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Abstract

Multimedia lives with images; medical images are born from digital imaging. A physician’s
multimedia workstation cannot exist without tools for manipulating images, performing
measurements and, generally speaking, extracting and collecting pieces of information
from the available data.

Image analysis and computer vision constitute a wide and rapidly evolving field. This paper
is intended as an introductory document for medical imaging researchers and practitioners
wishing an overview of recent developments and trends. The major lines of activities in the
domain are presented, under the common framework of a processing pipeline. After a pres-
entation of the various stages of this pipeline, current subjects of research are indicated.
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1. Introduction

1.1 Digital Imaging

A digital imageis characterized by its lattice and by the corresponding picture elements (1).
Thelattice is typically a rectangular grid of dimension 2 or 3, corresponding either to 2 or

3 spatial coordinates (planar or volumetric data), or to 2 coordinates plus time (images se-
quence); in general, the dimension of the lattice is n, wilt2. In the 2D case, individual
elements may have four or six nearest neighbours, corresponding respectively to rectangu-
lar or hexagonal arrangements. In the 3D case the lattice is usually parallelepipedic, with
six neighbours. The values of those picture elements, qgakelsin 2D andvoxelsin 3D,

can be single data such as a density, pairs of data such as relaxatiofrtimes in MRI,

triples such as trichromatic values, etc.

Image manipulation encompasses several types of processing techniques, collectively
known asdigital imaging Image synthesi@r computer graphicsconsists in assigning a

value for each of the above pixels or voxel, the end product being a 2D or 3D image with
(generally) some semantic and/or pictorial content. Very generally speaking, image synthe-
sis is a parameters to image transformation (2). These parameters can be numeric functions,
as inscientific visualizationor, in the medical imaging context, they can be a set of ana-
tomical objects stored as surface or volumetric models or as a parametric description. Image
synthesis has always been closely associated with human-computer interaction. Most ref-
erence textbooks and publications describe interactive computer graphics and not just im-
age synthesis per se. The ability to change pixels rapidly leads naturally to interactive gen-
eration of static and dynamic pictures. The full exploitation of the computer as a medium
for image synthesis is thus only achieved in a dynamic, interactive environment.

Conversely, image analysis consists of a pidinparametersransformation, starting with
image(s) for which each element has a known value. It is customary to subdivide this do-
main intoimage processinfl),image analysi$1,3), anccomputer visiorforimage under-
standing, scene analy¥i8,4,5). Image processing consists in transforming one image into
another image, often with the same support; the purpose is typically to eliminate or enhance
some features. Image analysis goes one step further by extracting parameters and analyzing
them; classical domains of application are medical imaging or industrial robotics. Finally,
computer vision is a field of study which aims at designing computer systems mimicking
the human sense of sight.

A more restricted goal for computer vision is to provide a symbolic description of an image
or scene. Computer vision methods usually encompass both numeric and symbolic process-
ing of optical data, which is for exemple obtained from multi-camera input. By extension,
“computer vision” is often used in place of “image analysis” and even “image processing”,
as soon as the algorithms involved exceeds a certain level of complexity. It could be argued
that medical imaging relates more to image analysis than to computer vision; recent devel-
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opments in medical imaging show however that this distinction is becoming thin.

1.2 Image Analysis and Computer Vision in Medicine

There are various motivations for using digital image processing methods in medicine:

* new modalities and multimodal analydigremost comes certainly the possibility of
exploring new imaging modalities, leading to new anatomical or functional insights;
further, image analysis will support the combined evaluation of data from different
modalities;

* morphometrythe use of computerized techniques allows better precision and repeat-
ability, with, as a consequence, improved objectivity of measurement of morphomet-
ric parameters like size, area, volume, circumference, etc.;

* improved interpretationthe sensitiveness of those new imaging modalities coupled
with the power of recent visualization techniques enable more refined diagnosis than
with using conventional exploratory methods;

* more accurate predictiora consequence is the ability of providing more finely tuned
medical treatment, for example lower doses in radiation therapy or more accurate po-
sitioning in head surgery;

* process automatiomany medical operations can benefit from the reliability provid-
ed by automatic processing, from the screening of biological specimen to vision guid-
ed surgery;

» understanding of volume dateecognition of structures from volume data is not a
spontaneous visual task and will benefit from computerized processing and visuali-
sation.

Medical applications of image synthesis techniques are mostly for 2D and 3D visualization
purposes (6,7). Typical examples are in diagnosis or planning, for example for surgery or
radiotherapy. Graphical methods can also be employed for simulation, typically by means
of computer animation techniques (8). It is worth noting that other theoretical concepts
which are usually perceived as pertaining to computer graphics play an important role in
computer vision; this is discussed in 82.2. The links between these two kindred fields are
numerous; it is hard to conceive a physician’s workstation without methods originating

from both.

The history of image analysis in medicine is older than the one of image synthesis (1960’s
versus than 1980’s) (9,10). The early works were concerned with applications such as chro-
mosome pairing, morphological classification and counting of particles (11), coding for im-

age compression (12), storage and communication (13,14). More recently, the advent of
new imaging technologies has lead to methods exploring 3D structures and dynamic chang-
es of objects (15,16,17), usually starting from slice data or possibly from time sequences of
2D or 3D images. Extraction of 3D morphological structures is a very active research area
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(e.g. (18,19)), possibly using artificial intelligence methods (e.g. (20)). Complex computer
vision techniques are also being used in domains such as medical robotics (21). Although
2D analysis still receives considerable interest, the trend is now to directly analyse volume
data by 3D methods.

1.3 Outline

This paper is intended as an overview of recent developments and trends. It wishes to pro-
vide a short survey of the principal families of approaches, their use and limitations. Algo-
rithms generic or specific to particular imaging modalities are not given here (see for exam-

ple (10)).

Section 2 presents the analysis pipeline, which accepts as input raw data and provides some
form of processing or interpretation. Two basic processing paradigms are summarized in
section 3, namely linear (or pseudo-linear) and morphological. Section 4 develops the prob-
lem of features extraction by means of image segmentation techniques. Analysis of multi-
slice and volume data, and matching, between data of identical dimension, are respectively
presented in sections 5 and 6. Common approaches for identifying objects are summarized
in section 7. What the authors perceive as important trends are indicated in section 8.

2. The Analysis Pipeline

2.1 Processing Steps

Medical imaging devices usually provide 2D data (pixels); more recent sensors now allow
direct acquisition of 3D data (voxels). The data can then either be visualized, using 3D im-
age synthesis methods, or analysed, using 2D or 3D image analysis and computer vision
techniques. The processing steps that are required to perform an analysis are applied in se-
guence, hence the idea ofamalysis pipelinghrough which the input data is circulated

The generic image analysis and computer vision pipeline is composed of the following
steps (Fig.1):

* image acquisition, from sensor to digital image: this first stage includes all process-
ings that are required to create the intensity data (e.g. reconstruction from projections

t. Conversely, synthesizing an image can also be done by meavisudleation
pipeling composed of the following steps: modelling three-dimensional objects in
their own coordinates system, composing a scene by instancing these objects at var-
ious locations within a common reference frame, lighting and shading the scene,
projecting visible parts onto the display.
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if needed);

preprocessing: this step includes the data manipulations that are performed either sys-
tematically on all images (e.g. for noise reduction), or interactively by an observer
(e.g. for enhancement);

segmentation: the purpose of this processing stage is to subdivide the image into its
constitutive parts, such as regions and edges, in order to obtain significant features;
reconstruction of data: series of m-dimensional data are matched in order to provide
n-dimensional informatiom@ < n) (the visualization itself by 3D rendering is not in-
cluded here). The classical example consists of matching information from 2D slices
in order to obtain a 3D volumetric representation;

matching: series of n-dimensional data are put into registration in order to combine
information. This can be applied to data from different sources, or from the same
source at different times;

recognition: identification of elements present in the scene, which is often but not al-
ways the final purpose of the analysis.

Figure 1 here

As shown in Fig.1, variations from this unidirectional flow of information are possible. For
example, after an nD reconstruction, it is again possible to apply segmentation on the nD
image. Also, after having recognized part of (or all) the elements in the image, it is possible
to reiterate the whole processing sequence with the additional knowledge provided by the
information already extracted. Although not yet common in medical imaging, the usage of
suchtop-down informatioris increasingly encountered in “theoretical” or industrial com-
puter vision (20,22).

According to this rather generic pipeline, some typical medical imaging applications can be
decomposed as follows:

enhancement (e.qg. for contrast manipulation, pseudo-colouring):

preprocessing — 2D or 3D visualization by image synthe-

Sis;

morphometry:

preprocessing - features extraction by segmentation -

morphometric measurements;
classification:

preprocessing - features extraction - recognition by
means of morphological parameters;

3D imaging and diagnosis (e.g. for radiotherapy, surgery):

2D or 3D acquisition - Segmentation - approximation -
generation of 3D model - Visualization;
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» multimodality (functional) imaging:

mD acquisition - segmentation — approximation - nD re-
construction - matching - Vvisualization;

» data coding and storage (e.g. for PACS):
2D or 3D acquisition - (preprocessing) - approximation.

These various steps are presented in more detail in the following sections.

2.2 Relationships with Image Synthesis

Although this article concentrates on image analysis and computer vision, image synthesis
is in many respects linked to these disciplines (23,24). The most immediate example is the
data visualization itself. The physician’s workstation will foremost be a display device,
showing the results from the reconstruction and/or analysis. In addition to this obvious ex-
ample, various concepts “borrowed” from computer graphics are often employed in scene
analysis. The opposite is of course true, but of less interest in the context of this paper.

The common basis for image synthesis and analysis lies in the way humans visually per-
ceive things. Computer graphics is obviously intimately concerned with perception. The
physics of display certainly has influence over what is observed, but what really matters is
the internal representation to which a given image refers to and which it seeks to recreate
in the user. In the case of a physician establishing a diagnosis on the basis of a 3D rendered
image, using knowledge from human perception could help design analysis and synthesis
algorithms that would convey a message more forcefully.

From a more pragmatic standpoint, graphics concepts that are important in image analysis
include light models for illumination and reflection, geometrical transformations, contours
and surface approximation, algorithms for region delineation, and, of particular importance
in 3D medical imaging, geometrical modelling.

Another joint area of interest is in hardware and software, with a common trend towards the
use of RISC processors, parallel computation, color devices, etc. Mass storage using juke-
boxes of optical discs becomes common, especially in vidictire Archiving and Cod-

ing System¢PACS). Various software standards are also emerging, for image synthesis
(PHIGS+, Programmer’s hierarchical interactive graphics system), for interface design
(OSF/Motif), for communication (X11, PEX), for image storage (e.g. ACR-NEMA speci-
fications for medical images), for image compression (JPEG, MPEG).

3. Basic Image Processing Paradigms

Five families of methods are often said to be basic image analysis paradigms: linear or pseu-
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do-linear (1), morphological (25), statistical (26), syntactical (3,27), neuronal (28). Only
the first two are presented below, since the last three families of methods mostly belong to
one particular stage of the pipeline, namely object recognition. Furthermore, neural net-
works are non-linear classifiers (29), which would tend to make them part of the statistical
approaches.

3.1 Linear and Pseudo-Linear Paradigms

Linear systems theory is the basic paradigm for a large number of methods (1). Having an
nD discrete input image, , the effect of applying a discrete linear operator (filter) of
known impulse response (transfer functign) yields 1,=1g, wherelis thediscrete
convolutionproduct. Although not many algorithms are linear, it is often useful to approx-
imate and study their behaviour using the linear formalism.

Fourier transformsare used for spectrally characterizing data or (linear) operators, for de-
signing filters, for analyzing periodical structures, for sampling and interpolation problems.
Also, it is at the basis of the projection methods for reconstructing slices (Fourier slice the-
orem and backprojection).

Correlation which determines the degree of correspondence between a pattern and an im-
age, is used either for isolating a priori known shapes, or for alignment purposes (30). De-
pending on the size of the pattern, the matching operation is implemented either in the im-
age or in the transform domain. Similarly, the well known Hough transform for detecting
straight lines or circles can also be considered as belonging to the family of pattern mat-
ching methods (31).

3.2 Morphological Paradigm

An alternative to linear methodsnsathematical morphologyvhere set operators allow a
more formalized mathematical treatment of many image analysis problems (25,32). The ba-
sic idea of mathematical morphology is akin to pattern matching: a particular pattern called
structuring elemenis positioned on every image pixel. At each position, a logical test is
performed in order to check whether the image is locally identical or not to this structuring
element. Depending on the nature of the test, various operations are accomplished.

The basic operations, the most commonly used also, are dilation, erosion, opening (erosion
followed by dilation) which eliminates small objects, and closing (dilation then erosion)
which fills holes and joins elements. Built upon those elementary operations, a whole fam-
ily of morphological operations allow applications such as noise cleaning, particles singu-
lation, counting, morphological parameters extraction.

Despite its potential power, mathematical morphology is more frequently used in biomed-
ical image analysis than in “true” medical imaging. One of the reasons for this situation is
that the theoretical framework has been essentially developed for binary 2D pictures. And
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despite the attention that grey-level morphology is gaining (32), applications of mathemat-
ical morphology to images of dimension greater than two are yet to come. Also, the alpha-
bet of morphological operations is in theory defined on a hexagonal lattice, which might

require transforming the original, rectangularly arranged data; camera with hexagonal sen-
sor grids are still uncommon.

4. Features, Preprocessing, and Segmentation

Preprocessing aims at eliminating systematic perturbations from the image, or at enhancing
the image for visualization and possible further processing (1). Typical perturbations are
high-frequency acquisition noise, background luminance variations, camera geometrical
distorsions, echo, etc. Preprocessing methods are often applied in a systematic fashion on
all images created by a given device. They are therefore often device-dependant; also, they
need to be fast and efficient.

Segmentation aims at extracting significant primitives and regions of interest (ROI). This

is necessary either for performing measurements, that will allow classification and identi-
fication, or for reconstruction, in order to determine the elements that will be put into cor-
respondence for creating a 3D representation. An enormous corpus of methods has been
published, with three families of approaches being customarily defined: thresholding, edges
extraction, regions extraction; the general principles indicated below apply to both 2D and
3D images.

4.1 Measures and models

The main function of preprocessing and segmentation is to erteaguredor solving
classification and identification problems. Although there are as many different measures
as there are particular problems, certain basic descriptors are very often used (1,3). In two-
dimensions, contour-based measures are typically the Iéngtile average contrast on

each side of the contour, the local or average curvature. Region-based descriptors are usu-
ally based on simple values such as average luminance or color, stifaeemetem,
compactnesspz/S, average luminance gradient with neighbouring regions. Moments
about the center of mass are also used, for example for determining the axes of an approxi-
mating ellipse; the position of this center can help to locate objects. These measures can
easily be generalized to higher dimensions.

Segmentation is also necessary for extracting primitive elements that will then be approxi-
mated by some parametrized shape, as well as for isolating regions or contours in interac-
tive image manipulation and observation. Those parametrized shapasdels play a
fundamental role in image synthesis as well as in computer vision (23,33).
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Geometric models are thus the basic tokens that the visualization pipeline will have to proc-
ess for synthesizing an image. They are also essential in model-based segmentation, where
the image is decomposed into parts that fit to these models. In the context of medical imag-
ing, the most commonly used models are the simple voxel and the 3D polygonal planar
patch. Non-planar models such as spline patches (2) and hyperquadrics (34) are sometimes
used, but the trend is towards deformable models such as the 2D “snakes” (35) or 3D “in-
flatable balloons” (36) that modify themselves in order to adapt to some key data features.
They not only allow a better fit to the data, but also inherently provide segmented regions.

4.2 Preprocessing

Photogrammetric methodsre used when the artifacts have known spatial or luminance
characteristics; examples are lookup tables for linearity correction, dynamic range modifi-
cations, histogram equalization or interactive histogram modifications for visualization, lo-
cal or global artifact estimation and subtraction. They are often performed in real time in
the display memory (37), in which case they mostly serve a visualization purpose.

Filtering methodsre preferred when the spectral characteristics of the artifacts are known.
Low-pass filters (average, Gaussian) are used for decreasing noise, band-pass filters to
eliminate periodical perturbations, high-pass filters to enhance and sharperuadbasy
masking. Non-linear operators are also employed, such as the median or out-of-range fil-
ters. Filtering is often performed off-line or sometimes using specialized circuits.

A particular class of algorithms (related to low-pass filtering) is used when an enhanced
version of one object is desired, assuming that many degraded, translated and rotated ver-
sions of the same object are available. The basic idea of the methodcoaidation av-

eraging is to align the elements by correlation techniques and then average them (30). The
signal-to-noise ratio, hence the spatial resolution, roughly increases as the square root of the
number of averaged individual elements.

Geometric correctionare required when images are geometrically distorted. This is for ex-
ample necessary for registering images from various sources. Finally, in this taxonomy of
preprocessing familiesestoration methodare used when a model of the perturbation al-
lows the derivation of an optimal cleaning filter.

In summary, for visualizing data on a medical imaging workstation, look-up table manipu-
lations and unsharp masking are often helpful; in this case, care should be exercised in order
not to have the preprocessing modify the picture in such a way as to mislead the observer
and generate wrong interpretations. For preprocessing data before further image analysis,
low-pass filtering is usually necessary.

4.3 Segmentation

Thresholding methodsrovide means for determining one (or more) grey-level thresholds,

10
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usually by analyzing the smoothed global gray-level histogram of the image. The result is
thus a binary image composed of regions, hopefully with objects segregated from the back-
ground. The major drawback is the lack of local adaptability: it is rarely the case that global
thresholding provides satisfactory regions. It is in general necessary to post-process the im-
age, typically using mathematical morphology algorithms such as erosion/dilation.

Edge extractiorallows delineation of regions by locating their contours. These transitions,
that is areas of high variation, are initially extracted using first derivative operators (mostly
Roberts’ or Sobel’'s), second derivative operators (Laplacian mask), or adapted operators
that locate which parts of the image match a model of an idealized contour (Mero-Vassy’s
or the trendy Canny-Deriche’s for which fast recursive algorithms are available (38)). Final
contours are then obtained by locating the gradient maxima in the resulting image by means
of a peak-following algorithm, or the zero values of the Laplacian. Despite the apparent
simplicity of the problem, extracting edges is still an area of research. Amongst recent
trends are the use of pyramids, higher order derivatives, linear scale-spaces, linear combi-
nations of directional derivatives, coherency detection using cooperation-competition or
networks of oscillators, etc. (39). The major drawback of edge extraction for delineating re-
gions is a high sensitivity to noise; typical post-processing include thinning algorithms and
gap-closing methods (see (40) for a comparison and discussion of several edge finders).
Pre-processing for noise reduction is also mandatory; it is often performed by means of a
linear Gaussian or a non-linear median filter.

Region extractioryields parts of the image that satisfy a given uniformity criterion (1).
Typically, it is required that for a given region the grey-level difference between a given
pixel and any other one in the region be smaller than a certain value; a variation is to con-
sider a given pixel and only its close neighbours. By principle, those methods provide
closed regions and therefore closed contours, easily amenable to morphological measure-
ments. The drawbacks are complexity of implementation, and the fact that usually many
small regions are obtained. Here also post-processing is required, such as regularization of
the shapes and elimination of small regions by erosion/dilation. In addition, segmentation
of textured images is still a major problem (41); the current trend in this case is towards the
use of compact support functions such as Gabor filters (42) or wavelets (43).

In summary, it is difficult to select an appropriate segmentation method. There is no “best

approach”; interactive image manipulation softwares are therefore necessary (e.g.

(44,45,46,47)). The least commitment principle should be observed, that is to avoid per-

forming drastic operations whenever possible. As an example, if edges are desired, more
information is preserved by doing edge extraction and peak following, than by thresholding

the image and performing morphological erosion.

4.4 3D Segmentation

The third dimension brings additional information; it is therefore a good strategy to try to

11
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use it as much as possible. Although it is feasible to reduce 3D edges extraction to a 2D
algorithm operating on slices (38), the trend is to directly operate on 3D images (48).

Segmenting 3D images into regions of interest (or, generally speaking, nD images into nD
regions) is somewhat similar to the segmentation of 2D images into 2D regions. The same
families of methods can be used (49): thresholding, determination of boundary surfaces
where the data varies, extraction of volumetric regions where a uniformity criterion is sat-
isfied.

Results obtained using these classical approaches are often not satisfactory, basically be-
cause of the poor quality of the data. Other approximation principles are the subject of cur-
rent research; a typical example is the use of 3D “inflatable balloons” (36) that adapt to key
data features, such as discontinuity surfaces. This adaptation is accomplished by iteratively
changing the model in order to yield an equilibrium state between internal forces (given by
the elastic properties of the balloon) and external forces (attraction towards the key fea-
tures).

5. 3D models from volume-covering acquisition techniques

The technological step from 2-D projection of 3-D bodies by transmission techniques (X-
ray) to full 3-D imaging techniques (CT and MRI, e.g.) can be considered as a major break-
through in medical imagery. This capability allows physical measurements to be obtained
in the same number of spatial dimensions as the original human body. The possibility of
visualizing 3D structures, both anatomical and functional, has brought new and extremely
useful tools for diagnosis and treatment planning. 3-D techniques acquire the spatial infor-
mation in the form of densely sampled volume elements (voxels), most often in a multislice
process with coarser sampling between the slices (in order to avoid excess radiation or due
to time limitations). If the inter-slice distance becomes comparable to the voxel dimensions
within the slices, however, one can think of a contiguously sampled data volume.

The two different ways of considering the data, either as a spatial sequence of 2-D images
or as a data volume, also influences the type of computer assisted analysis. The classical
example consists of matching information from 2-D slices in order to obtain a 3D volumet-

ric representation. The single slices of a sequence are processed by techniques developed
for 2-D image segmentation, often not considering the context information available from
consecutive slices. Regarding image data as a contiguous volume, however, leads to the de-
velopment of true 3-D image processing methods, which most often represent extensions
of 2-D algorithms.

The two major families of methods for manipulating 3D data are the voxel and surface ap-
proaches (50,51). With thexel methodsvoxels represent the basic elements of the data

12
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structure. Processing such information is cumbersome in view of the large quantity of data.
In addition, visualization is computationally complex: either the list of all voxels has to be
inspected, with many unnecessary operations because of hidden voxels, or the surface of
the set of voxels has to be determined (52,53). Alternative visualization methods for voxels
do exist, and their performance has become absolutely comparable to other techniques ren-
dering only the object surfaces (54). Voxel methods have the advantage, that the original
image intensities can be easily combined with surfaces (e.g. on cutting planes) and that sur-
gical planning is facilitated by manipulating volumes rather than hollow surfaces.

With surface methods3D information is often indirectly obtained from the 2D slices, by
extracting and matching 2D primitives from these slices in order to build a 3D triangulation

of (triangular) planar patches (55). The triangulation is typically based on the registration
of polygonal contours approximations from the successive slices. Various conditions might
be imposed, such as external surface maximization, or internal volume minimization. Al-
though this approximation process might be difficult, it allows an important reduction of
the amount of data, additional possibilities such as volumetric and mass measurements, and
efficient visualization and animation schemes. It can also be useful as a first step before ap-
plying matching algorithms (86).

After generation of 3-D object models, the result is usually visualized using image synthesis
techniques. For anatomical images (e.g. CT, MRI), shading and sophisticated lighting can
be used, whereas for functional images (e.g. PET), the original intensities should not be
modified since they are the desired information; therefore, no shading or lighting algorithm
should be applied. Functional information is often combined with morphological informa-
tion by projecting the original intensities onto anatomically meaningful surfaces.

6. Matching

6.1 Basic principles

N-dimensional matching consists of putting into registration series of n-dimensional “im-
ages” (n typically being 3 or 2). The general idea of matching consists first of extracting
some key features in one of the (n-dimensional) images, for example using segmentation-
like methods. Correspondence is then established by searching for this restricted number of
features in the other images (56). The major categorization of matching methods is between
rigid and nonrigid (elastic) matching, and between registration using specific landmark
pairs (points, lines, specific patches) and fully volumetric techniques (e.g. using hierarchi-
cal correlation (57)).

The key geometrical features used as landmark pairs must be invariant under translations

13
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and rotations of the objects and sometimes under elastic deformations (58). In other words,
they should ideally be intrinsic object characteristics. The features that can be used are:

» pixels (or voxels): they are numerous and therefore difficult to match between slices.
However, their intensity is usually invariant when seen from different angles;

* line segments: characterized by more attributes than pixels (e.g. length, orientation),
henceforth easier to match (matching based on 3D space curves is described in
(59),e.g.). However, not all contours are invariant;

* regions: less numerous and even easier to match, but more difficult to extract and usu-
ally not invariant;

 critical points, such as vertices, cusps, saddles, etc.: difficult to extract, but intrinsic
to the objects and consequently very robust features for matching.

6.2 Regqistration of 3D images

When images come from several devigesyjtimodality matchindoy registration tech-
niquesallows the user to have simultaneous access to various types of information; exam-
ples of applications areinctionalor metabolic imagingwhere functional information is
mapped onto 3D anatomical structure (60). A related type of matching occurs when the dig-
ital information is to be compared with more generic knowledge, such as provided by an
anatomical atlas (56).

In robotics, the problem of stereo pairs registration for extracting depth information from
2D images is rather well solved; solutions have also been proposed for matching 3D geo-
metric objects (61). This is not the case in 3D medical imaging, where in addition to the
complexity brought by the third dimension, the input data does not have the nice geometri-
cal regularities offered by man-made objects. Various approaches are being investigated,
either for rigid or elastic matchingigid matchings of course much simpler, since objects
shape is fixed; the only degrees of freedom concern the respective displacement of the ob-
jects to be matched (62,63).

Elastic matching is much more realistic (and more complex), since it takes into account pos-
sible shape variations. One of the current research trends consist of extracting the desired
invariant features by means of local quadric approximations of the object surface (64). This
rather local approach is to be somewhat opposed to more global techniques where the ob-
jects to be matched are iteratively deformed; the optimal alignment is the one minimizing
an ad-hoc cost function (58,65).

6.3 Analysis of 2D image sequences

When animage sequencis provided, i.e. a series of images (usually 2D) from the same
device at different timegemporal matchingprovides correspondence between features
from the different images. If the time interval between successive acquisitions is large, the
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matching process is conceptually similar to multimodality matching: a predefined structure
is tracked along time (e.g. (17,66)).

However, when this interval is small, other techniques can be employed since it can be as-
sumed that the modifications between images are minute; in such case, the features to be
matched have a size of the order of a pixel. The recovery optiwl flow, which is the
estimate of the 2D projection of the 3D velocity field of the scene, is an essential step. After
its calculation, it is possible to segment objects based on their intrinsic motion: different ob-
jects will have different optical flow vectors. This segmentation can be used to measure the
temporal evolution of objects characteristics as well as to extract some structural informa-
tion (67,68,69).

The main approaches to the computation of the optical flow are the brightness constancy
method, which assumes that the brightness of a given point is constant between two frames
(70), the spatial gradient constancy method, stating that the spatial luminance gradient is
stationary over time (69), the local correlation approach, which looks for correspondence
between groups of nearby points (68), and the energetic approach, which uses 3D direction-
al filters in {2D space, time} that have maximal response along motion directions (71). It
can be noted that the first three methods correspond respectively to tracking pixels, edges
or regions between successive images. It is nowadays possible to compute estimates of the
optical flow in almost real-time. However, despite being used more and more in computer
vision applications, these techniques have probably not shown enough maturity to attract
medical imaging researchers.

7. Recognition

Object recognition involves two phases, namely learning and exploitation. During the
learning phasetypical characteristics of the objects to be recognized are determined and
stored (such as morphological measures). This determination is accomplished by tech-
niques such as described in this paper, i.e segmentation and features extraction. Learning is
often supervised: the user identifies which are the relevant, discriminating characteristic
features.

During exploitation the unknown objects are passed through the same pipeline as the one
used for learning; consequently, the object characteristics are measured. These measures
are then compared with the learned ones; the result indicates which is the object considered.

The most classical recognition paradigretegistical(26): covariance matrices are comput-

ed for the discriminative measures, usually under the multivariate Gaussian assumption.
Parametric discriminant functions are then determined, allowing classification of unknown
samples. These functions lead to the use of distances in parameter space (Euclidean, Maha-
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nalobis, quadratic): an unknown sample, i.e. a point in parameter space, is classified with
the closest class center according to the selected distance. Many recognition programs are
based on this approach (e.g. (72,73)), whose major problems are the need for large training
samples, the difficulty of taking structural information into account, and the issue of defin-
ing an appropriate parameter space.

Neural network$iave been advocated as excellent classifiers, due on the one hand to their
ability to define non-linear decision surfaces, on the other hand to the back-propagation
learning mechanism which alleviates the need for explicitly defining the parameters space
(28,29). Many applications of the neural paradigm to medical imaging are appearing, not
only for classification but also for segmentation, viewed as a classification to be made be-
tween object and background (e.g. (74)). The major problems with this approach are also
the need for large training sets and the impossibility of taking structural information into
account. Despite these drawbacks, the neural approach is very much in favour for its rather
unsupervised nature (although there is still the need for a training set).

Structural and symbolic approachase the most commonly encountered ones (1,3), al-
though purely symbolic approaches (27) are not as common as a decade ago. The basic idea
is to describe the objects by means of symbolic structures, and to compare the observed
structure to a model one; these structures can have varying levels of complexity, as enumer-
ated in 86.1. Typical of symbolic approaches are comparison by graph matching, or by us-
ing grammars; in the latter case, an object is described by a string of symbols, according to
a given grammar, which is then parsed by a lexical analyser. This paradigm allows to take
into account structural information and does not require large training samples. Its major
drawbacks are the difficulty to process data in order to extract symbols, and consequently
a difficulty to cope with noise. Actually, the problem with symbolic approaches exemplifies
the major difficulty of computer vision: how to extract symbolic information from numeric
data.

|©

Trends

8.1 Medical image analysis and Computer vision

Many of the techniques described in this paper are now routinely used in biomedical labo-
ratories. Relying on these rather classical methods, various trends are emerging. New de-
tectors are being developed, which should lead to less invasive and more precise imaging
modalities. Functional and multi-modal imaging is becoming commonly used, for discov-
ering and understanding functional structures. It is possible to further combine data in order
to incorporate medical knowledge, either from a patient file or from a medical atlas.
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A lot of effort is put into the realization of integrated hospital information systems (HIS),
and more particularly related to medical imaging, into PACS development (14). Although
at first glance one might feel that the issue is essentially technological, there still are many
theoretical problems to solve: image coding for storage and transmission (f.ex. using wave-
lets), software development, design of common standards for storing and displaying data,
artificial intelligence techniques for “intelligent” images data bases creation.

Feature-based indexing techniques are being developed, that will be essential for retrieval
in image data bases. Such data bases should allow information access by semantic content,
and therefore make possible queries such as “find all radiographs showing a broken arm”.
A related challenge iknowledge acquisitiarAlthough various methods exist for super-

vised learning, as exposed above, unsupervised extraction of the key characteristics that
will enable subsequent recognition is a problem far from being solved.

New surgical techniques are characterised by the trend towards minimally invasive therapy
using new and more precise tools (e.g. endoscopic interventions, laser surgery). A patient
will benefit from this development by less risk, reduced pain, shorter hospitalization and
faster recovering. These new techniques can be decisively supported by a detailed preoper-
ative planning and by precise feedback information based on image analysis.

Further, sophisticated robotic vision methods will permit the advemtedfical robotis,
that is the design of robots able to perform complex surgical interventions in an automated
manner (21).

All these developments require more sophisticated computer vision techniques. Amongst
the future developments will certainly come an increase in the trge-dbwn information

at least to circumvent the limits reached by the current segmentation methods (e.g. (20,75)).
An initial segmentation of the 3D image will be performed,; the result will then be compared
with symbolic medical knowledge either from an atlas or from the patient’s file. This will
allow, through a feedback loop, to better the initial anatomical segmentation and finally la-
bel the organs.

Other progresses stemming from computer vision will certainly be used in medical imag-
ing. One of the major problem in scene analysis is computational complexity: there is an
infinity of possible mappings from object models to the digitized scene. Various approaches
have as a primary objective to decrease the size of the solution space, for example by using
aspect graphs, active vision, or perception-based approaches such as focus of attention
(5,76). There is also a trend towards reduction of the amount of data acquired by using non-
regular grids, such as polar lattices that mimic a human retina by providing high-resolution
only near the center.

8.2 The Medical Imaging Workstation of the (Near) Future

The physician’s workstation of the (near) future will have three main characteristics: it will
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be reasonably “intelligent”, extensively connected and highly interactive.

Reasonable intelligenosill be provided by computer vision and “artificial intelligence”
techniques. However, progress is not as fast as practitioners would hope. Despite some at-
tempts at providing guidance using expert systems (77), it seems highly unlikely that user’s
experience will soon be totally replaced by artificial means. As a consequence, interaction
(and “real intelligence” (78)) will remain necessary. In a first stage, machine intelligence
will mostly be used to assist users in image segmentation and feature extraction. Rule based
algorithms for image interpretation can further help in efficient image analysis.

Connectivity both physical (networking) and in spirit, will be required for integration into

a Hospital Information System. It will also allow to distribute more evenly (financial) re-
sources: a low cost workstation will be used for the interaction with the physician while at
the same time the CPU intensive image analysis with all computations and interaction con-
trol will be done on another, more powerful computer. It will also put to practice the recent
workplace concepts revolving around groupware environments, which aim at verifying the
Gestalt law “the sum is more than the parts”.

Interactionwill allow the user to perform sophisticated processing while still retaining a
control over the results, and also to inspect in three-dimensions the results of the analysis.
The interaction will less and less be performed using keyboard and mouse, more and more
usingvirtual reality devices. Depth images will be recreated by means of stereoscopic im-
aging, using shutter glasses or helmets with miniaturized video screens. It will be possible
to mix images with sounds, using multimedia techniques (see other articles in this special
issue). All this will allow physicians to interactively explore the body (and even the soul!)

of their patient.

8.3 The European COVIRA project

This section discusses a large project which incorporates some of the main premises recog-
nized as important issues for future research in medical image analysis, namely interdisci-
plinary collaboration, clinical tests and validation. As a further requirement, standardiza-
tion of software tools has to ensure interchangeability and transportability.

A European Community research project within the AIM (Advanced Informatics in Medi-
cine) program is titted COVIRA (COmputer Vision in RAdiology) (79). The objective of
COVIRA is to realize a large software system providing efficient computer assistance in
neuroradiological diagnosis, stereotactic and open neurosurgical planning and radiation
therapy planning. The project has started in January 1992 and will run over 3 years.

COVIRA is a cooperative effort of 3 leading industrial partners (IBM, Philips, Siemens), 8
academic research groups and 6 clinical institutions in Belgium, Germany, Italy, the Neth-
erlands, Spain, U.K., Crete and Switzerland (ETH-Zurich, G.G.).
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The software system will be based on rigorously specified standards incorporating object
oriented programming. All algorithms will be implemented in a portable manner following
the upcoming 1SO standard on Image Processing and Interchange (IPl) and will enter a
common pool of computer algorithms for medical multimodality 2-D and 3-D image anal-
ysis.

The main functional capabilities of the system will be:

» 2-D and 3-D image visualization;

« 2-D and 3-D image segmentation combining automatic segmentation algorithms with
interactive image editing capabilities;

» reconstruction of cerebral vascular system based on the combination of 3D MR An-
giography (MRA) and 2-D Digital Subtraction Angiography data (DSA);

e multimodality image registration;

» digital and annotated anatomical atlas of the human head.

The unifying objective of the project is to provide and clinically test pilot application sys-
tems for multimodality image analysis for diagnosis and therapy management, based on
commercially available workstation and accelerator hardware with standard software tools.
The system will be tested and validated by the clinical partners of the COVIRA consortium.

The collaboration between academic, industrial and clinical partners provides a unique
combination of strengths and combines expertise in the fields of image analysis research,
software engineering, manufacturing of medical equipment and, last but not least, diagnosis
and therapy. It is the hope of the consortium that the project will finally prove clinical use-
fulness and cost effectiveness of computer assistance in various application fields.

9. Summary and conclusion

Is there any motivation for incorporating computer vision algorithms into a multimedia
workstation for physicians? The primary function of a workstation in the medical milieu is

to provide otherwise inaccessible information, in order to help the physician interpret, pre-
dict and plan. The motivation is therefore strong to incorporate computer vision algorithms
into such environment, since they provide tools and methods for extracting the necessary
pieces of knowledge. By showing the range of computer vision methods in medicine, the
purpose of this paper was to convince the reader that the answer to the above question
should be positive.

Parallel to the recent progress in computer vision and feature extraction, there is also an in-
creased complexity of the images generated in medicine. More and more imaging modali-
ties tend to generate very large sets of images containing tremendous amounts of complex
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information. Physicians can hardly master all the complexity of this information and it is
necessary to assist them with appropriate tools for (multimodal) image interpretation.

There is a final motivation for burdening the overloaded physician with the requirement of
mastering yet another set of methods and tools. It is easy to be impressed by more attractive
and meaningful pictures, without paying too much attention to the data manipulation in-
volved and the consequences on the resulting images. This is why we feel there is a need
for a better grasp of the potential provided by image analysis and computer vision methods.
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Figure captions.

Figure 1: The generic medical image analysis pipeline.
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