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ABSTRACT

Diffusion-weighted magnetic resonance imaging (DWI) is a
non-invasive method sensitive to local water motion in the tis-
sue. As a tool to probe the microstructure, including the presence
and potentially the degree of renal fibrosis, DWT has the poten-
tial to become an effective imaging biomarker. The aim of this
review is to discuss the current status of renal DWI in diffuse re-
nal diseases. DWI biomarkers can be classified in the following
three main categories: (i) the apparent diffusion coefficient—an
overall measure of water diffusion and microcirculation in the
tissue; (ii) true diffusion, pseudodiffusion and flowing fraction—
providing separate information on diffusion and perfusion or tu-
bular flow; and (iii) fractional anisotropy—measuring the micro-
structural orientation. An overview of human studies applying
renal DWI in diffuse pathologies is given, demonstrating not
only the feasibility and intra-study reproducibility of DWT but
also highlighting the need for standardization of methods, addi-
tional validation and qualification. The current and future role of
renal DWT in clinical practice is reviewed, emphasizing its poten-
tial as a surrogate and monitoring biomarker for interstitial fi-
brosis in chronic kidney disease, as well as a surrogate biomarker
for the inflammation in acute kidney diseases that may impact
patient selection for renal biopsy in acute graft rejection. As part
of the international COST (European Cooperation in Science
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and Technology) action PARENCHIMA (Magnetic Resonance
Imaging Biomarkers for Chronic Kidney Disease), aimed at
eliminating the barriers to the clinical use of functional renal
magnetic resonance imaging, this article provides practical rec-
ommendations for future design of clinical studies and the use of
renal DWT in clinical practice.

Keywords: chronic kidney disease, diffuse renal pathology,
diffusion-weighted MRI, fibrosis, functional MRI

INTRODUCTION

Assessment of renal microstructure is an important step for the
diagnosis and monitoring of renal diseases and it is currently
performed by renal biopsy, an invasive procedure carrying the
risk of side effects and sampling bias.

Diffusion-weighted magnetic resonance imaging (DWI) is a
non-invasive method to assess the displacement of the water
molecules in tissue including Brownian motion. Current evi-
dence suggests that DWI is particularly sensitive to alterations
in the renal interstitium, e.g. during renal fibrosis, cellular (in-
flammatory or tumorous) infiltration or oedema, in renal perfu-
sion and in water handling in the tubular compartment.
Intensive ongoing research efforts are aimed at unveiling the
potential of DWI as an imaging biomarker for renal diseases,
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with the most promising results in fibrosis estimation in
chronic kidney disease (CKD) and in biopsy guidance in acute
graft dysfunction.

The present article, coming from the clinical working
group of the COST (European Cooperation in Science and
Technology) action PARENCHIMA (Magnetic Resonance
Imaging Biomarkers for Chronic Kidney Disease) (www.
renalmri.org), aims to review all the existing literature on DWI
in well-functioning kidneys and kidneys with diffuse renal pa-
thologies, to discuss the current status of renal DWT as an imag-
ing biomarker, and to provide practical recommendations that
could be useful to design future clinical studies as well as to use
DWT in clinical practice.

METHODOLOGY (INCLUSION AND
EXCLUSION CRITERIA)

A comprehensive search for all the DWI studies in human sub-
jects or patients related to the kidneys and excluding cancer
studies or animal experiments was performed on 30 August
2017 using PubMed, and crossed checked with references cited
by the related publications. Search terms are available as
Supplementary data (Section S2). A total of 399 hits were found,
identifying 172 papers meeting the inclusion criteria. All the hu-
man studies involving renal DWI have been summarized
in tables and are available as Supplementary data (see
Supplementary review table), along with technical details, to fa-
cilitate further research in this field.

RENAL DWI ACQUISITION AND ANALYSIS
Pulse sequences and readout techniques

In DWI, image contrast is based on the displacement of wa-
ter molecules, whereby mobile molecules appear hypointense.
This is achieved by employing magnetic field gradients of vary-
ing strength during the acquisition, generating images with
varying degrees of diffusion-weighting, referred to as b-values.
The signal decrease as a function of the b-value can then be ana-
lysed using model functions (‘DWI models’ section) to quantify
the water displacement (Figure 1). The range of motion mea-
sured by DWT is typically in the order of 1-17 pum [1]. A key ele-
ment for successful DWI is the use of very fast magnetic
resonance sequences minimizing the signal from organ motion
during the acquisition, such as echo-planar imaging (EPI) with
fat suppression [2] (stated in 61.7% of reviewed studies). To fur-
ther reduce the acquisition time, acceleration methods are fre-
quently added and these are of great research interest.

Renal DWT is performed in either the axial or coronal image
orientation. A coronal orientation provides easier full kidney
coverage but is more prone to respiratory motion. Ways to mit-
igate respiratory motion during data acquisition comprise phys-
iological triggering of the pulse sequence (stated in 38.3%),
performing breath-hold acquisitions (stated in 18.2%) or free
breathing with multiple acquisitions.

Even though DWI biomarkers are quantitative, the applied
diffusion-weighting strategy will affect the final parameter esti-
mates and it thus needs to be tailored to the intended DWI bio-
marker. This includes the strength and the number of the
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different diffusion weightings, as well as the diffusion gradient
directions, since the molecular diffusion in the kidneys is of an
anisotropic nature (meaning spatially oriented), especially
within medulla.

While the literature [3-5] is divided about the effect of a sub-
ject’s hydration status on DWI biomarkers, we recommend
controlling the hydration status by hydrating the patients prior
to DWI, to eliminate this potential confounder.

Please refer to Table 1 for practical reccommendations and to
Section S3.1 (Supplementary data) for technical details on DWI
acquisition.

Renal DWI processing

There is great heterogeneity in the DWI processing pipelines
and in the software tools used to correct the motion, segment
the kidneys, draw the regions of interest (ROIs) and fit the
model of choice (Supplementary data, Section S3.4).

DWTI parameter computation is affected by image quality
[6]. A careful visual inspection beforehand (to identify possible
artefacts and eventually exclude problematic images) is needed,
along with motion correction (which to date has been per-
formed only in a minority of cases), to have reliable diffusion
parameter maps and quantitative results.

A variety of ROIs have been used to quantify DWI parame-
ters either in the entire kidney or separately in cortex and me-
dulla. Vascular structures, collecting system, tissue boundaries,
artefacts, areas of heterogeneous signal intensity, cysts and
lesions potentially affecting the average values should be
avoided. ROIs should be placed in the upper pole, lower pole
and mid-level in homogenous areas of the kidneys to have rep-
resentative average values, or in hyper- and hypointense areas
in case of heterogenous kidneys.

A number of software tools are available to compute DWI
biomarkers by fitting appropriate signal attenuation models.
The software choice is determined by the model complexity
and the biomarkers sought (Supplementary data, Section S3.4).

RENAL DWI BIOMARKERS

All DWI models and biomarkers are summarized in Table 2.

DWI models

In free water, DWT signal resulting from water motion expo-
nentially decays with the strength of the magnetic gradient ap-
plied (b-value) [7]. However, in renal tissue, molecular water
motion is not free but hindered by many obstacles such as cell
membranes and interstitial matrix and influenced by water
handling. To account for this, in the tissue, diffusion is called
‘apparent’, and DWI signal decay can be described by a mono-
exponential equation (Supplementary data, Section S3.2).

The apparent diffusion coefficient (ADC) is usually averaged
from three spatial directions of signal encoding to take into ac-
count the renal anisotropy and therefore to avoid under- or
overestimation.

Beyond water diffusion in the tissue, apparent motion also
results from blood microcirculation and from tubular flow,
which may be viewed as pseudodiffusion processes mimicking
diffusion and impacting DWI measurements. Like diffusion,
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FIGURE 1: Illustration of the principles of renal DWTI in a normal volunteer and a CKD patient with 60% of renal fibrosis. First, a series of re-
nal MRI with varying degrees of diffusion weighting are acquired as shown in the first row. Then, the ADC, an estimation of the water mole-
cule motion in the tissue, is extracted from these images by curve fitting. An example of the ADC fit is presented in the graphs in the middle
row. Note the difference in the cortical and medulla fits between the normal volunteer without fibrosis and the CKD patient. The medulla
curve in the CKD patient has a stronger curvature reflecting an increased ADC. Finally, the result of fit for each pixel is displayed in a new im-
age called an ADC map (bottom row). In the normal volunteer (on the left), the ADC is higher in the cortex (blue arrow) than in the

medulla (red arrow). The opposite is found in the CKD patient (on the right), where the ADC is higher in the medulla than in the cortex in

agreement with the curve fits. This inversion of cortico-medullary ADC difference is correlated with the amount of fibrosis present in the

CKD patient.

blood microcirculation results in a monoexponential decay of
the magnetic resonance imaging (MRI) signal, but 10 times
faster, which results in a biexponential decay of diffusion signal.
This model allows to calculate, apart from ADC, the pseudodif-
fusion (D*), the flowing fraction within blood vessels and tubuli
(F) and the true water diffusion coefficient in the tissue (D).
This intra-voxel incoherent motion (IVIM) model describes
DWTI data at best, in the presence of sufficient signal-to-noise
ratio (SNR) [8] (Supplementary data, Section $3.2). On the con-
trary, the monoexponential model is the most robust against
low SNR but fits DWI data the least [8—10]. Despite the number
of studies showing its limitations, monoexponential model has
still been used in the majority of renal DWI studies performed
so far (68% in total, reducing to 50% of the studies performed

Diffusion-weighted MRI to assess diffuse renal pathology

since 2016), probably due to the wide availability and ease of
use of ADC (but not IVIM parameter) computation tools.
Encoding the diffusion signal in a greater number of direc-
tions makes it possible to investigate the spatial dependence of
diffusion, to quantify the degree of tissue anisotropy and, conse-
quently, to characterize the tissue microarchitecture: this ad-
vanced method is called diffusion tensor imaging (DTI). DTI
requires multiple measurements with at least six different
diffusion-sensitizing directions of signal encoding [11]. DTI
analysis allows assessment of the fractional anisotropy (FA),
which is the percentage of spatially oriented diffusion signal,
reflecting the degree of tissue anisotropy (0% = complete isot-
ropy; 100% = complete anisotropy). Consequently, the mean
diffusivity (MD), an anisotropy-independent ADC equivalent,
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Table 1. DWI in the kidney: key aspects
L
Patient preparation

Hydration Potential confounder
Control by hydrating the patient whenever possible
Data acquisition

Echo time Minimize to optimize SNR
Minimum limited by maximum b-value

Repetition time Long enough to allow for T1 relaxation (>1500 ms)
Minimum limited by number of image slices

Image orientation Axial: less motion in image plane
Coronal: easier full kidney coverage

Field of view Usually covers the entire abdomen (320-400 mm)
Z-dimension dependent on image orientation

Resolution Increase: sharpness; partial volume effects,
Decrease: ETL, kidney coverage; SNR;

1ML, Shorten to lessen susceptibility artefacts
Measures: parallel imaging, multi-shot EPI, partial Fourier

Motion compensation Physiological triggering using external devices
Intrinsic triggering using MRI signal (navigator)

b-values Tailor to respective DWI biomarker
Increase number to improve parameter estimates
Image post-processing

Image quality control Discard problematic image(s) to ensure imaging parameter value reliability

Motion correction To account for motion artefacts and eddy current-induced deformations

ROI definition (kidney/medulla/cortex) From more than one section to have representative average values; no vessels, artefacts, lesions
Model fitting To compute DWI biomarkers by fitting appropriate signal attenuation models

EPI, echo-planar imaging; ETL, echo train length; MRI, magnetic resonance imaging; SNR, signal to noise ratio

Table 2. DWI biomarker estimation models to investigate renal tissue microstructure

Model Biomarker(s) Pros (+) and cons (—)

Monoexponential ADC: apparent diffusion in the tissue + Most robust against noise
+ Wide availability and ease of use of biomarker estimation tools
— Provides limited information (apparent diffusion only)
— Fits DWI data the least

IVIM D: water diffusion in the tissue + Describes DWT signal attenuation at best provided sufficient
D*: pseudodiffusion signal-to-noise
F: flowing fraction + Can separate diffusion from pseudodiffusion

— No standardized algorithm to compute IVIM parameters

DTI FA: fractional anisotropy diffusion anisotropy imposed -+ Provides information on tissue anisotropy
by the tissue microstructure — Requires a dedicated acquisition sequence (DTI) with multiple directions
MD: anisotropy-independent mean diffusivity

Extended IVIM D: water diffusion in the tissue -+ Potentially advances the characterization of the renal microstructure
D*: pseudodiffusion and microcirculation
F: flowing fraction — Requires complex biomarker estimation
Additional model-specific biomarkers — Need further investigation, especially in pathological kidneys
Non-Gaussian ADC: apparent diffusion in the tissue + Accounts for the complexity of diffusion in the renal tissue
K/6/6: measure of the degree of deviation of diffusion — Requires complex biomarker estimation
from a Gaussian law — Fits DWI data better than monoexponential but worse than IVIM model
can also be measured (see Section S3.3, Supplementary data, for More complex models have been recently proposed (see

additional details). All DTI studies reported a higher degree  Section S3.2, Supplementary data), but despite their potential,
of anisotropy within the medulla than within the cortex [5,9,  further studies in particular in diseased kidneys are needed to
12-19] presumably due to predominant water motion alongtu-  understand their advantage over the commonly used models
bular and vascular bundles of pyramids [20, 21]. described above.
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Renal DWI biomarkers validation and qualification

Discovery. Following the success of DWI in the brain, the
feasibility of DWI in the kidney has been well demonstrated in
both experimental and clinical settings (see Supplementary re-
view table). Renal DWI biomarkers, computed using the well-
established methodologies described above, have been widely
adopted, although novel DWT acquisition and modelling meth-
ods are constantly proposed (see Section $3.2, Supplementary
data).

Biological validation. Despite DWI potential being well rec-
ognized, the specific confirmation of mechanisms and processes
measured by DWTI is not yet clearly established. This is mainly
due to the absence of a gold standard to measure in vivo renal
diffusion. Renal perfusion [22], glomerular and tubular flow
[23, 24] as well as water handling [18] can all modify the DWI
signal and induce changes in the ADC. Therefore, the multifac-
torial dependence of the DWI contrast complicates the under-
standing of its origin and probably decreases the specificity of
the observed value changes. A reduction of perfusion and tubu-
lar flow as well as the extracellular space by cellular infiltration
could explain the decreased ADC observed in some acute kid-
ney diseases, such as acute cellular graft rejection [25] or acute
pyelonephritis (APN) [26]. The situation is also complex in
case of renal fibrosis. Intuitively, and as demonstrated by simu-
lation and phantom experiments [27], deposition of fibrotic
matrix in the interstitial space is expected to decrease the
Brownian motion of the water molecules by collision, in addi-
tion to the reduced perfusion and tubular flow, which is often
also present. Several studies have consistently demonstrated a
negative correlation between the renal ADC and the amount of
renal fibrosis in CKD [23, 24, 28]. Of interest, an experimental
study of renal fibrosis in rats suggested that this correlation was
merely due to the reduction of renal perfusion and glomerular
filtration rather than directly because of the fibrotic matrix de-
position [29]. Whether these results, based on the observation
of a post-mortem ADC increase with renal fibrosis, can be
translated to the in vivo setting remains to be further investi-
gated. In this respect, the ability of advanced modelling of the
diffusion signal using the IVIM model to separate the effects of
flowing fraction from the Brownian motion or DTT to probe
the structure orientation, may significantly improve our under-
standing of the diffusion mechanism.

Technical validations. Numerous reproducibility studies
have been conducted with either the monoexponential, the
biexponential (i.e. IVIM) or the DTI model. Regarding the ac-
quisition, a variation coefficient of <10% was measured in 10
volunteers examined successively on magnetic resonance scan-
ner from several vendors [30]. Good inter- or intra-observer re-
producibility were also reported for the DWTI analysis of the
kidneys [24]. However, the variations in ADC values and other
diffusion-related parameters remain large. An absence of stan-
dardized acquisition and analysis protocol may explain such
variation reported in the literature (Supplementary data, Tables
S1, S2 and S3). A significant effort of standardization is needed
to define DWI accuracy and bias.

Diffusion-weighted MRI to assess diffuse renal pathology

Qualification. No renal DWI qualification studies have been
performed so far, i.e. studies demonstrating the clinical benefit
of DWT in diagnosis, treatment decision or outcome that would
be required for regulatory acceptance of DWI as biomarker.
However, some preliminary studies have shown the potential of
DWTI to predict the need for therapy modification [31, 32].

RENAL DWI ASIMAGING BIOMARKER IN
CLINICAL PRACTICE

Acute graft dysfunction

DWTI in transplanted kidneys has shown promising results
in detecting allografts with impaired renal function based on
the lower ADC values, lower medullary FA and lower medul-
lary flowing fraction F compared with normal renal allografts
[33-37] (Table 3). Although the ADC values were significantly
lower in transplanted kidneys with acute rejection (AR), acute
tubular necrosis (ATN) and immunosuppressive toxicity com-
pared with healthy renal allografts, DWI was unable to differen-
tiate the various underlying pathologies responsible for the
impaired renal function. However, heterogeneous appearance
of DWI is a morphological sign associated with severe underly-
ing histopathological changes [32, 57]. Therefore, a combina-
tion of qualitative and quantitative analysis of DWI parameters
might further improve the assessment of the severity of renal al-
lograft dysfunction and might be helpful in the management of
these patients to decide when to perform biopsy [32].

APN

DWI was shown to be more sensitive than sonography to de-
tect the infected renal segments during APN. With a simple
qualitative analysis, in combination with clinical information,
DWTI could have a significant clinical impact on confirming the
treatment effectiveness during follow-up, mainly in children
and in pregnant women [59-61]. Furthermore, abscesses as a
potential complication of pyelonephritis can be differentiated
from a cyst by DWI showing restricted diffusion and cystic ap-
pearance on morphological images. In summary, DWI allows
detection of renal infection in adults, children and transplanted
kidneys based on the qualitative analysis of DWI data and it can
also be applied for treatment monitoring. In this indication,
DWI may replace contrast-enhanced MRI, avoiding potential
contrast agent side effects.

Polycystic disease

In patients with polycystic kidney disease suspicious for cyst
complication, a high intracystic signal intensity on DWI
showed a sensitivity of 86.4% for intracystic infection, but its
specificity was low, with similar findings observed in intracystic
haemorrhage [62].

To our knowledge, only one preliminary pilot study tried to
evaluate several functional sequences, including IVIM, within
non-cystic renal parenchyma (NCRP) of polycystic kidneys,
compared with age-matched controls [63]. Among several
other parameters, higher ADCs, higher pure diffusion and
lower flowing fraction were reported in NCRP. ADC values
were also correlated with height-adjusted total kidney volume
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Diffusion-weighted MRI to assess diffuse renal pathology

and cystic index. A second pilot study using DTI reported
higher ADC and lower FA in polycystic kidneys compared with
controls but no separation of cystic and non-cystic components
was done, precluding the significance of the results [64].

Besides already validated morphological biomarkers of se-
verity of the disease (total cystic and total kidney volumes), new
functional biomarkers of NCRP involvement could provide ad-
ditional insights into kidney characterization and disease pro-
gression in patients with polycystic disease.

Obstruction

There are only few publications dealing with DWI in
patients with various degrees of ureteral obstruction, with con-
flicting, but still promising results. In a prospective study in-
cluding 21 patients with acute unilateral ureteral obstruction,
DWI was unable to detect any significant difference in ADC be-
tween obstructed and unobstructed kidney [18]. However, the
flowing fraction F of the cortex but not the medulla was signifi-
cantly lower in the obstructed than in the contralateral unob-
structed kidney. Contradictory findings were observed in
another prospective study performed in a similar setting includ-
ing 24 patients with a ureteral calculus and a significant reduc-
tion in ADC (b-values of 0 and 1000 s/mm?) could be observed
in the obstructed compared with the obstructed kidney [65].
As the non-invasive diagnosis of obstruction is an important
clinical challenge, e.g. in pregnant woman, children uteropelvic
junction obstruction and transplanted kidneys, further research
applying IVIM in these patient groups should be performed in
large-scale multicentre trials. Furthermore, non-invasive diag-
nosis and quantification of obstruction would help in defining
the time point of intervention or whether watchful waiting is
still possible.

High blood pressure and renal artery stenosis

Non-invasive assessment of the degree of renal artery steno-
sis with its potential effect on the renal parenchyma might be
helpful in decision-making concerning treatment options.
There are only a few older studies applying DWT in this context,
showing that the ADC mainly in the cortex was significantly
lower in kidneys with renal artery stenosis compared with the
contralateral kidney or those of healthy volunteers [66, 67].
Applying IVIM, focusing mainly on the flowing fraction F or
applying only low b-values might be helpful in improving DWI
in this context and prospective studies might be relatively easy
to design and perform.

Diabetes

Diabetic kidney disease (DKD) is a common complication
of diabetes, the most common form of CKD and the leading
cause of end-stage renal disease. Several studies showed lower
cortical and medullary ADC values in DKD than in volunteers
[15, 51, 52]. Significant correlations were found between mean
renal ADC values and clinical stages of DKD [50], and between
mean renal ADC values and urinary albumin excretion [50],
urinary N-acetyl-beta-D-glucosaminidase, urinary transform-
ing growth factor-betal and serum creatinine [52]. In a cohort
of early stages of type 2 DKD with or without microalbuminuria,

ii37



ADC values were significantly lower in DKD than in controls
and medullary FA was significantly higher when macroalbumi-
nuria was present [51]. Increased cortical FA was also reported
in two large studies [51, 52], helping in prediction of the pres-
ence of macroalbuminuria [52] and being more sensitive than
urine albumin excretion rate in reflecting early-stage kidney in-
jury [51].

However, validation of new biomarkers of disease progres-
sion and treatment responses is still required. A large cohort of
patients with type 2 DKD will be included in a multicentre pro-
spective European protocol of quantitative MRI, including
DWTI and DTI, to validate new imaging biomarkers allowing
to separate slow and fast progressing patients (iBEAT-DKD,
IMI call).

CKD

CKD is defined as an alteration of function and/or structure
lasting for more than 3 months. The hallmark of structural al-
teration in CKD is the presence of cortical interstitial fibrosis.
Evaluation of kidney cortical interstitial fibrosis is crucial for re-
nal prognosis, early diagnosis and treatment adaptation in CKD
since elevation of creatinine is a late phenomenon. DWI cur-
rently emerges as one of the most promising tools for kidney fi-
brosis evaluation in CKD. Although there is debate about the
exact modifications observed by DWI, either structural or func-
tional such as related to perfusion modifications [29], DWI
can differentiate between a sick and a healthy kidney in experi-
mental but more importantly in human CKD [15, 37, 38, 40,
49, 50, 67, 68, 69]. ADC also correlates with renal function, usu-
ally estimated by creatinine values [44, 45, 49, 54, 70, 71]. In the
few human studies where histology was available, cortical ADC
displayed a good correlation with cortical fibrosis and chronic
lesions [28, 38, 39, 53] (Table 3). It remains unclear whether the
observed decrease of ADC values is reflecting the decrease of re-
nal function only or the degree of tissue fibrotic changes, or
both. Despite these encouraging observations, limitations to the
clinical use of DWI in CKD still remain in terms of image reso-
lution, protocol variability and inter-individual variability. In
consequence, no clear cut-off of ADC values can be chosen to
differentiate CKD versus healthy kidney. Improvement in im-
age resolution providing a better delineation between cortex
and medulla should help [53, 72], as well as measuring the dif-
ference between cortical and medullary ADC, the so-called
delta-ADC, which was shown to decrease inter-individual vari-
ability and to be better correlated with fibrosis in CKD [53, 72].

Using DTI, FA was significantly lower in patients with CKD
than in healthy controls, regardless of whether estimated glo-
merular filtration rate (eGFR) was reduced, probably due to
changes in the microarchitecture: negative correlations were
found between FA and both glomerular lesions and tubuloin-
terstitial injury score [40].

Altogether, DWI could be the imaging technique of choice
in all types of CKD, even before renal function declines, to eval-
uate the degree of tissue fibrosis, to predict renal function evolu-
tion and to follow microstructure changes occurring under
treatment. This could reduce the number of renal biopsies for
diagnosis and follow-up. To become an accepted clinical tool,
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improvement in DWT reliability and homogenization of acqui-
sition techniques in multicentre studies are crucial.

CONCLUSIONS

DWTI is recognized by the scientific community as a powerful
imaging biomarker of the renal microstructure with a number
of available clinical studies. DWI shows good correlation with
renal function decline and with cortical fibrosis in CKD, with a
promising monitoring potential. In diffuse renal diseases, DWI
could support the decisions to perform renal biopsy and avoid
unnecessary interventions. To improve its specificity, DWI is
likely to benefit from being combined with other promising
MRI modalities (multiparametric MRI) for renal tissue charac-
terization and follow-up, therefore enabling a complete mor-
phological and functional assessment of the normal and
diseased kidney [73]. Additional biological validation is needed,
as multiple parameters can affect the interpretation of DWIL.
Furthermore, as current methodological differences across
studies hinder a reliable comparison of the results, standardiza-
tion of acquisition and processing protocols are definitely re-
quired, as well as large multicentre studies. The COST action
PARENCHIMA, working on standardization of renal MRI
techniques, may answer this need.

SUPPLEMENTARY DATA

Supplementary data are available at ndt online.
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