajectories. SCORPIUS, scShaper and
CytoTree failed in capturing the characteristic CD36 pattern. ElPiLinear performed very
well on P1/3-Ery, but suffered from substantial overlap on P2-Ery, missing the expected
CD36 pattern. Supplementary Figures S21-S23 show results on P1/2/3-Neu for TimeFlow,
Compl, DPT and ElPiLinear. TimeFlow ordered the cells in agreement with their known
stage and reflected the smooth changes in the CD16 expession curves. However, it only posi-
tioned slightly more mature than intermediate II cells near the end of the trajectory. Compl
tended to merge early neutrophils, but accurately distributed intermediate II and mature
neutrophils along pseudotime. ElPiLinear consistently had CSC=1 for linear neutrophilic
trajectories. DPT respected the stage order for P1 and P3 but positioned late cells within
a narrow range of pseudotime values, contradicting the continuum of transitions, as verified
by its low entropy scores (Supplementary Table S9). It had low evaluation scores for P2-
Neu (Supplementary Table S7-S8) because it dispersed mature and intermediate neutrophils
towards the beginning of the pseudotime axis.
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8 Section S8 More results on branching trajectories
from public datasets

We discuss the results on the Levine-13, Levine-32 and Wishbone public mass cytometry
datasets, which describe branching trajectories. In Levine-13 monocytic lineage, all meth-
ods resulted in substantial overlaps between cells from the early hematopoietic stages (HSC,
MPP, CMP cells) (Supplementary Figure S25). As shown in the violin plots, the median
pseudotime of the GMPs and monocytic populations increased progressively along the Time-
Flow pseudotime. EIPiGraph distributed immature HSCs and MPPs widely across the entire
pseudotime axis, and concentrated CMP cells at earlier pseudotime values. Furthermore, it
positioned CD11b mid and high monocytes within narrow pseudotime ranges, leading to mul-
tiple cells with outlier pseudotime values. PAGA assigned CMP cells with earlier pseudotime
values than HSCs or MPPs and spread along the entire pseudotime axis the GMP cells.
It ordered more accurately the mature monocytic populations, distinguishing between their
transitions. Palantir unexpectedly shifted mature monocytes from all three stages toward
the beginning of the pseudotime axis and performed poorly across all evaluation metrics.
TinGa accumulated most CD11b mid and high monocytes within narrow pseudotime ranges,
suggesting coarse cell transitions. Supplementary Figure S27 presents a side-by-side com-
parison on the Levine-32 monocytic lineage. As shown in the violin plots in the first row,
pseudotime generally increased on average as cells progressed along the monocytic lineage
for all methods, except for EIPiGraph, where HSCPs tended to have lower pseudotime values
than HSCs. PAGA clearly reflected the expected ordering. As shown in the stacked bar
plots, Palantir placed mainly HSPCs before HSCs and did not clearly resolve the transitions
between monocytes. TinGa wrongly assigned with early pseudotime multiple cells from the
monocytic stage. Supplementary Figure S28 presents side-by-side the markers of CD4, CDS,
CD3, and CD25 along the inferred pseudotime. These are well-studied markers for T-cell
lymphopoiesis. All methods ordered most cells in accordance with their known stage and
the expected marker patterns. However, we observed that EIPiGraph, PAGA, and Palantir
produced discontinuous trajectories and tended to group many lymphoid progenitors within
a narrow range of pseudotime values.

Finally, we discuss the running times of the methods used for the largest datasets (P1/2/3-
BM, P1/2/3-Neu, Levine-32, Levine-13) and two randomly chosen smaller (P3-Mono, P1-
Beells). As shown in Supplementary Figure S29, we found that the runtime of TimeFlow
scaled approximately linearly with the number of cells. The total runtime was less than 1
hour for the largest dataset used in this study. TinGa was significantly faster but less reliable
in terms of cell ordering metrics. Both PAGA and Palantir also produced comparable, fast
results. Although, Supplementary Figure S29 accounts for both the density and pseudotime
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module of TimeFlow, its runtime is dominated by the Real NVP module. We did not
use GPUs to obtain these results, but their use can significantly accelerate the running
time. In addition, TimeFlow yields robust pseudotime estimates by transferring weights
across patients for the same biological process, without re-training the Real NVP model.
This is important for applications where the number of patients increases drastically and
computational time matters. A subset of patients may be selected for training and the
learnt weights can be reused to directly evaluate the probability density function of the other
patients, eliminating the need for training multiple times the Real NVP.
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