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Out of clutter, find Simplicity.
From discord, find Harmony.
In the middle of difficulty, lies
Opportunity.

Albert Einstein

Dedicated to my parents and little brother...!
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Abstract

One of the major endeavors of science and engineering is to study and predict the behavior
of large dynamical systems. It includes a myriad of problems–from weather prediction to
understanding the dynamics of artificial neural networks. Although several important problems
in physics and engineering fall under the ambit of large dynamical systems, carefully designed
large dynamical systems provide insights into social phenomena as well. This thesis is concerned
with the evolution of opinions among voters during election processes, which comes under
the broad umbrella of computational social sciences. We employ dynamical systems and
methodologies developed in physics and mathematics to model such election processes.

We investigate the opinion formation process among an ensemble of interacting individuals
modeled by a dynamical system. The problem we form on is the following: There have been
numerous recent instances of social networks being actively utilized to influence elections by
disseminating rumors and misleading information. The possibility of manipulating elections
using external influence directly raises the question of the intrinsic robustness of existing
electoral systems. Identifying the social characteristics of a voter population that make it
resilient to opinion manipulation is particularly interesting. Determining which among the
existing democratic electoral systems is more resilient to external influences is equally important.
We address these questions using a well-designed opinion dynamics model.

Building on earlier works in computational social sciences, we adapt a mathematical model
of opinion dynamics, where agents represent voters interacting with one another. The model
includes (i) a natural opinion that represents the opinion of each voter in the absence of
interaction with other voters, (ii) a confidence bound that determines whether a voter interacts
with others, (iii) an external influence field trying to change the voters’ opinion, and (iv) a
differential equation governing the time evolution of the opinion of voters.

There are many models of opinion dynamics, however only a few have been validated with
real data. The validation of the models is challenging due to the need for more real data that
can be transformed into a metric that can quantitatively or even qualitatively validate these
models. One of the main results is the validation of our model. We validate the model we
constructed using historical data of the US House of Representative elections from 2012 to
2020. The model captures qualitatively, if not quantitatively, the US House of Representatives
election’s volatility, which we consider a solid validation of our approach.

We evaluate the robustness of different electoral systems to external influences. An external
influence is introduced in the system as an influence field to change the election outcome. We
then quantify the total effort the influence field has to exert to change the electoral outcome as
a function of agent polarization, confidence bound, different electoral systems, and the number
of political parties. We present a detailed study on the robustness of bipartite electoral systems
(i.e., with two major parties) and extend it to multipartite (i.e., with multiple major parties)
electoral systems.

For a bipartite system, we find that voter populations are more resilient against external
opinion manipulations if they have less polarized initial opinion distribution and when agents
interact with each other regardless of their opinion differences. We extend the model to a
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multipartite system, including the left-right political ordering for the opinion of each agent,
and this ordering significantly affects the system’s dynamics. For a multipartite system, the
voter population’s resilience depends on the runner-up party’s position in the left-right political
spectrum. When agents interact with each other regardless of their opinion differences, the
party at the centre wins the elections, and voter populations become more resilient against
external opinion manipulations.

Finally, the outcome of an election depends on how the individual votes are aggregated to elect
representatives. This aggregation process depends on the electoral system under consideration,
such as proportional, single representation, winner-takes-all, and so forth corresponding to
different countries and elections for different branches of governance. Applying our model to
different electoral systems, we find that the proportional representation are the most robust
against external influences.

All our results and conclusions are independent of the number of existing political parties.
Our results emphasize the need to encourage public debates and discussions during political
campaigns to strengthen democratic processes. However, different electoral processes behave
remarkably differently under the influence of external manipulation, and proportional represen-
tation makes for a more robust electoral process. This thesis can be extended to include all
other different electoral systems, including two-round system, block-voting and so forth.
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Résumé

L’un des principaux objectifs de la science et de l’ingénierie est d’étudier et de prédire le
comportement de grands systèmes dynamiques. Cette tâche comprend une grande variété
de problèmes, allant des prévisions météorologiques à la compréhension de la dynamique des
réseaux neuronaux artificiels. Bien que souvent les grands systèmes dynamiques servent à décrire
des problèmes importants de la physique et de l’ingénierie, de tels systèmes soigneusement
conçus permettent également de mieux comprendre les phénomènes sociaux. Cette thèse porte
sur l’évolution des opinions des électeurs au cours des processus électoraux, à travers le prisme
des sciences sociales computationnelles (computational social sciences). Nous utilisons des
systèmes dynamiques et des méthodologies développées en physique et en mathématiques pour
modéliser de tels processus électoraux.

Nous étudions le processus de formation de l’opinion parmi un ensemble d’individus en
interaction, modélisés par un système dynamique. Le problème sur lequel nous nous penchons
est le suivant : Il y a eu de nombreux cas récents d’utilisation active des réseaux sociaux pour
influencer les élections, en diffusant des rumeurs et des fausses informations. La possibilité de
manipuler des élections en utilisant une influence extérieure soulève directement la question de la
robustesse intrinsèque des systèmes électoraux existants. Si l’identification des caractéristiques
sociales d’une population d’électeurs qui la rend résistante à la manipulation de l’opinion
est particulièrement intéressante, déterminer lequel des systèmes électoraux démocratiques
existants est le plus résistant à la manipulation l’est tout autant. Nous abordons ces questions
à l’aide d’un modèle de dynamique de l’opinion approprié.

En nous appuyant sur des travaux antérieurs dans le domaine des sciences sociales compu-
tationnelles, nous adaptons un modèle mathématique de la dynamique de l’opinion, où les
agents représentent les électeurs interagissant les uns avec les autres. Le modèle comprend (i)
une opinion naturelle qui représente l’opinion de chaque électeur en l’absence d’interaction
avec d’autres électeurs, (ii) un seuil de confiance qui détermine si un électeur interagit avec les
autres, (iii) un champ d’influence externe essayant de changer l’opinion des électeurs, et (iv)
des équations différentielles régissant la dynamique de l’opinion de chaque électeur.

Il existe de nombreux modèles de dynamique de l’opinion, mais seuls quelques-uns ont été
validés avec des données réelles. La validation des modèles est un défi en raison de la nécessité
de disposer d’un grand nombre de données réelles pouvant être transformées en une métrique
capable de valider quantitativement ou même qualitativement ces modèles. L’un des principaux
résultats de ce travail est la validation de notre modèle. Nous validons le modèle que nous avons
construit en utilisant les données historiques des élections à la Chambre des Représentants
des États-Unis de 2012 à 2020. Le modèle capture qualitativement, sinon quantitativement,
la volatilité de ces élections, ce que nous considérons comme une validation solide de notre
approche.

Nous évaluons ensuite la robustesse de différents systèmes électoraux aux influences externes.
Une influence externe est introduite dans le système sous la forme d’un champ d’influence afin de
modifier le résultat de l’élection. Nous quantifions ensuite l’effort total que le champ d’influence
doit déployer pour modifier le résultat électoral en fonction de divers paramètres : la polarisation
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des agents, le seuil de confiance, le système électoral et le nombre de partis politiques. Nous
présentons une étude détaillée sur la robustesse des systèmes électoraux bipartites (c’est-à-dire
avec deux grands partis) et l’étendons aux systèmes électoraux multipartites (c’est-à-dire avec
plusieurs grands partis).

Dans le cas d’un système bipartite, nous constatons que les populations d’électeurs sont
plus résistantes aux manipulations externes de l’opinion si elles sont moins polarisées et si les
agents interagissent les uns avec les autres indépendamment de leurs différences d’opinion. Nous
étendons le modèle à un système multipartite, en incluant l’orientation politique gauche-droite
pour l’opinion de chaque agent. Cette orientation affecte de manière significative la dynamique
du système. Pour un système multipartite, la résilience de la population dépend de la position
du parti arrivé en deuxième position dans le spectre politique gauche-droite. Lorsque les agents
interagissent les uns avec les autres indépendamment de leurs divergences d’opinion, les partis
centristes gagnent majoritairement les élections, et les populations d’électeurs deviennent plus
résilientes face aux manipulations de l’opinion.

Enfin, le résultat d’une élection dépend de la manière dont les votes individuels sont agrégés
pour élire les représentants. Ce processus d’agrégation dépend du système électoral considéré,
tel que le scrutin majoritaire proportionnel, le scrutin majoritaire absolu, le système "winner-
takes-all", correspondant à différents pays et à des élections pour différentes branches du
gouvernement. En appliquant notre modèle à différents systèmes électoraux, nous constatons
que la représentation proportionnelle est la plus robuste face aux influences extérieures.

Tous nos résultats et conclusions sont indépendants du nombre de partis politiques existants.
Nos résultats soulignent la nécessité d’encourager les débats publics et les discussions pendant
les campagnes politiques afin de renforcer les processus démocratiques. Cependant, les différents
processus électoraux se comportent remarquablement différemment sous l’influence de mani-
pulations externes, et le scrutin proportionnel constitue un processus électoral plus robuste.
Cette thèse peut être étendue à tous les autres systèmes électoraux, y compris le système à
deux tours, le vote en bloc, etc.
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1 Opinion Dynamics Models and Their
Applications

Complex systems are omnipresent in everyday life in the form of power grids, transportation,
communication system, and in the society itself. In general, the interaction between an
ensemble of individual entities composing the system are captured by complex networks, and
is fundamental to the behavior of the system itself. The interactions greatly impact the way
entities are functioning and evolving as a function of time and has presented us with fascinating
phenomena such as phase transitions. The exploration of complex systems holds significant
importance within the realms of both physics and computational social science. The studies on
complex systems aim to characterize the macroscopic behavior of the system by assigning simple,
intuitive rules to the interaction between an ensemble of entities. In physics the constituents
are degrees of freedom of particles, whereas in computational social science it is attributes of
individuals in a society.

This thesis studies opinion formation among voters during election processes. The study
comes under the scope of computational social sciences. The latter refers to the study of
social phenomena using mathematical methods. Examples include computational modeling
of economic systems [2], social media content analysis [3], elections [4] etc. It helps us to
investigate and predict common behavioral patterns that we observe in society. Studies in
computational social sciences employ dynamical systems to explore how interactions lead to
behavioral patterns depending on different initial conditions and system parameters.

A dynamical system is a mathematical formalism used to describe the time evolution of
systems. In general, it is described by an ordinary differential equations (for continuous time)
or iterated maps (also known as difference equations) [5]. The ODE can be formulated as

ẋ = f(x, t), (1.1)

where x represents the coordinates vector corresponding to the quantity of interest in the
system. The derivative ẋ represents the rate of change of the state vector x with respect to
time t. The function f defines how the variables in x change over time.

In the context of opinion formation during an election process, the quantities of interest are
the opinions (represented by a vector of real numbers) of voters. Here, the dynamical system is
constituted by a coupled system of ordinary differential equations (ODEs) with the opinions of
individuals as the elements evolving in time due to interactions and other external influences
like media. The complexity of the dynamical system increases as we strive to capture more
details in the model. This leads to different kinds of dynamical systems such as autonomous or
non-autonomous, linear or nonlinear, etc. If the ODEs does not explicitly depend on the time,
then it is called an autonomous system; otherwise, non-autonomous. If the dynamical system
is represented by a linear ODE, then we call the system to be linear; otherwise nonlinear. We
form an autonomous, linear model for opinion formation during election processes.

Intuitive ideas about opinion formation can be conveniently translated into mathematical
equations that govern the rate of change of opinions. This makes the dynamical systems
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approach suitable for studying opinion formation during election processes. The dynamical
system approach provides us with the complete time evolution of the quantities of interest.

An individual’s opinion formation depends on many factors. The opinion formation can be the
result of intrinsic or extrinsic experiences. Intrinsic experiences refer to personal experiences,
upbringing, education, and so on. Whereas extrinsic experiences refer to the interaction with
other individuals in society, information exchanges via social media, newspapers, etc., or even a
targeted effort to manipulate the opinion by other individuals or social medias. The ability
of individuals to adapt and change in light of new experiences enables lifelong learning and
adaption of their opinions. The evolution of opinions of different individuals subjected to the
same experiences may not be the same. This uncertainty in opinion change of individuals
results from how each individual comprehends information and experiences.

It is evident that the opinion formation of an individual is a complex process, and understand-
ing them at the individual level is impossible using mathematical models. Even if we succeed in
creating a perfect model for an individual’s opinion formation, simulating the collective opinion
over a large population would be computationally demanding.

A more feasible approach is to study the collective opinions of a population using statistics,
which can help us understand opinion formation qualitatively. Statistics has been successful in
modeling physical systems, and its general conceptual framework has been applied to fields
like biology, medicine, information technology, and computer science. Statistics can provide
insights into the dynamics of social systems and their behavior at a macroscopic level [6]. This
is particularly relevant while studying election processes as the election outcome is determined
by an aggregate opinion of individuals. This is the approach we follow.

In societies, the basic constituents are individuals and they exhibit interesting behaviors due
to their interactions [7]. Developing a quantitative understanding of how these behaviors in
opinions arise among individuals have always been of interest to scientists and philosophers [8].
For example, even though the individuals have very different opinions before interactions, the
opinions of individuals converge towards one another after interactions. Understanding the
emergence of these behaviors is an important objective of the statistical approach. Statistics
capture the emergence of these phenomena by considering ensembles of systems with initial
conditions drawn from a probability distribution.

Dynamical models that are specifically used to study the evolution of opinions and their
regularities at a large scale are called opinion dynamics models. In general, opinion dynamics
models can be described as a system that involves a set of agents, a network representing
their interactions, any external influences, and an equation that governs the evolution of an
agent’s opinion as a function of time. This is concisely shown in Fig. 1.1, taken from Ref. [9]
(interactions are called as fusion rules in this paper). Mathematical approaches to opinion
evolution date back to 1956 to the work of French [10]. DeGroot complemented this work [11],
yielding the well-established French-DeGroot model, where agents update their opinions at
discrete time steps by the weighted average of their neighbors’ opinions.

Another early work on opinion dynamics was proposed by Abelson [12] in 1964, which is a
continuous-time version of the French-DeGroot model. Taylor [13] extended this model in 1968
to include constant communication sources like mass media, non-linear models, and variable
interaction rates. In a similar spirit, Friedkin and Johnson defined their model in 1990 [14],
by adding the effect of prior belief into the French-DeGroot model. A detailed description of
these models is given in the subsequent sections. Since then, many models have been proposed
with various opinion formats and interaction rules among the agents to describe experimentally
observed opinion patterns, such as consensus, polarization, or fragmentation [15]. In the case
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Fusion rules

The opinions
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Fusion
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Opinion dynamics
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   (consensus, 
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Figure 1.1: The framework of fusion process in opinion dynamics. Figure taken from Ref. [9]

of consensus, all individuals align to a single opinion, whereas for polarization there are two
cluster of individuals with different opinions, and for fragmentation, there are multiple clusters
of individuals with different opinions. These models allow us to extract trends or phenomena
and generally not to predict any specific event such as election outcome. The phenomena of
interest can vary from the emergence of fads, collective decision-making, reaching consensus,
polarization or fragmentation, minority opinion spreading, the role of zealots, minority opinion
survival, electoral processes and so on [16].

The main focus of this thesis is the application of opinion dynamics models to electoral
processes. The outcome of an election is a result of aggregation of votes, which comes under one
of the branches of statistics. One common type of opinion dynamics model used in the study of
elections is the voter model [17] (The voter model will be discussed in detail later in this chapter).
In the voter model, each agent has a initial opinion, a susceptibility to external influence, and
interactions with other voters. These models can capture the effects of various factors such
as media influence, targeted advertising, social networks, and ideological polarization, on the
evolution of opinions within a population [18, 19].

Recently, election manipulations have become increasingly frequent [20], necessitating con-
siderable attention from scholars and policymakers alike. The very foundation of democratic
governance is at stake if the integrity of elections is compromised. It is imperative to recognize
the importance of this issue and delve into its complexities to devise effective safeguards
against manipulation. Understanding the multifaceted nature of election manipulations which
encompasses technological advancements and psychological influences, is paramount. With
technological advancements, social media is one of the main drivers of spreading misinformation.

In modern elections, social networks play a crucial role in forming public opinion [21]. They
help politicians reach out to people, get support for causes, and quickly share messages over a
wide area. Social media platforms allow disinformation tactics in addition to disseminating
political ideas. While some of these disinformation campaigns are run directly by individuals,
most are run by computer programs known as bots [22, 23]. Bots are designed to be adept
at manipulating trends and to flood networks with spam. Controlled and digitally organized
fake news may modify voters’ opinions and how they vote. In extreme cases, this can change
the outcome of an election. Indeed, there are several recent, well-identified cases of social
networks being intensively used to influence electoral processes by spreading propaganda and
false information.

This malicious influence using social networks directly raises the question of the intrinsic
robustness of electoral processes against external attempts to manipulate voter opinions.
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Particularly interesting is to identify the social characteristics of a voter population that renders
it more resilient against opinion manipulation. Equally important is to determine which of the
existing democratic electoral systems is more robust to external influences. In this thesis we
construct a novel opinion dynamics model to address these questions.

Before we discuss our model and results, the rest of this chapter is devoted to the state-
of-the-art and the discussion of existing models of opinion dynamics such as French-DeGroot
model, Friedkin-Johnson model, Abelson and Taylor model, Confidence-Bound models, Voter
model, Sznajd model, Majority Rule model, and so on.

This chapter is organized as follows. In Sec. 1.1, we present different opinion dynamics
models and their extensions. In Sec. 1.2, we provide an introduction to the fundamentals and
construction of interaction networks. Sec. 1.3 presents the existing literature on validating the
models using some historical data. Sec. 1.4 discusses the impact of different types of external
influences on opinion dynamics models. Sec. 1.5 offers a comprehensive review of computational
propaganda, different types of democratic electoral systems and gaps in the existing research.
Sec. 1.6 discusses the linear algebra concepts required for understanding the literature and key
theories in the existing research.

1.1 Opinion Dynamics Models

Opinion dynamics models are dynamical systems whose degrees of freedom represents agent’s
opinions. Mathematically, an agent’s opinion is defined as a variable that can take values in
a set of real numbers. The collective opinion of the population is represented using a vector
with individual’s opinions as its components. An agent can have an opinion on several different
topics. In that case, the opinion of an individual is represented as a vector, with each of its
components denoting the individual’s opinion on different topics, and an opinion matrix defines
the collective opinion of the population. In short, the agent in the network is endowed with
an opinion that is a scalar or a vector, which can take values in a discrete set or a continuous
interval.

Agents interact with one another and these interactions define an interaction network. We
provide a detailed description of the fundamentals of networks and construction of different
type of networks in Sec. 1.2. In this section, we summarize some of the main opinion dynamics
models and their main results. These models can be extended to study specific problems.

1.1.1 French - DeGroot Model

One of the first models of opinion dynamics was proposed by social psychologist French in
1956 [10]. French considered a small network of four agents with different types of connectivity
(disconnected, weakly connected, unilaterally connected, strongly connected, and complete
networks), to analyze the influence of agents on each other. They observed a tendency for
agents’ opinions to converge towards one another, and this effect strongly depends on the
connectivity of the network.

In general, the model describes a system in which a group of agents with initial opinions
interact with each other to update their opinions over discrete time steps, based on the average
opinion of their neighbors. Let there be N agents in the interaction network and the opinion
of an agent i at time t be denoted as xi(t). The key object of the model is a row stochastic
(i.e., Wij ≥ 0 and

∑
j Wij = 1 ∀i) N × N influence matrix W . The dynamics of the system is
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Figure 1.2: An example of French model with N = 4 agents

defined as

xi(t + 1) =
N∑

j=1
Wijxj(t), (1.2)

where Wij represents the weight of agent j’s opinion at each step of the opinion iteration to
agent i’s opinion at the next step. In general, the system exhibits an attractive dynamics, the
tendency of agents’ opinions to converge or move closer to each other over time due to the
weighted averaging of their neighbors’ opinions.

Weight Wii denotes the self-influence weight, i.e., the confidence of the agent or agent’s
openness to consider other agents’ opinions. If Wii = 0, it implies that the agents do not have
any confidence in their opinion and fully depend on other agents’ opinions. However, Wii = 1
implies that the agent is very sure of their opinions and does not consider the opinions of their
neighbors; thus, xi(t) = xi(0) ∀t. These agents are called stubborn agents, inflexible agents or
zealots in the opinion dynamics literature.

French introduced a specific instance of this model. He proposed a simple directed graph G
in which the nodes correspond to the agents; each agent is assumed to have some self-confidence
and thus have self-loops (see Fig. 1.2). An agent j’s opinion influences agent i, or j ‘has power
over’ i, if there is an edge (j, i). At each time step, an agent updates its opinion to the mean
value of the opinions of it’s neighbors including their own opinion. The weighted graph is shown
in Fig. 1.2 and the dynamics corresponds to,

A(t + 1)
B(t + 1)
C(t + 1)
D(t + 1)

 =


1 0 0 0
1
2

1
2 0 0

1
2 0 1

2 0
0 1

3
1
3

1
3




A(t)
B(t)
C(t)
D(t)

 . (1.3)

The ability of an agent to control the behavior of a group is denoted as the social power
of the agent. French’s work demonstrates the influence of social power on opinion formation.
Note that agent A is a zealot, and its opinion remains unchanged through the dynamics. Thus
agent A increases his influence at the expense of the other agents, and he is considered as the
agent with highest social power in graph G.
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The agents are said to reach consensus if and only if limt→∞ xi(t) = x∗ ∀i. If there are
two or more different opinions at the final state, the system is said to reach polarization
and fragmentation, respectively. The primary goal of French was not to study the dynamics
by which the system reaches consensus, polarization, or fragmentation, but instead derive a
mathematical model for social power. French proposed various conditions on the connectivity
of the interaction networks for reaching a consensus, which were later revised and rigorously
proved by Harary using the theory of higher transition probabilities in Markov chains [24].

The model was then generalized by American statistician DeGroot [11]. He described a
simple interaction rules called ‘iterative opinion pooling’ in which agents try to consensus by
interaction. The resulting French-DeGroot model is considered the classical model of opinion
dynamics. If the system reaches consensus, then

lim
t→∞

x(t) = lim
t→∞

W tx(0) = x∗1, x∗ ∈ R, (1.4)

where 1 is a vector of all ones with size N .Then it follows from Eq. (1.4) that a consensus is
reached if and only if there exist a vector π = (π1, π2, · · · , πN ) such that, for i = {1, · · · , N}
and j = {1, · · · , N},

lim
t→∞

W t
ij = πj . (1.5)

If Eq. (1.5) is satisfied, then π1, · · · , πN are non-negative, and
∑

i πi = 1, for all i and j. Suppose
that a consensus is reached, then we have πW = π, thus the vector π is the eigenvector of W
corresponding to eigenvalue 1.

Berger [25] presented a necessary and sufficient condition for reaching consensus in the
DeGroot model, which states that all agents will form a consensus if and only if there exists
t ∈ {1, 2, · · · } such that the matrix power W t contains at least one strictly positive column.

1.1.2 Friedkin -Johnson’s model

Friedkin and Johnson [14] extended the French-DeGroot model to include prejudices in agents’
opinion. Here prejudices refer to the prior belief that an agent has. The Friedkin-Johnson (FJ)
model computes an agent’s opinion as a convex combination of contribution from its neighbors
and a prejudice value. The contribution from neighbors is same as that in French-DeGroot
model. The update equation for the ith agent is given by

xi(t + 1) = λi

N∑
j=1

Wijxj(t) + (1 − λi)vi, t = 0, 1, · · · , (1.6)

where λi ∈ [0, 1], vi is the prejudice value, and xi(0) = vi.
Let diag(x) denote the diagonal matrix with elements of vector x as its diagonal and let

Λ = diag([λ1, λ2, · · · , λN ]T ). For Λ = I, all agents are prejudice-free and Friedkin-Johnson
model reduces to French-DeGroot model as in Eq. (1.2). On the other hand, when Λ = 0, all
agents are completely prejudiced and xi(t) = vi for all agents i. It is proved in Ref. [26] that
the FJ model converges if and only if lim

t→∞
(ΛW )t exists and the limit lim

t→∞
x(t) = x∞ depends

on the initial condition x(0) = v.
Parsegov [27] analyzed the stability and convergence properties of the Friedkin-Johnson

model by dividing the agents into two groups. The first group includes the prejudiced agents
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(agents with λi ̸= 1) and all the agents influenced by them. All the remaining agents belong
to the second group. It is shown that the dynamics of the first group is always convergent
and asymptotically stable. The dynamics of the second group is the same as that in the
French-DeGroot model as the agents in this group are oblivious to prejudice. In general, the
final opinions in FJ model are dependent on prejudices and they seldom reach consensus.

1.1.3 Abelson and Taylor model
In this section, we discuss Abelson’s model [12] and its extended version by Taylor [13]. Abelson’s
model can be considered the continuous time version of the French-DeGroot model. By recalling
that 1 − wii =

∑
j ̸=i wij , the French-Degroot model can be reformulated as

xi(t + 1) − xi(t) =
∑
j ̸=i

wij [xj(t) − xi(t)] ∀i. (1.7)

In the continuous-time limit, we obtain Abelson’s model [12]

ẋi(t) =
∑
j ̸=i

aij(xj(t) − xi(t)), i = 1, · · · , n, (1.8)

where A = (aij) is a non-negative matrix of influence weight (not necessarily stochastic).
The opinion of an agent shifts infinitesimally towards their neighbors’ opinions by a weighted
superposition of the difference between their own opinion and those of their neighbors. A zealot
agent say i corresponds to aij = 0 for all j ̸= i and hence ẋi = 0.

The linear Abelson model can be compactly written as

ẋ(t) = −Lx(t), (1.9)

where L is the Laplacian matrix of the interaction network (Lij = −aij , for i ̸= j and Lii =∑
k aik). Since the Laplacian is a positive semi-definite matrix, the system always converges.

As the Laplacian of the matrix has at least one eigenvalue as zero, the stationary state of the
system depends on the initial condition.

Subsequently, Taylor [13] proposed different models to show the effects of external influences
such as mass media. Let the influence from m external sources be denoted as s1, · · · , sm ∈ R.
Then the dynamics evolves as

ẋi(t) =
N∑

j=1
aij(xj(t) − xi(t)) +

m∑
k=1

bik(sk − xi(t)), (1.10)

where bik is non-negative. It is not necessary that all the agents should be influenced by the
external sources, (i.e. bi1 = · · · = bim = 0), but agents with

∑m
k=1 bik > 0 are influenced by one

or more communication sources. Taylor has demonstrated that the presence of communication
sources induces opinion polarization. Here equilibrium is defined as the value of vector x at
ẋ = 0. In general, the system converges to the unique equilibrium, characterized by s1, · · · , sk.

Some other extensions in Taylor’s paper [13] include the introduction of variable resistance
(i.e., the more extreme the opinion of an agent is, the more difficult it is to convince them) and
variable interaction rate (i.e., the greater the difference between their opinion is, weaker the
interaction between them) and its stability conditions.
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A variant of Taylor models is used to study the effect of zealots on the overall opinion
dynamics of networked systems [28]. Zealots with prejudiced opinions towards a particular
opinion significantly impact the collective opinion formation process. The authors generate
mathematical quantities representing the system’s transient dynamics and emergent stationary
opinion states using a modified version of the network Laplacian. The study provides a
characterization of the ability of a single zealot to change the prevailing opinion coherently.
The study also includes the opinion heterogeneity of the emergent non-consensus states for
two zealots and describes their statistical features using a graph metric akin to the resistance
distance in electrical networks.

1.1.4 Confidence-Bound Models

The proverb ‘birds of a feather flock together’ illustrates the ‘homophily principle’. It states that
agents with similar opinions interact more frequently and intensely with one another than ones
that are different. The homophily principle is mathematically captured in confidence-bound
models using a real number that defines the interactions between the agents depending on their
similarity in opinions.

Consider a population of agents with different individual opinions about an issue. Agents in
the model are influenced by other agents in the population only if the difference between their
opinions is below a certain value ϵ. Here, the value ϵ is called the confidence bound, also known
as ‘communication distance’, ‘confidence threshold’, or ‘confidence strength’ in the literature.
Thus agents interact with other agents only if their opinions are similar.

Confidence-bound models were first investigated independently by Deffuant and Weisbuch [29],
and Hegselmann and Krause [15], which will be discussed later in this section. The Deffuant
- Weisbuch (DW) and Hegselmann-Krause (HK) models rely on repeated averaging under
the confidence bound but differ in their interaction regimes. The DW model is better suited
for modeling one-to-one interaction in large populations, and the HK models are suited for
modeling public meetings, where interaction occurs in a group. If the confidence bound is the
same for all the agents in the population, then the model is called homogeneous; otherwise, it
is heterogeneous [30].

Deffuant-Weisbuch (DW) Model

In the DW model, the opinion of each agent in the interaction network lies in the continuous
interval [0, 1], where 0 denotes complete disagreement, and 1 denotes complete agreement to the
issue. At each time step, two agents i and j are selected randomly. The agents i and j interact
with each other only if the difference between their opinions is smaller than the confidence
bound ϵ, i.e. if |xi(t) − xj(t)| ≤ ϵ. Otherwise, another pair of agents is selected. If they interact,
they adjust their opinions according to{

xi(t + 1) = xi(t) + µ(xj(t) − xi(t))
xj(t + 1) = xj(t) + µ(xi(t) − xj(t))

, t = 0, 1, · · · (1.11)

where µ ∈ [0, 1] is the known as the convergence parameter. The parameter µ controls the
convergence rate of agent i towards agent j. The average opinion of any pair of agents in the
population is the same before and after their interactions. Thus, the population’s global average
remains invariant under DW model. If µ = 0, then two agents will not change their opinions
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a b

Figure 1.3: Time chart of opinions. One time unit corresponds to sampling 1000 pair agents.
a: [ϵ = 0.5, µ = 0.5, N = 2000], b: [ϵ = 0.2, µ = 0.5, N = 1000]. Figure and
caption taken from [29]

after interactions, whereas if µ = 1, the agents exchange their opinions and with µ = 0.5, the
agents will reach the average of their opinion at the next time step.

The opinions of agents continue to evolve until agents reach their final opinions with one or
more clusters (well-separated region in the final opinions). The agents from different clusters
have a difference in opinions greater than the confidence bound thereby preventing interactions
between them. The time evolution of the DW model in the original work of Deffuant and
Weisbuch [29] is shown in Fig. 1.3. Initial opinions are randomly generated from the uniform
distribution on [0, 1]. Each time unit corresponds to a sampling of 1000 pairs of agents.

The system evolve according to Eq. (1.11) and the opinions of agents converge, but consensus
is only achieved for larger values of ϵ. For smaller values of ϵ, the system evolves to form
polarization with two stable opinions (refer Fig. 1.3 b) or fragmentation with many stable
opinions. Qualitatively, the dynamics mainly depend on the confidence bound ϵ.

Monte Carlo simulation reveals that the opinion distribution of agents converge to one or
more clusters (c ≈ ⌊ 1

2ϵ⌋, where c is the number of clusters) depending on the value of confidence
bound ϵ. As a result, there can be no other cluster within a 2ϵ interval centered on a cluster.
Thus the ratio ⌊ 1

2ϵ⌋ is a reasonable approximation for the number of clusters formed in the final
opinion. However, when an agent’s interaction range is limited to a topological neighborhood
(neighbors defined by a network), more opinion clusters arise for smaller confidence-bound
values.

In general, the agents’ interactions occur along different social connections rather than a
random selection across the entire population. Aside from the confidence bound, another
condition of proximity is added to the DW model, i.e., agents only interact if they are directly
related via a pre-existing social relation. The DW model is studied on different graph topologies
such as a complete graph, square lattice, random graph (ER), and scale-free graph (BA) to
understand the role of network topology in reaching consensus [29, 31]. The works demonstrate
that for any ϵ > 0.5, all the agents re-adjust their opinion and reach consensus to xi = 0.5 ∀i
independent of the network topology, and smaller values of ϵ result in the formation of more
clusters.

Deffuant et al. [32] extended the DW opinion dynamics model to examine the influence of
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Figure 1.4: DW processes with 1000 agents. a: Closed-minded agents are black with ϵ = 0.11 b:
Open-minded in red with ϵ = 0.22. c: Heterogeneous case with close-minded and
open-minded agents. Initial conditions in all runs are equal. The agents can reach
consensus under heterogeneous confidence bound but not in the corresponding
homogeneous cases. Figure and caption taken from Ref. [35]

extremists without any specific interaction network. They showed that the extremists can have
a very local influence or attract the whole population depending on the choice of parameters.
Amblard et al. [33] later explored how social networks, particularly small-world networks with
varying connectivity and randomness, affect this behavior. The shift to a single extreme opinion
occurs beyond a specific connectivity threshold, which decreases with increasing randomness.

The DW model can also be defined in a discrete opinion space with xi(t) ∈ {1, 2, · · · , Q} [34].
The agents interact with one another if their opinion difference is less than the confidence bound,
i.e. |xi(t) − xj(t)| < L where L is an integer instead of a real number. The system’s dynamics
remain the same following the Eq. (1.11) with the converge parameter µ. However, the opinion
of agents after an interaction is rounded to the nearest integer. The original DW model can
be recovered in the limit L → ∞ and Q → ∞ with a constant ϵ = L/Q. If L = 1, Q = 2 on
a complete graph, all the agents will reach the same opinion, which is the only stable point.
Whereas for Q > 2, the dynamics will never reach a common consensus state and instead will
have at least two clusters of opinion in the final opinion state.

The assumption that all agents apply the same criterion to determine whether to consider the
perspectives of other agents is simplistic. When heterogeneity in confidence bound is introduced,
several new traits emerge. The model is then commonly referred to as heterogeneous confidence
bound model, i.e., agents can have different ϵ values [35]. To illustrate the problem, the dynamics
are first evaluated with a homogeneous value of ϵ corresponding to close (small ϵ), open (large
ϵ) minded agents, and then with heterogeneous value of ϵ, in which the population has an equal
mix of close and open minded agents. From the numerical simulation, it is established that
the system reaches a stable point with many clusters for a closed-minded society (see Fig. 1.4
a). For an open-minded society, the system stabilises to two opinions at the final state (see
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Figure 1.5: Bifurcation diagram of DW model. Exact location and masses of clusters in
the DW model when cluster formation has stabilized, computed with interactive
Markov chains with S = [0, 1] divided into 1001 opinion classes and ϵ = [0.05, 0.5]
and uniform initial distribution. The dotted lines represent the ϵ -interval around
the central cluster. Figure and caption taken from Ref. [37]

Fig. 1.4 b). However, with a heterogeneous DW model, open-minded agents dominate the
system dynamics (see Fig. 1.4 c).

Weisbuch [36] extended the model to use binary opinion vectors corresponding to m subjects,
instead of scalars. Agents communicate based on a ‘Hamming distance’ metric, adjusting their
opinions if they agree on at least m − d subjects (where d is a confidence bound). The update
rule is as follows: when opinions on a subject differ, a randomly chosen agent from the pair
will be convinced by the other agent with a probability p. The results are consistent with the
original Deffuant model, with p and N determining the convergence time. The key factors are d
and the number of subjects m. Binary strings exhibit a abrupt phase transition from consensus
to many clusters when d decreases.

The DW model can also be defined as density-based dynamics using a function that determines
the density of agents in the opinion space [16, 38]. For the density-based dynamics model, the
opinion of agents is considered as a density function in the opinion space S ⊂ R defined as
P (t, ·) : S → R≥0 with

∫
S P (t, x)dx = 1 for all time t.

The evolution of the density function can be in continuous or discrete time. For a continuous
time, the dynamics is defined using differential equation ∂P (t, x)/∂t = f(P (t, ·)), where f
operates on density function space. Then the differential equation is solved either analytically
or numerically. The differential operator is replaced with the difference operator in the discrete-
time case. Then we have ∆P (t + 1, x) = P (t + 1, x) − P (t, x) = f(P (t, ·)) and the solution
can be computed recursively from the equation P (t + 1, x) = P (t, x) + ∆P (t + 1). Numerical
solutions are computed for both discrete [37] and continuous time cases [16, 38].

The Fig. 1.5 shows the bifurcation diagram of the homogeneous density-based DW model.
Clusters are defined by collecting opinion space intervals where there is positive density.
Therefore, one must choose a threshold at which mass is considered zero. A bifurcation diagram
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displays the locations of clusters in the limit density vs. the range of values of the confidence
bound ϵ. So, for each confidence bound, one can identify the attractive cluster patterns and
observe attractive pattern transitions at critical ϵ values. The locations of clusters with a
major mass are indicated by fat lines, those with small masses by thin lines, and the central
cluster by a medium line. The dotted lines are only for orientation; they represent the interval
[0.5 − ϵ, 0.5 + ϵ]. A notable characteristic is the presence of minor clusters at the extremes
and in between major clusters. Due to the small population sizes, these minor clusters do not
usually evolve in agent-based simulations. For ϵ ≥ 0.5, the system reaches consensus, and there
will be only one big cluster. As ϵ decreases, the system evolves into many clusters, as seen in
agent-based DW models.

Hegselmann - Krause (HK) model

The HK model is similar to the DW model of opinion dynamics. However, in the HK model,
a randomly selected agent, say i, updates its opinion by considering the opinions of all other
agents within their confidence bound ϵ. Let there be N agents in the interaction network,
and the opinion of each agent i is drawn following a uniform distribution within the interval
[0, 1]. Then, we conduct systematic sweeps of the entire system to update each agent’s opinion
iteratively. The agent i can influence agent j, only if the difference between their opinion is
less than the confidence bound ϵ. Suppose an agent i wants to update their opinion. In that
case, one needs to determine which of their neighbors have their opinions within the confidence
bound of agent i. All the neighbors of agent i within the interval [xi(t) − ϵ, xi(t) + ϵ] can
influence the opinion of agent i at time t, denoted as Ni(t) = {j : |xi(t) − xj(t)| < ϵ, aij = 1},
where aij is the element of the adjacency matrix of the interaction network. The update rule is
different in the HK model: instead of interacting with one of its compatible neighbors as in
the DW model, agent i interacts with all its compatible neighbors simultaneously. During the
dynamics, the opinion of agent i changes according to

xi(t + 1) = 1
|Ni(t)|

∑
j∈Ni(t)

xj(t). (1.12)

Repeating the process given by Eq. (1.12) will eventually lead to a configuration for the
system which is a fixed point of the dynamics, making it stable. With several agents holding
the same opinion, this configuration is characterized by few surviving opinions. It is proved in
Ref. [39] that for a homogeneous HK model, the order of opinions remains unchanged by the
dynamics, i.e.,

xi(t) ≤ xj(t), ∀i ≤ j, =⇒ xi(t + 1) ≤ xj(t + 1), ∀i ≤ j. (1.13)

Unlike DW model, where the convergence parameter must be specified, the confidence bound
completely determines the HK model. In general, the main focus of the confidence bound
models is to find the confidence bound ϵ at which the system reaches consensus and the time
required to reach the consensus. The convergence time for a homogeneous HK model is proven
to be in polynomial time regardless of the dimensions (i.e. for xi ∈ Rd). The authors of Ref. [40]
established a lower bound of O(N2) and an upper bound of O(N3) for one-dimensional systems.

The HK dynamics evolve to the same stationary state pattern as in the DW model, with
a decrease in the number of final opinion clusters as ϵ increases, as shown in Fig. 1.6. The
consensus threshold ϵc is defined as the minimum value of confidence bound at which a network
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a b

Figure 1.6: Time evolution of the HK model with 625 agents, randomly generated in the
interval [0, 1]. a: ϵ = 0.15, b: ϵ = 0.25. Figure and caption taken from Ref. [15].

attains consensus. In particular, for ϵ > ϵc, all the agents re-adjust their opinion to form a
single cluster (see Fig. 1.6 b). As the dynamics preserves the system’s average opinion, as in
the DW model, the final configurations on a complete graph are symmetric with respect to
the central opinion xc = 0.5 [6]. A detailed analysis of the clustering patterns as a function of
confidence bound is performed in Ref. [41] and a subsequent study followed by modifying the
agents’ opinion range from [0, 1] to [0, L], with confidence bound ϵ = 1 [42].

According to Fortunato [43], there can only be two values for ϵc, depending on the behaviour
of the average degree d of the interaction network. This was studied on different types of graphs
such as a complete graph, square lattice, scale-free graph, random graph, and star-like graph.
When the population N goes to infinity, and if d diverges as N → ∞, then the consensus
threshold ϵc ∼ 0.2 on a complete graph. If d remains finite as N → ∞, then the consensus
threshold is ϵc = 0.5, similar to the DW model.

The HK model is reformulated as an interactive Markov chains to shift the focus from a
finite population of size N to a finite size opinion classes of size Nc [44]. Instead of using agents
with a finite number of opinions, this enables the analysis of an infinite population spread over
opinion classes. The dynamical behavior of the interactive Markov chain exhibits clustering
and stability, similar to the agent-based models.

The assumption that all agents apply the same criterion to determine whether to consider
the perspectives of other agents is very simplistic. When threshold heterogeneity is introduced,
several new traits emerge [35]. To illustrate the problem, consider two values of ϵ corresponding to
an open-minded and close-minded society. The dynamics are first evaluated with a homogeneous
value of ϵ corresponding to close-minded (small values of ϵ), open-minded (large values of ϵ)
agents and heterogeneous value of ϵ, in which the population has an equal mix of close and
open minded agents. Through numerical simulation, it is established that the system reaches a
stable point with many clusters for a closed-minded society (see Fig. 1.7a). For an open-minded
society, the system stabilises to two opinions at the final state (see Fig. 1.7b). However, with a
heterogeneous HK model, open-minded agents dominate the system dynamics (see Fig. 1.7 c).
The open-minded agents influence the close-minded agents to reach a common consensus.

Pluchino et al. [45] expanded the HK model by introducing two-dimensional real-valued
opinions, and by using Monte Carlo simulations on a complete graph for two different shapes of
confidence bound ϵ (squared and circular). However, the number of clusters remains similar to
the one-dimensional case. The consensus threshold was slightly higher for circular confidence
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Figure 1.7: HK processes with 300 agents. a: Closed-minded agents are black with ϵ = 0.11 b:
Open-minded in red with ϵ = 0.19. c: Heterogeneous case with close-minded and
open-minded agents. Initial conditions in all runs are equal. The agents can reach
consensus under heterogeneous confidence bound but not in the corresponding
homogeneous cases. Figure and caption taken from Ref. [35]

bounds compared to the squared confidence bound due to the total area covered by the two.
This study showed that in the continuum case with a large number of agents (N → ∞),
dynamics do not have much variation compared to the one-dimensional case. Other works on
multi-dimensional HK model can be found in Refs. [46–48].

The HK model can also be defined as density-based dynamics for a density function that
determines the density of agents in the opinion space [16, 37]. For the density-based HK
dynamics model, the opinion of agents is considered as a density function in the opinion space
S ⊂ R defined as P (t, ·) : S → R≥0 with

∫
S P (t, x)dx = 1 for all time t. For a given initial

density function P (0, ·), the dynamics of the density-based HK model evolves as a function in
time. In order to define the density-based HK model, we need to define the ϵ− local mean,

M1(x, P (t, ·), ϵ) =
∫ x+ϵ

x−ϵ yP (t, y)dy∫ x+ϵ
x−ϵ P (t, y)dy

. (1.14)

This denotes the expected value of opinions in confidence bound interval [x − ϵ, x + ϵ]. Here∫ x+ϵ
x−ϵ yP (t, y)dy denotes the first moment around x in the ϵ-interval and

∫ x+ϵ
x−ϵ P (t, y)dy provides

necessary renormalization for the probability in that interval [16].
Fig. 1.8 shows the bifurcation diagram of the homogeneous density-based HK model. Clusters

are defined by collecting opinion space intervals where there is positive density. Therefore, one
must choose a threshold at which mass is considered zero. A bifurcation diagram displays
the locations of clusters in the limit density vs. the range of values of the confidence bound
ϵ. So, for each confidence bound, one can identify the attractive cluster patterns and observe
attractive pattern transitions at critical ϵ values. The locations of clusters with a major mass
are indicated by fat lines, those with small masses by thin lines, and the central cluster by a
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Figure 1.8: Bifurcation diagram of HK model. The exact location and masses of clusters in
the DW model when cluster formation has stabilized, computed with interactive
Markov chains with S = [0, 1] divided into 1001 opinion classes and ϵ = [0.05, 0.3]
and uniform initial distribution. The dotted lines stand for the ϵ -interval around
the central cluster. Figure and caption taken from Ref. [37]

Figure 1.9: Bifurcation diagram for the density-based homogeneous DW and HK model.
Figure and caption taken from Ref. [37]
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medium line. In contrast to the DW model, the HK model does not contain any minor clusters.
The system reaches consensus for ϵ ≥ 0.19, and is treated as the consensus threshold.

In conclusion, there are similarities and differences between DW and HK models. They
mainly differ in terms of their convergence time and bifurcation diagram. Fig. 1.9 shows the
bifurcation diagram of both DW and HK models for comparison. The critical value of ϵ for
consensus transition differs for both models. Here, the consensus transition is the point of
bifurcation between two major clusters and a central cluster, so the minor clusters in the DW
model are neglected.

Generally, the confidence-bound models reach consensus, polarization or fragmentation with
varying confidence bound ϵ values. However, these phenomena do not happen in the actual
elections. In the real world, having two agents with the same opinion is impossible due to
the complex nature of agents. The agents can agree on a specific issue, but this cannot be
interpreted as two agents having the same opinion, as shown in the confidence-bound models or
other models discussed above. Thus, more detailed constructions are required in the dynamics
of agents’ opinions and to convert them into the corresponding choices of candidates or parties
when applying confidence-bound models to elections.

1.1.5 Voter Model

The voter model is considered one of the most appealing models of opinion dynamics [17]. It
is also extensively used in probability theory and population genetics [6]. The voter model
is defined on a set of N agents that hold one of two possible opinions, xi(t) = ±1. At each
time step t, an agent i is selected randomly along with one of its neighbors j. The agent
i then updates its opinion as xi(t + 1) = xj(t) imitating its neighbor j. An illustration of
voter model dynamics is shown in Fig. 1.10. The voter model was first introduced by Clifford
and Sudbury [49] in 1973 and named ‘voter model’ by Holley and Liggett [50] because of its
application to electoral processes.
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Figure 1.10: Illustration of the voter model. When agent ‘1’ is selected along with one of its
neighboring agent ‘6’ with a different opinion as shown in the left, it adopts the
opinion of agent ‘6’, and the system evolves to the configuration shown on the
right.

The voter model has been studied extensively when agents are modelled as vertices of d−
dimensional hyper-cubic lattices [8]. In a finite system, for any dimension d of the lattice, the
voter dynamics reach consensus to one of the two possible outcomes: all the agents in the
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Figure 1.11: Illustration of the possible states of agents (P0, P1, M0, M1) and their transitions.
Dashed arrows indicate possible confidence level changes (biased towards higher
confidence), while solid arrows indicate possible opinion change events. Figure
and caption taken from Ref. [52]

population with the same opinion of either +1 or −1. The probability of reaching consensus to
one or the other possible opinions depends on the initial state of the agents. It is proved in
Ref. [51] that the time TN needed to reach consensus depends on the system size N : TN ∼ N2

for d = 1, TN ∼ N ln N for d = 2 and TN ∼ N for d > 2. For an infinite system, a consensus
state is reached only for smaller dimensions, d ≤ 2.

The lack of self-confidence of an agent is one of the many unrealistic assumptions in the voter
model. There are different ways to model how much weight is assigned to the opinion of other
agents compared to their own self-confidence to decide what to believe and what not to believe.
This could be incorporated in the voter model by considering that the agents would require
multiple encounters with neighbors with different opinions before the agent actually changes
his opinion.

One such model is the confident voter model with two additional levels of commitment -
confident and unsure [52]. In this model, positive (P ) and negative (M) denote the two opinion
states and subscript ‘0’ denotes the confident agents whereas the subscript ‘1’ denotes the
unsure agents. Thus the possible states of an agent are P0, P1, M0 and M1. When a confident
voter interacts with an agent of a different opinion, the confident voter becomes less confident
or unsure but does not change their opinion, while an unsure agent changes their opinion.

There are two variants of confident voter model named ‘marginal’ and ‘extremal’. In the case
of ‘marginal’ voting, unsure agents who change their opinion are also unsure about their new
opinion. However, in the case of ‘extremal’ voting, the unsure agents gain some confidence
after changing their opinion and need two interactions with agents of the opposite opinion to
change their opinion again. The assumptions and dynamics for marginal and extremal cases of
confident voter models are sketched in Fig. 1.11.

The assumption described in discrete time can be conveniently translated to a mean field
description using the corresponding densities of the four types of agents. Then the agent type
and their densities can be denoted as P0, P1, M0 and M1. The dynamics of ‘marginal’ version
for positive agents can be written as

Ṗ0 = − (M0 + M1)P0 + P0P1 = MP0 + P0P1,

Ṗ1 =MP0 − P0P1 + M1P0 − M0P1.
(1.15)

The corresponding equation for M is obtained by interchanging M ↔ P . The rate equation for
the total density of positive agents is

Ṗ = M1P0 − M0P1, (1.16)

17



Figure 1.12: Evolution of the densities for the: (left) marginal and (right) extremal models
with the near-symmetric initial condition P0 = 0.50001, M0 = 0.49999 and
P1 = M1 = 0. Figure and caption taken from Ref. [52]

and from the complementary equations for Ṁ , we verify that the total density of agents is
conserved, i.e. Ṗ + Ṁ = 0. Now, for the ‘extremal’ version, the rate equations are

Ṗ0 = − M0P0 + M1P1 + P0P1,

Ṗ1 =M0P0 − M1P1 − P0P1 + (M1P0 − M0P1),
(1.17)

and the corresponding equations for M can be obtained by interchanging M ↔ P . The rate
equation for the total density of positive agents is the same as that for the marginal version, and
the total density of agents is conserved, Ṗ + Ṁ = 0. The time evolution of both model variants
is shown in Fig. 1.12. On a complete graph, the confident voter model converges to confident
consensus in a time that grows as ln N after crossing a mixed state of unsure agents. However,
on a regular lattice, the consensus time grows as a power law in N , with some configurations
crossing a long-lived striped state.

Another possible extension of the model is the introduction of zealots [53]. When the agents
are placed on hypercubic lattice of one and two-dimensions, a single zealot influences infinite
group of agents in the system to reach a consensus with its opinion due to the recurrent
interactions between the agents. However, at higher dimension, the random interactions are
transient, and therefore there is a finite probability that agents never interact with the zealots.
Thus the zealot could influence only the agents in its neighborhood and cannot influence the
agents that are farther away. Thus, the system will not reach a consensus in higher dimensions.
In a finite system, when a small equal number of zealots are added for each opinion (Z = 2 for
1000 agents, where Z is the number of zealots), zealots have been shown to prevent consensus
or form robust majorities [54]. The system shows a Gaussian distribution of the average opinion
of agents in one and two dimensions with a width proportional to 1/

√
Z, and independent of

the number of agents in the system.
The ultimate fate of an agent’s opinion is analyzed in a population comprising leftists,

centrists, and rightists who socially interact with one another [55]. A centrist and a leftist can
become both centrists or leftists with equal rates after the interaction between agents (and
similarly for a centrist and a rightist). Leftists and rightists, however, do not interact. The
interaction process is continued until the system reaches an equilibrium or stable state. The
authors determined the probability of system attaining consensus (either leftist, rightist, or
centrist) or a frozen mixture of leftists and rightists in the mean-field limit as a function of the
initial composition of the population along with the average time needed to achieve the final
state.
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Mobilia [56] proposed similar model with three opinions; leftist, centrist and rightist on a
complete graph. A parameter q quantifies the bias towards extremism (q > 0) or centrism
(q < 0), and governs transitions from an extreme to a centrist opinion. In a population of size N ,
a leftist and centrist can both become leftists with rate (1 + q)/2 or centrist with rate (1 − q)/2,
and similarly for rightist and centrist. The authors demonstrate that polarization is preferred
for q > 0; nonetheless, a finite probability for consensus always exists. Whereas, for q < 0, the
system has higher probability to reach consensus. The system’s behavior is altered by adding
centrist zealots (centrists who maintain their position) [57]. A large fraction of centrists zealots
Zc > q

1+q generates consensus on the centrist opinion in the system. Populations with a small
proportion of zealots tend to be mixed, with centrists coexisting with either both extremist
type (where the two are equally convincing) or with the most convincing one.

Castellano et al. [58] introduced the non-linear q-voter model, a generalization of discrete
opinion models. In this model, N individuals are placed on the vertices of a complete graph and
hold an opinion ±1. At each time step, a set of q agents are chosen at random, and they form a
group. If all the agents in the group have the same opinion, they influence one neighbor chosen
at random, i.e. this agent adopt the opinion of the group. If the group disagrees, the chosen
neighbor flips its opinion with probability p. Analytic results for q ≤ 3 confirm the numerical
results, indicating a transition from an ordered phase for small values of p to a disordered
one for large values of p. However, for q > 3 in the q-voter model, a novel form of transition
between the two phases is observed. This transition involves an intermediate regime where the
final state of the model is dependent on its initial conditions. Researchers have also investigated
the behavior of q-voter model on random regular networks. According to Moretti et al. [59], the
intermediate regime disappears, resulting in a behavior similar to that observed on a lattice.

There are always some agents that go against the majority opinion, named anti-conformity
agents. Nyczka et al. [60] conducted an analysis of the q-voter model to compare the dynamics
of non-conformity and anti-conformity. Non-conformity refers to the behavior of some agents
who flip their opinion with probability p, irrespective of the group’s opinion. On the other hand,
anti-conformity refers to some agents who oppose the group’s opinion and choose the opposite
one with probability p. Although these two dynamics seem similar, the analysis revealed
significant differences between them. For instance, the critical value pc for the order-disorder
phase transition is shown to increase with q in the case of anti-conformity, whereas it decreases
with q for non-conformity.

1.1.6 The Majority Rule Model

The Majority Rule (MR) model was proposed to model public debates in which each agent has
information about the opinions of all other agents [61]. There are N+1(t) agents with positive
and N−1(t) = N − N+1(t) agents with negative opinion. The probability that an agent has
positive opinion is given by P+1(t) = N+1(t)/N , while the probability to have negative opinion
is given by P−1(t) = 1 − P+1(t). From a random initial opinion configuration of the agents,
agents starts discussing in small groups. However they don’t meet all the time and all together
at once. The probability that a group of size g is selected for discussion is given by ag, which
satisfy the constraint

∑
g ag = 1 where g = 1, 2, · · · , G. Within each group, all agents adopt

the majority opinion within the group, as shown in Fig. 1.13.
During the discussion, all agents are assumed to be involved in one group, i.e. the groups do

not overlap at any time t. This means that a given agent, on average, is a member of a group
of size g with probability ag. The discussions in groups occur sequentially in time, and each
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Figure 1.13: Illustration of Majority model for one random time step t with a group of g = 6
agents selected randomly. The image on the left denotes the opinion of agents
before the discussion and, on the right, the opinion of agents after the discussion.

time with different groups. Each new cycle of multi-size discussions is assumed to be a time
increment of 1.

The randomly selected group for discussion can be of odd or even size. If the group is
odd, there is an absolute majority, and the majority opinion is adopted among the agents. In
contrast, if the group is even, there may be a tie between the opinions. In that case, one way of
selecting a majority opinion is by imposing a bias in favor of one opinion. In Ref [61], when a
tie appears, the dynamics favours the negative opinion. The probability that an agent will have
a positive opinion at any time t + 1 depends on probability that the agent belongs to the group
of size g given by ag and the majority opinion within the group. Then the recursion relation on
the probability of agents can be written as [61]

P+1(t + 1) =
G∑

g=1
ag

g∑
j=[ g

2 +1]
Cg

j P+1(t)jP−1(t)g−j ,

P−1(t + 1) =
G∑

g=1
ag

g∑
j=[ g

2 ]
Cg

j P−1(t)jP+1(t)g−j ,

(1.18)

where Ck
j = k!

(k−j)!j! and [x] denotes the integer part of x. This equation conserves the total
probability P+1(t + 1) + P−1(t + 1) = 1 at any time t. This can be shown by changing the
dummy variable j to l by substituting l = g − j for P−1(t + 1) in Eq.(1.18), and adding it with
P+1(t + 1). It is to be noted that Eq. (1.18) is a mean-field equation that neglects possible
fluctuations.

The dynamics of MR model have two stable fixed point P+1 = 0 and P+1 = 1, and an
unstable one, called the faith point at P+1 = pc. The unstable fixed point pc is located in
between the stable fixed points and is given by [62],

lim
t→∞

P+1(t) =
{

0 if P+1(0) < pc,

1 if P+1(0) > pc.
(1.19)

As Eq. (1.18) neglects possible system size fluctuations, the result in Eq.(1.19) is only valid
in the limit N → ∞. The time to reach a consensus scales to the order of log N number of
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updates per agent. In addition, the value of pc depends on {ag}, G and the initial value P+1(0).
If the size of the group is even, pc < 1/2 , i.e. consensus will be reached for negative opinion
even if it is initially held by a minority of the agents. Whereas if the group size is odd, pc = 1/2,
due to the symmetry of the two opinions [8, 63].

Galam et. al [64] introduced another method of selecting a majority in case of a tie by
introducing a probability p by which the agents in the group adopt the positive opinions, and
with (1 − p) the negative opinions. With such an extension, authors studied the emergence
of democratic or dictatorial extremism. In this study, the agents are assumed to belong to
a specific social-cultural class. They are randomly assigned to various groups within their
respective class at each step to evolve locally following the majority rule. The value of p
represents the average individual biases caused by the presence of heterogeneous views in the
corresponding class, which differs from class to class. The approach leads to extremism, with
each class completely polarized along one opinion. For homogeneous classes (p = 0), extremism
may follow the initial minority, making it minority induced. Contrarily, heterogeneous classes
(p = 1/2) show more balanced dynamics, which leads to extremism brought on by the majority.
Segregation within sub-classes may result in the coexistence of opinions at the class level, thus
preventing global extremism.

A natural extension of the model is to incorporate a small fraction of zealots [63, 65]. The
existence of zealots for only one of the two opinions shifts pc to a value lower than 1/2 in favor
of the zealots’s side. Furthermore, a fraction of zealots above 0.17 ensures that their side wins
regardless of the initial conditions. Additionally, balanced dynamics are restored by an equal
number of zealots on both sides (i.e., pc = 1/2). A similar extension of the MR model is used
to explain the result of public debates driven by incomplete scientific data [66]. When scientific
data is insufficient, the zealots drive the results of the debate. Therefore, to win a debate, one
strategy is to increase the proportion of zealots.

Understanding the consequences of free will and the collective opinions of agents is important
to understand how opinion dynamics can be leveraged to shape public opinion. To address this
problem, an extension of the MR model was developed by Wu et al. [67], which introduces
two distinct models (model I and model II) that feature various dynamics of opinion-updating.
While updating opinions, the agents interact with their neighbors according to the majority
rule with probability 1 − p, and with probability p they can exercise their own free will and
make decisions (model I) or follow the mass opinion (model II). They showed that for both
models, there exist a threshold for p below which consensus is reached.

The extensions of MR model are employed to investigate how the interplay between individual
obstinacy and collective beliefs influences the course of public debates [68], the formation of
bullish trends driving an asset price in market [69]. A stochastic version of this model on
hypergraphs is used to understand how opinions are formed and how they evolve over time in
more realistic and complex network structures [70]. The non-consensus opinion (NCO) models
(i.e. models in which two opinions coexist in the stable state above a certain threshold of
interactions), and its extensions are one class of models that resemble the MR model [71].
These models introduce self-opinion into the majority rule, either with or without weight. It
is demonstrated that the system can reach stable states where the two opposing opinions
coexist on many types of networks, including fully-connected networks. Galam [72] contains a
comprehensive examination of the MR model’s extensions and applications.
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1.1.7 Sznajd Model

The Sznajd model (SM) was introduced in 2000 as a sociophysics model by Katarzyna Sznajd-
Weron based on the maxim of trade union ‘United we Stand, Divided we Fall’ [73]. The model
later came to be known as the ‘Sznajd model’ due to Dietrich Stauffer [74]. Sznajd’s study
concentrated on how opinions are spread in a society with the agents assumed to be placed
on a one-dimensional chain [73]. The opinion of agents is assumed to take one of the two
opinions xi = ±1 (usually referred as up or down spin). Motivated by the phenomenon of social
validation, the dynamics of the Sznajd model is defned as follows,

1. At each time step, a pair of agents xi and xi+1 are chosen at random to change the
opinion of their neighbors xi−1 and xi+2.

2. If xi = xi+1, then xi−1 = xi and xi+2 = xi+1.

3. If xi = −xi+1, then xi−1 = xi+1 and xi+2 = xi.

Opinions of the agents are updated in a random sequential order. Since the introduction
of Sznajd model, it has been argued that one of its distinguishing features is the information
flow from the initial pair of agents to their neighbors, and thus the dynamics is called ‘outflow-
dynamics’ [6, 75]. In other opinion dynamics models, agents are instead influenced by their
neighbors.

The decision time of an individual is defined as the time needed for an individual to change
their opinion. Using standard Monte Carlo simulations, it is demonstrated that simple rules
of Sznajd model results in quite sophisticated dynamics, and a power law with the exponent
τ ∼ 1.5 for the decision time [73]. Starting from a random initial configurations where both the
opinions are equally distributed, it has been shown that the system evolves into either a full
consensus to +1 or −1 with a probability 0.25 each or a stalemate state (inability to have a
common opinion) with a probability 0.5 [73]. The SM model has been extended and applied in
marketing [76], finance [77], and politics [78].

The Sznajd model has been modified by Schulze [76], by changing the dynamic rules for the
condition xi = −xi+1 to,

3′. If xi = −xi+1, then xi−1 = xi and xi+2 = xi+1.

With the new dynamic rules, the system always reaches full consensus to either ±1 with a
probability of 0.5 each by avoiding the stalemate state. Other variations of the model to avoid
the stalemate final state are discussed in Ref. [73]. These new rules were called ‘if you do not
know what to do, do nothing’ and ‘if you do not know what to do, do whatever’.

Behera et al. [79] compared the the ‘voter model’ and ‘Sznajd model’. They showed that the
dynamics of a one-dimensional voter model and the original Sznajd model are equivalent. The
only difference is, in voter model the agent is influenced by it’s nearest neighbor whereas in
Sznajd model the agent is influenced by the next-to-nearest neighbor. The fact that the Sznajd
model updates the opinion of two agents at a time, whereas in voter model only one agent
updates it opinion introduces a factor of two in the average time to reach stable state. All
other features remain the same, including the decision time.

Stauffer [80] extended the original Sznajd model to two-dimensional square lattice with
simultaneous updating rules (agents receiving simultaneous information from different sources).
A pair of neighboring agents on a square lattice can persuade their six neighbors to agree with
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a b

Figure 1.14: Dynamical rules of Sznajd model on the square lattice proposed by Stauffer and
Galam in private communication described in Ref. [81]. In every time step a set
of four opinions denoted by arrows is picked at random and influences opinions
denoted by dots producing the configurations presented in the right-hand side
pictures. Dots represent opinions, which can be either ±1. Figure and caption
taken from Ref. [74]

them if and only if they both hold the same opinion. It is found that it is far more difficult to
reach a complete consensus with simultaneous updating rules. This is because some agents
refuse to adjust their opinions when they simultaneously receive conflicting information from
several neighbor pairs (a phenomenon known as frustration).

Stauffer et al. [81] suggested several ways to generalize Sznajd model to square lattices. They
displayed the model on an L × L square lattice, xi = ±1. Six new rules were introduced, but
only two of the six introduced rules have been applied in subsequent publications:

1. Four neighbors on a square lattice leaves its eight neighbors unchanged if any one of the
four neighbors have a different opinion (see Fig.1.14 a).

2. A neighboring pair persuades its six neighboring agents to follow their orientation if and
only if the two pair opinions are same.

With both these rules, the system always reach complete consensus as a steady state.
Furthermore, a phase transition is observed, where initial densities of positive opinion P+1 < 1/2
leads to all negative opinions and P+1 > 1/2 to all positive opinions for large enough systems.

Galam in a private communication with Stauffer (as mentioned in Ref. [81]) showed that
the updating rule of the one-dimensional Sznajd model can be precisely translated into two
dimensions as shown in Fig. 1.14 b. The one-dimensional rule is applied to each of the four
chains of four opinions that are centered about two horizontal and two vertical pairs.

The Sznajd model is as well extended to different complex networks, including scale-free
networks [34], small-world network [82] and complete graph [83]. The numerical results on
complete graph are supplemented with analytical results and proved the existence of a phase
transition in the original formulation of Sznajd model [83]. More complex topologies, such as
two-dimensional lattices or networks, has undeniably brought Sznajd model closer to reality.

Kondrat et al. [84] conducted a recent study on disagreement in the Sznajd model in one
dimension, where both conformist (agreement) and anti-conformist (disagreement) behaviors
are observed. A new parameter called p is added to the model specifically to describe the
likelihood that, in a situation where two neighbors have the same opinion, a third neighbor—who
previously shared that opinion—will adopt the opposing opinion. As in the original Sznajd
model, if the third neighbor did not share the initial pair’s opinion, then the neighbor adapt
the opinion of the pair. It is demonstrated that when anti-conformity is low, consensus can
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be achieved and population-wide spontaneous changes between ±1 occur. On the other hand
side, excessive anti-conformity causes the average opinion level to oscillate around 0 without
reaching 1.

The model has also been employed in a study that compares two opinions, one based on
the Sznajd model and the other on the voter model [85]. Agents are assumed to be placed on
the vertices of Watts-Strogatz small-world network and can take one of two states, S or D. An
agent is chosen at random for each time step. If the selected agent is in state S, it randomly
switches one of its neighbors from state D to state S. Whereas if it is in state D, then one
of its neighbors (if exists) is selected at random with a probability p and transforms all of
its neighbors into state D. When the clustering coefficient is low, it is demonstrated that the
system switches from complete consensus on S to complete consensus on D depending on p.
However, the opinion S becomes more prevalent as the clustering coefficient increases.

Sznajd [75] extended the model to investigate the effect of two types of social influence:
conformity and independence. The outflow dynamics describe the conformity in the model as
in the original Sznajd model. Independence means that a neighboring agent has a probability p
of choosing not to follow an agreement plaquette. In this case, they have the agent flexibility
to change their minds with probability f . The model is examined on a complete graph, one-
dimensional, and two-dimensional lattices. The majority is larger for low levels of independence
(p), which encourages the coexistence of the two opinions in society.

1.1.8 Multidimensional Models
In most of the models discussed before, the opinion of the agents are described by scalars.
Agents can have opinion on various topics, including sports, entertainment, spirituality, and
so on, which can have significant influence during the interactions among their neighbors. In
order to accommodate opinions on different topics simultaneously, several multidimensional
opinion dynamics models have been put forth.

One of the first opinion dynamics models that considers a multi-dimensional opinion is
Axelrod [86] model. The agents are assumed to be located on the nodes of a network or on the
sites of regular lattice. The model represents the culture of an individual within a population
of size N using F variables (σ1, · · · , σF ), where each variable can take one among q discrete
values, σf = 0, 1, · · · , q − 1. These variables, called cultural features, represent an individual’s
beliefs, attitudes, or behavior, and q is the number of possible traits allowed per feature. At
time t, the interactions between agent i and one of its neighbor j occur based on the extent to
which their cultural features overlap:

oij = 1
F

F∑
f=1

δσf (i),σf (j), (1.20)

where δij represents Kronecker’s delta.
With a probability oij , there is an interaction between agents i and j. If they interact, one

feature with different traits is selected (σf (i) ̸= σf (j)) and is set to σf (i) = σf (j); otherwise
nothing happens. The dynamics follows a random sequential order. The Axelrod dynamics
tends to make the interacting agents more similar, and the interactions are more likely among
the agents that already shares many traits. Whereas agents with no shared traits cannot
interact with each other.

The system evolves to one of many possible final states from a finite random initial population.
These final states fall into two types: ordered states, where all agents share the same traits
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Figure 1.15: Behaviour of the order parameter ⟨Smax⟩/L2 vs. q for three different system
sizes and F = 10 in Axelrod model on a regular lattice of size L. In the inset the
same quantity is reported for F = 2. Figure and caption taken from Ref. [87]
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Figure 1.16: Order parameter ⟨Smax⟩/N as a function of the effective noise r′ = r(1 − 1/q)
for different values of q in Axelrod model. Simulations have been run in systems
of size N = 502 with F = 10. Figure and caption taken from Ref. [88]
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(qF possible states), and frozen states, where multiple cultural regions coexist. The final state
can be defined by the distribution of cultural region sizes, where a region is defined as the
connected set of sites sharing exactly the same features, and ⟨Smax⟩ denotes the average size
over the largest regions obtained from different realization of random population. The number
of possible traits q in the initial population determines which type of final state is reached [87].
If q is small, there are many shared traits among agents, which facilitates interaction and
increases similarity, leading to consensus. For larger q, there are only a limited number of
shared initial traits, resulting in limited interaction and the formation of cultural domains that
are unable to grow, preventing the consensus from being reached. When the agents are placed
at the vertices of regular lattices of size L, the phase transition between the two types of states
occurs at a critical value qc, which depends on F (see Fig. 1.15).

There are various ways to define the order parameters to describe the transition, including
the average fraction ⟨Smax⟩/N of the system occupied by the largest cultural region. In the
ordered phase, this fraction is finite (as N approaches infinity). On the other hand, in the
disordered phase, cultural domains are of finite size, and therefore ⟨Smax⟩/N scales as 1/N .
Another commonly utilized order parameter has been introduced by González-Avella et al. [89],
g = ⟨Ng⟩/N , with Ng denoting the number of different regions present in the final state. During
the ordered phase, g approaches zero, whereas it remains finite in the disordered phase.

The Axelrod model has been extensively studied since its inception. Although numerical
studies dominate the research, Lanchier [90] presented some analytical proofs, demonstrating
that when F = q = 2, the majority of the population forms one cluster, whereas a partial
proof shows that if q > F , the population remains fragmented. Lanchier and Scarlatos [91]
explored the one-dimensional case and found that the system fixates (each individual’s state
gets updated a finite number of times before the system reaches stable state) when F ≤ cq
where e−c = c. In Kempe et al. [92], a similar model, which generalizes the use of homophily
and influence in models, was introduced. They proved analytically that when all agents interact,
all initial conditions lead to convergence to a stable state.

Barbosa and Fontanari [93] analyzed the relationship between the number of cultural clusters
and lattice area (A = L2, where L is the size of the lattice). They discovered that when F ≥ 3
and q < qc, there is a strange non-monotonic relationship between the number of clusters and
A. In particular, above a specific threshold of the area A, the number of coexisting clusters
decreases, in contrast to the well-known results for species-area relation (monotonical increase
of the number of species with the size of the area of a particular habitat). However, when
outside these parameter values, the expected culture-area relation (relation between the number
of coexisting cultures and the area) is observed, described by a curve that initially increases
linearly with A, then flattens when the maximum number of possible clusters (qF ) is reached.

The ability of an individual to change one of their traits spontaneously, regardless of their
surroundings, is referred to as ‘cultural drift’ in social science. This phenomenon corresponds
to the introduction of flipping events driven by random noise. Klemm et al. [88] showed that
incorporating noise at a rate r, results in a noise-induced order-disorder transition, which is
independent of the value of parameter q (see Fig. 1.16).

The Deffuant model paper [29] introduced a modification to vectorial opinions, where binary
variables were used instead of continuous ones. This resulted in a model resembling the Axelrod
model but with a maximum of two traits per feature (q = 2) and a probability of interaction
determined by a step function at a fixed threshold ϵ, representing confidence bound. Mean field
analysis revealed a transition from full consensus to fragmentation as ϵ decreases.

Laguna et al. [94] explored a similar model in which the probability of two agents interacting
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and each pair of different variables becoming equal is determined by a probability p when the
distance between the opinion of agents is less than the confidence bound ϵ. The properties of
the transition between consensus and fragmentation vary depending on whether p = 1 or p < 1,
but are still determined by the confidence bound ϵ.

Jacobmeier [95] conducted a study to simulate a Deffaunt consensus model on a directed
Barabási-Albert network using a multi-component subject vector. The study aimed to explore
the distribution and clusters of agents who agree on opinions regarding subjects. The findings
suggest that there is no absolute consensus, and the existence of a robust cluster depends on
the number of subjects. The study also found that two agents tend to agree either on all or no
subjects, and the tolerance in the change of opinions of group members is a crucial parameter
that affects the consensus-forming process.

Huet [96] investigated the dynamics of opinion change in two dimensions that occur through
social interaction. The authors introduce a rejection mechanism into the two-dimensional
bounded confidence model proposed by Deffuant et al. [29]. The agents are characterized by
continuous opinions associated with constant confidence bound ϵ. The agents interact randomly
in pairs, and if their opinions are within ϵ on both dimensions, the bounded confidence model
applies. However, if their opinions are within ϵ on one dimension and beyond ϵ + δϵ on the other
dimension, they are in a dissonant state, and they move away from their closer opinions to solve
the issue. The model reveals the presence of metastable clusters maintained by competitor
clusters’ opposing influences. The study indicates that the number of clusters increases linearly
with the inverse of confidence bound for a large range of confidence bound values, whereas it
grows quadratically in the bounded confidence model. The analysis and initial experiments
support this hypothesis.

Lorenz [97] extended Deffuant-Weisbuch and Hegselmann-Krause to multidimensional contin-
uous opinion dynamics, where opinions are nonnegative vectors of size k whose components
sum up to one. The model employs bounded confidence using the Euclidean distance between
two agents, denoted as dij . The model converges to one or more clusters, depending on the
values of ϵ and k. When k increases, the model leads to better chances for a vast majority
consensus even for lower confidence bound ϵ, but the number of minority clusters rises with k,
too. Additionally, if ϵ exceeds a threshold, the population converges to a single opinion, which
decreases with the number of options k. Ref. [98] offers a comparison between this approach
and the approach of considering the k options as independent. In the case of independent
options, the increase of k does not lead to an improvement in agreement.

Etesami et al. [99] examined the behavior of the Hegselmann-Krause model of opinion
dynamics under different conditions. They investigated the termination time of the Hegselmann-
Krause dynamics in arbitrary finite dimensions and concluded that the termination time depends
only on the number of agents involved in the dynamics. They argue that it is the most precise
limit found to date, which eliminates the dependency of the termination time on the ambient
space’s dimension.

Most of the studies on multidimensional opinion dynamics models concentrates on the scenario
of two or three different opinion types. Waagen [100] generalizes this into k general opinions
along with zealots. The study discusses opinion dynamics models in the mean-field case of
the naming game model, where an arbitrary number of opinions are considered. The naming
game model assumes an infinite population on a complete graph. The article presents a method
for generating mean field dynamical equations for the general case of k opinions. The steady
states are calculated in two special cases: the case where there exist zealots of only one type
and the case where there are an equal number of zealots for each opinion. The article shows
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that in these special cases, a phase transition occurs at critical values pc of the parameter p
describing the fraction of zealots. In the former case, the critical value determines the threshold
value beyond which it is not possible for the opinion with no zealots to be held by more nodes
than the opinion with zealots, and this point remains fixed regardless of dimension. In the
latter case, the critical point pc is the threshold value beyond which a stalemate between all k
opinions is guaranteed, and the article shows that it decays precisely as a lognormal curve in k.
Another study that considers multidimensional opinion model is given in Ref. [101]

1.2 Interaction Networks
In the previous section, we mentioned different types of networks (for example, small-world
networks, complete graphs, square lattices, etc.) without defining them mathematically. In this
section, we present a summary of relevant notations and definitions, and discuss how networks
can be mathematically formalized using matrices. Additionally, we examine key features of
social networks and introduce various network models that are used throughout this thesis.

In opinion dynamics models, interaction networks model social influences and play a crucial
role in exploring opinion formation. It represents individuals and their connections across a
range of social contexts, such as family, friendships, coworkers, and social media. Formally,
a network can be described using a mathematical structure known as a graph. A graph is
composed of a set of N vertices (also known as nodes) denoted by N , and a set of E edges
(also known as links) denoted by E , which connect the vertices. The network’s edges can be
defined using a tuple (i, j) ∈ E , where i and j are the source and target vertices, respectively.
The network can be conveniently represented by an N × N adjacency matrix A, where each of
its elements aij indicates the connection between vertices i and j, and is defined as

aij =
{

wij ∈ R (i, j) ∈ E
0, otherwise,

(1.21)

where wij denotes the weight of the edge between vertices i and j. The out-degree and in-degree
of a vertex i are defined as do

i =
∑

j aij , and di
i =

∑
j aji respectively. In directed networks,

the in-degree and out-degree are not equal. The edge weight wij is valuable to represent the
frequency or intensity of peer interactions, which are not necessarily identical for all pairwise
interactions. This also improves the descriptive ability of network analysis, particularly in
situations where it is important to differentiate between strong and weak connections between
vertices, such as in social influence models. Weighted adjacency matrices are used in various
social influence models. For undirected networks, an edge between vertices i and j also implies
an edge between vertices j and i, and wij = wji. Then the adjacency matrix is symmetric, i.e.,
aij = aji and the degree of vertex i is denoted as di.

The network can also be represented using a Laplacian matrix L which is an N × N matrix
defined as

Lij =
{

−wij , i ̸= j,∑
k wik, i = j.

(1.22)

For undirected networks, the Laplacian can be defined as L = D − A, where D is the diagonal
degree matrix, with Dii =

∑
k wik.

The network topology, or the way agents are connected within the network plays a vital role
in opinion formation. The structure describing the interaction between the agents, along with
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Figure 1.17: The Erdös-Rényi network generated with N = 20 and three different probability
values of edge connection, a: p = 0, b: p = 0.2, c: p = 0.6.

the frequency and intensity of interaction can significantly impact the spread of information
and the formation of opinions. In opinion dynamics models, agents are assumed to be placed at
a network’s vertices, and the edges define the interaction patterns. There are various types of
networks, such as formal, informal, and hybrid networks, with varying topologies. A pyramid-
shaped structure represented by a tree is commonly used to illustrate a formal network, which is
the prevalent form of organization in sizeable institutions, including corporations, governments,
military establishments, and religious bodies [102]. The Erdös-Rényi (ER), scale-free (SF), and
small-world networks are some examples of informal networks, which will be discussed in detail
later in this section.

Square lattices allow for straightforward representation of opinion configurations and include
numerous short loops–a trait shared by real social networks. On square lattices, an agent i
assumed to be positioned at the r-th row and c-th column denoted as (r, c) can interact with
only four of its neighbors positioned at [(r − 1, c), (r, c − 1), (r, c + 1), (r + 1, c)]. Initially, opinion
dynamics models were frequently examined on a square lattice.

Another simple network structure is complete graph in which all agents interact with all
other agents in the network. As complex networks have grown in popularity, more research
has focused on modeling opinion dynamics on complex social networks, for example, random,
scale-free, and small-world networks.

Erdös and Rényi introduced homogeneous random graph in the 1950s, later known as the
‘Erdös-Rényi’ (ER) network [103]. In the ER model, one starts with N vertices, and an edge
is drawn between any two vertices independently with a probability p, 0 ≤ p ≤ 1. Fig. 1.17
shows the ER networks generated using three different values of p. The average number of
edges in the resulting graph is m = pN(N − 1)/2 and average degree k = p(N − 1). There are
different ways of tuning the network parameters to have different topologies. For example, if p
is fixed, then k = p(N − 1) → ∞, when N → ∞. Alternatively, if p → 0 when N → ∞ in such
a manner that p(N − 1) remains constant, then k would be finite. Thus, we can obtain graphs
of finite and infinite degrees.

The idea of the Six Degrees of Separation concept suggests that any two people on Earth
are six or fewer connections away from each other. This idea has been incorporated into a
widely recognized network model referred to as small-world networks. Unlike ER graphs, for
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Figure 1.18: The random rewiring procedure for interpolating between a regular ring lattice
of N = 20 with 4 nearest neighbors and a random network, without altering the
number of vertices or edges in the graph following the Watts-Strogatz method
with a: p = 0, b: p = 0.3 and c: p = 1

a small-world (SW) network, the average distance between two vertices is small and grows
only logarithmically with the network size. Watts and Strogatz [104] introduced a small-world
model by introducing a fixed fraction p of random long-distance connections into an initially
regular lattice. The construction of the networks is as follows: one starts from a ring lattice
with N vertices, each connected to its k nearest neighbors, and each edge is then rewired with a
probability p. This architecture enables the change in graph structure between regularity (when
p = 0) and disorder (when p = 1), thereby allowing investigation into the intermediate zone
0 < p < 1. Fig 1.18 shows the SW network generated using three different values of rewiring
probability p.

Watts and Strogatz [104] investigated two primary quantities: the characteristic path length
L(p) and the clustering coefficient C(p). L(p) is defined as the number of edges in the shortest
path between two vertices averaged across all pairs of vertices. Suppose vertex i has k neighbors;
then the maximum number of edges between the neighbors is k(k −1)/2 (this occurs when every
neighbor of i is connected to every other neighbor). Then C(p) is defined as the fraction of these
permitted edges that actually exist in the network, averaged across all vertices. Small-world
networks have high C(p) values and low L(p) values.

Since many real networks are dynamic and constantly changing as new vertices join and
form connections with older vertices, several models of expanding networks have also been
developed. Barabási and Albert [105] proposed a model for a complex heterogeneous network.
The construction of the model is as follows: one starts from a complete graph of size m, and
new vertices are introduced into the network one by one. Each new vertex selects m other
vertices from the existing network by preferential attachment rule and creates new edges with
them. By the preferential attachment rule, the larger the degree of the vertex is, the more
likely it is to get selected. The process terminates when the required network size reaches N .
The resulting network has an average degree of k = 2m, a clustering coefficient of order (1/N),
and probability distribution of the degree of the vertices follows P (k) ∼ k−γ with γ = 3. The
graphs with power-law degree distributions of γ ≤ 3 are defined as scale-free networks. The
network is named the Barabási–Albert (BA) network and Fig. 1.19 shows the ‘BA’ network
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Figure 1.19: The Albert-Barabási network generated for N = 20 with three different values
of average degree, a: k = 3, b: k = 5, c: k = 10.

generated using three different values of k.

The effect of interaction rules on opinion dynamics models is investigated using different
network topologies. Findings suggest that network topology substantially influences opinion
consensus [6, 9]. According to the French’s formal theory of social power, a population’s power
structure is tied to the pattern and frequency of interpersonal agreement, which is related
to the population’s structure of effective communications [10]. In general, it is observed that
the system reaches consensus when the agents are well-connected, i.e. similar to a complete
graph [10, 31]. For the DW model in scale-free networks, the number of surviving opinions in
the steady state is proportional to the number of agents in the interaction network N , for a
fixed ϵ [106]. In the DW model, the ϵc at which the system reaches consensus is smaller for a
complete graph compared to square-lattice, BA and ER networks for N = 10000 [31]. Similar
results are obtained for the HK model when N → ∞ and d → ∞ (where d is the average degree
of the graph). Under these conditions, the consensus threshold is much smaller on a complete
graph compared to when d remains finite as N → ∞ [43].

There are many studies on network topologies using directed networks. Gandica et al. [107]
studied opinion formation on directed and undirected small-world networks. They concluded
that a directed small-world network is more difficult to attain consensus as it has few connecting
edges compared to the undirected one. However, network size does not affect the final steady
state, although the confidence bound has a more significant influence than small-world rewiring
probability [107]. Additionally, there are works on directed and undirected scale-free networks
on models for opinion formation [95, 108].

Different network structures are used to determine the probability of a minority winning
the election, and showed that certain structures and parameter regimes favor the minority to
win [19]. To have more real-world network structures, researchers have generated networks
from empirical data using certain assumptions for having an edge between two agents and the
corresponding edge weight, and compared the results of discrete opinion dynamics models with
the empirical data [109]. The network approach has contributed significantly to understanding
various complex systems’ structure, function, and response [9].
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1.3 Validation

Opinion dynamics models must undergo validation to verify whether they accurately reflect the
occurrences or behavior the models are supposed to depict in real life [110, 111]. Increasing
the model’s accuracy entails comparing the model’s predictions against actual observations
or experimental data. To effectively capture real-world patterns, it is essential to consider
the social interaction rules employed by agents, their interaction network configurations, the
distribution of their initial opinions and intrinsic preferences, and the relative importance of
social information. Empirical measurement may be used to constraint the model parameters,
and the resulting models can be used to study opinion formation in real societies [109].

Validation of a model should employ empirical data, and collecting them could be challenging.
We need to put something as complex and multifaceted as an opinion into a quantitative metric
that can be estimated from the available information. Even when opinions are conformed to a
few options, as in sociological surveys and questionnaires, data collection efforts are constrained
by sample size and answer subjectivity [112]. Additionally, these surveys cannot guarantee the
extent of honesty of the agents.

Elections and the surveys that precede them are notable sources of empirical data, as they
provide population-level statistics on political candidates of choice as well as the motivations
and attitudes that drive voters’ actions [110]. Another source of empirical data is from social
media platforms. We can assess the agreement of a user towards an issue or a political party
by extracting their comments/posts in social media [111]. Nonetheless, due to the scarcity
of data, modeling and simulation have become the dominant methods in the field. In these
methods, mechanisms derived from sociological theory (or otherwise deemed reasonable) are
converted into mathematical rules and analyzed, frequently referring to common sense rather
than empirical validation [6, 113].

Opinion dynamics models can be validated with empirical data in various ways. The study
of opinion dynamics models, if properly validated, offers information on the social processes
behind knowledge transfer, public opinion, and group cohesiveness. The model’s adaptability
allows us to look into a variety of effects such as the impact of social media (e.g., an external
field influencing all agents) [8, 114], the impact of technology [4] and algorithmic bias to the
adaptive interactions between opinion dynamics and social network structure [111].

Filho et al. [78] performed a statistical analysis of the Brazilian election of the year 1998. Let
N(v) denote the number of candidates securing a fraction v of the total votes. They showed
that N(v) follows a power law distribution, i.e., N(v) ∝ v−α with α ≈ 1. Further studies
employed Sznajd model and confirmed the result from Ref. [78] using square lattice, cubic lattice
and Barabási network [82, 115]. A further examination on Indian elections revealed a similar
pattern, implying that N(v) may reflect some degree of universality [116]. The results from
the same study extended to German, French, Italian, and Polish elections showed a significant
deviation from the power-law of 1/v for different countries, proving that the pattern is not
universal to all countries and eras [117].

Later on, additional datasets of a number of nations and electoral periods showed a lognormal
distribution for N(v). Let v0 denote the average number of votes cast for all candidates in the
same party. In order to combine the numerous curves of N(v) vs. v/v0 into a single universal
(lognormal) function, v0 must be included as a scaling factor and N(v) is given by

N(v) = v0√
2πσv

e−(log(v/v0)−µ)2/2σ2
, (1.23)
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Figure 1.20: a: Universality of the scaling function N(v) across different countries and years.
The lognormal fit, performed on the Polish curve, describes very well the data.
The universal curve is well reproduced the dynamical model, where the dynamics
of the voters’ opinions reflects the spreading of the word of mouth in the party’s
electorate. b: Spreading of the word of mouth among voters. The candidate
(right) convinces some of his/her contacts to vote for him/her. The convinced
voters become “activists” and try to convince some of their acquaintances, and so
on. Successful interactions are indicated by solid lines, unsuccessful interactions
are displayed as dashed lines.Figure and caption taken from Ref. [117]

with µ = −0.54, σ2 = −2µ = 1.08. These election outcomes are analyzed using a straightforward
opinion dynamics model based on word-of-mouth. Candidates are the nodes of a tree-like
network of voter interactions, and the number of contacts follows a power-law distribution.
Voters who have already decided about a candidate try to persuade their peers to support the
same candidate (see Fig. 1.20 b). Initially only candidates have an opinion (they cast vote for
themselves). The candidates begin the dynamics by attempting to persuade their neighbors.
Each candidate’s supporters develop into activists who then attempt to get their neighbors
to support them, and so on. Only undecided voters can be convinced by persuasion. Not all
interactions convince an undecided voter: persuasion occurs only with probability p. The fit of
election data with the model is shown in Fig.1.20 a.

Galesic et al. [109] compared the predictions of discrete models with xi = ±1 opinions to
real-world survey data. The satisfaction of an agent regarding their particular opinion is then
defined as

Si = αxih
soc
i − (1 − α)xihi, (1.24)

where 0 ≤ α ≤ 1 denote the relative weight between the influence of neighbors opinion and
their individual preferences, hi is the intrinsic preference to particular opinion, hsoc

i can take
different values depending on the model,

hsoc
i =


xj , for voter model,
sgn(

∑g
j=1 xj), for majority model,

xe, for presence of zealots.
(1.25)
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The authors used the survey data on 80 individuals living in MIT dorm during the 2008
presidential election period and another survey data on 94 individuals recruited from Mechanical
Turk during the 2016 presidential election season. The study was conducted on complete graph,
ring lattice, small-world network, objective empirical (the proximities of Bluetooth signal
of two agents’ cell phones determine the edge and the weight of the edge by the likelihood
that the two agents are on the same floor) and subjective empirical (edges are determined by
collecting sociometric data from agents about their contacts and weighted using the frequency
of interaction) networks. They showed that the models can be parameterized to resemble actual
societies, and can reproduce opinion dynamics on agent and group levels .

There are a few other studies that include data of historical elections. In Ref. [118], the
election results have been analyzed using Wikipedia data while modeling electoral processes.
The data on vote-share distributions at the county level in US presidential elections from 1980
to 2012 is replicated by the voter model [119]. The noisy voter model explains data on the
Lithuanian parliamentary elections of 1992, 2008, and 2012, which generates a beta distribution
of vote shares [120, 121]. To uncover underlying social impact mechanisms, Phan et al. [122]
fitted a binary-opinion model to the poll data from the US presidential elections from 2012 to
2016.

1.4 External Influence

Information can spread through various medium such as word of mouth, newspapers, radio,
mass media, and in modern era via Internet, and social media. Most of the models we have
examined so far apply to frameworks where peer-to-peer interactions attempt to bring about
consensus among populations. However, we are currently inundated with an enormous amount
of external influences - here, ‘external’ denotes that this influence originates from sources other
than peer interactions, for example, social media.

The impact of mass media is investigated using the Sznajd model with the agents placed
on the vertices of a square lattice [123]. The model involves the introduction of an external
influence, the media, which has a specific value (say +1). If four neighbors agree on a particular
opinion, then all their other neighbors switch to the former’s opinion. If they disagree, the
media’s opinion is adopted with a probability of p. The research demonstrated that the final
state (either ±1) depends on the initial density of +1 opinions and the value of p. A higher
value of p requires a lower initial density of +1 for complete agreement with the media. When
p ≳ 0.18, the population always converges to the value of the information from the media.
Similar work with three opinion states is performed in Ref. [124].

González-Avella et al. [125] investigated the impact of external influence on a binary model
that can take two distinct opinions. At different time intervals, external influence could choose
to hold one opinion with a probability p > 0.5 (the true or most beneficial opinion) or the
other value with a probability 1 − p. A random agent is selected to interact with this external
influence at each time step. If the agent had a different opinion, it would only be updated if a
fraction of its neighbors, larger than a threshold value τ , shared the same opinion as that of
the external influence. The study demonstrated that the system could reach consensus only for
intermediate values of τ . Mixed populations with fluctuations were obtained for small values of
τ , while for large values of τ , the population remained in its initial condition.

Laguna et al. [126] investigated non-equivalent binary opinions in which one of them is
considered as the right one. Agents opinions are updated based on small group interactions in
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which a poll determines whether or not to alter the opinion. In this poll, the higher value of
one opinion counts, and a weight is used for the self opinion. Instead of communicating with
peers, agents communicates with probability p with a so called ‘monitor’, which forces them to
accept the right opinion. This method introduces external influence where the external field’s
persuasion is infinite. A different approach would be to use a group of zealots. The two options
have been found to enhance the adoption of the correct option, however the introduction of
zealots was less effective than the monitors.

The effects of external influence have been investigated in continuous opinion models as well.
The dynamics of DW model is used to investigate the effects of external influence [127]. Every
agent in the population is subjected to an external influence xe that promotes a specific opinion.
At every T time step, the whole population interacts with this external influence, with the same
condition of interaction. An agent’s opinion changes if the difference between the opinion of
agents and the external influence is less than the confidence bound. Experiments were carried
out using µ = 0.5. The system dynamics depend on the value of external influence, T , and the
confidence bound parameter ϵ. The population converges to the value of external influence if
the confidence bound is large enough to reach all agents. Conversely, reaching a consensus with
the value of external influence is impossible if the confidence bound is too small.

A modification of the DW model is used to analyze the effects of external influence (mass
media) where after certain number of updates, all agents interacts with external influence xe

controlled by a parameter γ [128]. Then the system dynamics evolve as,

xi = xi + µγϵi(xe − xi) (1.26)

where ϵi = 1 − ϕ|xi| is the confidence bound of agent i and ϕ controls the tolerance rate of
agents. Agent opinions move towards the value of xe for mild information (low γ), while an
increasing number of antagonistic clusters arise for strong information. This demonstrates that
aggressive media campaigns are dangerous, as they may result in the population not receiving
information.

A different model similar to the DW model investigated the effect of external influence and
disagreement [129]. Disagreement is introduced into the model as an attribute wij = ±1 of the
link between two agents (some pairs of agents always agree and some others always disagree),
and opinions of agents xi ∈ [0, 1]. Then the dynamics of the system evolve as,

xi(t + 1) = xi(t) + µωij(xj(t) − xi(t)) (1.27)

where µ = 0.5 is the convergence parameter. The media impact is parametrized as xe ∈ [0, 1]
in the model, which can simultaneously alter the opinions of all agents in the network after
a certain number of updates. The introduction of disagreement among some pairs of agents
was shown to favour consensus with the external influences. Another study using DW model
included the competition among multiple interacting mass media (for example, TV, blogs,
newspaper, social media platforms, and so forth) sources [130]. The authors concluded that
media competition tends to favor fragmentation among the population.

Quattrociocchi et al. [131] investigated a two-dimensional DW-like model with conflicting
opinions (x1

i , x2
i ) on the topics of welfare and security. The study focused on the impact of

external influence from media and experts on a scale-free social network. The results showed
that peer interaction could help agents escape false media messages, but only if the media does
not reach more than 60% of the total population.

35



Hegselmann and Krause incorporate the truth seekers, i.e., agents that take into account the
value of truth T ∈ [0, 1], into the Hegselmann-Krause model [132]. This can be considered as
agents interacting with experts, which is analogous to interacting with an external influence.
As an agent interacts with their neighbors, they readjust their opinion following,

xi(t + 1) = αiT + (1 − αi)
1

|Ni(t)|
∑

j∈Ni(t)
xj(t), (1.28)

where Ni(t) denotes the neighbors of the agent i at time t, and αi ∈ [0, 1] depicts the agent’s
disposition to seek the truth. The effect of the truth T is not based on confidence bound; rather,
it affects agents with αi ̸= 0 independent of their opinions. Given that the truth is not extreme
(near to 1), the results shows that even for small αi = 0.1 for all agents, or if at least half of the
population αi ≠ 0, the population converges to the truth value. If the truth is extreme and
not all agents have αi ̸= 0, some agents remain far from the truth. A large αi value may cause
more agents with αi = 0 to stay away from the truth, implying that too strong information can
have reverse effect. Kurz [133] presents a more in-depth examination of the model with truth
seekers, demonstrating analytically that all truth seekers (agents with αi ̸= 0) converge to the
truth. This result holds even if there are agents who do not seek the truth.

The effect of an external influence on the Axelrod model is extensively studied by introducing
external agent (information source, information field) that can interact with agents in the
population. One approach is to include a parameter p that specifies the probability that an agent
will engage with the external influence instead of a neighboring agents at each time step [134–
137]. Increasing the probability of interaction with external influences increases fragmentation
instead of favouring consensus. This behavior is explained by the fact that interacting with an
external influence more frequently decreases agents’ probability of interacting with one another.
As a result, relationships between agents and external influence are interdependent. In addition,
the fact that some agents cannot interact with the external influence due to their low overlap
(defined by Eq. (1.20)) with the agents causes an isolation of these agents and results in the
formation of new clusters.

The external influence in the above mentioned papers was constant and independent of
the population state. González-Avella et al. [138, 139] investigated several other ways to
define external influence (so called global and local endogenous fields), on a two-dimensional
lattice. They accounted for endogenous cultural influences on Axelrod model by calculating the
statistical mode of opinions over the entire population (global) or each agent’s neighborhood
(local). The results are similar to the previous studies, where these fields encourage population
fragmentation for a large value of p; however, for small values of p, the population converges
to the external influence. Local external influence sources encouraged population to reach
consensus while revealing quantitative discrepancies between the different types of information.
Furthermore, an analysis of two distinct populations, where each population is influenced by
a global field of the other, has revealed complex behavior, where sometimes one population
did align with the influence from the others, but they could also reject it or form a large
rejecting minority [138]. Several studies were conducted to develop techniques to tackle
the interdependence between external influence and agents interactions [140–142], and their
extensions to combine the effect of media with noise and social network structure [142, 143].

Sîrbu et al. [144] introduced an approach for modeling continuous vectorial opinions in a
complete graph, which was later extended to different topologies, including external influence
and disagreement. In this model, opinions are represented by a point in the simplex in (K − 1)-
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dimensions, x = [x1, x2, · · · , xK ]. The interactions among the agents are defined based on a
similarity measure defined as

oij =
∑K

k=1 xi
kxj

k√∑K
k=1(xi

k)2∑K
k=1(xj

k)2
, (1.29)

determining the probability of agreement or disagreement (opinions become more similar or
dissimilar) between two agents. External influence is introduced into the system as a static agent.
Following agents interaction, each agent can interact with the static agent with probability p.
The system was demonstrated to generate one or more clusters based on the value of p, initial
condition, and external influence. The study showed that extreme external influence and large
exposure had a lower success rate in the population, whereas mild external influence and low
exposure were more easily accepted by many agents. Full agreement with the external influence
was achieved only for a very mild external influence or a very low exposure of a non-extreme
external influence to an initial configuration. Sîrbu et al. [145] further developed the model,
where multiple external influence (for example, multiple mass-media) sources were analyzed. It
is shown that the system leads to stable non-polarized clusters or full agreement for external
influence which is not extremely mild.

Most analyses have examined only one static source of information, whereas, in reality,
information is derived from multiple sources and is continually evolving [8]. These topics have
received little attention in the literature, and challenges persist in establishing a framework
where media and agents interact bidirectionally, similar to society.

1.5 Electoral Systems and Computational Propaganda
In modern democratic societies, elections are typically held periodically and involve various
activities including campaigning, casting votes, counting ballots and finally translating into
elected representatives. Elections may be held at the local, regional, or national level and can
involve a variety of political parties and candidates. Finally, the outcome depends on how the
individual votes are gathered and counted, which is different in different countries and branches
of government.

Electoral attacks refer to any attempt to disrupt or manipulate the electoral process. These
attacks can take many forms including cyber attacks on electoral systems, disinformation
campaigns to spread false information about candidates, and physical attacks on voters or
polling stations. There are several recent reports of systematic attempts to influence the
outcomes of democratic elections both internally [146] and externally [20]. Studies reveal that
social media have been used widely for electoral attacks in various countries using computational
propaganda especially through bots, and thus having a negative impact on the elections [147].

Electoral attacks can have serious consequences for the democratic process, as they can
undermine the integrity and legitimacy of elections. To counter electoral attacks, governments
and electoral authorities need to take steps to ensure the security and integrity of the electoral
process. This may involve educating citizens about the risks of electoral attacks and how to
spot disinformation campaigns can help to promote awareness and resilience in the face of these
threats. It is essential to impose rules on social media platforms to differentiate the information
created by the bots from humans. Ultimately, protecting the integrity of the electoral process is
essential to ensure that citizens have confidence in their government and can participate freely
and fairly in the democratic process.
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The advent of social media has revolutionized the way people communicate, interact, and
share information. With its rapid proliferation, social media has also profoundly impacted
various aspects of society, including the political landscape. One of the most significant arenas
in which this impact is felt is in the realm of elections. The influence of social media on elections
is multifaceted, ranging from its ability to shape public opinion and mobilize voters to its
potential for spreading misinformation and manipulating political discourse.

While social media has the potential to enhance political participation, it also harbors the
danger of spreading misinformation and disinformation. False narratives, misleading content,
and fake news can spread rapidly across these platforms, influencing voters’ perceptions and
decisions. The speed at which information travels online often outpaces fact-checking efforts,
leading to the persistence of inaccurate information. The use of bots–software-created and
operated, automated social media accounts– for spreading disinformation during elections can
have significant and concerning impacts on the democratic process and public discourse. Bots
can amplify false or misleading information, creating the illusion of widespread support for
a particular viewpoint or candidate. Bots can flood social media platforms with automated
messages, making it difficult for genuine conversations to take place. This can sway public
opinion and influence voter decisions based on inaccurate or biased information. This darker
side to social networks and their use in democratic processes goes by the name computational
propaganda [18, 148–150].

There are several examples of recent massive uses of bots during political campaigns. Bots
appear to have been extensively employed to influence perceptions of the UK’s role in the
European Union during the 2016 Brexit campaign [151]. During the 2016 United States
presidential election, social media platforms were utilized to disseminate significant volumes
of false information [150, 152]. In the context of the 2017 United Kingdom general election,
the labor party employed bots to disseminate electoral messages via Tinder [150]. Similarly, in
the 2018 Brazilian presidential election, the incumbent candidate Jair Bolsonaro extensively
employed social media channels to disseminate targeted information [153]. The 2019 Indian
general election saw both the ruling Bharatiya Janata Party and the Indian National Congress
making widespread use of online misinformation as part of their campaign strategies [147].

Keeping computational propaganda in check requires a combination of technological, regula-
tory, and educational measures. This can include anti-bot measures such as CAPTCHAs, laws
and regulations that address the misuse of automated systems for propaganda purposes, promote
digital literacy and educate users about the techniques and strategies used in computational
propaganda, etc. In this thesis, we look at the problem from another novel perspective and
investigate: (i) what social characteristics of a population of voters may render it more resilient
against external efforts to manipulate its opinion and (ii) which of the existing democratic
electoral systems is more robust against computational propaganda. These important questions
have not been addressed before, to the best of our knowledge.

In order to address these questions, it is important to understand the different types of
democratic electoral systems that exist around the world. Democracies are political systems
with different governmental branches. Different democratic countries have in general different
electoral processes, which also differ in elections to different branches of government – executive,
legislative and judiciary [154]. Roughly speaking, we can group electoral systems into three
main categories, which are single-winner, multi-winner, and mixed systems. Fig.1.21 shows
the electoral systems practised in their corresponding country, and some countries are not
democratic, for example, China [155, 156].
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Figure 1.21: Countries with different electoral systems.

• Single-winner system : It can be sub-classified into three different sub-systems.
– Plurality: The system in which the candidate with the most votes wins, without

necessarily a majority of 50% votes (for example, Canada).
– Two-Round System: This system is similar to plurality. If no candidate attains a

majority of more than 50%, the second round of the election is conducted between
the two candidates who won most votes in the first round of the election (for example,
France).

– Ranked Choice Voting (single winner): The electors are given a choice to rank the
candidates. If the first-priority votes cannot conclusively help decide the winner,
then the second-priority votes of candidate with least number of votes are distributed
among the other candidates. This process continues until one candidate wins the
majority of the votes (for example, Australia).

• Multi-winner system: This is commonly used when a country is divided into electoral
districts, and representatives have to be selected to fill m seats from each electoral district.
When selecting m representatives for a legislative body, the seats are allotted in proportion
to the number of votes received or all the seats are allotted to the party with most of the
votes. This can be achieved in different ways.

– Block Voting: A system in which the electors have as many votes as the number of
representatives to be elected. The number of votes is counted as per the plurality
system. Electors are unable to vote more than once for the same candidate. The
m candidates with the most votes are declared elected and will fill the seats (for
example, Syria).

– Single Voting (Single Non-Transferable Vote): A system in which the electors have
just one vote. The candidate with the most votes becomes the representative (for
example, Afghanistan).
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– List Proportional Representation: A system in which parties nominate their candi-
dates and the electors vote for the candidates nominated by the parties. The number
of seats allotted to each party depends on the proportion of votes for that party (for
example, Switzerland).

– Winner-Takes-All: A system in which all seats are allotted to the party with the
most votes even if only a small part of the majority supports the party (for example,
United States).

– Cumulative Voting: A system in which electors have the number of votes equal to
the number of representatives to be elected. Electors can assign votes according to
their wish. These votes can be distributed among candidates or assigned to a single
candidate (for example, Canada).

– Proportional Ranked Choice Voting (Single Transferable Vote): A method of election
in which voters have only one vote but are given a choice to rank the candidate as
per their preference. The m candidates with the most votes are declared elected and
will fill the seats (for example, Ireland).

• Mixed Systems: A system which combines single winner and multi-winner proportional
systems. These can be divided into two types.

– Mixed Member Proportional: A system in which electors get two votes, one for
the candidate and another for the party. One fraction of the seats is elected using
the plurality system and the other uses list-proportional systems. The list seats
are assigned after selecting plurality seats such that they are proportionate to the
national party vote (for example Germany).

– Parallel systems: A system in which electors get two votes, one for the candidate
and another for the party. One fraction of the seats are elected using the plurality
system, and the other uses list proportional systems. The list of seats was allocated
proportionally to the national party vote (for example, Nepal).

Below, we develop an opinion dynamics model, where a voter’s opinion evolves depending on
their natural opinion and their interactions with other voters. Here, the natural opinion refers
to an agent’s opinion in the absence of interaction and external influence. With the addition
of interaction, the natural opinions evolve to reach an equilibrium known as the final opinion.
These final opinions are compiled following the electoral system used, to generate the final
outcome of the election. We then study the effect of external influence by sequentially adding a
small bias to the initial opinion of each of the agents, one by one. We quantify the measure of
robustness of an election process as the minimum number of agents required to be influenced
(which we call the effort) in order to overturn the election result.

We study the impact of the social characteristics of a population on election results by
systematically varying the distributions from which we draw the initial opinions. Whereas,
we investigate the robustness of different electoral systems by examining the ‘effort’ when
using them for forming the election results. We remark that our models must be used only to
understand some of the characteristics of election processes at a qualitative level. One main
result in the thesis is that, we validate our simulation results with historical election results
of the US House of Representatives from 2012 to 2020. We observe a significant correlation
between the simulation data and actual election data, which we consider quite remarkable.
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Our model builds upon and extends the current voter and opinion dynamics models. It
includes several aspects that were previously considered only separately. For instance, it
considers the finite interaction distance between agents, termed the confidence bound in the
Deffuant [29] and Hegselmann-Krause [15] models. Additionally, it takes into account the
natural opinions that voters would hold if they were not influenced by others. This particular
feature helps avoid artificial aspects like consensus and fragmentation seen in opinion dynamics
models with limited confidence bounds [157]. Moreover, this feature enables the modeling of
different populations with varying levels of opinion polarization, allowing us to explore how this
polarization affects electoral processes and their resilience. A key innovation in our model is its
ability to extend consensus-like dynamics to multi-dimensional spaces where each dimension
corresponds to a different political party. This involves incorporating party ranking from left
to right without favoring any particular side, which our model does explicitly. Lastly, we
distinguish ourselves from standard voter and opinion dynamics models by introducing outcome
functions designed to capture essential characteristics of diverse electoral processes seen in
different democratic countries for various branches of government.

The mathematical details and the findings of the defined problem will be discussed in the
following chapters. It’s important to note that we won’t cover all the mentioned electoral
systems, but rather focus on the main ones that are, (i) Single representatives, (ii) Winner-takes-
all representatives, (iii) Proportional representatives and (iv) Ranked choice voting system.
They encompass around 80% of the electoral systems worldwide.
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1.6 Appendix
1.6.1 Linear Algebra Concepts
Here, we recall some of the essential linear algebra definitions and results necessary for our
discussions.

Definition 1.6.1. A square matrix M is diagonal dominant if for all i,

|Mii| ≥
∑
j ̸=i

|Mij |. (1.30)

Theorem 1 (Gershgorin’s Circle Theorem). Let M be a square matrix with elements Mij ∈ C
and define the Gershgorin discs,

Di :=
{

z ∈ C
∣∣|z − Mii| ≤

∑
j ̸=i

|Mij |
}

. (1.31)

Then each eigenvalue of M lies in the union of the Gershgorin discs,
⋃

i Di.

Corollary 2. Let M be a diagonal dominant matrix with positive (resp. negative) diagonal
elements. Then all eigenvalues of M have non-negative (resp. non-positive) real part.

Definition 1.6.2. An n × n symmetric real matrix M is said to be positive-definite matrix if
xT Mx > 0 for all non-zero x ∈ Rn.

Definition 1.6.3. A real symmetric positive definite matrix with non-positive off-diagonal
entries is a Stieltjes matrix.

Theorem 3 (Perron–Frobenius Theorem). Let M ∈ Rn×n be irreducible and non-negative
matrix, and suppose that n ≥ 2. Then,

(a) ρ(M) > 0

(b) ρ(M) is an algebraically simple eigenvalue of M .

(c) there is a unique real vector x such that Mx = ρ(M)x and x1 + · · · + xn = 1; this vector
is positive.

(d) there is a unique real vector y such that yT M = ρ(M)yT and x1y1 + · · · + xnyn = 1; this
vector is positive
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2 Two-party System
We start with a simple case of two-party system, with an electoral framework of two dominant
political parties or the case of ‘yes/no’ decisions. Examples of two-party systems include
elections in United States, referendums etc. A two-party electoral system has a straightforward
structure: two main parties compete for voters’ favor, often leading to a clear-cut outcome.
Rooted in a binary competition, characteristics of a two-party system profoundly impact
representation, governance, and political discourse by shaping the choices available to voters,
influencing policy positions, and affecting the overall political climate.

The outcome of an election is the result of a complex process. Indeed, the election outcome
depends on the opinion of each individual in the voting population, but there are other factors
as well. For example, it depends on the interaction between individuals and also on how the
individual votes are gathered and counted. We model an electoral process using an opinion
dynamics model which considers opinion of the individuals, interaction between them and some
external influences that tries to modify individual’s opinions. We assume that each individual
in the model votes in favor of the party that aligns most closely with their opinion. The votes of
the individuals are aggregated at different levels of governance and electoral system to determine
the election outcome corresponding to a priori polarization and bias. The detailed description
of the opinion formation model that we consider and formalization of various electoral systems
that we investigate is provided later in this chapter.

Electoral systems are often subjected to different types of external attack in attempts to
change the election outcome. These external attacks can have serious consequences such as
inducing polarization in the society. In order to maintain the well-functioning of a democratic
system, it’s essential that the electoral system by which the parties or candidates gain power
be robust to external attacks. There have been recent report of attempts to influence the
outcomes of democratic elections externally. With different electoral systems being used among
democratic countries, a question that naturally arises is whether certain electoral systems
are more robust against external influences than others. Our goal is to compare the relative
robustness of different electoral systems against systematic external efforts that attempt to
modify agents opinions.

2.1 Opinion Dynamics
In our model, voters are represented as agents. Each agent has an opinion, that may change
upon interactions with other agents. We model an agent’s opinion as a real number that
indicates the agent’s degree of adhesion to a party. In two-party systems, we define positive
opinion values as the inclination towards one of the parties and the negative values to the other.
Let xi denote the opinion of agent i. The sign of the agent’s opinion indicates which party
agent i supports, and its magnitude represents the degree of agreement or support for that
party.

In the existing opinion dynamics models, agents generally reconsider their opinion based
on interactions with other agents. As time evolves, they forget their own opinion to reach a
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common consensus, which is unrealistic in the real world. As, it is obviously uncommon for
many different agents to have exactly the same opinion on a given, complex topic. We adapt
our model to prevent this unrealistic behavior by introducing a natural opinion x0

i ∈ [−1, 1]
to each agent in the population. The natural opinions of an agent is the actual opinion they
would have in the absence of agent-agent interactions.

The agents in the population tend to interact more with other agents of similar opinions
than those with different opinions. We consider that two agents within an electoral unit (the
region in which election is conducted) interact if their natural opinions are sufficiently close, i.e.,
below a confidence bound threshold ϵ > 0, and agents belonging to two different electoral units
will not interact. This confidence bound ϵ determines the interaction network in our model.
The elements of the adjacency matrix Au

ϵ of the interaction network for an electoral unit u are
given by

(Au
ϵ )ij = aij =

{
1 , if |(x0

i )u − (x0
j )u| < ϵ ,

0 , otherwise. (2.1)

The corresponding Laplacian matrix is defined as

Lu
ϵ = Du

ϵ − Au
ϵ , (2.2)

where Du
ϵ = diag(d1, · · · , dn) is the diagonal degree matrix of the interaction network. The inter-

action network remains constant throughout the dynamics (i.e. matrix Au
ϵ is time-independent)

and is determined only by the natural opinions of agents.
The dynamics of the model is given by

ẋi = d−1
i

∑
j

aij(xj − xi) − (xi − (x0
i + ωi)) , (2.3)

with ωi being the external influence applied on agent i (see Sec. 2.1.2). We normalize the total
influence of other agents on agent i using its degree (number of neighbors) di. This implies
that, the influence that an agent has on a given agent i is diluted by the total number of agents
interacting with agent i. In vector form, for an electoral unit u with nu agents, Eq. (2.3) is
rewritten as,

ẋu = (x0)u + ωu −
[
(Du

ϵ )−1Lu
ϵ + I

]
xu , (2.4)

where I is the nu-dimensional identity matrix.
Eq. (2.4) is a linear system and the matrix (Du

ϵ )−1Lu
ϵ + I has strictly positive eigenval-

ues (Lemma 4 in Appendix 2.7). Therefore, the dynamics is globally stable and converges
exponentially fast towards the equilibrium

xu
∞ =

[
(Du

ϵ )−1Lu
ϵ + I

]−1 (
(x0)u + ωu

)
, (2.5)

which gives the final opinions of agents.

2.1.1 Natural Opinions
Electoral populations are defined by two main social characteristics which are their openness of
the society (modeled by the confidence bound ϵ), and the distribution of the agent’s natural
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opinion. The natural opinion of the agents are modeled based on their bias towards one party,
their polarization and their width of represented opinions. Following Refs. [158, 159], we
consider bigaussian probability distributions given by

P (x) = p

σ
√

2π
e−

(x−µ+ ∆
2 )2

2σ2 + 1 − p

σ
√

2π
e−

(x−µ− ∆
2 )2

2σ2 , (2.6)

where x ∈ [−1, 1], σ > 0 is the standard deviation of each Gaussian peak. The ∆ ≥ 0 quantifies
the degree of polarization, µ ∈ R global shift of the population, and p ∈ [0, 1] gives the weight
of gaussians. In this thesis, the width of the distributions is fixed at σ = 0.2, without loss of
generality. The total mean of the bigaussian probability distribution P (x) is calculated as

µtotal =
∫ ∞

−∞
xP (x)dx

= p(µ − ∆
2 ) + (1 − p)(µ + ∆

2 ).

In the absence of any bias towards one of the parties, the distribution of natural opinions
can be unpolarized or polarized. The value of polarization parameter ∆ ranges from ∆ = 0
(an unpolarized population, whose natural opinions follows a simple Gaussian), to ∆ > 4σ
(polarized population, whose distribution of natural opinion gives two well distinct Gaussian
peaks).

There are two different ways of introducing bias in a society, either (i) via differences in
weight p between the two Gaussians, or (ii) by shifting µ towards one of the parties. In our
studies, we change the percentage of agents voting for each party by tuning these two bias
parameters.

2.1.2 External Influence

The vector of external influence ωu ∈ Rnu , indexed by the electoral unit u, models the targeted
influence of an external source on an agent. It can represent the impact of a wide range of
sources from mass media to targeted advertisement through online social media or computational
propaganda. Without loss of generality, we set the ‘+1’ party as winner in the absence of
external influence. The external influence aiding the opponent party tries to change the outcome
by stirring a set of agents towards the ‘−1’ party, i.e., we have ωu

i ≤ 0, for all i.
To be successful, influences requires to engage a certain amount of resources. In our

simulations, we proceed iteratively to determine the effort required to swing the result of an
election at the level of an electoral unit. Starting from an uninfluenced system (ωu = 0), we
add a constant small negative value −δ to a components of ωu, repeat to other components,
until the outcome of the election changes in the electoral unit. In our numerical simulations,
we set δ = 0.1. If the outcome of the election in electoral unit u changes after Ku increments
(representing the number of agents influenced) , we define the effort needed to change the
election outcome as the percentage of agents influenced,

ξu = Ku

nu
∗ 100 . (2.7)

Next we repeat the process in other electoral units, until the election results is changed at
the country level. The total effort needed to change the outcome of the election is
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ξ =
∑

u

nu

N
ξu , (2.8)

where N is the total number of agents in the whole country.
When influencing agents in order to change the election outcome in an electoral unit, we

define strategies of influence to obtain the maximum impact with minimal effort. Intuitively,
one would target the agents close to the center of opinion distribution in priority as their vote
is likely to be easier to change. We confirmed that this strategy is efficient by comparing the
effort needed to change the outcome by influencing the agents closer to the center of the opinion
space to the effort when target agents at random (see details in Appendix 2.7.1).

When a country is composed of multiple electoral units, there are two natural ways to select
which electoral unit to target in priority. One can either target agents in the electoral unit
with the lowest population, because changing the outcome in such a unit requires to influence
less agents, or one can target the electoral unit with smallest relative majority, because such
a unit is close to a change of outcome already. We show that targeting the electoral units
with lower relative majority is generally more efficient than targeting the electoral units with
lower population (see Appendix 2.7.2). Our strategy to overturn elections is therefore to target
weakly opinionated agents in electoral units with lower relative majority.

2.2 Electoral Outcomes
Once the final opinion of each agent is known, the election outcome depends on the levels
of vote aggregation and the type of electoral systems considered. The sign associated to the
opinion of each agent represents the party they vote for, i.e., we refer to the two parties as ‘+1’
and ‘−1’. We assume that each agent votes for the party that is the closest to their opinion,
i.e., agent i in the electoral unit u votes for party sign(xu

∞,i) = ±1.

2.2.1 Electoral Units
Elections are conducted at various levels, depending on the specific country and the governmental
body for which the election is being held. Here we define three electoral units corresponding to
three different levels of vote aggregation.

Country: In almost all electoral instances, the largest possible electoral unit is a country.
Presidential elections are often realized at the level of country, with notable exception
of parliamentary elections in the European Union. Examples of elections realized at the
country level include presidential elections in Chile, France, Ireland, Mexico and several
other countries.

State: Democratic countries are partitioned into states typically with different populations.
Other denominations for states include provinces, cantons, departments, regions and
so on. Variations in population can be considerably large; e.g., in the United States,
the population of California is ∼ 40 million whereas for Wyoming it is ∼ 570′000.
Parliamentary elections realized at the state level include elections to the United States
Senate, as well as National and State Council elections in Switzerland. The United States
presidential elections are a special case of elections whose outcome is determined by
aggregating elections at the state level (except in Maine and Nebraska).
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District: States can be further subdivided into districts, in such a way that these entities have
more or less the same population. In parliamentary elections, each electoral district then
elects its own, single representative. Examples thereof include the UK general elections,
the United States House of Representatives elections.

Depending on the considered electoral process, results are gathered at one or the other level,
and, if applicable, results in different units in that level are combined to give the outcome, i.e.
the winning party.

2.2.2 Electoral Systems

There are multiple ways to select one or more representatives in an electoral unit based on the
votes secured by the parties. In this chapter, we consider three main ones:

Proportional representation (PR): A set of m seats within an electoral unit are distributed
among the parties to match their proportion of votes as closely as possible. The number
of seats (mA) attributed to party A with proportion of votes ρA ∈ [0, 1] is then

mA = round(ρAm) , (2.9)

where the ‘round’ function rounds to the closest integer. For example, Switzerland elects
the members of the one of the chambers of its Parliament through PR at the level called
‘cantons’.

Single representative (SR): The electoral unit elects the candidate with majority of votes as
its unique representative. It is a particular case of PR with m = 1. The United States
House of Representatives are elected through SR at the level of districts. The second
round of French presidential election follows the SR at the level of country.

Winner-Takes-All (WTA): All seats associated with an electoral unit are attributed to the
party with the most votes. If there is only a single seat in the electoral unit, WTA reduces
to SR. In the United States presidential election, the representatives are selected following
the WTA process at the level of states.

The winning party of an election is the one that has the largest number of representatives
(seats) at the level of the country.

2.3 Validation of the Model
Opinion dynamics models include many sociological assumptions and simplifications. These
models could be used to analyze or evaluate a problem effectively only when they are validated
against some historical data or experimental observation. The validation thus strengthens the
results obtained while evaluating the problem.

In general, comparisons are indirect and statistical in nature, and an important part of the
difficulty is translating a mathematical object, such as an agent’s opinions, into an observed
sociological quantity. It is important to emphasize that our model cannot predict or quantita-
tively model democratic electoral processes. Instead, it identifies and analyses electoral trends
attributed to general social characteristics of voter populations or specific electoral systems.
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Model validation requires a comparison between numerically obtained data and real-life
measurement data. The scarcity of the latter that is necessary to compare with the numerically
obtained data of interest from the models makes it harder to validate opinion dynamics models.
The data of elections in the United States are particularly suited to compare the numerically
obtained data from the model to historical data. It has primarily two major parties (Democrats
and Republicans) and historical data is easily accessible.
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Figure 2.1: Pearson correlation coefficient between historical volatility and simulated volatility
for three different distributions of natural opinions (yellow (unshifted polarized
distribution with biased weight), orange (shifted polarized distribution with equal
weights), dark red (shifted, unpolarized distribution)). Average is taken over
different values of ϵ and error bars denote the standard deviation. The vertical
dashed lines indicate the maximal correlation for each distribution of natural
opinions.

For the validation of our model, we compare historical and numerical volatility of the House
of Representatives elections in the United States, between 2012 and 2020, i.e., a complete
sequence of elections in between two consecutive census-based redistrictings. Obviously, it is
beyond the reach of any mathematical model to reproduce precise vote percentages of the
Democrats or the Republicans within each district. However, it is possible to capture trends by
observing how often the winning party changes from one election to the next in a given district.

We measure the historical volatility of the House of Representatives election in each district
by counting the number of times the winning party (Democrats or Republicans) has changed
from 2012 to 2020. A single representative is elected at the level of the districts for the House
of Representatives elections. The more this number changes over time, the more volatile the
electoral unit is. This historical volatility measure is illustrated in Fig. 2.2 a. Over the period
2012 - 2020, 78 districts changed the winning party at least once (See Fig. 2.2 a).

To compute the numerical volatility given by our model, we allocate an influence budget (IB)
to influence a certain percentage of agents in the country, which is distributed evenly among
the electoral units. The influence budget that we consider amounts to influencing 0.25% − 20%
of the agents in the country. For a given value of ϵ ∈ [0.05, 0.8], we model each district with
501 agents and influence a given percentage of the population in each district in an attempt
to change the winning party. We then simulate the election in each district and compute the

48



a b

c d

V
o
la

ti
lit

y
 [

%
]

Figure 2.2: a Historical volatility of United States electoral district. The color scale on the
map indicates the percentage of elections where the winning party changed from
Republican to Democrats or vice versa, for the period between 2012 and 2020 for
House of Representative elections. (Panels b, c, d) Numerical volatility of United
States electoral district, computed as described in the text. The distribution of
natural opinions corresponds to, unshifted polarized distribution with biased weight
(b), shifted polarized distribution with equal weights (c), shifted, unpolarized
distribution (d). There is a Pearson correlation coefficient of 0.65 between the
historical and numerical volatility for all three different types of natural opinion
distribution.

number of times this influence can change the outcome in each of these electoral units over
100 independent realizations of natural opinions. After influence, each district may or may not
change the winning party. We repeat this process with the natural opinions generated from the
historical data of the House of Representatives election from 2012 to 2020. For each value of
confidence bound ϵ, averaging over all realizations of the number of times the influence has
changed the winning party and election years gives our numerical volatility.

We consider three distributions of natural opinions (see Eq. (2.6)), where parameters are
tuned to match the vote percentages given by the historical data:

Unshifted polarized distribution with biased weight : (µ = 0, ∆ = 0.5, σ = 0.2), where the
majority (given by the historic data) is obtained by tuning the size of each weight p ∈ [0, 1];

Shifted polarized distribution with equal weights : (∆ = 0.5, σ = 0.2) with balanced weights
(p = 0.5), where the majority (given by the historical data) is obtained by biasing the
whole population with µ ∈ R;

Shifted, unpolarized distribution : (∆ = 0, σ = 0.2, p = 0.5) where the majority (given by the
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Figure 2.3: Comparison between historical volatility (black dashed line) and numerical volatil-
ity (red solid line) for 435 United States electoral districts numbered 1 to 435
(in alphabetical order on the horizontal axis) during House of Representative
election from 2012 to 2020. The distribution of natural opinions corresponds
to a: unshifted polarized distribution with biased weight, b: shifted polarized
distribution with equal weights, c: shifted, unpolarized distribution.

historical data) is obtained by biasing the whole population through µ ∈ R.

We compare the results of the numerical volatility against historical volatility by computing
the Pearson correlation coefficient between these quantities. The Pearson correlation coefficient
averaged over confidence bound ϵ vs influence budget is shown in Fig. 2.1. The error bars in
Fig. 2.1 denote the standard deviation of Pearson coefficient over confidence bound ϵ. The
Pearson coefficient increases to a maximum value and then decreases as a function of influence
budget. With higher values of influence budget we convince many agents which is unrealistic in
actual elections, which leads to the aforementioned non-monotonous pattern. From this data,
we determine the best Pearson correlation coefficient of around 0.66 and the corresponding
confidence bound ϵ, for all three different types of natural opinion. This large Pearson coefficient
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indicates high cross-correlation between the historic data and our simulations. The influence
budget at which Pearson coefficient reaches maximum value is 3% for the an unshifted polarized
distribution with biased weight and 5% for the shifted polarized distribution with equal weights
and shifted, unpolarized distribution of natural opinions. The effect of the confidence bound ϵ
is minimal when the Pearson coefficient is at its maximum value, and its influence becomes
more significant as the influence budget becomes larger. We conclude that our model captures
the main trends and features of real elections.

The numerical volatility corresponding to the three distributions of natural opinions with
the highest Pearson correlation coefficient is shown in Figs. 2.2 [b-d]. Note that for each type
of distribution, we tune the confidence bound ϵ to maximize the Pearson correlation coefficient.
Qualitatively, most of the districts that haven’t changed their winning party over the period of
2012 to 2012 is also shown to be resilient to influence as per our model. Similarly results hold
for the volatile electoral districts as well. Obvious differences exist, however, the two sets of
data look overall similar, which is confirmed by a rather large Pearson correlation coefficient of
r ≈ 0.66 for all three different types of natural opinion. The large Pearson coefficient indicates
that our model provides an accurate estimate of the robustness of electoral systems.

The Pearson correlation coefficient assesses the extent to which our numerical volatility aligns
with historical data, gauging the strength and direction of similarity in the patterns of change
between these datasets. However, it tends to overlook differences in the amplitude or magnitude
of these changes. As a result, it may not adequately capture situations where the scale of
variation between the two datasets differs significantly. To verify this, we plot Figs. 2.2 [b-d]
differently by comparing the amplitude of numerical volatility with the historical volatility for
each of the 435 United States electoral districts numbered 1 to 435 in the alphabetical order
(see Fig. 2.3). Even the amplitude of numerical volatility shows an excellent fit to the historical
volatility for all three different distributions of natural opinion, with minor differences for a
few electoral districts. In the case of unshifted polarized distribution with biased weight, the
numerical volatility values of electoral districts are slightly smaller than the other distributions,
shifted polarized distribution with equal weights and shifted, unpolarized distribution. This
behavior is a consequence of selecting an influence budget that leads to a higher Pearson
correlation for the unshifted polarized distribution with biased weight distribution, specifically
an IB of 3%. This influence budget choice is relatively smaller compared to the influence
budget choices for the shifted polarized distribution with equal weights and shifted, unpolarized
distributions, both of which are set at 5%. Given the low number of independent parameters in
our model, we take this as a successful validation test for our model.

2.4 Robustness Analysis

In our model, the electoral process is modeled in two steps. In the first step, we model the
opinion formation of agents based on the social characteristics of the population, such as bias in
the population, a priori polarization of agents opinions and the openness of the agents towards
the opinion of other agents (modeled by confidence bound ϵ). In the second step, we model
different types of democratic electoral system that exist worldwide to elect the president of the
country or for electing representatives for different branches of government such as executive,
legislative and judiciary.

In order to understand the effect of each sociological aspects of population on the electoral
systems to external influences, we identify each aspect independently on a single electoral unit.
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First we consider the aspect of no bias (p = 0.5, µ = 0) on the voter population, and later
we introduce some bias keeping all other aspects fixed. The effect of sociological aspects on
different electoral systems may differ, and we determine which electoral system is more robust
and least robust to external influences. As we validated that our model gives an accurate
estimate of the robustness of an election outcome, we investigate these aspects in this section
based on our model.

2.4.1 Robustness Against Polarization and Bias

We first focus on a single electoral unit using the SR electoral system. The distribution of
natural opinions within this electoral unit given by Eq. (2.6) is considered close to parity,
meaning that a moderate effort would be sufficient to change the election outcome. With
such a consideration, we can independently consider each of the sociologically aspects of the
population. Following the strategy outlined in Section 2.1.2, we determine the minimal effort
required to change the election outcome.

For our simulations, we consider 2001 agents in a single electoral unit and vary the confidence
bound in the range of ϵ ∈ [0, 1.5]. The odd number of agents in the electoral unit ensures
that we obtain a majority of at least one agent for one of the parties. We study the effect of
different parameters of the natural opinion distribution by computing the minimal effort across
a range of (i) polarization parameter (∆), (ii) global shift (µ), (iii) weight of Gaussian peak (p)
of Eq. (2.6) as a function of confidence bound (ϵ).

In Fig. 2.4, we show three plots, each corresponding to a different interval of the polarization
parameter. Specifically, we explore polarization parameter in the range ∆ ∈ [0, 1] as a function
of confidence bound ϵ ∈ [0, 1.5]. It is important to note that the distribution of natural opinions
becomes highly polarized when the polarization parameter ∆ > 0.6 and, our primary focus
is on democratic elections characterized by low to moderate polarization. Within the range
∆ ∈ [0, 0.6], we refer to the polarization parameter as the democratic polarization parameter.
Fig. 2.5 shows an example of the final opinions of the agents at different values of confidence
bound ϵ. We have chosen one polarization parameter value ∆ from each interval of Fig. 2.4 to
interpret our results within the corresponding interval.

For weak polarization parameter ∆, it is evident from Fig. 2.4 a that large values of opinion
polarization within the range ∆ ∈ [0, 0.6] is associated with a less robust election outcome and
the effort required to alter the election outcome increases as a function of confidence bound ϵ.
With increase in polarization, the density of agents close to neutral opinion (x = 0) decreases
and this reduces the connectivity between the agents near the neutral opinion. This reduces the
rigidity of change in opinion of agents, potentially leading to a change in their voting behaviour
and the effort needed to change the election outcome decreases. Similarly with increase in
confidence bound ϵ, the connectivity between the agents increases and the rigidity of change in
opinion increases and a significant effort is necessary to manipulate the election result. Thus
the effort needed to change the election outcome increases as a function of confidence bound ϵ.

At larger values of polarization parameter ∆ ∈ [0.71, 0.85] as shown in Fig. 2.4 b, we observe
a deviation in the behaviour of the effort needed to change the election outcome as a function
of the confidence bound ϵ. Initially, as the confidence bound increases, we observe an increase
in the effort required to change the election outcome. With moderate values of ϵ ∈ [0.1, 0.4],
agents tend to move towards other agents with similar opinions, thus the density of agents near
the neutral opinion (x = 0) are initially depleted. This leads to forming two distinct groups
with similar opinions, making it more difficult to influence agents across group boundaries. The
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Figure 2.4: Average effort needed to change the outcome of an election with respect to
polarization parameter ∆ of the opinion distribution given by Eq. 2.6 and the
confidence bound ϵ. The average is taken over 500 realizations of natural opinion
with 2001 agents in single electoral unit. With σ = 0.2, µ = 0, and p = 0.5,
the interval of polarization parameter ∆ is varied in the panels as follows, a:
∆ ∈ [0, 0.7], b: ∆ ∈ [0.71, 0.85], c: ∆ ∈ [0.86, 1]

formation of these two distinct groups is seen Fig. 2.5 b, as the gap between agents belonging
to the two parties near the neutral opinion.

However, for larger values of ϵ > 0.4, agents increase their interactions, and combined with
attractive dynamics, and the difference between their opinion decreases. In this case, influencing
agents becomes easier due to the reduced separation between their opinions, thus the effect is
reversed with longer-range of interaction. Interestingly, even within this polarization parameter
interval of ∆ ∈ [0.71, 0.85], we observe that higher polarization of opinions is associated with
a less robust outcome. This means that as the opinions become more polarized, the election
outcome becomes more susceptible to change. This interval serves as a transition range for
the effort needed to change the election outcome curve as it shifts from a monotonous trend
to a non-monotonous one, which is observed in the next polarization parameter range (see
Fig.2.4 c).

Fig. 2.4 c represents the effort needed to change the election outcome for still higher
polarization parameter ∆ ∈ [0.86, 1] as a function of confidence bound ϵ. We observe a different
behaviour for the effort needed to change the election outcome compared to the previous
cases. As the confidence bound ϵ increases, we observe a strong non-monotonous pattern in the
effort required to change the election outcome, and the relationship between the effort and the
confidence bound becomes more complex.

For smaller values of confidence bound parameter ϵ ∈ [0, 0.2], the agents tend to follow their
natural opinion as the interactions are minimal. With only a few agents near the neutral
opinion and minimal interactions, it is easier to change the election outcome (see Fig. 2.5 c).

In the interval ϵ ∈ [0.2, 0.6], with higher values of the polarization parameter, the system
tends to form two well-separated groups of agents, each corresponding to one of the parties (see
Fig. 2.5 c). The distance between these two groups increases with the polarization parameter,
and influencing agents to switch their preferences to the other party increasingly difficult.
Consequently, the effort needed to change the election outcome increases as the separation
between the two groups becomes more pronounced. Agents in one group are less likely to be
influenced by agents in the other group due to the substantial differences in opinions. In this
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Figure 2.5: Final opinions of the agents (x∞) with different values of confidence bound
parameter ϵ for individual solutions given by Eq. (2.5). The final opinions of
agents in the system are denoted by orange and red dots on the x-axis, and the
corresponding y-axis denotes the confidence bound parameter ϵ used to construct
the interaction network. The agents colored in red indicate the agents influenced
to change the election outcome. The polarization parameter ∆ is varied in the
panels as follows, a: ∆ = 0, b: ∆ = 0.75, and c: ∆ = 1.
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Figure 2.6: Average effort needed to change the outcome of an election with respect to
bias (µ and p) of the natural opinion distribution given by Eq. (2.6) and the
confidence bound ϵ. The average is taken over 500 realizations of natural opinions
with 2001 agents in single electoral unit. a: Average effort as a function of the
confidence bound ϵ and bias µ, for a Gaussian distribution (∆ = 0.0, p = 0.5).
b: Average effort as a function of the confidence bound ϵ and bias µ, for a
bigaussian distribution (∆ = 0.5, p = 0.5). c: Average effort as a function of the
confidence bound ϵ and the balance parameter p, for a bigaussian distribution
(∆ = 0.5, µ = 0.0).

interval of ϵ, a higher polarization of the opinion is related to more robust outcome.
However, as the confidence bound ϵ continues to increase, the agents interact more frequently.

This increased interaction reduces the distance between two groups and tries to form a single
large group of agents near the average opinion of the population, i.e. neutral opinion (see
Fig. 2.5 c). In this case, it becomes easier to influence agents to change their vote preferences
as the agents are more interconnected and the distance between groups diminishes. As a result,
the effort needed to change the election outcome decreases for larger values of the confidence
bound, resulting in a non-monotonic behaviour for the effort curve as a function of ϵ in the
case of higher polarization parameter values.

In Fig. 2.6, we examine the effort required to alter the election outcome based on different
parameters (µ, ∆, p) of the opinion distribution given by Eq. (2.6), as a function of confidence
bound ϵ. From Figs. 2.6 a and 2.6 b, it is evident that shifting the mean of the opinion
distribution towards one side increases the effort needed to change the election outcome. This
observation aligns with our expectations since greater effort is required when one party holds
a significant majority, regardless of the level of polarization. In other words, when there is
a large imbalance in the distribution, the number of agents to be influenced to change the
election outcome will be increase, and influencing a substantial number of agents becomes
more challenging. As anticipated, Fig. 2.6 c demonstrates that the robustness of the election
outcome, as measured by the effort needed to change it, increases with both the confidence
bound and the discrepancy between the sizes of the two parties. When one party has a larger
group of voters, more agents must be influenced to swing the result. Additionally, agents who
are more connected within the interaction network are generally harder to persuade, hence the
higher robustness associated with larger confidence bound ϵ. This indicates that increasing
the confidence bound raises the difficulty in changing the opinions of well-connected agents,
contributing to a more resilient election outcome. We concentrate only on the democratic
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polarization parameter range for our study on robustness of different electoral systems.

2.4.2 Robustness of Electoral Systems

Electoral systems are designed to elect representatives based on voters’ preferences. The design
of an electoral system can significantly impact the outcome of an election and the representation
of different groups within society. Evaluating the robustness of different electoral systems
helps ensure the system is fair, transparent, and representative. We evaluate the robustness
of different electoral systems taking into account the population’s diversity of the country by
tuning the parameters of natural opinion given in Eq. (2.6).
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Figure 2.7: Robustness of different electoral systems with respect to the confidence bound,
for three different distributions of natural opinions. Simulations are realized over
random synthetic countries with multiple electoral units. For each realization, a
random difference of votes (uniform between 0% and 10%) is introduced following
a: unshifted polarized distribution with biased weight, b: shifted polarized
distribution with equal weights and c: shifted, unpolarized distributions of natural
opinions. In each panel, the top figure shows the effort (averaged over 1500
realizations of natural opinion) necessary to change the outcome of an election, as
a function of the confidence bound ϵ. Each curve corresponds to one of the three
electoral systems: single representative (yellow), winner-takes-all (orange), and
proportional representative (dark red). The bottom plots show the proportion of
times each electoral system was the most robust (red), second robust (orange),
and least robust (yellow).

To compare the robustness of different electoral systems, we need to fix an electoral structure
(country, states, districts) and the distribution of opinions in the population. We first compute
the election outcome following different electoral systems and then introduce an external
influence in attempt to change it.
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For our simulations, we construct a set of 15 synthetic countries, each consisting of ns ∈ [16, 20]
states. We explore three different seat distributions for each country with ns states. The
number of seats per state is drawn from the interval [3, 15], with an average of 9 seats per state.
The assignment of seats within each state is done arbitrarily. The number of agents in each
state is proportional to the number of seats in the corresponding state.

To make the election more realistic, a partisan bias is introduced, which randomly favors
one or the other party in each state. The percentage of initial bias of each party is randomly
generated, and the maximum difference of votes between the parties is 10%. This allows us
to capture a range of scenarios in which parties may have differing levels of support. Using
these parameters, we assess the robustness of three different electoral systems (PR, SR, and
WTA), as discussed in Section 2.2. By conducting numerical simulations, we can compare
the robustness of different electoral systems across multiple hypothetical countries, providing
insights into their performance under diverse conditions.

For our simulations, we consider 101 agents in each district, and one seat is allotted for each
district representation within the corresponding state. Thus the total number of seats in each
state matches the number of districts within the corresponding state. This ensures a consistent
and comparable representation of the population within each state. For our simulation, the
interaction network is constructed at the state level. This means that agents within a state
interact with each other, and there is no interaction among the agents in different states. We
conduct the elections at the level of states and the outcomes of elections are aggregated at the
country level for all the three different types of electoral systems.

In each state, the percentage of agents supporting each party as per the distributions of
natural opinions is calibrated to align with the bias introduced in the corresponding state. We
perform multiple realizations for each combination of the electoral system, natural opinion
distributions, and synthetic country. Since it is not possible to have individual realizations of
elections, the multiple realizations of synthetic elections are used to extract general trends of
actual elections. By averaging the efforts required to change the election outcome across the 15
different synthetic countries and the realizations of natural opinion, we obtain the robustness of
each electoral system. This approach is robust and statistically relevant as it considers multiple
factors such as seat distributions, opinion distributions, and synthetic countries.

In Fig. 2.7, we present the results of our simulations, showcasing the average effort needed to
change the election outcome as a function of the confidence bound ϵ. Additionally, we display
the proportion of realizations where each electoral system was the most robust, second most
robust, or least robust. Based on the findings illustrated in Fig. 2.7, we observe a consistent
pattern regardless of the distribution of natural opinions, including the nature of the random
shift giving the initial electoral bias, or the confidence bound between agents. The PR system
of elections are consistently the most robust, demonstrating a higher resistance to external
influences. However the SR system is the least robust to external influences. These results
highlight the advantages of PR regarding resilience to manipulation and the ability to reflect
the diversity of opinions within a population. The WTA system, although less robust than PR,
still offers moderate resistance to external influences. On the other hand, the SR proves to be
the least robust, suggesting its susceptibility to manipulation and external influences.

From Fig. 2.7, we gain further insights into their relative performance by considering the
proportion of realizations where each electoral system was the most, second most, or least
robust. Beyond the average robustness, the most resilient electoral system is the PR system in
about 65% of the 1500 statistical realizations of synthetic countries we considered, the WTA
system in about 25% and the SR in less than 10% of those cases. This reinforce the conclusion
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that PR is the most robust electoral system among the evaluated ones.
Indeed, our observations align with the findings in Fig. 2.4 and 2.6. As illustrated in

those figures, increasing the confidence bound ϵ increases the system’s robustness within the
democratic polarization parameter. A population becomes more resilient to external influence
and manipulation by promoting communication and interaction among agents. This is reflected
in the increased robustness observed as the confidence bound ϵ increases. When agents have
more opportunities to exchange and share their opinions, it becomes more challenging for
external forces to sway the overall outcome of the election.

Additionally, among the three types of opinion distributions, we find that shifted polarized
distribution with equal weights exhibits slightly higher robustness to external influence than the
other two distributions (unshifted polarized distribution with biased weight, shifted, unpolarized
distribution). Overall, these observations further emphasize the importance of communication
and promoting democratic participation in maintaining the robustness of an electoral system.

2.5 A case study on United States election data

We verify that the results obtained for the robustness of electoral system holds for some
historical data. We use the electoral structure of the United States, on which we compare
different electoral systems at the level of states. The number of seats in each state in the United
States is proportional to the population of each state, and we use the same number of seats in
the United States for our simulations.

Natural opinions for agents in the electoral units are generated using the historical election
results of House of Representative elections from the year 2012 to 2020. We use the results of
each of these elections as bias or shift in the opinion distribution. For simulations at the level
of states, we consider 101 agents per district, which yields states with populations ranging from
101 agents in the state of Wyoming to 5353 agents in the state of California. The interaction
networks for our simulations are constructed at the level of states.

We compare the electoral systems over the three distributions of natural opinions discussed
in Sec. 2.3: unshifted polarized distribution with biased weight, shifted polarized distribution
with equal weights, and shifted, unpolarized distribution. For generating the natural opinion of
agents corresponding to each type of distributions, we proceed at the level of districts. For each
district we tune the distributions of natural opinions such that they agree with the historical
data of HOR electoral year from 2012 to 2020 (5 elections). The natural opinions were gathered
among the districts composing the state, and the agents interact within the state level. For each
HOR electoral year, we generate 100 individual realizations of natural opinion corresponding to
each of the three distributions of natural opinions. Finally, we average the effort over all years
and realizations for all the three opinion distributions for each of the different electoral systems.

We show in Fig. 2.8, irrespective of the opinion distribution, we observe same pattern as in
Fig. 2.7, where the PR elections are by far the most robust, followed by WTA elections and
the SR being the least robust system. We also observe that increasing the confidence bound ϵ
increases the system’s robustness. The simulations shows little difference with the synthetic
countries, in terms of the magnitude of effort needed to change the election’s outcome and the
proportion of times the WTA was most robust. The magnitude of effort needed to change the
election outcome is indeed different because of the electoral bias corresponding to Republicans
and Democrats in the elections. The WTA system that appears to never be the most robust in
this case.
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Figure 2.8: Robustness evaluation on a simulation of the United States House of Representative
elections, between 2012 and 2020 (100 realization for each even year). Elections
are performed at the level of states, with results aggregated from the districts.
Top row: average effort needed to change the election outcome for three electoral
systems (PR: red, WTA: orange, and SR: yellow) and three distributions of
natural opinions (unshifted polarized distribution with biased weight, shifted
polarized distribution with equal weights, and shifted, unpolarized distribution
from left to right). Historical election results were introduced in the natural
opinion distribution via parameters p for unshifted polarized distribution with
biased weight, and µ for shifted polarized distribution with equal weights and
shifted, unpolarized distribution. Bottom rows: Proportion of times each electoral
system was the most robust (red), second robust (orange), and least robust
(yellow).

However, the trend of electoral system remains the same regardless of the electoral structure
and difference in vote percentage. Thus, the results obtained for a synthetic case holds for real
elections which verifies our results to some historical data.

2.6 Conclusion

We concentrated on two-party system of elections. We have constructed an opinion dynamics
model given by Eq. (2.4) to evaluate the robustness of different electoral systems to external
influences. Our model is not meant to predict, nor to quantitatively model democratic electoral
processes, but rather to extract electoral trends that can be attributed to general social
characteristics of voter populations or to specific electoral modalities. In that spirit, the
model is qualitatively validated as it reproduces the observed volatility of the US House of
Representatives elections from 2012 to 2020, with a high Pearson correlation coefficient of 0.65
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between them. This is quite remarkable, in particular given the notorious difficulty to validate
results in computational social science.

Our results shows that a system is systematically more robust as the confidence bound ϵ,
which drives agent connectivity, increases. These results emphasize in particular the need to
encourage public debates during political campaigns, to strengthen democratic processes. We
also observe that the robustness of an election outcome is favored by less polarization and
biasing of the population. Surprisingly, in the democratic polarization parameter range, a
polarized society is less robust to external influence than a less polarized society.

Our study compared the robustness of three different electoral system and we observed that
proportional representation systems are more robust than winner takes all systems, which
are more robust than those with a single representative. Among the three different types of
distribution we have considered, shifted polarized distribution with equal weights seems to be
more robust and unshifted polarized distribution with biased weight seems to be less robust to
external influence compared to corresponding other two distributions.

There are, of course, many directions to extend the work. One of the most appealing is
extending the model to more than two parties. Such an extension would allow modelling
similarities between parties, creating a coalition, and abstention in voting, which is explained
in the next chapter.
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2.7 Appendix

Lemma 4. The matrix M := D−1
ϵ Lϵ + I (used in Sec. 2.1) has a real positive spectrum.

Proof. First, let us compute the eigenvalues of D−1
ϵ Lϵ, which are the zeros of the characteristic

polynomial

0 = det
(
λI − D−1

ϵ Lϵ

)
= det

[
D−1/2

ϵ

(
λI − D−1/2

ϵ LϵD
−1/2
ϵ

)
D1/2

ϵ

]
= det

(
λI − D−1/2

ϵ LϵD
−1/2
ϵ

)
.

(2.10)

We then see that the spectrum of D−1
ϵ Lϵ coincides with the spectrum of D

−1/2
ϵ LϵD

−1/2
ϵ . The

matrix D
−1/2
ϵ LϵD

−1/2
ϵ being real symmetric, its spectrum is real. Furthermore, if λ is an

eigenvalue of D−1
ϵ Lϵ then λ + 1 is an eigenvalue of M . The spectrum of M is then real.

Second, since Mii = 2 and
∑

j ̸=i |Mij | = 1 for all i, By Gershgorin’s Circles Theorem [160],
the eigenvalues of M have real part greater than 1, which concludes the proof.

Lemma 5. Ordering agents with respect to their natural opinion, x0
i , or by their final opinion,

(x∞)i gives the same ordering.

Proof. Assume that at time t = 0, all agents have opinion equal to their natural opinion,
x(0) = x0. Then it suffices to prove that the dynamics generate no crossing between agents.
We will proceed by contradiction.

Assume that there are crossings for the agent’s opinion and that the first one occurs at time
t, between agent 1 and 2, i.e. x1(t) = x2(t) and all other agents are ordered according to their
natural opinions. Without loss of generality, we assume x1(0) < x2(0). Before going further, let
us define Ni, the set of neighbors of agent i and

Nij = Ni ∩ Nj ,

dij = |Nij |,
Ni\j = Ni \ Nj ,

di\j = |Ni\j | = di − dij . (2.11)

By the definition of interaction network,

max
i∈N1\2

xi(0) ≤ min
i∈N12

xi(0) ≤ max
i∈N12

xi(0) ≤ min
i∈N2\1

xi(0), (2.12)

as illustrated in Fig. 2.9.

Figure 2.9: Illustration of the neighbors of 1 and 2 at time t
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The time derivative of x1 and x2 at time of crossing

ẋ1 = − 1
d1

∑
j∈N1

(x1 − xj) − (x1 − x1
0)

= −
d1\2
d1

[ 1
d1\2

∑
j∈N1\2

(x1 − xj)
]

︸ ︷︷ ︸
Σ1

−d12
d1

[ 1
d12

∑
j∈N12

(x1 − xj)
]

︸ ︷︷ ︸
Σ12

−(x1 − x1
0)

= −
[d1 − d12

d1
Σ1 + d12

d1
Σ12

]
− (x1 − x1

0), (2.13)

and similarly (recall that we assumed x1 = x2)

ẋ2 = −
[d2 − d12

d2
Σ2 + d12

d2
Σ12

]
− (x2 − x2

0). (2.14)

Now, as we assumed t to be the time of first opinion crossing, Eq. (2.12) is still satisfied. In
particular

∑
1 ≥

∑
12 ≥

∑
2 and

d1 − d12
d1

Σ1 + d12
d1

Σ12 ≥ Σ12 ≥ d2 − d12
d2

Σ2 + d12
d2

Σ12 (2.15)

Also, by assumption,

x1(t) − x1
0 ≥ x2(t) − x2

0 (2.16)

Plugging Eqs. (2.15) and (2.16) into Eqs. (2.14) and (2.13) yields ẋ1 ≤ ẋ2. Agents 1 and 2 will
then avoid crossing, contradicting our assumption that t was the time of first crossing, which
concludes the proof.

Lemma 6. The matrix M−1 := (D−1
ϵ Lϵ + I)−1 is row-stochastic.

Proof. We need to show the two following inequalities

0 ≤
(
M−1

)
ij

≤ 1 , (2.17)

and that ∑
j

(
M−1

)
ij

= 1 , ∀ i . (2.18)

Note first that one can rewrite

M−1 =
(
D−1

ϵ Lϵ + I
)−1

= (Lϵ + Dϵ)−1 Dϵ . (2.19)

The matrix Lϵ + Dϵ is real, symmetric, and by Gershgorin’s Circle Theorem [161] it is positive
definite. It has non-positive off-diagonal elements. By definition, it is then a Stieltjes matrix
and its inverse is non-negative [162, 163] . Equivalently, for all i, j,(

M−1
)

ij
=
[
(Lϵ + Dϵ)−1 Dϵ

]
ij

≥ 0 , (2.20)
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which proves the first inequality in Eq. (2.17). Let 1 be the vector of all ones of dimension N ,
and Eq. (2.18) is proven by direct computation:

1 =
(
D−1

ϵ Lϵ + I
)−1 (

D−1
ϵ Lϵ + I

)
1

=
(
D−1

ϵ Lϵ + I
)−1

D−1
ϵ Lϵ1︸ ︷︷ ︸

=0

+1


= M−11 .

(2.21)

Rewriting Eq. (2.21) component-wise, one gets Eq. (2.18), which, together with Eq. (2.20)
proves the second inequality in Eq. (2.17) and conclude the proof.

Proposition 7. Let x0 ∈ [−1, 1]N and x̃ = x0 + µ where µ ∈ RN . Then,

x̃∞ = x∞ + µ, (2.22)

where x∞ = (D−1
ϵ Lϵ + I)−1(x0 + ω) and x̃∞ = (D−1

ϵ Lϵ + I)−1(x̃ + ω).

Proof.

x̃∞ = (D−1
ϵ Lϵ + I)−1(x̃ + ω)

= (D−1
ϵ Lϵ + I)−1(x0 + µ + ω)

= (D−1
ϵ Lϵ + I)−1(x0 + ω) + (D−1

ϵ Lϵ + I)−1(µ)

= x∞ + µ, as (D−1
ϵ Lϵ + I)−1 is row-stochastic as proved in Lemma 6.

(2.23)

2.7.1 Influence strategies on single electoral unit

We investigated (numerically) two strategies, namely, random, and minimum, described below.

• Random strategy: We chose the agents to influence uniformly at random. This strategy
is not expected to be very efficient, but it gives a baseline to compare other strategies
and allows us to get some statistics after multiple realizations.

• Minimum strategy: Here we target those agents who are undecided or neutral. One
can check that, if Lu

ϵ is constructed as in Eq. (2.2), the order of the final opinions xu
∞ on

the real axis is the same as the order of natural opinions (See Lemma 5). One can then
suppose that the easiest agents to influence are the ones that are the closest to opinion
zero. This strategy then influences first the agents whose natural opinion is smallest
positive value. This is as well intuitively reasonable as it is easier to change the opinion
of such an agent due to their low opinion strength.

We confirm our intuition that Minimum strategy is more efficient (low-effort) in changing
the election outcome as shown in Fig. 2.10. Targeting agents who are undecided or neutral can
be more effective than trying to sway voters who already have a strong opinion.
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Figure 2.10: The effort needed to change the election outcome following Random strategy vs
Minimum strategy. Each point denotes a natural opinion with different confidence
bound ϵ, polarization ∆ and bias µ. The black dotted line denotes the identity
function for comparison.

2.7.2 Influence strategies for multiple electoral units
When a country is composed of multiple electoral units, there are different ways to prioritize
the electoral units to be influenced first. We want to investigate the strategies that change the
elections with as few agents targeted as possible. Here we investigate two strategies, namely
Minimum majority and Minimum population as described below.

• Minimum majority: We target electoral units with the smallest majority.
When the majority is small, even a change of opinion of a few agents in the population
can have a significant impact on the final result.

• Minimum population: We target electoral units with the smallest population.
Smaller electoral units have fewer agents and changing the outcome in such a unit requires
to influence less agents.

Based on our calculations, it appears that targeting electoral units with the smallest difference
in votes (minimum majority) is the effective strategy to change the outcome of an election
(see Fig. 2.11). This strategy requires the external influence to shift only a relatively small
number of votes to change the election outcome. As aforementioned in the main discussion, we
have adopted minimum majority strategy which requires minimum effort to change the election
outcome for evaluating the robustness of different electoral systems.
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Figure 2.11: The effort needed to change the election outcome following Minimum Population
vs Minimum Majority strategies with 7 states. We consider each state to have
400 − 500 agents. Here each point denotes natural opinion with different values
of confidence bound ϵ, polarization ∆ and bias µ. The black dotted line denotes
the identity function for comparison.
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3 Multi-party System

Most of the democratic countries have more than two parties, for example countries such
as Switzerland, Germany, India, etc. In this chapter, we extend our model to include the
representation of multiple political parties in a legislative body or governing body. Unlike
systems favoring two major parties, a multi-party system allows a broader range of political
parties to participate and have their voices heard. This can lead to a more inclusive and
representative democracy, where a wider spectrum of opinions and perspectives are considered
in decision-making processes.

A primary challenge in expanding our model lies in accommodating the inherent political
ordering within the societal structure, specifically the left-right political spectrum. An agent
who supports leftist ideologies will typically hold a considerably less favorable view of right-wing
perspectives. The approbation of an agent towards parties is represented using an opinion
vector. We include the inherent left-right political spectrum of the society in the model by
introducing some constraints on the natural opinions of the agents. This is detailed in section
3.1.2. We assume that each agent casts their vote in favor of the political party that aligns
most closely with their convictions.

A multi-party electoral system has different ways of electing the legislative body’s represen-
tatives, which have a major role in the results of elections. Here we study the effect of the
left-right political spectrum in a multi-party system and evaluate the relative robustness of
different electoral systems. We describe below the model of opinion formation and formalise
the various electoral systems we investigate.

3.1 Opinion Dynamics
We consider a multi-party electoral system with p parties and the opinion Xi of an agent i is a
vector of dimension p. In a democratic electoral system, all agents are treated equally, thus
the sum of the elements of opinion vector for each agent is the same. Thus we represent the
opinion of each agent as a normalized vector on the simplex, Sp−1. The detailed description of
opinion space is given in Sec. 3.1.1.

To each agent i ∈ {1, · · · , N}, we associate a natural opinion X0
i ∈ Sp−1, which is the opinion

that agent i would hold if they were not interacting with any other agent. Then X0
iq is the

approbation that agent i gives to the qth party. We consider the linear consensus dynamics
with natural opinion X0 ∈ (Sp−1)N .

In similar spirit to the two-party system discussed in Sec 2.1, we define the interaction
network based on the confidence bound ϵ > 0, using the 1-norm distance between two agents.
Then instead of Eq. (2.3), the dynamics is given by

Ẋiq = d−1
i

∑
j

aij(Xjq − Xiq) + (X0
iq + Wiq − Xiq) , (3.1)

with Wiq being the external influence applied to agent i on the qth party (see Sec. 3.1.3). In
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vector form, for an electoral unit u with n agents, Eq. (3.1) yields the linear dynamics

Ẋu =
[
(X0)u + W u

]
−
[
(Du

ϵ )−1Lu
ϵ + I

]
Xu . (3.2)

As discussed in the previous chapter, Eq. (3.2) is a linear system and the matrix (Du
ϵ )−1Lu

ϵ +I
has strictly positive eigenvalues. Therefore, it is globally stable and exponentially converges
toward the equilibrium

Xu
∞ =

[
(Du

ϵ )−1Lu
ϵ + I

]−1 (
(X0)u + W u

)
, (3.3)

which then gives the final opinion of agents. For two-party system, the extended model exactly
reduces to the one-dimensional model discussed in Chap. 2 (see Appendix for equivalence with
two-party system).

3.1.1 The Opinion Space
In a democratic system with p ≥ 2 parties, we represent the opinion of each agent as a point in
the (p − 1)-simplex

Sp−1 =
{
x ∈ Rp :

p∑
k=1

xk = 1 , xk ≥ 0
}

, (3.4)

whose vertices are vi, i ∈ {1, · · · , p} with all components equal to zero, except the ith which
equals one. The yellow, orange, and maroon areas in Fig. 3.1 represent the domains of the
2-simplex where agents would vote for party 1, 2, and 3 respectively.

Without loss of generality, we can assume that the indexing of the parties (from 1 to p)
matches the left-right political spectrum, i.e., party 1 is the left-most party and party p is the
right-most. In order to guarantee coherence of each agent’s opinions, we do not allow opinion
vectors where two parties that are far away on the left-right spectrum have a large value while
the parties in between have a low value. We need the opinion vector to satisfy some form of
monotonicity. An opinion vector x ∈ Sp−1 is acceptable only if its components increase until
the largest one and then decrease. Mathematically, if xm = maxi xi, we impose

xi ≤ xj , ∀i ≤ j ≤ m , xi ≤ xj , ∀m ≤ j ≤ i , (3.5)

reducing the domain of allowed opinion. This ordering leads to no interactions or weak
interactions between the agents of left and right-most parties. For instance, for p = 3 parties,
Eq. (3.5) cuts out half of the yellow and dark red areas in Fig. 3.1, removing the shaded parts
of the admissible opinion domain.

Furthermore, in order to isolate the impact of opinions on the election outcomes, we focus our
analysis on societies where all the parties have a similar level of approbation in the population.
After the ordering imposed by Eq. (3.5), one realizes that the left-most and right-most parties
have the smallest volume in the opinion space. The ordering leads to some artifacts in the
outcome of elections due to the increased density of agents in the extreme parties, which need
to be removed. A detailed discussion of the artifact of ordering is given in the Appendix 3.6.2
for reference. Therefore, we need to reduce the volume Vi of the other parties i ∈ {2, · · · , p − 1}
in order to match the volumes of parties 1 and p.

We reduce the volume of the moderates (i.e., non-extremists) by sliding the summit of the
simplex defining their area (vi) towards the barycenter c of the simplex, reaching the new
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v1 = (1,0,0)

v2 = (0,1,0)

v3 = (0,0,1)

c s2

Figure 3.1: Admissible opinion domain in the 2-simplex (i.e., for three parties). The summits
v1, v2, and v3 represent the pure opinions of each party respectively. The yellow
and maroon shaded areas are removed from the admissible domain, because they
represent inconsistent opinions, where v1 ≥ v3 ≥ v2 or v3 ≥ v1 ≥ v2. The shaded
orange area is removed in order to balance the volume allocated to each party in
the simplex, by sliding the summit v2 towards the barycenter c to s2.

summit si such that Vi = V1 (see Fig. 3.1). In the Appendix 3.6.3, we show that the position
of si can be determined in closed form and rather elegantly as

si = γic + (1 − γi)vi , γi = 1(p−1
i−1
) . (3.6)

A priori, it is not obvious (especially for p > 3) that the ratio of displacement of the summit
si along the segement [vi, c] translates into the same ratio of volume reduction for the opinion
subdomain. The proof of this fact (see Appendix 3.6.3) relies on an appropriate decomposition
of the opinion space into sub-simplices. We show that the sliding of the summit si towards c
only scales the height of sub-simplices, without affecting their base, resulting in the same scaling
in the volume of each sub-simplex. We will refer to the final opinion space (after ordering and
reduction) as C ⊂ Sp−1.

3.1.2 Natural Opinions
The distribution of opinions underlying an election is largely impacted by the distribution of
natural opinions. Similar to the natural opinion distribution of two-party system given by
Eq. (2.6), we may consider polarization into more than two peaks, which naturally leads to
case of multi-party systems. In that case, we did not consider polarization beyond the existence
of parties and instead generated uniformly distributed natural opinions within the admissible
opinion domain as described in the Appendix 3.6.3.

3.1.3 External Influence
The matrix W u ∈ Rn×p, indexed by the electoral unit u, models the targeted influence of an
external source on each agent. The equilibrium state of the system given by Eq. (3.3) remains
on the simplex only if the opinions of the agents along with the external influence remain on the
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simplex, i.e. ((X0)u + W u)i ∈ Sp−1 ∀ i. Otherwise, the final opinion (X∞)u
i of some agent i will

have negative components, which takes the opinion of agent outside the simplex. According to
our model, the natural opinion of each agent lies in the simplex, i.e. (X0)u

i ∈ Sp−1 ∀i. Thus, the
external influence applied on each agent i given by W u

i should satisfy the following conditions:

1.
∑

q ((X0)u + W u)iq = 1 =⇒
∑

q W u
iq = 0 ∀ i,

2. 0 ≤ ((X0)u + W u)iq ≤ 1 =⇒ −(X0)u
iq ≤ W u

iq ≤ 1 − (X0)u
iq.

Similar to the two-party system, we define a measure of robustness of an election outcome
as the minimal amount of external influence required to change the outcome. We start with
an uninfluenced system (W0 = 0n×p) and add small increments of influence until the election
outcome changes. We chose the influence increments to be as effective as possible, namely,

• influence increments are directed towards the first runner-up of the election, which has
the most chance to steal the elections from the winner;

• agents whose natural opinion is close to the barycenter c are targeted first as their vote
will arguably be the first to change;

• when multiple electoral units are involved, we target first the electoral units with the
lowest majority as less agents needs to be targeted to change the winner in that electoral
unit (verified to be the optimal strategy in two-party system in Chap. 2).

In summary, when we want to target the ith agent, and push their opinion towards the qth

party (first runner-up of the election), we place a vector

w = (w1, · · · , wp) ⊥ 1p , (3.7)

to the ith row of external influence matrix W u. The components satisfy
∑

i wi = 0 with wq > 0
and wq′ < 0 for q′ ̸= q. For our numerical simulation, the values of wq and wq′ are arbitrarily
chosen following the left-right political ordering similar to the natural opinions of agents such
that we set

∑
i |wi| = 0.1.

If the outcome of the election in electoral unit u changes after Ku increments (i.e. after
influencing Ku agents), we define the effort needed to change the election outcome as the
percentage of agents influenced,

ξu = Ku

nu
∗ 100 , (3.8)

where the subscript u indexes the electoral units. When multiple electoral units are involved,
the total effort is

ξ =
∑

u

nu

N
ξu , (3.9)

where N is the total number of agents in the whole country.
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3.2 Result of Elections
A multi-party electoral system allows different ways of electing the winner as discussed in
Chap. 1. For a system with a single electoral unit, we mainly focus on two different types of
electoral systems as mentioned below.

Plurality System: In a plurality system the party that receives the most votes is declared the
winner. This means that a party can win even if they did not secure more than 50%
of votes. It is a simple electoral system widely used in various countries worldwide, for
example Canada and India.

Ranked Choice Voting System (RCV): The agents in the electoral system are given the choice
to rank their preferences. If a party gathers more than 50% of the first-priority votes,
they are declared the winner. If no party wins after counting the first-priority votes, then
the party with least number of first-priority votes gets eliminated. The corresponding
second priority votes are counted to determine the winner. This process goes on, until
one party gets more than 50% of votes, and we declare this party as the winner. The
RCV system is commonly used in Ireland, Australia and so on.

In a system with multiple electoral units, there are multiple ways to select one or more
representatives from each electoral units based on the number of votes that parties gain. Here
we consider four main ones:

Proportional representation (PR): A set of m seats in an electoral unit are distributed among
the parties to match their proportion of votes as closely as possible.

Single representative (SR): The electoral unit elects the candidate with majority of votes as
its unique representative.

Winner-Takes-All (WTA): All seats associated within an electoral unit are attributed to the
party with the most votes. If there is a single seat in the electoral unit, WTA reduces to
SR.

Proportional Ranked Choice voting system (PRCV): Agents in each unit rank the candidates
in order of preference. All candidates that receive a voting ratio above a certain quota
are elected. Usually the quota is fixed around 1/(m + 1) with the number m of seats
in the considered electoral unit. Next, surplus votes above quota are re-distributed to
not-yet-elected second-choice candidates. If new candidates exceed the quota, they are
elected and their surplus votes are again re-distributed. If no candidate exceeds the quota,
the candidate with the least vote is eliminated and their votes redistributed according to
second preferences. The process is iterated until m seats are attributed.

3.3 Single Electoral Unit
In this section, we evaluate different types of electoral systems in a single electoral unit. Our
first goal is to determine the winner and the first runner-up based on the party’s position on
the left-right political spectrum as a function of ϵ. Second, we analyze the effort required to
alter the election outcome in favor of the first runner-up. Such an analysis provides insights
into the level of influence required to shift the support towards other parties to change the
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election outcome. For our analysis, we consider a single electoral unit consisting of 2001 agents
evenly distributed among the parties. We then compute the percentage of wins of each party
over multiple realizations of natural opinions as a function of the confidence bound ϵ. We divide
this section into two subsections on plurality and ranked choice voting systems.

3.3.1 Plurality System

In general, the system’s dynamics depends on the interaction between the agents and their
positions in the left-right spectrum. It is intuitive that if an agent i who supports party q
interacts with many agents supporting party q′, then the agent i tends to change its opinion and
vote for party q′. Fig. 3.2 shows the percentage of wins and the percentage of first runner-ups
along with the effort needed to change the elections outcome in a single electoral unit with six
parties as a function of the confidence bound ϵ. Similar results of other parties (three, four, five
and seven) are presented in Fig. 3.3.

Our models are symmetric in that the percentage of wins, of second, third and so on place
finish are symmetrically distributed over parties ordered from 1 (leftmost) to 6 (rightmost) as
shown in Fig. 3.2 a. When ϵ = 0, the agents do not interact with each other and vote according
to their natural opinion. Thus all parties have an equal percentage of wins irrespective of their
position in the left-right political spectrum. Similar results holds for very small values of ϵ,
due to very few interactions among the agents (see Figs. 3.2 and 3.3). However, as ϵ increases,
percentage of wins of the parties at the center increases as the centrist parties establish more
interactions with other agents compared to the moderates and extremists parties. In addition
the attractive dynamics drives the agents towards the barycenter c. Thus the percentage of wins
of the extremists in the election vanishes. With a well-connected network, i.e. for ϵ ≳ 0.4, the
centrists wins the election, and the party adjacent to the centrist becomes the first runner-up.
If p is even, then the percentage of wins of the election is equally shared between the two
centrists, and the same applies to the first runner-up.

Fig. 3.2 b, shows the effort needed to change the election outcome as a function of confidence
bound ϵ. To understand the behavior of the effort needed to change the election outcome in
favor of the first runner-up as a function of ϵ, we divide the total effort (black solid curve in Fig.
3.2 b) into its components based on the first runner-up’s position in the left-right spectrum. In
Fig. 3.2 for six party system, we can have extremists (party 1 or 6), moderates (party 2 or 5)
and centrists (party 3 or 4) as the first runner-ups. Similar grouping of parties can be done for
any system with p parties. In case of odd number of parties, there will be only one centrist
party.

From Fig. 3.2 b, we observe that the effort needed to change the election outcomes increases
with an increase in ϵ, reaches a maximum value at ϵm and then decreases with further increase
in ϵ. One sees that, unlike the two-party case, the effort is here non-monotonous in ϵ. This is
however an artifact of having extremist parties connected to few neighboring parties when ϵ is
small, as we next proceed to argue. When ϵ is small, there are not many changes in opinion of
agents due to few interactions among the agents, thus extremists have a chance to become first
runner-ups.

When ϵ is large enough, agents start interacting with agents of neighboring parties and
with the attractive dynamics of the model, agents tend to change their opinions towards the
barycenter opinion. The agents of one party can convince the agents belonging to the adjacent
party more efficiently compared to the agents belonging to other parties that are farther away.
Thus, the extremists can convince only the agents from one adjacent party compared to other
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Figure 3.2: Robustness of electoral systems with six parties. a: Percentage of wins (top panel)
and of second place (bottom panel) for each party in the absence of external
influence. Different colors correspond to different parties in a left-right order
when going from light yellow to dark red. Larger interaction distances favor
centrists parties. b: Effort needed to overturn a 6-party election under the single
representative electoral system in a single electoral unit (solid black curve). The
total effort is broken down into partial efforts corresponding to overturns in favor
of a centrist (dashed yellow), a moderate (dashed orange) or an extremist (dashed
red) party. The total effort is dominated by the effort devoted to overturns in
favor of an extremist.
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Figure 3.3: Same as Fig. 3.2 panels a and b, for three, four, five, and seven parties (from
left to right) for plurality system. Top row: Percentage of times each party wins
the elections. Middle row: Percentage of times each party is the first runner-up.
Bottom row: average effort to change the election outcome, as a function of the
confidence bound ϵ. The effort is broken down into the contribution of different
realizations aggregated according to the position of the first runner in the political
spectrum.

parties with two adjacent neighbors, due to its position in the left-right spectrum (see Figs. 3.2
and 3.3) and the extremists get attracted towards the centrists. As a result, the centrists
become the winner or first runner-up, and the effort needed to change the election outcome is
comparatively smaller compared to moderates or extremists. Thus the effort needed to change
the election outcome decreases with large values of ϵ.

From Fig. 3.3, we observe that the confidence bound ϵ at which the effort is maximum ϵm

changes with the number of parties. This change in ϵm is significant from a three to four-party
system. For smaller values of ϵ, the probability of an extremist winning or being the first
runner-up is the same compared to all the other parties (see Figs. 3.2 and 3.3). However, with
an increase in ϵ, probability of extremists becoming the winner or first runner-up decreases and
vanishes. Let ϵc be the largest ϵ at which at least one of the extremists manages to be the first
runner-up, implying that after ϵc the contribution to the effort needed to change the election
outcome from the extremists is zero. Furthermore, let ϵext be the value of confidence bound ϵ
at which the contribution to the total effort from extremists being the first runner-up is the
maximum.

For a three-party system, we don’t have a ϵc as the extremist never vanishes from being first
runner-up, and the total effort needed to change the election outcome depends on influencing
the system in favor of the extremist for all values of ϵ. As the effort needed to change the
election outcome in favor of extremists is much higher than moderates and centrists, the ϵ at
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which we obtain the maximum effort needed to change the election outcome tends to lie in the
interval [0, ϵc]. For ϵ < ϵc, all the parties contribute to the effort needed to change the election
outcome, and the significant contribution comes from the extremist. Thus, ϵm tends to depend
mainly on the contribution of effort needed to make the extremists the winner. Since the
contribution of the effort needed to make the other parties the winner are comparatively much
smaller, we expect that ϵm to be almost the same as ϵext. This line of reasoning is confirmed
numerically as shown in the Fig. 3.2.

We could also observe that the ϵc becomes slightly smaller with an increase in the number
of parties. The increase in the number of parties leads to more parties in the center that can
interact more effectively than the extremists. Consequently the extremist loses its impact more
easily than when there are fewer parties between them. According to our model, it is very hard
for extremists to influence enough agents to take first place in an election. In addition, the
farther the first runner-up is from the center of the left-right spectrum, the harder it becomes
to influence enough agents to take first place in the election.

3.3.2 Ranked Choice Voting System

In this section, we analyze the behavior of the elections subjected to the Ranked Choice
Voting System (RCV). As mentioned earlier, the system’s dynamics remain the same but the
election differs in how the votes are counted. The system’s dynamics depend on the interaction
between the agents, attractive dynamics, and natural opinions. In addition, for RCV system
the second-priority votes also have a significant role in determining the winner of election.

In Figs. 3.4 and 3.6 we present the analysis of percentage of wins and the effort needed to
change the election outcome in favor of first runner-ups using the RCV system. The percentage
of wins of each party depends on the confidence bound ϵ. Additionally, we observe a non-
monotonous behavior for the percentage of wins for odd-party systems as a function of ϵ. For
large values of ϵ the percentage of wins of the election is shared between two parties at the
center of left-right political spectrum for an even number of parties and between three parties
at the center for an odd number of parties. The percentage of wins as a function of ϵ is intuitive
for three and four party systems. However, it becomes challenging when there are more number
of parties and needs more detailed considerations.

In order to understand the non-monotonous behavior of the percentage of wins corresponding
to odd-party systems as a function of ϵ, we consider the case of five-party systems (see Fig.
3.4). Fig. 3.4 a shows the percentage of wins of each party, in Fig. 3.4 b(top panel) we show the
average percentage of votes of each party, and in Fig. 3.4 b(bottom panel) the percentage of 5th
position, i.e. the party that would get eliminated in the first round. Finally in Fig. 3.4 c, we
show the percentage of 2nd priority votes of extremist, moderates and centrist. Here we show
the right-wing parties, same corresponding figure hold for left-wing due to the symmetry of
our model. For ease of explanation, we divide the ϵ-range into four different intervals [0, 0.225],
[0.225, 0.4], [0.4, 0.9], and [0.9, 1.5]. These intervals correspond to values of ϵ with approximately
the same trend; either having an increase or a decrease in the percentage of wins for the centrists
as a function of confidence bound ϵ.

For smaller values of ϵ ∈ [0, 0.225], the percentage of wins of the centrist decreases as ϵ
increases. The percentage of centrists receiving the least first-priority votes increases in this
range as shown in Fig. 3.4 b. As a result, the centrist gets eliminated in the first elimination
step by distributing their votes almost equally to both the moderates as shown in Fig. 3.4 c.
Thus the percentage of wins of centrist decreases for ϵ ∈ [0, 0.225]. With the new votes received
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Figure 3.4: Percentage of wins analysis for five party system. a: Proportion of realizations
where each party is the winner. b: The average percentage of votes per party over
the realization (top panel) and proportion of realization where each party is 4th
runner-up. c: The distribution of second priority votes of left extremist(top panel),
left moderates (middle panel) and centrists(bottom panel) to other parties. The
color scale denotes the ordering of the parties, from light yellow for the left-most
party to dark red for the right-most one.

from the centrists, the percentage of votes acquired by the moderates increases, whereas there is
no change in the percentage of votes of extremists. This results in the elimination of extremists
in the next elimination step. During the elimination of extremists, the moderates next to the
eliminated extremist gains more votes and wins the elections. This results in an increase in the
percentage of wins for the moderates.

For confidence bound ϵ ∈ [0.225, 0.45], the average percentage of first-priority votes of centrists
increases, and the corresponding percentage of votes of the moderates and extremists decreases
(see Fig. 3.4 b (top panel)). As a result, the centrists decrease the probability of getting
eliminated in the first elimination step, and mostly, the moderates get eliminated (see Fig. 3.4
b (bottom panel)). When the moderates get eliminated, their votes are redistributed among
the centrists and extremists, with a major share to the centrists than the extremists, thus the
percentage of votes of the centrists increases (see Fig. 3.4 c (middle panel)). This decreases the
chance of centrists getting eliminated in the next elimination step. With the votes acquired
from moderates the probability of centrists getting eliminated in the subsequent elimination
vanishes, and the percentage of wins of centrists increases.

For confidence bound ϵ > 0.4, the centrists acquire more first-priority votes than the other
parties because of the attractive dynamics and their position in the left-right spectrum of
political parties, and the extremists have the least votes. For moderate values of ϵ ∈ [0.4, 0.9],
all the votes of extremists after their elimination get redistributed to the moderates (see Fig. 3.4
c (top panel)). The percentage of votes of the moderates increases above the percentage of votes
of centrists, and the centrist gets eliminated in the subsequent rounds before the moderates.
Thus, the percentage of wins of centrists decreases again.
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Figure 3.5: Robustness of electoral systems with six parties using RCV system. a: Proportion
of realizations where each party is the winner (top panel) and the first runner
(bottom panel). The colour scale denotes the ordering of the parties, from light
yellow for the left-most party to dark red for the right-most one. One notices
extremists can never get a decent score (winner or first runner) for any value of
communication distance. b: Breakdown of the effort curve (plain black) for a single
electoral unit with six parties. The dashed lines show the contribution to the black
curve of the effort dedicated to the extremist parties (dark red), the moderates
(orange), and the centrists (yellow). The extremists have no contribution to the
curve, and the moderates have a large contribution to the curve (see panel b).
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Figure 3.6: Same as Fig. 3.4 panels a and b in the main text, for three, four, five, and seven
parties (from left to right) for ranked choice voting. Top row: Percentage of times
each party wins the elections. Middle row: Percentage of times each party is the
first runner-up. Bottom row: average effort to change the election outcome, as a
function of the confidence bound ϵ. The effort is broken down into the contribution
of different realizations aggregated according to the position of the first runner in
the political spectrum.

For larger values of ϵ ∈ [0.9, 1.5], the extremists will still get eliminated in the first round.
However, the system’s dynamics do not conserve the ordering of the parties for large values
of ϵ, and the votes of extremists are distributed to centrists and moderates. As a result, the
percentage of votes of centrists and moderates increases. In the next round of elimination, the
other extremist will gets eliminated by distributing their votes. Thus, the centrist gain votes
from both the extremists, whereas the moderates gain votes only from the extremists next to
them, and the percentage of wins for centrists increases. This explains the non-monotonous
behavior of the percentage of wins as the function of ϵ.

Fig. 3.5 shows the effort needed to change the election outcome in a single electoral unit
with six parties, averaged over independent realizations of natural opinion (black solid line).
Similar plots are presented in Fig. 3.6 for other parties. The colored dashed lines show the
breakdown of the overall average effort into the different possibilities for the first runner-up,
distinguished by how far the party is from the center of the political spectrum as discussed in
Sec. 3.3.1. We see that the shape of the effort curve is mostly determined by the realizations
where one of the moderates is the first runner-up. In the RCV system, the moderates play the
significant role in determining the shape of the effort curve. This is due to the fact that, among
the first runner-ups, the moderates are farther away than the centrists from the center of the
left-right political spectrum. As observed from the Fig. 3.5, the non-monotonous behavior of the
effort follows from the non-monotonous behavior of the first runner-ups as shown in Fig. 3.5 a
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(bottom panel). According to our model, we conclude that the farther the first runner-ups are
from the center of the political spectrum, the harder it is to influence enough agents to win the
election, similar to the plurality system.

3.4 Multiple Electoral Units
In this section, we evaluate the robustness of different types of electoral systems in a multi-party
system of elections with multiple electoral units. We compare the robustness of the four electoral
systems (SR, WTA, PR, PRCV), as discussed in Sec. 3.2 for three to seven parties. To evaluate
the robustness of the electoral system we consider only the effort needed to change the election
outcome for the first runner-up, irrespective of the number of parties participating in the
election.

We consider the same set of synthetic countries considered for two-party system as mentioned
in Sec. 2.4.2. For numerical simulations, we consider 101 agents corresponding to each seat
in an electoral unit, as per the defined synthetic country. The electoral unit for simulation is
the state, and as mentioned in Chap.2, the number of seats per state is randomly drawn from
the interval I = [3, 15], and the interaction network is constructed at the state level. For each
realization, a random difference of votes is introduced with the maximum difference of votes
between any two parties being 10%. In each electoral unit, we tune the distributions of natural
opinions to agree with the percentage of votes corresponding to each party. Finally, we average
the effort of over 15 different synthetic countries and realizations of natural opinions for each of
the different electoral systems.
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Figure 3.7: Robustness of different electoral processes for a six-party system vs. confidence
bound over random synthetic countries with multiple electoral units. For each
realization, a random difference of votes (uniform between 0% and 10%) is
introduced. The plots show the proportion of realizations where each electoral
system was ranked first (dark red), second (orange), third (yellow) or fourth (light
yellow) in terms of robustness for a: PR, b: WTA, c: SR, d: PRCV.

Fig. 3.7 shows the robustness of electoral systems as a function of confidence bound ϵ for
six party system. Here we consider the proportion of realizations where each electoral system
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Figure 3.8: Same as Fig. 3.7, for three, four, five, and seven parties (from left to right) and
for the four electoral systems: PR, WTA, SR, and PRCV (from top to bottom).
Proportion of realizations where the electoral system is the most robust (dark
red), second most robust (orange),third most robust (yellow), and least robust
(light yellow) in our simulations.

was ranked first (dark red), second (orange), third (yellow) or fourth (light yellow) in terms of
robustness. On evaluating the robustness of the different electoral systems, it clearly shows that
the PR system is the most robust, most of the time, with a percentage of first-rank robustness
starting slightly below 50% at small ϵ and increasing to about 65% with increasing ϵ. The
second most robust system is the PRCV system, if judged from first-ranked robustness. Note
however that it is the least robust about 30% of the time. As for the two-party case, the WTA
system is more robust than the SR system. The SR is generally the least robust to external
influence for multi-party systems.

Fig. 3.8 shows the robustness of electoral systems as a function of confidence bound ϵ for
other parties (three, four, five and seven). The robustness of electoral system doesn’t have
much effect on the number of parties, and the results remains similar to the six-party system
with PR being the most and SR being the least robust electoral system. Our results are also
consistent with the two-party system as PR and SR system are generally the most and least
robust electoral system respectively.

3.5 Conclusion

We extended our model to a multi-party system of elections as most countries have more
than two major parties competing in the elections. Following the same considerations as in
the two-party electoral system, we extend our model to accommodate any number of parties
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along with the inherent left-right political spectrum in the society. Here we evaluate two most
common multi-party electoral systems: plurality and ranked choice voting systems.

Unlike the two-party electoral system, the effort needed to change the election outcome as a
function of confidence bound ϵ is non-monotonous. The major contribution to the total effort
is from the first runner-up party which is farther away from the centrists. The effort needed to
change the election outcome depends on how far the first runner-up is from the center of the
left-right spectrum. i.e. it is more difficult for the extremists to convince the agents to vote for
them compared to any other parties. However this is an artifact of having extremists having
just one neighboring party compared to other parties which have two neighboring parties.

In the ranked choice voting system, the percentage of wins depends on the agents’ interactions
and the agents’ second-priority votes belonging to the eliminated party. Similar to the plurality
system, the effort curve of the RCV system is determined by the position of the first runner-up
in the left-right spectrum. Similar to the plurality system, the effort follows the contribution
from the first runner-up party, that is farther away from the centrists.

On evaluating different types of electoral systems in multiple electoral units, we observe that
the PR is the most robust, followed by the PRCV, WTAR and SR electoral systems. We can
conclude that the most and least robust electoral systems are PR and SR respectively.
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3.6 Appendix
3.6.1 Equivalence to One-Dimensional Dynamics
In this section, we verify that the model for a multiparty system given by Eq. 3.1 is equivalent to
the previous model in one-dimensional for two parties discussed in Chapter 2. Let x0 ∈ [−1, 1]n
be the natural opinion corresponding to the previous model. We omit the dependence on
electoral unit ‘u’ for ease of notation. Now we define a projection X : [−1, 1]n → (S1)n such
that

(X(x0))i = [0.5 − 0.5x0
i , 0.5x0

i + 0.5]. (3.10)

To prove that the two models are equivalent, it is enough to prove that Y is a bijection and the
dynamics are equivalent. It is trivial to see that Y is a bijection. For every y1 ∈ (S1)n, there
exist only one xi ∈ x0 such that X1(xi) = 0.5 − 0.5xi and the statement hold for X2 also. Thus
Y is a bijection. Now to prove that the dynamics are equivalent, it is enough to prove that
Ẋ = d

dtX(x). This can be verified by direct computation.

Ẋi = d

dt
X(xi)

= d

dt

[
0.5 − 0.5xi, 0.5xi + 0.5

]
=
[

− 0.5ẋi, 0.5ẋi

] (3.11)

Substituting Eq. (2.3) into Eq. (3.11), and grouping them we get

Ẋi = −
∑

j

(D−1
ϵ Lϵ + I)ij [0.5 − 0.5xj , 0.5 + 0.5xj ] +

[
0.5 − 0.5y0

i , 0.5 + 0.5y0
i

]
, (3.12)

where y0
i = x0

i + ωi. This is rewritten as

Ẋi = −
∑

j

(D−1
ϵ Lϵ + I)ijXj + (X0

i + Wi), (3.13)

following Eq. (3.10), which proves that the general model for two party is equivalent to the
previous model.

Proposition 8. If X0 ∈ (Sp−1)n, then X(t) ∈ (Sp−1)n ∀t.

Proof. First, by definition, (X0 + W )ij ≥ 0 for all i ∈ {1, · · · , n} and j ∈ {1, · · · , p}. First we
will prove that X∞ ∈ (Sp−1)n. According to Eq. (3.3),

X∞ =
(
D−1

ϵ Lϵ + I
)−1 (

X0 + W
)

= M−1(X0 + W
)
. (3.14)

From Prop. 6, M−1 is row-stochastic. First we prove that,

(X∞)ij ≥ 0 , (3.15)

for all i ∈ {1, · · · , n} and j ∈ {1, · · · , p}. By definition,

0 ≤ (X0 + W )kj ≤ 1,

0 ≤ (M−1)ik · (X0 + W )kj ≤ (M−1)ik,

0 ≤
∑n

k=1(M−1)ik(X0 + W )kj ≤
n∑

k=1
(M−1)ik,

0 ≤ (X∞)ij ≤ 1.
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Second, let us then compute∑
j

(X∞)ij =
∑

j

(
M−1X0

)
ij

=
∑

j

∑
k

(
M−1

)
ik

X0
kj

=
∑

k

(
M−1

)
ik

∑
j

X0
kj

=
∑

j

(
M−1

)
ik

=
(
M−11

)
i

= 1 ,

(3.16)

for all i ∈ {1, · · · , n}, where we used that X0
i ∈ Sp−1 from third to fourth line.

Eqs. (3.15) and (3.16) are exactly the conditions defining the Sp−1, thus X∞ ∈ (Sp−1)n.
Solving Eq. (3.2) yields

X(t) = e−MtX(0) +
(
I − e−Mt

)
M−1

(
X0 + ω

)
︸ ︷︷ ︸

Z

(3.17)

We know that the final point of the opinions trajectory is in the simplex. Now in order to prove
that the whole trajectory remain in the simplex. We check the first condition for Xi(t) to be in
the simplex, i.e., ∑

j

Xij(t) = 1 , ∀ t ≥ 0 . (3.18)

By direct calculation,

X(t)1 = (e−MtX(0) +
(
I − e−Mt

)
Z)1

= e−MtX(0)1 +
(
I − e−Mt

)
Z1

= e−Mt1 +
(
I − e−Mt

)
1

= 1

(3.19)

It is to be noted that we employed the fact that Z is row-stochastic, which follows from the
product of two row-stochastic matrix is row-stochastic.

Now consider the linear consensus dynamics with influence vector given by (3.2) in component
wise

Ẋi = −D−1
ii

∑
k

(Lϵ)ikXk − (Xi − X0
i − ωi)

Ẋij = −D−1
ii

∑
k

(Lϵ)ikXkj − (Xij − X0
ij − ωij)∑

j

Ẋij = −D−1
ii

∑
k

∑
j

(Lϵ)ikXkj −
∑

j

(Xij − X0
ij − ωij)

= −D−1
ii

∑
k

(Lϵ)ik

= 0

Thus the dynamics of the system remain in the simplex.
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Figure 3.9: The figure shows the percentage of wins as a function of confidence bound ϵ for
three, four, five, six and seven parties over 500 realizations of natural opinion.
Different colors correspond to different parties in a left-right order when going
from light yellow to dark red.

3.6.2 Effect of Ordering

In this section, we consider a single electoral unit of 2001 agents with p parties, similar to
the first round of the French Presidential election. We aim to explore the effect of ordering
in the model. For natural opinion without ordering, the probability that an agent in party i
interacts with an agent in party j is the same for any party i and j. Whereas after ordering,
the probability that an agent in party i interacts with an agent in party j depends on how
aligned are their opinions. In simple words, ordering reduces the interaction between extremists
because of their differing opinions.

In order to study the effect of ordering, we consider each party with almost equal strength;
the percentage of wins of each party is the same when there is no interaction (ϵ = 0). The
interaction network is then constructed from the confidence bound ϵ. When there is no ordering,
with an increase in confidence bound ϵ the interaction between all the agents increases and is
independent of the party’s position in the left-right political spectrum. Consequently, percentage
of wins of each party also remains the same for all parties.

When the parties are ordered, even if the parties have almost equal agents supporting them
the extent to which each party interacts within and outside varies for different parties. Since
the ordering is symmetric around the centrist, the symmetry is maintained with an increase in
confidence bound ϵ as well. It is interesting to observe that when the parties are ordered, there
exists a range of confidence bound ϵ for which the percentage of wins of each party with zero
influence is higher than the other parties. Thus percentage of wins exhibits non-monotonous

84



behavior. Fig. 3.9 shows that the extremists wins for a smaller value of ϵ whereas the centrists
wins for higher values of ϵ. We want to understand why ordering makes the extremist parties
more likely to win the election for small values of ϵ and centrist parties are more likely to win
for large ϵ. Let X0

ij be the largest component of agent i. Then by ordering we have,

X0
i1 < X0

i2 < · · · < X0
ij ,

X0
ip < X0

i(p−1) < · · · X0
ij (3.20)

Since agents i and j interact if ||X0
i − X0

j || < ϵ, we define the neighbors of agent i as

N(i) = {j ∈ {1, 2, · · · n} | ||X0
i − X0

j || < ϵ} (3.21)
The final opinions of agents are given by

X∞ = (D−1
ϵ Lϵ + I)−1

X0. (3.22)
One can verify that this series converges as follows. By Gershgorin’s Circles Theorem [161,

Theorem 6.1.1], all eigenvalues of I + D−1
ϵ Aϵ have real part in the interval [0, 2], and therefore,

the eigenvalues of D−1
ϵ Aϵ have real part in [−1, 1]. Furthermore, it is straightforward to see

that λ = 1 is an eigenvalue of D−1
ϵ Aϵ, with associated eigenvector 1n. The matrix D−1

ϵ Aϵ

being nonnegative, by the Perron-Frobenius Theorem [161, Theorem 8.3.1], λ = 1 is actually
the spectral radius ρ(D−1

ϵ A) = 1 and the spectral radius of D−1
ϵ Aϵ/2 is then 1/2. Now, by

Gelfand’s formula [161, Corollay 5.6.14], we know that, for any matrix norm, there exists k > 0
such that ∥(D−1

ϵ Aϵ/2)k∥ < 1. Therefore, considering the norm of the Neumann series,∥∥∥∥∥∥
∞∑

j=0
(D−1

ϵ Aϵ/2)j

∥∥∥∥∥∥ ≤
∞∑

j=0
∥D−1

ϵ Aϵ/2∥j

=
(
1 + ∥D−1

ϵ Aϵ/2∥ + · · · + ∥D−1
ϵ Aϵ/2∥k−1

) ∞∑
j=0

∥D−1
ϵ Aϵ/2∥kj

< ∞ ,

i.e., the series converges and its limit is precisely (I − D−1
ϵ Aϵ/2)−1. The inverse of the matrix

(D−1
ϵ L + I) can then be expanded as

(2I − D−1
ϵ Aϵ)−1 = 1

2[I − D−1
ϵ Aϵ/2]−1

=
∞∑

k=0

1
2k+1 (D−1

ϵ Aϵ)k . (3.23)

The first-order approximation of the outcome is then given by

X(1)
∞ = 1

2

[
I + 1

2D−1
ϵ Aϵ

]
X0. (3.24)

The first-order approximation of final opinion of agent i for a party j is given by

(X(1)
∞ )ij = 1

2
∑

k

(I + 1
2D−1

ϵ Aϵ)ikX0
kj

= 1
2
∑

k

(Iik + 1
2(D−1

ϵ Aϵ)ik)X0
kj

= 1
2
(
X0

ij + 1
2(D−1

ϵ )ii

∑
k∈N(i)

X0
kj

)
. (3.25)
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Figure 3.10: Illustration of the distribution of natural opinions over simplex for p = 3 parties
[panels a and b]. Illustration of the area of confidence for a chosen agent and
three values of communication distance [panels c, d, and e].

Now for (X∞)ij to be the largest component of agent i and votes for party j if

(X(1)
∞ )ij > (X(1)

∞ )iq ∀q ̸= j,

X0
ij + 1

2(D−1
ϵ )ii

∑
k∈N(i)

X0
kj > X0

iq + 1
2(D−1

ϵ )ii

∑
k∈N(i)

X0
kq ∀q ̸= j. (3.26)

From Eq. (3.26), we see that the final opinion (X∞)i depends on its own opinion and of its
neighbors.

For visual convenience, we consider the case of p = 3 parties. First of all, let us look at the
distribution of opinions on the simplex before and after re-ordering. Fig. 3.10 a shows the
density of opinion when we draw N random numbers uniformly in the 2-simplex. Due to the
ordering of opinion, the areas in the two triangles along the edge between summits v1 and v3
are not allowed. The re-ordering process then transforms these opinions to their symmetric
counterparts in the allowed region of the simplex, as illustrated by the arrows in Fig. 3.10 a,
which yields the density illustrated in Fig. 3.10 b.

In order to understand how this distribution leads to a dominance of extremists for small ϵ
and a centrist dominance for large ϵ, we will think about the continuous distribution on the
simplex instead of a particular realization of natural opinions.

In the final state of first-order approximation, the opinion of an agent i is the mean of their
own natural opinion and half of the average natural opinion of their neighbors, i.e., agents with
natural opinion in an ϵ-radius of their own natural opinion. As illustrated in Figs. 3.10 [c-e],
if an agent has a natural opinion very close to the boundary between two parties (red dot),
almost twice as many of their neighbor will be partisan of the more extreme party. This is true
at least for small values of ϵ [Fig. 3.10 c]. This remains more or less true until the boundary
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of the ϵ-ball around the natural opinion of agent i meets the boundary of the opinion domain
[Fig. 3.10 d].

Then if ϵ is further increased, agent i will gain much fewer neighbors from the agents belonging
to the extremists[Fig. 3.10 e]. Their final opinion will therefore be less driven towards extremist,
as ϵ is so large that the interaction graph is complete and the process is averaging over all
agents.

3.6.3 Opinion Volume Balancing

For a system with p parties, by definition [Eq. 3.4], the opinion space is a (p − 1)-dimensional
subset of Rp. Therefore, for simplicity’s sake, we embed the regular (p − 1)-simplex Sreg in
Rp−1.

Let v1, · · · ,vp ∈ Rp−1 be p points and let

S := conv(v1, · · · ,vp) , (3.27)

be the (p − 1)-simplex S ⊂ Rp−1 with vertices v1, · · · , vp. The convex hull of p − 1 vertices
of S is a (p − 2)-simplex, called a facet of S. The facet of S not containing the vertex vi is
denoted by Fi (it is the facet opposite to vi in S), that is

Fi := conv(v1, · · · ,vi−1,vi+1, · · · ,vp) , i ∈ {1, · · · , p} . (3.28)

The angle between the facets Fi and Fj is called the dihedral angle αij ∈ [0, π] of S.
The simplex S ⊂ Rp−1 is said to be regular if

αij = αkl =: αreg∀1 ≤ i, j, k, l ≤ p

It can be shown that αreg = arccos 1
p−1 [164, Section 7.9]. For 1 ≤ q ≤ p, a (q − 1)-

simplex S ⊂ Rp−1 is said to be a (q − 1)-orthoscheme if αij = π
2 if |i − j| > 1. For instance, a

2-orthoscheme is a right triangle, and the facets of a (q−1)-orthoscheme are (q−2)-orthoschemes.

The regular (p − 1)-simplex Sreg can be dissected into p! isometric (p − 1)-orthoschemes by
means of the recursive barycentric decomposition as follows (see Fig. 3.11). For 1 ≤ k ≤ p,
denote by v1,··· ,k the barycenter of the convex hull conv(v1, · · · ,vk). Because Sreg is regular (so
that all its d-dimensional faces are regular d-simplices themselves, 0 ≤ d ≤ p − 1), v1,··· ,k is the
center of the (k − 1)-sphere inscribed in the convex hull of v1, · · · ,vk (and of the (k − 1)-sphere
circumscribed around the convex hull of v1, · · · ,vk, etc.). For instance, v1,2 is the midpoint
of the edge [v1,v2] of Sreg, v1,2,3 is the center of the regular triangle with vertices v1,v2,v3 (a
2-dimensional face of Sreg), and v1,··· ,p is the center of Sreg. Then, the convex hull

O1,··· ,p := conv(v1, · · · ,v1,··· ,p) , (3.29)

is a (p − 1)-orthoscheme whose non-right dihedral angles are π
3 ,· · · ,π

3 , αreg
2 .

The procedure described above can be performed for any permutation of {1, · · · , p}. Let
Sp denote the group of all permutations of p objects, and let (i1, · · · , ip) ∈ Sp be such a
permutation. Then, the corresponding orthoscheme Oi1,··· ,ip is given by

Oi1,··· ,ip = conv(vi1 ,vi1,i2 , · · · ,vi1,··· ,ip) . (3.30)

87



Figure 3.11: The regular 3-simplex Sreg and one of its 24 isometric fundamental orthoschemes
O. Notice that here p = 4.

Because Sreg is regular, Oi1,··· ,ip is isometric to O1,··· ,p for any permutation (i1, · · · , ip) ∈ Sp.
This leads to a natural bijection between the set of isometric (p − 1)-orthoschemes whose union
is Sreg and the set Sp.

Without loss of generality, let us consider the orthoscheme O := O1,··· ,p. Denote by F1,··· ,k

the facet of O opposite to v1,··· ,k. Now move the vertex v1 along the edge [v1,v1,··· ,p] towards
the vertex v1,··· ,p, to a point s ∈ [v1,v1,··· ,p]. Let T be the simplex given by

T := conv(s,v1,2, · · · ,v1,··· ,n+1) . (3.31)

For a given proportionality coefficient κ ∈ [0, 1], we want to know where to set s = s(κ) on
[v1,v1,··· ,p] so that

volp−1(T ) = κ · volp−1(O) . (3.32)

It is clear that κ = 0 ⇔ s = v1,··· ,p and that κ = 1 ⇔ s = v1.
Denote by s⊥ the orthogonal projection of s on F1, that is, s⊥ ∈ F1 and [s, s⊥] ⊥ F1. The

edge [v1,v1,2] of O is orthogonal to F1, since

[v1,v1,2] =
p⋂

k=3
F1,2,··· ,k , (3.33)

and since F1,··· ,k is orthogonal to F1 for 3 ≤ k ≤ p (because O is an orthoscheme). See Fig. 3.12
for an illustration of these observations.

Let Fs be the facet of T opposite to s. Because the segments [v1,v1,2] and [s, s⊥] are
orthogonal to F1 and Fs respectively, the volumes of O and T are given by

volp−1(O) = 1
p − 1 · dist(v1,v1,2) · volp−2(F1) , (3.34)
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Figure 3.12: Left: Vertex s in the segment [v1,v1,··· ,p] and its projection on the facet F1.
Right: Explicit realization of the construction of the left panel for p = 3.

and

volp−1(T ) = 1
p − 1 · dist(s, s⊥) · volp−2(Fs) . (3.35)

Now observe that

F1 = conv(v1,2, · · · ,v1,··· ,p) = Fs , (3.36)

so that the quotient of the volumes of O and T is given by
volp−1(T )
volp−1(O) = dist(s, s⊥)

dist(v1,v1,2) , (3.37)

so that Condition (3.32) is equivalent to

dist(s, s⊥) = κ · dist(v1,v1,2) . (3.38)

Let us now investigate further the relative positions of the segments [v1,v1,2] and [s, s⊥].
Since dim(F1) = p − 2 (because F1 is the convex hull of p − 1 vertices) and since [v1,v1,2] ⊥ F1
(as stated above), it follows that the segments [s, s⊥] and [v1,v1,2] are parallel. Moreover, by
construction, the points v1, v1,2 and s all belong to the 2-face

△ := conv(v1,v1,2,v1,··· ,p) , (3.39)

of O. Hence, because [s, s⊥] // [v1,v1,2], it follows that s⊥ is contained in △ as well. This in
turn implies that the point s⊥ is on the segment [v1,2,v1,··· ,p], since it is an edge of F1. Let

f := conv(s, s⊥,v1,··· ,p) , (3.40)

denote the 2-face of T with vertices s, s⊥ and v1,··· ,p. From the discussion above we deduce
that f ⊂ △, and that both are right-angled triangles (f at s⊥, and △ at v1,2) sharing the
vertex v1,··· ,p.

These observations allow us to deduce that Condition (3.38) is equivalent to

dist(s,v1,··· ,p) = κ · dist(v1,v1,··· ,p) , (3.41)

leading us to the a priori somewhat intuitive (or seemingly too nice to be true) fact:
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Figure 3.13: Illustration of the set C of admissible opinions for p = 4.

Proposition 9. In order to reduce the volume of O to a proportion κ ∈ [0, 1], the vertex v1
has to be moved towards v1,··· ,p to the point s ∈ [v1,v1,··· ,p] dividing the edge [v1,v1,··· ,p] under
the same proportion κ.

Now that we have a way to control the volume of an orthoscheme while keeping one of its
facets intact, we turn to the main question of interest for the opinion generation problem.

Without loss of generality, label the parties from 1 to p to match the left-right political
spectrum. In order for an opinion to be consistent, we suppose that party i is the most favored
(for some i ∈ {1, · · · , p}), and that the adhesion to party j is smaller than (respectively, greater
than) the adhesion to party j + 1 if j ∈ {1, · · · , i − 1} (respectively, j ∈ {i, · · · , p}). These
constraints reflect the assumption that as parties are further from the agent’s favorite party
on the political spectrum, the agent’s adhesion towards them decreases. Let x ∈ Sreg be a
point representing the opinion of the agent as follows. The agent favors party j over party k if
and only if dist(x,vj) < dist(x,vk). The set C of all points x ∈ Sreg representing admissible
opinions (in the sense described above) is given by the non-convex polyhedron (see Fig. 3.13)

C =

x ∈ Sreg

∣∣∣∣∣∣∣
There is an i ∈ {1, · · · , n + 1} such that

dist(x,vj) ≥ dist(x,vj+1) for j ∈ {1, · · · , i − 1} and
dist(x,vj) ≤ dist(x,vj+1) for j ∈ {i, · · · , p − 1}

 . (3.42)

Recall that the regular (p−1)-simplex Sreg can be decomposed into p! isometric orthoschemes
thanks to the barycentric decomposition. Each vertex vi of Sreg is a vertex of (p − 1)! such
orthoschemes. Let Ri be the union of the (p − 1)! orthoschemes having vi as a vertex. Then
x ∈ Ri if and only if party i is the agent’s favorite party. Hence, a point x ∈ Ri represents a
consistent opinion (in the sense described above) if and only if it satisfies the distance conditions
from (3.42) for that i. For instance, C ∩ R1 = O, the orthoscheme with vertices v1, · · · ,v1,··· ,p

described above.
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Recall that the permutations in Sp are in 1-1 correspondence with the orthoschemes in
the barycentric decomposition of Sreg, which in turns provides a 1-1 correspondence with all
possible ordering of the parties: the permutation (i1, · · · , ip) corresponds to the orthoscheme
conv(vi1 ,vi1,i2 , · · · ,vi1,··· ,ip), which corresponds to the opinion with party i1 being the favorite
party, party i2 the next favorite party (since vi1,i2 is the midpoint of the edge [vi1 ,vi2 ]), and
party ip the least favorite party.

Conversely, any party ordering corresponds to a permutation in Sp. Therefore, an opinion is
consistent (in the sense described above) if and only if its corresponding permutation (i1, · · · , ip)
satisfies the following conditions:

ik < il < i1 ⇒ k > l , and ik > il > i1 ⇒ k > l . (3.43)

In other words, in the sequence of indices i1, · · · , ip, the elements of the subsequences i1−1, · · · , 1
and i1 + 1, · · · , p must appear precisely in that order, but elements from different subsequences
can be permuted. There are

( p−1
i1−1

)
such permutations starting with i1. Hence, for all i ∈

{1, · · · , p}, C ∩ Ri consists in the
(p−1

i−1
)

orthoschemes corresponding to consistent opinions. In
particular, C ∩ R1 is the orthoscheme O1,··· ,p and C ∩ Rp is the orthoscheme Op,··· ,1. It follows
that the set C of points in Sreg corresponding to consistent opinions is a non-convex polyhedron,
obtained as the union of

p∑
i=1

(
p − 1
i − 1

)
= 2p−1 , (3.44)

isometric orthoschemes described above. The vertices v1, · · · ,vp form a subset of the vertices
of C, and the vertex vi is a vertex of

(p−1
i−1
)

such orthoschemes.
In order for the opinion generation process to be unbiased, the probability to generate an

opinion representative x ∈ C ∩ Ri should be the same for all i ∈ {1, · · · , p}. The discussion
above provides a natural way to generate such opinions. Observe that for each permutation
(i1, · · · , ip), the point vi1,··· ,ip is the center c of Sreg. For each vertex vi, move it along the ray
[vi, c] towards c to the point si such that

dist(si, c) = 1(p−1
i−1
) · dist(vi, c) . (3.45)

Notice that this procedure preserves the existing interfaces between C ∩ Ri and C ∩ Rj for
all i ̸= j ∈ {1, · · · , p}, so that the non-convex polyhedron Cr obtained that way can be seen a
non-uniform radial retractation of C with respect of c. The set Cr is the colored area in the
right panel of Fig. 3.12.

Because of Proposition 9, the volumes of all orthoschemes building C ∩ Ri are reduced by
a factor

(p−1
i−1
)
, so that each of the resulting regions Cr ∩ Ri has the same volume, which is

equal to the volume of the isometric orthoschemes O1,··· ,p and Op,··· ,1 (one has indeed that
C ∩ R1 = Cr ∩ R1 and C ∩ Rp = Cr ∩ Rp).

We summarize the process for generating a random opinion, drawn uniformly in the admissible
opinion space:

1. Take the barycentric decomposition of the standard regular simplex Sreg into p! isometric
orthoschemes.

2. From these orthoschemes, only consider the 2p−1 ones corresponding to consistent opinions
(their union is the polyhedron C).
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3. For all i ∈ {1, · · · , p}, retract the orthoschemes in C containing the vertex vi (their
union is the region Ri) radially with respect to the center c of Sreg from a factor(p−1

i−1
)
. The union of these retracted orthoschemes forms the polyhedron Cr. As a result,

volp−1(Cr ∩ Ri) = volp−1(Cr ∩ Rj) for all i ̸= j ∈ {1, · · · , p}.

4. In Cr, randomly pick N points, where N is the desired amount of opinions to be generated.
The probability that a point x ∈ Cr belongs to the region Cr ∩ Ri is the same for all
i ∈ {1, · · · , p}.
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4 Conclusion

We attempted to study the robustness of elections against external attacks and identify the
relevant factors involved. In particular, we examined how robust elections are depending on
(i) social characteristics of the population and (ii) different electoral systems on robustness.
We constructed a simple and intuitive opinion dynamics model for studying the evolution
of opinions by interaction among individuals. Our model also factors in the impact of an
external influence trying to manipulate the opinions. A novelty in our approach is using a real
number in an interval to represent an individual’s opinion, thereby allowing a certain degree of
disagreement in opinion among them. We consider this to be more realistic than constraining
individuals to choose one of the few opinions. In addition to capturing the interaction between
individuals, our model also encapsulates their natural opinions. We model external influence
as a bias to this natural opinion. We let the opinions of individuals evolve in time under our
model, to eventually reach an equilibrium state. We call this the final opinion and it is used to
decide on whom to vote.

An opinion dynamics model could be said to predict the real trend of human behavior only
when we validate it against some actual data. We validated our model by considering how the
model can depict the true picture of the volatility of US House of Representatives elections
over the years 2012 − 2020. For this, we introduced a novel concept that we call the volatility
of elections. We notice a great extent of correlation between the volatility estimated from the
real data and from the simulations. This to some extend is a vindication of the validity of our
model in studying the robustness of electoral systems.

We presented a detailed validation of our model for two-party system of election. We draw the
initial opinion of individuals from a class of multimodal distributions. We tune the parameters
of the distribution to capture several properties of the collective opinion of the population such
as bias and polarization. We run experiments with different combinations of these parameter
values and validate the data obtained against real data by the aforementioned procedure using
volatility. The validation experiments showed that the unshifted polarized distribution with
biased weight has a higher Pearson correlation coefficient with real data, than shifted polarized
distribution with equal weights and shifted polarized distribution with equal weights, concluding
that unshifted polarized distribution with biased weight could portray the actual election more
effectively than the other distributions. This also gives hints about how the initial opinion is
actually distributed among the population.

Using our model, we study how the different characteristics of initial opinion distribution
impacts the robustness of election processes. Our model showed that the electoral process is
systematically more robust for a two-party system as the communication distance ϵ increases,
which drives the connectivity between agents. We also observed that the robustness of an election
outcome is favored by less polarization and biasing of the population. Surprisingly, a polarized
society is less robust to external influence than a less polarized society. Overall, we observed
that a population becomes more resilient to external influence and manipulation by promoting
communication and interaction among agents. This is reflected in the increased robustness
observed when the confidence bound ϵ is higher. When agents have more opportunities to
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exchange and share their opinions, it becomes more challenging for external forces to sway the
overall outcome of the election.

Another aspect we investigate is the comparison of the robustness of different electoral
systems. In a two-party election setup, we consider three different electoral systems, namely
Proportional representation (PR), Single representative (SR), and Winner takes all (WTA). For
each electoral system, we performed our experiments on 15 synthetically generated countries
and corresponding voting population. We observed that PR electoral system consistently
outperforms the other two in terms of robustness to external influences. We note that this
superiority of PR electoral system is irrespective of the natural distribution employed.

The model is then extended to include the electoral system with more than two parties. Our
study mainly focused on the plurality and ranked-choice voting system in a single electoral unit
and its variations when considering multiple electoral units. Moreover, the natural opinions we
considered have some additional constraints for a multi-partite system that we believe apply to
a realistic opinion of an agent. Specifically, we impose that the political affinity of an agent is
maximum at some point in the left-right political spectrum and decreases in either sides of the
maximum.

For the plurality system, with an almost equal number of agents in each party, all parties
have an almost equal percentage of wins for small values of ϵ. But when the interaction between
agents increases, the percentage of wins increases for the parties at the center and decreases for
the extremist parties because of their corresponding interactions. Contrary to the two-party
system, the robustness of the multi-party system has a non-monotonous behavior as a function
of confidence bound ϵ. The system’s robustness reaches a maximum at ϵ equal to ϵm and then
decreases. Initially, for small values of ϵ, each party’s agents interact within themselves rather
than with the agents of other parties. Thus the effort needed to change the election outcome
increases as a function of ϵ. However, with a further increase in ϵ, more interconnections among
parties help easily exchange ideas, and less effort is needed to change the election outcome. The
effort needed to change the election outcome in favor of the extremists is significantly higher
compared to the non-extremist parties. Thus the overall effort needed to change the election
outcome in favor of the first runner is much lower for larger values of ϵ, where the probability
of extremists being the first runner-up is nearly zero.

For the ranked choice voting system, the interactions between the agents and their second-
priority votes of the eliminated party determine the percentage of wins. Similar to the plurality
system, the RCV system’s effort curve is driven by the most extreme party based on the position
that the first runner-up belongs on the left-right spectrum. This confirms our analysis of the
plurality system.

When comparing different types of electoral systems over multiple electoral units, we find
that the PR electoral system is the most reliable, followed by the PRCV, WTAR, and SR
electoral systems. We conclude that PR and SR electoral systems are the most and least stable
respectively.

Future Work

Our work could be extended in several ways. One of those approaches could be accounting for
other systems, for example, two-round systems, block voting, etc. This will allow researchers
to understand how various voting mechanisms impact political dynamics and representation.
Another possible extension could be to study different influence strategies in the electoral systems.
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Delving into different influence strategies within electoral systems opens the door to analyzing
how political actors navigate voting to advance their agendas. This can shed light on the
effectiveness of different campaigning tactics and the manipulation of voter sentiment, helping
policymakers and election monitors develop strategies to maintain fairness and transparency in
elections. A study on the effect of heterogeneous values of ϵ allows for exploring scenarios where
voters have varying levels of open-mindedness or resistance to change. Understanding how such
diversity impacts electoral outcomes can lead to designing voting systems that accommodate
different perspectives and promote inclusivity. Another interesting work would be to study
how to mitigate the effects of external influences such as media or computational propaganda.
By investigating the potential vulnerabilities of electoral systems to external manipulation,
researchers can develop strategies to fortify democratic processes, ensuring that citizens are
well-informed and free from undue external influences that may distort their voting decisions.
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