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Résumé en français

Cette thèse va traiter de la théorie orbital-free embedding, qui consiste à di-
viser le système étudié en deux sous-systèmes - l’environnement, décrit par la
densité électronique ρB et le système qui est englobé par ce dernier, représenté
par ρA. Différents éléments utilisés dans la formulation de Hohenberg-Kohn-
Sham de la théorie de la fonctionnelle de la densité, tels que les théorèmes
de Hohenberg-Kohn [1], l’utilisation d’un système de référence basé sur des
électrons non-interagissant [2] et en particulier de la fonctionnelle de la den-
sité correspondant à l’énergie cinétique (Ts[ρ]) [3] sont utilisés pour définir le
potentiel qui entoure le système qui est à l’étude: le potentiel environnant.
Ce potentiel est exact dans la limite de l’utilisation de fonctionnelles exactes
et est orbitales-indépendant, c’est-à-dire qu’il ne nécessite que de la densité
électronique pour sa description [4]. La densité électronique ρmin

A , correspon-
dant à l’état fondamental pour un système d’électrons non-interagissant, est
choisie de façon à minimiser l’énergie du système entier après addition d’une
densité arbitraire (ρB) associée à l’environnement. Elle est obtenue à travers
la résolution des équations à un électron (Eq. 20-21 dans la Ref. [4]) et
l’équation 1 de ce manuscrit:

[

−
1

2
∇2 + vKS

eff [ρA;~r] + vKSCED
emb [ρA, ρB;~r]

]

φA
i = ǫA

i φA
i i = 1, NA (1)

ρA = 2
∑NA

i |φi|
2 et vKS

eff [ρA;~r] est le potentiel Kohn-Sham effectif. Le terme
vKSCED

emb [ρA, ρB;~r] correspond au potentiel environnant local, qui dépend
uniquement des densités électroniques ρA et ρB. Il est décrit de la manière
suivante:

vKSCED
eff [ρA, ρB;~r] = vKS

eff [ρA + ρB;~r] + vt[ρA, ρB](~r) (2)
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La composante vt[ρA, ρB](~r) du potentiel environnant a pour origine la
non-additivité de l’énergie cinétique et est associée à la répulsion de Pauli.
La forme analytique de ce terme n’est pas connue et par conséquent cette
quantité doit être approximée. Le développement d’une nouvelle approxi-
mation de vt[ρA, ρB](~r) est le sujet du Chapitre 4 de cette thèse. L’analyse
du comportement asymptotique de vt[ρA, ρB](~r) pour des séparations inter-
moléculaires importante aboutit à une nouvelle condition exacte à laquelle
ce potentiel doit obéir. Une nouvelle approximation tenant compte de ce
paramètre est proposée. Des tests numériques sur des groupes de molécules
mettant en jeu des interactions très faibles ont mis en évidence l’amélioration
des résultats après introduction de cette nouvelle approximation, qui permet
d’atteindre jusqu’à 50% des valeurs correspondant aux systèmes de référence.
De plus, ce nouveau potentiel améliore la description des orbitales LUMO, ce
qui permet de résoudre partiellement le problème lié au transfert artificiel de
la densité électronique de la molécule à son environnement qui apparâıt lors
de l’étude de complexes chargés. L’implémentation de gradients analytiques
de l’énergie au sein du formalisme ”orbital-free embedding” permet d’utiliser
cette méthode afin d’obtenir des géométries à l’équilibre pour des systèmes
contenant différents complexes.

Dans le chapitre 5, un nouvel algorithme est proposé, pour lequel un
minimum de l’énergie Born-Oppenheimer est obtenu uniquement à la fin
des cycles d’optimisation. Cette approche est particulièrement utile dans le
cadre de l’étude de larges systèmes. De plus, plusieurs variantes permet-
tant l’optimisation de certains degrés de liberté ont été introduites afin de
faciliter l’étude de grandes molécules. Différents complexes caractérisés par
des types particuliers d’interactions ont été utilisés comme référence, ceci afin
de déterminer la précision des différentes fonctionnelles d’énergie cinétique
qui sont habituellement utilisées pour des calculs de type ”orbital-free embed-
ding”. Mis à part les systèmes impliquant des interactions de type π-π, les
autres composés à l’étude utilisant la fonctionnelle LDA ont permis d’obtenir
d’excellents résultats. Les différences entre les distances intermoléculaires
ainsi obtenues et celles correspondant à des méthodes ab-initio standards ne
sont pas supérieures à 0.1 Å.

Afin de faciliter l’utilisation du potentiel orbital-free embedding à grande
échelle, des approximations de ce dernier sont introduites dans le chapitre
4. Elles se basent sur la linéarisation du potentiel environnant autour d’une
densité ρ0

A choisie arbitrairement. De cette manière, le potentiel environnant
sera constant durant les itérations SCF et cela se traduira par une diminution
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du temps de calcul. La précision des résultats dépend fortement de la densité
ρ0

A choisie. Ainsi, si cette dernière est proche de la densité ρ0
A réel de l’état

fondamental, la qualité des résultats obtenus sera meilleure. Des analyses
détaillées montrent que dans la plupart des cas, mis à part des complexes
caractérisés par une importante déformation de la densité due à de fortes in-
teractions, le choix optimal pour ρ0

A est la densité pour le sous-système isolé
A. Les résultats obtenus en suivant ce protocole sont pratiquement iden-
tiques de ceux correspondant à des calculs se basant sur le potentiel environ-
nant complet. Afin de contrôler les erreurs résultant de cette linéarisation,
l’algorithme splitSCF double est utilisé. Dans ce cas, le processus SCF est
divisé en deux boucles - interne, pour laquelle le potentiel orbital-free em-
bedding linéaire est utilisé, et externe, pour laquelle ce dernier est mis à
jour. Des tests numériques ont montré que seulement trois itérations pour
la boucle externe sont nécessaires afin d’obtenir des résultats équivalents à
ceux obtenus à travers des calculs conventionnels (quatre itérations pour des
systèmes caractérisés par une déformation induite de la densité). Une autre
propriété du potentiel orbital-free embedding linéaire est que ce dernier peut
être facilement intégré à des codes déjà existants.

Une application pratique du potentiel orbital-free embedding sera le sujet
du chapitre 7, où il sera également question de la méthode 3D-RISM-KH.
Cette dernière approche fournit une description se basant sur la mécanique
statistique des liquides. Cette méthode est un intermédiaire entre les modèles
décrivant le solvant de manière implicite et explicite - elle ne se base pas
sur une description atomique mais tient en compte la spécificité chimique
des interactions entre les molécules. La méthode 3D-RISM-KH permet de
diviser la molécule en différents sites et chacun d’entre eux se verra at-
tribuer une densité électronique, qui sera utilisée dans l’équation 1 pour
la description ρB de l’environnement. De cette façon, le potentiel environ-
nant moyenné est obtenu. Ce dernier présente différents avantages lorsque
le déplacement des pics du spectre d’absorption induit par le solvant est
étudié. Un point important est que cette méthode ne nécessite de faire
qu’un seul calcul sur une structure tenant compte des effets moyennés du
solvant, au lieu de faire différents calculs coûteux sur un ensemble de config-
urations de l’environnement, qui sont le résultat de simulation de dynamique
moléculaire. Les résultats présentés dans le chapitre 7 valide l’approche
utilisée. Par exemple, l’utilisation du potentiel environnant moyenné dans
le cas de l’aminocumarin C151 et de l’acétone, qui ont été précédemment
étudiés à travers la méthode orbital-free embedding, permet d’obtenir des
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résultats en accords avec les valeurs de référence et les données expérimentales.
La différence est que la méthode utilisée permet de réduire considérablement
le coût des calculs.

Le dernier chapitre de cette thèse concerne l’application du formalisme
de la fonctionnelle de la densité Kohn-Sham afin de confirmer les études
expérimentales de la structure et du spectre vibrationnelle de LiSc(BH4)4.
Pour une fonctionnelle d’échange-corrélation donnée, la structure de ce com-
posé et le spectre IR ont été déterminés. Les résultats obtenus sont en par-
fait accord avec les données expérimentales et confirment la structure de
LiSc(BH4)4 obtenue à travers une expérience de diffraction sur poudre. Ces
résultats attestent la validité du protocole computationnel utilisé. Ce tra-
vail tire parti des avantages de l’utilisation du potentiel orbital-free embed-
ding pour l’étude des changements de la structure électronique des molécules
dus à leurs interactions avec l’environnement. La nouvelle fonctionnelle
pour le potentiel d’énergie cinétique, pour un système de particules non-
interagissant obéissant à la relation exacte dérivée, a été utilisée avec à la
clef une amélioration des résultats.

En résumé, de nouveaux algorithmes et des approximations facilitant
l’application de ce potentiel dans la cadre d’études à larges échelles d’interactions
dans la matière condensée sont présentés. La combinaison de l’orbital-free
embedding avec la théorie de la mécanique statistique des liquides est in-
troduite et est validée dans le cadre de l’étude des déplacements des pics
d’absorption dus à différents solvants et pour différents chromophores.
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Introduction

The central object of quantum mechanics is the Schrödinger equation. It
describes the quantum state of the system and its evolution in time. The an-
alytical solution to this equation, called wavefunction, is, however, available
only for certain, well defined systems. Otherwise, only the approximate solu-
tions are possible. The development of the approximate methods to solve the
Schrödinger equation is main domain of quantum chemistry. These methods
can be applied to predict the electronic structure of the molecules to com-
plement various experimental studies or even predict the existence of new
unknown compounds [5].

Quantum-chemical methods can be devised in several categories. The
most accurate ones are often referred as ab-initio methods, as they aim to
solve the Schrödinger equation for the optimal wavefunction without use of
any empirical parameters. The price for the accuracy is paid, however, in high
demand for the computational resources required to perform calculations.
For this reasons, the application of ab-initio methods is limited to relatively
small molecules. The cost of computations can be reduced by parametriz-
ing the Schrödinger equation (semi-empirical methods) or by treating the
chemical interactions between atoms and molecules in classical way, without
constructing the wavefunction at all (for instance molecular mechanics).

Alternatively to the wavefunction, the properties of the system can be
described by its electron density. This approach is justified on the basis of
Hohenberg and Kohn [1] theorems, which provide the foundation of Density
Functional Theory (DFT). The success of DFT based approaches can be at-
tributed to Kohn and Sham [2], who transferred the original theory into the
practical computational method. Nowadays, Kohn-Sham DFT is one of the
most commonly used quantum-chemical tools to predict the electronic struc-
ture for many-electron molecules. Although it relies on approximation to
relevant density functionals, which commonly involve empirical parameters,
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2 INTRODUCTION

its accuracy compares favorably with the ab-initio methods. The electron
density, however, is not as complicated object as wavefunction and the po-
tentials involved in DFT calculations are local quantities. For this reasons,
DFT can be successfully applied to compute the properties of the molecules
of considerable size.

Influence of the environment on the physicochemical phenomena occur-
ring in condensed matter is of the great importance in chemistry and bio-
chemistry. The environment affects the reactivity of the enzymes, position
and intensity of bands in various types of spectroscopies or the reaction rates
in chemical reactions. Various quantum-chemical methods have been devel-
oped to describe solvent effects, commonly introducing embedding potential,
which is acting on solvated molecule. Weso lowski and Warshel showed [4]
that such potential is uniquely defined by the pair of two electron densi-
ties - that of investigated embedded system and that of its environment.
Hence, this potential is referred as orbital-free embedding potential. The first
of the two densities is expressed by means of quantum-chemical descriptors
(Kohn-Sham orbitals, multideterminantal wavefunction, one-electron density
matrix). The density of the environment can be taken from any level of de-
scription (quantum mechanics, molecular mechanics, experiment). For this
reasons orbital-free embedding potential is ideally suited for multi-level mod-
eling of interactions in condensed matter.

The orbital-free embedding potential is expressed by means of density
functionals and it is an exact quantity in the exact limit of these function-
als. The analytical form of some of these terms is, however, not know and
it has to be approximated. The main motivation of this work originates
from the interest in the properties of the orbital-free embedding potential and
its possible applications to model chemical interactions. This involves ex-
tending its range of applicability by developing new approximations to the
relevant density functionals and design of new algorithms and approaches for
use of orbital-free embedding potential in large-scale multi-level modeling of
condensed matter.

This thesis are organized as follows: Part I provides introduction to the
used theoretical methods. In Chapter, 1 the Hohenberg-Kohn density func-
tional theory and its extension proposed by Kohn and Sham are outlined.
These fundamental concepts are used as a basis to describe the orbital-free
embedding formalism, which is overviewed in Chapter 2. Chapter 3 intro-
duces the time-dependent density functional theory. In Parts II to V the own
research conducted during the Ph.D. thesis is described. The development
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of the new approximant to the non-additive kinetic energy potential - an
important component of the orbital-free embedding potential in addressed in
Part II. Chapters grouped together in Part III are related to the development
of the new algorithms that facilitates application of embedding potential in
multi-scale modeling of interactions in condensed matter. In Chapter 5, the
linearization approximation to the embedding potential is introduced. To
verify its adequacy, a special cycle of calculations, dubbed as splitSCF, is
discussed. Chapter 6 presents the application of embedding formalism to
find the equilibrium structures of noncovalently bound intermolecular com-
plexes. In Part IV, the combination of orbital-free embedding formalism with
method based on statistical mechanical theory of the liquids is introduced.
This multi-level model is used to simulate solvatochromic shifts of selected
chromophores in various solvents. This section also closes the main body
of the research of this thesis. Part V concerns the auxiliary application of
DFT based theoretical methods to provide explanation and conformation of
experimental studies on borohydrates and provides a preparation stage for
furtherer study on this complexes applying orbital-free embedding formal-
ism. Finally, this work is summarized and final conclusions are drawn (Part
VI).
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Chapter 1

Density Functional Theory

Nowadays density functional theory (DFT) provides well established frame-
work for the methods used to determine electronic structure of atoms and
molecules which are recognized for the efficiency and reasonable accuracy.
In foundations of DFT lay two theorems, formulated by Hohenberg and
Kohn [1], proving that the electron density ρ(~r) defined as:

ρ(~r1) = N
∫

...
∫

|Ψ(~r1, ~r2, ..., ~rN)|2d~r2...d~rN (1.1)

can be used as an alternative to wavefunction Ψ(~r1, ~r2, ..., ~rN) to obtain
ground state properties of many-electron systems. In eq. 1.1 ~r deontes spa-
tial coordinates and N stands for number of electrons; closhed shell molecules
will be considered in this chapter, therefore spin coordinate is ommited for
simplicity. Density functional theory approach brings many practical advan-
tages. Wavefunction is a complicated object depending on 3N spatial coor-
dinates. The electron density is much simpler as it is function of only three
spatial coordinates, therefore, many-body problem of obtaining ground-state
energy of a given system using only its density is easier. In this chapter
the foundations of density functional theory will be presented. The practi-
cal, widely used refolmulation of DFT by Kohn and Sham [2] will be also
reviewed.

1.1 Hohenberg-Kohn theorems

The formal basis for the density functional theory was given in 1964 by
Hohenberg and Kohn in the form of the two theorems.

7



8 CHAPTER 1. DENSITY FUNCTIONAL THEORY

First theorem says: The density ρ0(~r) corresponding to a non-degenerate
ground state specifies the external potential vext(~r) up to a constant.

This theorem states important fact: if we know the ground state den-
sity ρ0(~r) we can uniquely define (up to an additive constant) the external
potential vext(~r) corresponding to this density, and vice-versa.

Hohenberg-Kohn theorem has also furtherer going consequences. To show
them, we will start from the number of electrons of the system, which is
readily available from the electron density according to the equation:

N =
∫

ρ(~r)d~r (1.2)

Additionally, the positions of the nuclei can be discovered by analyzing
the cusps of the density, while the charge of the given nucleus can be learned
from Kato cusp condition [6]. The availability of this information allows to
determine the external potential vext(~r) corresponding the electron density
of the given system. Note, that these observations also provide the proof for
the correctness of first Hohenberg-Kohn theorem. Knowledge of the vext(~r)
allows to write down the total Hamiltonian for the N-electron system and
ground-state wavefunction can be calculated from Schrödinger equation. The
ground state expectation value of any observable represented by any operator
Ô can be, therefore, written as density functional:

O[ρ] = 〈Ψ0[ρ]|Ô|Ψ0[ρ]〉 (1.3)

The second Hohenberg-Kohn theorem provides variational principle for
the ground state density and states that the total energy functional E[ρ]
reaches minimum at the non-degenerate ground state density ρ0.

The second Hohenberg-Kohn theorem can be showed by writing the ex-
pression for the total energy. Starting from eq. 1.3 it can be defined as:

E[ρ] = 〈Ψ0[ρ]|T̂ + V̂ + V̂ext|Ψ0[ρ]〉 = FHK [ρ] +
∫

vext(~r)ρ(~r)d~r (1.4)

where T̂ , V̂ and V̂ext are kinetic energy, two particle interaction and exter-
nal potential operators respectively. FHK [ρ] is universal Hohenberg-Kohn
functional defined as (using eq. 1.3):
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FHK [ρ] = 〈Ψ0[ρ]|T̂ + V̂ |Ψ0[ρ]〉 = 〈Ψ0[ρ]|T̂ |Ψ0[ρ]〉 + 〈Ψ0[ρ]|V̂ |Ψ0[ρ]〉 = (1.5)

T [ρ] + V [ρ]

The variational principle from the second Hohenberg-Kohn theorem is
written as a minimum of the total energy functional (eq. 1.4) with respect
to density:

E0 = min
ρ

E[ρ] (1.6)

It also means, that for any trial density, ρ̃(~r), following inequality can be
written:

E[ρ̃(~r)] ≥ E[ρ0(~r)] = E0 (1.7)

where ρ0(~r) and E0 are ground-state density ground state and energy of
multi-electron system respectively.

In order for the variational principle in eqs. 1.6 and 1.7 to be valid, the
total energy functional has to be defined for any density ρ. The Hohenberg-
Kohn functional FHK [ρ] is, however, defined only for a small set of v -
representable densities, i.e. the densities which are associated with the an-
tisymmetric ground-state wavefunction with some external potential vext(~r).
The conditions for the density to be v -representable are unknown [7], there-
fore, in practice it is difficult to assure that any trial density ρ̃(~r) falls into
this category. For this reasons it is desirable to extend the applicability of
FHK [ρ] to a larger domain of densities. This task can be accomplished with
constrained-search procedure introduced by Levy [3] (commonly referred as
Levy constrained-search formulation).

According to definition of the density given in eq. 1.1, the ground-state
density ρ0(~r) can be obtained from ground state wavefunction Ψ0. The same
density ρ0(~r) might be, however, obtained from other wavefunction,Ψ′, which
is not necessarily ground-state wavefunction. To distinguish between the two
Levy used minimum energy principle:

〈Ψ′|Ĥ|Ψ′〉 ≥ 〈Ψ0|Ĥ|Ψ0〉 = E0 (1.8)
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where Ĥ is Hamiltonian of N-electron system. The above equation can be
rewritten (see eq. 1.4):

〈Ψ′|T̂ + V̂ |Ψ′〉 +
∫

vext(~r)ρ(~r)d~r ≥ 〈Ψ0|T̂ + V̂ |Ψ0〉 +
∫

vext(~r)ρ(~r)d~r (1.9)

which gives:

〈Ψ′|T̂ + V̂ |Ψ′〉 ≥ 〈Ψ0|T̂ + V̂ |Ψ0〉 (1.10)

Using above expression, similar as in eq. 1.5, a new functional FL[ρ] can be
introduced and its minimum reads:

FL[ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ |Ψ〉 (1.11)

where search for the minimum is performed over all the wavefunctions giving
the target density ρ(~r). Obviously, functional FL[ρ] will be equal to FHK [ρ] if
the electron density ρ(~r) will be v -representable. It is worth to note, however,
that density ρ in eq. 1.11 does not necessarily has to be v -representable. It is
sufficient that it belongs to the wider class of the N -representable densities,
i.e. the density that can be obtained from some antisymmetric wavefunction
and obeys following relations [8]:

ρ(~r) ≥ 0
∫

ρ(~r) = N
∫

|∇ρ(~r)
1
2 |2 < ∞ (1.12)

Using N-representable densities to find the minimum of the functional FL[ρ]
eliminates the v -representability constraint put on the variational principle
stated in second Hohenberg-Kohn theorem. The minimization of the total-
ground state energy (eq. 1.4) can be now written as follows:

E0 = min
Ψ

〈Ψ|T̂ + V̂ + V̂ext|Ψ〉 (1.13)

= min
ρ→N

{

min
Ψ→ρ

[

〈Ψ|T̂ + V̂ |Ψ〉 +
∫

vext(~r)ρ(~r)d~r
]}

= min
ρ→N

{

FL[ρ] +
∫

vext(~r)ρ(~r)d~r
}

= min
ρ→N

E[ρ]
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1.2 Kohn-Sham formulation of DFT

Although density functional theory formulated in Hohenberg and Kohn theo-
rems is elegant, convenient and exact orbital-free approach to calculate prop-
erties of many-electron systems, in practice it is not widely used. The main
reason for this lays in the unknown analytic form of the FHK [ρ] functional, es-
pecially its kinetic energy part, which provides the biggest contribution to the
total energy in eq. 1.5. The first attempts to approximate T [ρ] were made
in pioneering works by Thomas and Fermi [9, 10] or von Weizsacker [11],
however, up to date no universally applicable analytic form has been pro-
posed. To overcome this difficulties Kohn and Sham [2] proposed alterna-
tive approach - to replace the system of N-interacting electrons by fictitious
reference system of N-non-interacting electrons described by single Slater
determinant ΦKS. The Kohn-Sham method relies, therefore, on important
assumption, that for every ground state density of interacting system there is
non-interacting system which has the same density in its ground state. This
assumption cannot be easily verified.

To describe non-interacting system, Kohn and Sham introduced orbitals.
This allows to calculate kinetic energy of non-interacting electrons in an exact
way, given the formula:

Ts[ρ] =
N∑

i=1

〈φi| −
1

2
∇2|φi〉 (1.14)

In Kohn-Sham approach kinetic energy is no longer explicit functional of
the electron density, but now it has implicit form dependent on orbitals.
A considerable effort has been made to express Ts[ρ] as an explicit density
functional [12] (transforming KS-DFT in an orbital-free method), neverthe-
less the most promising approximations did not lead to satisfactory results
usually giving errors in calculations in the range of 1% [12, 13].

The electron density in Kohn-Sham formalism is obtained as:

ρ(~r) =
N∑

i=1

|φi(~r)|2 (1.15)

On the basis of the second Hohenberg-Kohn theorem, the ground state
electron density, ρ0(~r), can be obtained by minimizing the total energy func-
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tional. In the case of Kohn-Sham approach the expression for the total energy
reads:

EKS[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +
∫

vext(~r)ρ(~r)d~r (1.16)

Term J [ρ] represents the classical Coulomb energy:

J [ρ] =
1

2

∫ ∫
ρ(~r)ρ(~r′)

|~r − ~r′|
d~rd~r′ (1.17)

whereas Exc[ρ] is called exchange-correlation energy and is defined as:

Exc = T [ρ] − Ts[ρ] + V [ρ] − J [ρ] (1.18)

All the terms in equation 1.16 are available in their exact analytic forms,
only density functional of Exc[ρ] is not know, therefore, it needs to be ap-
proximated. Although it may seem that Kohn and Sham changed problem of
approximating FHK [ρ] from original Hohenberg-Kohn theory into the prob-
lem of approximating Exc[ρ], however, compared to FHK [ρ] the values of
Exc[ρ] are much smaller, therefore the errors arising from approximants to
this term are also expected to be smaller.

The energy functional in eq. 1.16 can be rewritten in the terms of the
orthonormal one-electron functions, {φi}, commonly labelled as Kohn-Sham
orbitals:

EKS[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +
∫

vext(~r)ρ(~r)d~r (1.19)

=
N∑

i=1

〈φi| −
1

2
∇2|φi〉 + J [ρ] + Exc[ρ] +

∫

vext(~r)ρ(~r)d~r

Euler-Lagrange minimization of eq. 1.19 under the constrain for the orthonor-
mality of the Kohn-Sham orbitals,

∫

φ∗
i (~r)φj(~r) = δij , gives one-electron

Kohn-Sham equations:

(

−
1

2
∇2 + vKS

eff [ρ](~r)
)

φi(~r) = εiφi(~r) (1.20)
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where

vKS
eff [ρ](~r) =

Nnuc∑

i=1

−
Zi

|~r − Ri|
+
∫

ρ(~r)

|~r − ~r′|
d~r +

δExc[ρ]

δρ
(1.21)

is the Kohn-Sham effective potential. Note, that derivation of eqs. 1.20
and 1.21 is subject to additional assumption, that density functionals are
differentiable (i.e. value of the functionals changes smoothly with the changes
of the density).

The orbitals φi(~r) from eq. 1.20 are used to obtain density according
to eq. 1.15. It belongs to class of non-interacting pure-state v-representable
electron densities, which means that it corresponds to the ground state in a
system of non-interaction electrons in some external potential.

From practical point of view, introduction of the orbitals in Kohn-Sham
formulation of density functional theory helps to overcome the difficulties
in approximating FHK [ρ] found in original Hohenberg-Kohn theory for the
price of making calculations computationally more demanding. Comparing
to the wavefunction based ab-initio methods, however, it sill is an interesting
alternative. The cost of solving of Kohn-Sham equations is smaller than
cost of solving Hartree-Fock equations as Kohn-Sham effective potential is
local potential and same for all the electrons. Moreover, unlike Hartree-
Fock theory which is by definition an approximate method, Kohn-Sham DFT
becomes exact theory in the limit of the exact functionals.

Turning to the exchange-correlation energy, development of the approx-
imation to this quantity is subject of many studies [14]. Various strategies
following different principles to construct approximate Exc[ρ] are proposed.
Commonly, following Perdew [15], they are ordered on the ”Jacob’s ladder”,
where every rung of the ladder is another class of approximants giving results
closer to the exact solution.

The first rung of the ladder is occupied by the local density approximation
(LDA) to Exc[ρ], which depends only on the electron density. It is derived
considering the model of the uniform electron gas and its generic form reads:

ELDA
xc [ρ] =

∫

ǫuniform
xc (ρ(~r)) ρ(~r)d~r (1.22)

The expression for the exchange was given by Dirac [16], whereas for the cor-
relation energy nowadays Vosko [17] parametrization of Ceperley-Alder [18]
data for homogeneous uniform gas is used.
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LDA is a starting point to derive furtherer approximants to Exc[ρ], nev-
ertheless, it performs surprisingly good for many properties (for example
geometries, harmonic frequencies). It is prone to failures if the density un-
dergoes rapid changes, as it could be in the case of many molecules.

One step up on the ladder is made by adding the density gradient, ∇ρ, de-
pendence in the Exc[ρ] functional. This leads to group of semi-local function-
als, commonly referred to as Generalized Gradient Approximation (GGA).
Their general form reads:

EGGA
xc [ρ] = ELDA

xc [ρ] +
∫

ρ(~r)
4
3 F (ρ(~r),∇ρ(~r)) d~r (1.23)

where F (ρ(~r),∇ρ(~r)) is so called enhancement factor. The most popu-
lar GGA functionals include exchange functionals by Becke [19] (B88) and
Perdew and Wang [20] (BP86), correlation energy functionals by Perdew [21]
(P86) or Lee, Yang and Parr [22] (LYP) as well as approximations for exchange-
correlation energy by Perdew and Wang [23, 24] (PW91) or Perdew, Burke
and Ernzerhof [25] (PBE). The GGA strategy brought many improvements
over the LDA and the success of Kohn-Sham formalism as a reliable method
to calculate properties of many-electron systems is due to ”robustness” of
these functionals.

Climbing up the ladder brings approaches going beyond GGA such as
meta-GGA functionals which include dependence on laplasian of the density
and kinetic energy density (with TPSS [26] approximant by Tao, Perdew,
Staroverov and Scuseria as the most notable example) or the family of hybrid
functionals which include dependence on orbitals. For a complete review of
available functionals and their accuracy to obtain molecular properties see
Ref. [27].



Chapter 2

One-electron equations for
embedded orbitals

In Kohn-Sham formalism orbitals are introduced to minimize the errors aris-
ing from use of approximate density functionals in calculations of the proper-
ties of a system constituted of N-electrons. In this chapter a method allowing
for reduction of the orbital space is introduced. Within this formalism, the
total system of interest is divided in the two subsystems. The orbital de-
scription is retained only for one of them - denoted as the embedded system,
whereas the remaining part, commonly denoted as the environment, is de-
scribed in an orbital-free manner using only its electron density ρB(~r). As
shown by Weso lowski and Warshel [4], for a pair of densities, ρA(~r) and
ρB(~r), an exact orbital-free embedding potential can be derived and used in
solution of Kohn-Sham-like one-electron equation (Eq. 20 in Ref. [4]) to find
ground-state density of the embedded system constituing NA electrons. For
this reason, method described in this chapter is commonly referred as orbital-
free embedding. Alternatively, in the literature this method is also known as
Kohn-Sham Equations with Constrained Electron Density (abbreviated as
KSCED). Additionally, in an iterative process where both subsystems switch
their roles the Hohenberg-Kohn ground-state energy of the total system can
be found. The latter is an equivalent algorithm to solve Cortona formulation
of density functional theory [28].

15
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2.1 Orbital-free embedding potential

Using the following elements of the Hohenberg-Kohn-Sham formulation of
density functional theory: Hohenberg-Kohn theorems [1], a reference system
of non-interacting electrons [2], and the corresponding density functional of
the kinetic energy (Ts[ρ]) [3] in particular, leads to the embedding potential
which is exact in the limit of exact functionals and orbital-free i.e. does not
involve other descriptors of the environment than its electron density [4]. The
pure-state non-interacting v-representable electron density ρmin

A , such that
added to some arbitrarily chosen density associated with the environment
(ρB) minimizes the Hohenberg-Kohn energy functional for the whole system,
can be obtained from the one-electron equations (Eqs. 20-21 in Ref. [4]) and
equation 2.1 in this work:

[

−
1

2
∇2 + vKSCED

eff [ρA, ρB;~r]
]

φA
i = ǫA

i φA
i i = 1, NA (2.1)

where ρA = 2
∑NA

i |φi|
2 and vKSCED

eff [ρA, ρB;~r] denotes a local potential which
depends only on electron densities ρA and ρB. The label KSCED (Kohn-
Sham Equations with Constrained Electron Density) is used here to indi-
cate that the local potential differs from that in Kohn-Sham equations [2]
for either the total system (vKS[ρA + ρB;~r])) or the isolated subsystem A
(vKS[ρA;~r])). Also the one-electron functions ({φA

i }) obtained from Eq. 2.1
are not optimal orbitals in neither Kohn-Sham systems. Atomic units are
applied in all formulas which are given for spin-unpolarized case. The total
effective potential in Eq. 2.1 is the sum of the conventional Kohn-Sham effec-
tive potential vKS

eff [ρA + ρB;~r] for the whole system evaluated for the electron
density ρ = ρA + ρB and another local potential (vt[ρA, ρB](~r)):

vKSCED
eff [ρA, ρB;~r] = vKS

eff [ρA + ρB;~r] + vt[ρA, ρB](~r) (2.2)

where vt[ρA, ρB](~r) involves functional derivatives of the functional Ts[ρ]:

vt(~r) = vt[ρA, ρB](~r) =
δTs[ρ]

δρ

∣
∣
∣
∣
∣
ρ=ρA+ρB

−
δTs[ρ]

δρ

∣
∣
∣
∣
∣
ρ=ρA

(2.3)
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Note that no restriction is made concerning the overlap between ρA and ρB

in real space.
The potential vt[ρA, ρB](~r) can be alternatively expressed as:

vt[ρA, ρB](~r) =
δT nad

s [ρ, ρB ]

δρ

∣
∣
∣
∣
∣
ρ=ρA

(2.4)

where T nad
s [ρA, ρB] denotes the following difference:

T nad
s [ρA, ρB] = Ts[ρA + ρB] − Ts[ρA] − Ts[ρB] (2.5)

In view of subsequent discussions, it is convenient to split the total ef-
fective potential vKSCED

eff [ρA, ρB;~r] into two components: the Kohn-Sham
effective potential for the isolated subsystem A (vKS

eff [ρA;~r]), which is ρB in-
dependent, and the remaining part representing the environment:

vKSCED
eff [ρA, ρB;~r] = vKS

eff [ρA;~r] + vKSCED
emb [ρA, ρB;~r] (2.6)

where

vKSCED
emb [ρA, ρB;~r] = vB

ext(~r) +
∫

ρB(~r′)

|~r′ − ~r|
d~r′ (2.7)

+
δExc [ρ]

δρ

∣
∣
∣
∣
∣
ρ=ρA+ρB

−
δExc [ρ]

δρ

∣
∣
∣
∣
∣
ρ=ρA

+ vt[ρA, ρB](~r)

where Exc[ρ] denotes the Kohn-Sham functional of the exchange-correlation
energy [2].

2.2 The subsystem formulation of density func-

tional theory

In the subsystem formulation of density functional theory [28], several sets
of one-electron functions are used to construct the electron density of each
subsystem. Within each set, the one-electron functions are orthogonal.
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In the particular case of two subsystems, considered here, a natural choice
of the subsystems corresponds to individual molecules forming the complex.
The key quantity in this formulation of DFT is the functional referred here
as ΞS, which depends explicitly on two sets of one-electron functions ({φA

i },
i=1, NA, {φB

i }, i=1, NB) reads:

ΞS[{φA
i }, {φ

B
i }] = V [ρA + ρB] + J [ρA + ρB] + Exc[ρA + ρB]

(2.8)

+2
NA
∑

i=1

〈

φA
i

∣
∣
∣
∣−

1

2
∇2
∣
∣
∣
∣φ

A
i

〉

+ 2
NB
∑

i=1

〈

φB
i

∣
∣
∣
∣−

1

2
∇2
∣
∣
∣
∣ φ

B
i

〉

+ T nad
s [ρA, ρB]

where

ρA = 2
NA
∑

i=1

|φA
i |

2 ρB = 2
NB
∑

i=1

|φB
i |

2 (2.9)

The density functionals Exc[ρ], J [ρ], and V [ρ], represent exchange-correlation
energy, the Coulomb repulsion, and the energy of the interaction with exter-
nal field (nuclei), respectively. These functionals are defined in the same way
as in the Kohn-Sham formulation of DFT. The bi-functional T nad

s [ρA, ρB]
defined in Eq. 2.5, is expressed by means of the density functional of the
kinetic energy in the reference system of non-interacting electrons (Ts[ρ]) [3].
In practical calculations based on the Kohn-Sham formalism, the numerical
value of Ts[ρ] is available at the end of the self-consistent procedure without
relying on any approximated functionals. In calculations based on the sub-
system formulation of DFT, only the embedded orbitals are available. They
are used to calculate the exact values of Ts[ρA] and Ts[ρB]. The numerical
value of of the total kinetic energy Ts[ρA + ρB] is constructed using the exact
results for Ts[ρA] and Ts[ρB] and the T nad

s [ρA, ρB] term, which is calculated
by means of an approximated functional depending explicitly on two electron
densities.

The functional ΞS[{φA
i }, {φ

B
i }] is related to the Hohenberg-Kohn energy

functional EHK [ρ] [29]:

EHK [ρA + ρB] = min
{φA

i }−→ρA

min
{φB

i }−→ρB

ΞS
[

{φA
i }, {φ

B
i }
]

(2.10)
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= min
{φA

i }−→ρA

ΞE
[

{φA
i }, ρB

]

≤ ΞE
[

{φA
i }, ρB

]

≤ ΞS
[

{φA
i }, {φ

B
i }
]

The equality is reached for the orbitals, obtained in the constrained
search definition of Ts[ρ] [3] provided the total electron density ρA + ρB is
v-representable i.e. the EHK [ρA +ρB] exists (for a complete discussion of the
relation between the universal functionals in Hohenberg-Kohn theorem and
their counterparts defined in constrained search see Ref. [30]).

Euler-Lagrange minimization of ΞE [{φA
i }, ρB] with respect to {φA

i } leads
to one-electron equations [4] given in Eq. 2.1.

Note that it is sufficient to know the electron density of the environment
ρB to express the embedding potential given in Eq. 2.7. No information about
the orbital structure of the environment is needed. For this reason, we refer to
calculations using Eq. 2.7 as orbital-free embedding. In orbital-free embedding
calculations [4], ρB is required to evaluate the effective embedding potential.
The results of embedding calculations depend, therefore, on the choice made
for ρB. If ρB and ρA are treated at the same footing, as in the original
subsystem formulation of DFT by Cortona, the two sets of orbitals {φA

i } and
{φB

i } minimizing ΞS[{φA
i }, {φ

B
i }] satisfy two sets of coupled equations:

[

−
1

2
∇2 + vKSCED

eff [ρA, ρB]
]

φA
i = ǫA

i φA
i i = 1, NA (2.11)

[

−
1

2
∇2 + vKSCED

eff [ρB, ρA]
]

φB
i = ǫB

i φB
i i = 1, NB (2.12)

where, the electron densities and orbitals are related via Eq. 2.9.

At a given external field (geometry of nuclei), minimization of the total en-
ergy with respect to ρA and ρB can be obtained in a self-consistent procedure
(freeze-and-thaw [31]), in which Eqs. 2.11 and 2.12 are solved consecutively
until convergence. In this way, the fully variational calculations based on the
subsystem formulation of DFT are formulated as a self-consistent series of
orbital-free embedding calculations.

The orbitals derived from Eqs. 2.11-2.12 (φA
i(o) and φB

i(o)) yield the elec-
tron densities ρo

A and ρo
B. By construction, ρo

A and ρo
B are pure-state non-



20 CHAPTER 2. EQUATIONS FOR EMBEDDED ORBITALS

interacting v-representable. Therefore,

Ts[ρ
o
A] = 2

NA
∑

i=1

〈

φA
i(o)

∣
∣
∣
∣−

1

2
∇2
∣
∣
∣
∣φ

A
(o)

〉

(2.13)

Ts[ρ
o
B] = 2

NB
∑

i=1

〈

φB
i(o)

∣
∣
∣
∣−

1

2
∇2
∣
∣
∣
∣φ

B
(o)

〉

(2.14)

(2.15)

In such a case, the right-hand-side of Eq. 2.8 evaluated for φA
i(o) and φB

i(o)

equals exactly to EHK [ρo
A + ρo

B].

2.3 Orbital-free embedding potential beyond

Kohn-Sham

Kohn-Sham density functional theory has been showed in many applications
to be the method of choice to treat many chemical problems, providing good
balance between cost and accuracy of calculations. There are, however, prob-
lems for which KS-DFT is unable to provide correct solution. Most commonly
it is related to the flaws of approximations to exchange-correlation energy
functional [32, 33, 34] or to the inadequacy of singledeterminantal descrip-
tion for a given system [35]. The orbital-free embedding formalism, which
also uses Kohn-Sham non-interacting system of electrons as a reference, will
naturally inherit all the difficulties and problems that Kohn-Sham theory
meets. It is useful, therefore, to extend applicability of embedding potential
to other approaches where this deficiencies does not exist.

2.3.1 Embedding multideterminantal wavefunction in

orbital-free environment

Recently Weso lowski has proven [36] that for the multi-configurational ab-
inito methods, where wavefunction is a basic variable, there can be defined
an embedding operator V̂ emb accounting for the presence of the environment
of a subsystem A:

[

T̂2NA
+ V̂ ee

2NA
+ V̂ A

ext + V̂ emb
]

ΨMD
A = EAΨMD

A , (2.16)
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and it is postulated to have the form of a local potential:

V̂ emb =
2NA∑

i

vemb
loc (~ri) (2.17)

where the local potential vemb
loc (~r) reads:

vemb
loc (~r) = vB

ext(~r) +
∫

ρB(~r′)

|~r − ~r′|
d~r′ + (2.18)

δT nad
s [ρA, ρB]

δρA (~r)
+

δEnad
xc [ρA, ρB]

δρA (~r)
+

δ∆F MD[ρA]

δρA

+ const

The derivation of vemb
loc (~r) is out of scope of this thesis, for complete review

please see Ref. [36]. The density ρA(~r) is constructed from the multideter-
minantal functions ΨMD

A given in eq. 2.16 (the superscript MD is used to
denote number of determinants used to express wavefunction, i.e. SD for a
single deteterminant):

ρA(~r) =

〈

ΨMD
A

∣
∣
∣
∣
∣
∣

2NA∑

i

δ (~r − ~ri)

∣
∣
∣
∣
∣
∣

ΨMD
A

〉

(2.19)

while ρB is an assumed density of environment.
Careful comparison between vemb

loc (~r) given in eq. 2.18 and embedding
potential vKSCED

emb [ρA, ρB;~r] in eq. 2.7 reveals that there is close similarity
between both of them. The local potential vemb

loc (~r) poses, however, additional

term
δ∆F MD [ρAo ]

δρAo
which arises from the fact the that the electron-electron

interaction (Vee) is treated exactly when the embedded system A is described
by the multideterminantal wavefunction. The properties of ∆F MD[ρA] will
be briefly discussed later in this section.

Equation 2.16 together with eqs. 2.17 and 2.18 allows to find the ground-
state wavefunction ΨMD

Ao
of the embedded system (and its density via eq. 2.19).

The total energy of the whole system can be found by defining energy func-
tional ΞEWF [ΨMD

A , ρB] that satisfy the following condition:

ΞEWF [ΨMD
A , ρB] ≥ ΞEWF [ΨMD

Ao
, ρB] = EHK [ρAo + ρB] (2.20)
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where EHK [ρAo + ρB] is Hohenberg-Kohn energy functional. The functional
ΞEWF [ΨMD

A , ρB] reads:

ΞEWF [ΨMD
A , ρB] =

〈

ΨMD
A

∣
∣
∣T̂2NA

+ V̂ ee
2NA

∣
∣
∣ΨMD

A

〉

+ (2.21)

Ts[ρB] + J [ρB ] + Exc[ρB] + V B
ext[ρB] + V A

ext[ρB] +

V A
ext[ρA] + V B

ext[ρA] +
∫ ∫ ρA(~r)ρB(~r′)

|~r − ~r′|
d~r′d~r +

T nad
s [ρA, ρB] + Enad

xc [ρA, ρB] + ∆F MD[ρA],

The functional ∆F MD[ρA] is defined as a difference:

∆F MD[ρA] = F HK [ρA] − F MD[ρA], (2.22)

where F HK [ρA] is universal Hohenberg-Kohn functional (see eq. 1.5),
while F MD[ρA] reads:

F MD[ρA] = min
ΨMD

A
−→ρA

〈

ΨMD
A

∣
∣
∣T̂2NA

+ V̂ ee
2NA

∣
∣
∣ΨMD

A

〉

(2.23)

The domain of the wavefunctions used to search for the minimum of
F MD[ρA] is limited to wavefunctions with fixed number of determinants which
are used to construct ΨMD

A . This is not the case for F HK [ρA] where the
minimum if performed over all the wavefunctions giving target density. If,
however, ΨMD

A will be full CI wavefunction (MD equal to CI) the search
domain for F MD[ρA] and F HK [ρA] will be identical, therefore ∆F MD[ρA] = 0.
This provides the upper bound for ∆F MD[ρA]. The lower bound can be found
when ΨMD

A is singledeterminantal wavefunction (MD = SD). In this case
the difference F HK [ρA] − F MD[ρA] will be the biggest and equal to Ec[ρ].

The above equations provide general framework for methods where the
system described by multideterminantal wavefunction is embedded in orbital-
free environment. Applicability of such scheme requires, however, to rely
on the approximations to Exc[ρ], T nad

s [ρ] and ∆F MD[ρA]. Several groups
successfully used such combination of methods in practical applications. For
a representative publications see Refs. [37] and [38].
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2.3.2 Embedding one-electron reduced density matrix

In reduced density matrix functional theory (RDMFT) instead of electron
density ρ(~r) as in DFT, the basic variable is one-electron reduced density ma-
trix (commonly abbreviated as one-matrix), which for closed-shell 2N elec-
tron system is given by the equation:

Γ(~r, ~r′) ≡ 2N
∫

Ψ∗(~r′, . . . ~rN)Ψ(~r, . . . ~rN)d~r2 . . . ~rN (2.24)

The electron density of the system is given by the diagonal elements of
the one-matrix:

ρ(~r) = Γ(~r, ~r)

The extended description of the density matrix functional theory formal-
ism, involved approximations and practical calculations are out of scope of
this thesis. Only brief description necessary to keep this section self-contained
will be given. This section is based on Ref. [39]. For more detailed review of
RDMFT formalism, see Ref. [8, 40, 41, 42, 43]

In RDMFT the energy is a functional of one-matrix:

E[Γ] = T [Γ] +
∫

Γ(~r, ~r) υext(~r) d~r + Eee[Γ] (2.25)

where the kinetic energy functional T [Γ] reads:

T [Γ] = −
1

2

∫ ∫

δ(~r − ~r′)∇2
~rΓ(~r, ~r′) d~r d~r′ (2.26)

electron-electron interaction is defined by Levy constrained search procedure:

Eee[Γ] = min
Ψ→Γ

〈Ψ|V̂ee|Ψ〉 (2.27)

and υext(~r) defines local external potential.
The ground state energy is found by minimizing the total energy func-

tional, where the search for minimum is performed over all the N-representable
one-matrices:

E0 = min
N−rep Γ

E[Γ] (2.28)
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It leads to the following Euler-Lagrange equation:

δ(~r − ~r′)
[

−
1

2
∇2

~r + υext(~r)
]

+ υee(~r, ~r
′) = µ δ(~r − ~r′) (2.29)

Pernal and Weso lowski showed in Ref. [39] that in the case when subsys-
tem A, described by one-matrix ΓA, is embedded by subsystem B, described
by density ρB (where total system density is given by ρ = ρA +ρB), the total
energy functional in such a case can be written as:

ΞΓ[ΓA, ρB] = E[ΓA] +
∫

ρA(~r)υB
ext(~r) d~r

+ 2J [ρA, ρB] + T nad
s [ρA, ρB] + Enad

xc [ρA, ρB]

+ EHK [ρB] +
∫

ρB(~r)υA
ext(~r) d~r (2.30)

where E[ΓA] is defined in 2.25.
The ground state energy of such system is found by minimization of the

functional given in eq. 2.30:

Eemb = min
ΓA→2N−2NB

ΞΓ[ΓA, ρB] (2.31)

where the search is performed over all N-representable embedded one-matrices
ΓA. This procedure leads to the following variational equation for ΞΓ[ΓA, ρB]:

δΞΓ[ΓA, ρB]

δΓA(~r, ~r′)
=

δE[ΓA]

δΓA(~r, ~r′)
+ δ(~r − ~r′)υemb

loc (~r) = µ δ(~r − ~r′) (2.32)

The variation δE[ΓA]
δΓA(~r,~r′)

is given in eq. 2.29. The local embedding potential

υemb
loc (~r) defined as:

υemb
loc (~r) = υB

ext(~r) +
∫

ρB(~r′)|~r − ~r′|−1 d~r′ +
δT nad

s [ρA, ρB]

δρA(~r)
+

δEnad
xc [ρA, ρB]

δρA(~r)
(2.33)

It can be easily seen, that υemb
loc (~r) in eq. 2.33 used to embed one-electron re-

duced density matrix has the same form as embedding potential defined for
reference system of non-interacting electrons given in eq. 2.7. Density matrix
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functional theory has, however, several advantages over Kohn-Sham formu-
lation of DFT. First of all, the wavefunction used to construct one-matrix
(eq. 2.24) corresponds to the system of N-interacting electrons. This allows
to extend the search domain of optimal densities minimizing the energy func-
tional from pure-state non-interacting v-representable to much wider class of
N-representable densities. Moreover, the kinetic energy functional is an ex-
plicit functional of one-matrix (eq. 2.26). The RDMFT is still subject of
extensive study in various groups [42, 44], nevertheless the proof of existence
of local embedding potential υemb

loc (~r) in RMDFT case given by Pernal and
Weso lowski makes it readily available for any practical calculations applying
this formalism.
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Chapter 3

Time Dependent Density
Functional Theory

Reviewed in previous chapter Hohenberg-Kohn density functional theory and
its reformulation given by Kohn and Sham allow to calculate the proper-
ties of many-electron systems from their electron density. The application
of this approach is limited, however, only to the ground-state properties of
molecules. Many chemical problems in the fields of spectroscopy, photochem-
istry or molecular optics for instance, where the response of the molecule to
the non-static frequency dependent external electromagnetic field is subject
of interest, are out of scope. In 1984 Runge and Gross [45] formulated the-
orems which allowed to extend DFT into time-dependent domain, where
the response of the system to the perturbations in the external field can
be described. In this chapter the most popular approach to treat the time-
dependent external potentials will be presented. It is based on linear response
equations obtained from perturbative expansion of the time-dependent Kohn-
Sham equations. The extension of linear response DFT to the orbital-free
embedding formalism will be also given.

3.1 Runge and Gross theorems

The foundations of the time dependent density functional theory are pro-
vided by theorems formulated by Runge and Gross [45]. It is stated that for
every time-dependent external potential, vext(~r, t), that can be expanded in
Taylor series around time coordinate t = t0, there is an invertible map (up

27
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to the spatially constant time dependent function) between this potential
and time dependent charge density ρ(~r, t). Such a map is given by solving
time-dependent Schrödinger equation with fixed initial state Ψ(t0) = Ψ0.
This statement is an analog of the first Hohenberg-Kohn theorem from the
time-independent theory.

The analog of the second Hohenberg-Kohn theorem for the time-dependent
density functional theory is given by defining the action functional A[ρ]:

A[ρ] = B[ρ] −
∫ t1

t0

∫

vext(~r, t)ρ(~r, t)d~rdt (3.1)

where B[ρ] is an universal (i.e. independent of the external potential) func-
tional of the density. In this chapter we will limit ourselves to the practical
extension of time dependent functional theory comparable to the Kohn-Sham
formalism, therefore, rigorous development and definition of the functional
B[ρ] following Runge and Gross [45] will not be given. Instead we will con-
sider Kohn-Sham system of non-interacting electrons for which this func-
tional can be written as:

B[ρ] =
∑

i

∫ t1

t0
〈φi(~r, t)|i

∂

∂t
−

1

2
∇2|φi(~r, t)〉dt (3.2)

−
1

2

∫ t1

t0

∫ ∫ ρ(~r, t)ρ(~r′, t)

|~r − ~r′|
d~rd~r′dt − Axc[ρ]

where term Axc[ρ] is an analog of the exchange-correlation functional found
in the time-independent case.

Functional A[ρ] given in Eq. 3.1 has a stationary point at the exact time-
dependent density:

δA

δρ(~r, t)
= 0 (3.3)

where the density ρ(~r, t) can be calculated as:

ρ(~r, t) =
∑

i

fi|φi(~r, t)|
2 (3.4)
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where fi is occupation number.
One-electron orbitals φ(~r, t) can be obtained from solution of the time-

dependent Kohn-Sham equation:

(

−
1

2
∇2 + veff (~r, t)

)

φi(~r, t) = i
∂

∂t
φi(~r, t) (3.5)

The time-dependent effective potential veff(~r, t) is defined as:

veff(~r, t) = vext(~r, t) +
∫

ρ(~r, t)

|~r − ~r′|
d~r′ + vxc[ρ](~r, t) (3.6)

= vext(~r, t) + vSCF (~r, t)

with the exchange-correlation potential given as a functional derivative:

vxc[ρ](~r, t) =
δAxc[ρ]

δρ(~r, t)
(3.7)

In the spin-unrestricted case, eq. 3.5 is written as:

(

−
1

2
∇2 + vσ

eff(~r, t)
)

φiσ(~r, t) = i
∂

∂t
φiσ(~r, t) (3.8)

where σ is the spin coordinate. The total density is equal to

ρ(~r, t) = ρα(~r, t) + ρβ(~r, t) =
∑

σ

∑

i

fiσ|φiσ(~r, t)|2 (3.9)

and effective potential:

vσ
eff(~r, t) = vext(~r, t) + vσ

SCF (~r, t) (3.10)

= vext(~r, t) +
∫

ρ(~r, t)

|~r − ~r′|
d~r′ + vxc[ρα, ρβ](~r, t)

Similarly as in the Kohn-Sham theory the time-dependent exchange-
correlation functional and its derivative needs to be approximated. This
issue and involved simplifications will be discussed in more detail later in
this chapter.
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Time-dependent Kohn-Sham equation provides a starting point to con-
sider the response of the system to the external time-dependent perturbation.
According to the first theorem of Runge and Gross, the external potential is
determined by charge density only, therefore, it is justified to separate the
perturbations from electric and magnetic fields. In this chapter only the for-
mer will be discussed. The response of the system to the magnetic fields is
domain of current density functional theory [46].

3.2 Linear response of the system

In popular spectroscopic techniques, like UV/Vis spectroscopy for instance,
the response of the molecule to the time-dependent electric field is studied.
If the applied electric field is small, the system responds in an linear fashion,
i.e. the magnitude of the change of the given observable depends linearly on
the strength of electric field. In such a case, the induced molecular dipole
moment can be expanded in the Taylor series in different orders of the applied
electric field [47]:

µind = µ0 + αE +
1

2!
βE2 +

1

3!
γE3 + ... (3.11)

where E is the applied electric field, µ0 is the permanent dipole moment,
α, β and γ are linear polarizability, hyperpolarizability and second order
hyperpolarizability tensors respectively. If the external electric field is non-
static, i.e. E = E0 + Eω cos(ωt), α, β and γ depend on the frequency ω of
the applied field.

Linear response of the system is determined by the linear polarizability
tensor α. In present work we will limit ourselves only to such instances. If
the perturbation comes from a stronger external field, for example due to
laser beam used in transistent absorption spectroscopy experiments where
such effects as second harmonics generation can be observed, higher order
terms β and γ start to play important role.

The mean frequency dependent linear polarizability can be expressed as
a trace of a tensor:

ᾱ(ω) =
1

3
Trα(ω) =

∑

i

fi

ω2
i − ω2

(3.12)
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where ωi are the excitation energies. Within linear response theory the ex-
citation energies can be, therefore, obtained as a poles of averaged linear
polarizability with oscillator strengths given by term fi.

3.3 Linear response equations

The response of the system to the perturbation in the external field δvext(~r, t)
can be calculated on the basis of time dependent Kohn-Sham equation (Eq. 3.8).
The perturbation to the total effective potential (Eq. 3.10) in the linear re-
sponse formalism is written as:

δvσ
eff (~r, t) = δvext(~r, t) + δvσ

SCF (~r, t) (3.13)

The self-consistent field vσ
SCF (~r, t) reacts instantaneously to the changes

of the density. Its response depends on the linear response of the Kohn-Sham
density matrix δPijσ(ω) (note: the Fourier transform from time domain t to
frequency domain ω, i.e. f(ω) =

∫∞
−∞ e−iωf(t)dt, has been used) [48]:

δvSCF
iaσ (ω) =

∑

jbτ

Kiaσ,jbτ (ω)δPjbτ(ω) (3.14)

The notation where letters i, j stands for occupied and a, b for unoccupied
orbitals has been adopted in the above equation. Greek letters σ and τ
denote spin coordinates.

The change in the density matrix is written (in the basis of the unper-
turbed molecular orbitals):

δPiaσ(ω) =
faσ − fiσ

ω − (ǫiσ − ǫaσ)
δveff

iaσ (ω) (3.15)

where ǫiσ is orbital energy.
The term Kiaσ,jbτ (ω) in equation 3.14 is so-called coupling matrix, which

describes the linear response of self-consistent field. It can be divided into
two terms [49] - the Coulomb part and exchange-correlation part:

Kijσ,klτ = KCoul
ijσ,klτ + Kxc

ijσ,klτ (3.16)
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with

KCoul
ijσ,klτ =

∫

d~r
∫

d~r′φiσφjσ ×
1

|~r − ~r′|
φkτφlτ (3.17)

and

Kxc
ijσ,klτ =

∫

d~r
∫

d~r′φiσφjσ × fστ
xc (~r, ~r′, ω)φkτφlτ (3.18)

Term fxc(~r, ~r′, ω) in Eq. 3.18 is exchange-correlation kernel, which is a
derivative of exchange-correlation potential with respect to the time-dependent
density:

fxc(~r, ~r
′, t, t′) =

δvxc[ρ](~r, t)

δρ(~r′, t′)
(3.19)

The exchange-correlation potential is defined in equation 3.7. The func-
tional Axc[ρ] is an unknown quantity and it needs to be approximated. In
practice the commonly used approach is the adiabatic approximation where
it is assumed that for the external potential, which varies slowly in time, the
following can be written [48]:

Axc =
∫ t1

t0
Exc[ρt]dt (3.20)

where term Exc is an exchange correlation functional known from static
Kohn-Sham theory and ρt(~r) = ρ(~r, t) is a density calculated at a given
time t. Within the adiabatic approximation eq. 3.7 can be rewritten as:

vxc[ρ](~r, t) ≈ vxc[ρt](~r) =
δExc[ρt]

δρt(~r)
(3.21)

from which follows the expression for kernel fxc (eq. 3.19):

fxc(~r, ~r
′, t, t′) =

δvxc[ρ](~r, t)

δρ(~r′, t′)
≈ δ(t − t′)

δvxc[ρt](~r)

δρt[~r′]
(3.22)
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The simplest approximation to fxc used in practical calculations is adia-
batic local density approximation (dubbed ALDA) which is derived from the
LDA expression for vxc[ρ].

Coming back to the calculations of excitation energies and corresponding
oscillator strengths, it was shown in eq. 3.12 that they can be calculated
from the dynamic polarizability α. Alternatively, the dynamic polarizability
might be also expressed using the density matrix and written in general form
as [48] (for the xz component):

αxz(ω) = −2
fiσ−fjσ>0
∑

ijσ

xjiσ(Re δPijσ)(ω)/Ez(ω) (3.23)

where Ez(ω) is strength of the applied external non-static field (δvext(~r, t) =
zEz(t)), xjiσ is the matrix element of x̂ in the basis of the unperturbed
orbitals and (Re δPijσ)(ω) is the real part of the density matrix.

Expression for the real part of the density matrix can be derived starting
from equations 3.13, 3.14, 3.15 (for details see Ref. [48, 49, 50]). It reads:

∑

bjτ

[

δστδabδij(εi − εa) − 2Kiaσ,jbτ − ω2 δστδabδij

(εi − εa)

]

(Re δPjbτ)(ω) (3.24)

= [δvext(ω)]iaσ

The above equation can be further simplified to the eigenvalue equa-
tion [48, 49]:

Ω~Fi = ω2
i
~Fi (3.25)

where four-index matrix Ω is given as:

Ωiaσ,jbτ = δστσijσab(εa − εi)
2 + 2

√

(εa − εi)Kiaσ,jbτ

√

(εb − εj) (3.26)

The eigenvalues ω in equation 3.25 are the excitation energies, whereas the
corresponding oscillator strengths are obtained from eigenvectors ~Fi.

Equation 3.25 needs to be solved iteratively. In practice it is commonly
treated in a post-Kohn-Sham calculations, where the unperturbed Kohn-
Sham occupied and unoccupied orbitals are used to calculate required matrix
elements and provide a reliable starting point.
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3.4 Extension of orbital-free embedding for-

malism to include time-dependent den-

sity functional linear response

The generalization of the orbital-free embedding formalism to include TD-
DFT linear response has been given by Casida and Wesolowski [51], where
the embedded orbitals for subsystem A obtained from eq. 2.1 are used to
construct the response of the system. This approach requires additional
modification of the response kernel (see Eqs. 3.19 and 3.22) to include terms
arising from the embedding potential. In the adiabatic approximation it
reads (see supplementary information to Ref. [52]):

f total(~r, ~r′) = f free(~r, ~r′) + f emb(~r, ~r′) (3.27)

where f free(~r, ~r′) is the kernel for the isolated molecule (given in eq. 3.22)
and f emb(~r, ~r′) has the form:

f emb(~r, ~r′) =
δ2Exc[ρ](~r)

δρ(~r)δρ(~r′)
−

δ2Exc[ρA](~r)

δρA(~r)δρA(~r′)
+

δ2T nad
s [ρA, ρB](~r)

δρA(~r)δρA(~r′)
(3.28)

In the above equation it is assumed that the response of the subsystem
B, i.e. the environment, is negligible. This approximation (furtherer abbre-
viated as NDRE - neglect of dynamic response of environment) will be valid
only for the interfaces for which excitations are localized only on the embed-
ded system and in the cases where the two subsystems does not absorb in
the same spectral range.

Considering practical approximations to the kinetic part of the f emb(~r, ~r′),
it is derived from Thomas-Fermi [9, 10] formula for the kinetic energy of
uniform electron gas.

The strategy to calculate the response of the density to the perturbation
from the non-static external field of only the embedded system brings several
advantages over the supermolecular treatment of the whole interface. It gives
a direct access to the excitations localized only on chromophore. Moreover,
as it was shown by Neugebauer [53] and others [54, 55, 56, 57], the quality of
the results from TD-DFT strongly depends on the size of the system. With
the increasing number of the atoms, non-physical low-lying charge transfer
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excitations start to appear, complicating extraction of the excitation of in-
terest. Limiting the orbital space only to the confined system overcomes this
problem. Additionally, it allows to easily identify the same absorption bands
in different solvents. Also large environments can be included in calculations
without sacrificing the consistency of the results.

The accuracy of the calculations of the time-dependent response of the
embedded system hinges on several factors. First and the most obvious
one is the adequacy of the NDRE approximation. It depends on the stud-
ied molecule, therefore, it needs to be examined case by case. The others
are related to the functionals for the exchange-correlation energy and ki-
netic energy used to derive the respective terms in the embedding poten-
tial vKSCED

emb [ρA, ρB;~r] (eq. 2.7). Note that both vt[ρA, ρB](~r) and exchange
correlation components of vKSCED

emb [ρA, ρB;~r] are short-range terms and they
disappear with the increasing distance from the embedded molecule. For this
reason, the magnitude of errors arising from used approximate functionals
can be expected to be the largest close to subsystem A, i.e. in the first sol-
vatation shell, whereas on large distances vKSCED

emb [ρA, ρB;~r] becomes exact
electrostatic embedding potential. Based on the benchmark study for the
nucleic acids bases [52], the maximal deviation of the linear response orbital-
free embedding calculations from the LR-TD-KSDFT is estimated to be 0.04
eV.

The beyond NDRE-approximation extension of linear response of sub-
system density functional theory was developed by Neugebauer, where it is
possible to include selected couplings between excitations on different sub-
systems [58]. As it was shown on the example of benzaldehyde dimer, where
both chromophores absorb in the same spectral range, this approach leads
to excellent results. For the most recent review on this method, please see
Ref. [59].
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Chapter 4

Orbital-free effective
embedding potential at nuclear
cusps

A strategy to construct approximants to the kinetic-energy-functional de-
pendent component (vt[ρA, ρB](~r)) of the effective potential in one-electron
equations for orbitals embedded in a frozen density environment (Eqs. 20-21
in [Weso lowski and Warshel, J. Phys. Chem. 97, (1993) 8050]) is proposed.
In order to improve the local behavior of the orbital-free effective embedding
potential near nuclei in the environment, the exact behavior of vt[ρA, ρB](~r)
at ρA −→ 0 and

∫

ρBd~r = 2 is taken into account. As a result, the properties
depending on the quality of this potential are invariably improved compared
to the ones obtained using conventional approximants which violated the
considered exact condition. The approximants obtained following the pro-
posed strategy and especially the simplest one constructed in this work, are
non-decomposable i.e. cannot be used to obtain the analytic expression for
the functional of the total kinetic energy.

4.1 Motivation

In the quest for an orbital-free method to study many-electron systems ini-
tiated in the works of Thomas [9] and Fermi [10], an universally applicable
approximation to the kinetic energy as density functional (T [ρ]) remains
an unsolved issue. The functional Ts[ρ] [3, 60] of the kinetic energy of non-

39
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interacting electrons is strongly related to this quest. For molecular or atomic
systems, the differences between the two functionals are rather small [7].
Approximations to Ts[ρ] are not needed in the Kohn-Sham formulation of
density functional theory [2, 1] because of the availability of the Kohn-Sham
orbitals. This successful formal framework, although not orbital-free, could
be converted into the orbital-free method if both Ts[ρ] and the exchange-
correlation energy functional could be reasonably approximated by means of
explicit density functionals. Currently, orbital-free methods are not robust
enough to be nearly as universally applicable as the Kohn-Sham equations
based ones [61, 62]. The exchange-correlation energy functional is a mi-
nor component of the total energy, whereas the kinetic energy is a major
one. Whereas even the simplest approximations to the exchange-correlation
energy functional applied within the Kohn-Sham framework lead to a rea-
sonable description of many important properties of atoms, molecules, and
solids, known approximations to Ts[ρ] used to approximate δTs[ρ]

δρ
in vari-

ational orbital-free calculations lead usually to qualitatively wrong results
[62, 63, 64, 65]. Although an acceptable approximation to δTs[ρ]

δρ
is the ulti-

mate goal and an indispensable component of any successful orbital-free com-
putational framework, related quantities are frequently subject of numerical
comparisons instead. Most commonly, the kinetic energy itself, which is a
global quantity, is subject of such analyses [66, 61, 62, 12, 67] or the density

of the kinetic energy ts (Ts[ρ] =
∫

ts(~r)d~r) [68, 69], which similarly to δTs[ρ]
δρ

is a local quantity. It has to be underlined, however, that ts is not defined
uniquely. For a recent concise review of strategies in approximating Ts[ρ]
and challenges involved see Ref. [70]. This makes the relation between accu-

racies of tappr
s and δT appr

s [ρ]
δρ

derived from a common approximation to T appr
s [ρ]

less straightforward. Since all quantities derived from Ts[ρ] would be exact
if the approximation to Ts[ρ] were exact, it is tempting to assume that a
good approximation to Ts[ρ] would lead also to good approximations to the
related quantities: energy differences such as the non-additive kinetic energy
bi-functional (T nad

s [ρA, ρB] = Ts[ρA +ρB ]−Ts[ρA]−Ts[ρB]) and its functional

derivatives ( δT nad
s [ρA,ρB]

δρX
, where X = A or B).

Previous analyses concerning the applicability of several semi-local ap-
proximations to Ts[ρ] in approximating the functional derivatives of T nad

s [ρA, ρB]
[71, 72, 73], showed that there is no correlation between the errors in Ts[ρ]

and that of δT nad
s [ρA,ρB ]

δρX
for the considered approximations. The one with the

largest domain of applicability was selected. In the absence of exact reference
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data for T nad
s [ρA, ρB], the origin of the lack of correlation between the errors

of these closely related quantities could not be investigated further. The
work of Bernard et al. [13] provided the missing link. Owing to the avail-
ability of the exact numerical data for T nad

s [ρA, ρB], where ρA and ρB are
obtained from a particular partitioning of a four-electron density, the accu-
racy of T nad

s [ρA, ρB] could be also analysed. Based on the study of commonly
used kinetic energy functionals the lack of correlation along the series

Ts[ρ] −→ T nad
s [ρA, ρB] −→

δT nad
s [ρA, ρB]

δρX
(4.1)

was shown. In particular, enforcing the exact properties on the functional
Ts[ρ], although it leads to the improvements in T nad

s [ρA, ρB], it does not

improve δT nad
s [ρA,ρB ]

δρX
, as it was demonstrated for the Second Order Gradient

Expansion (GEA2).
The lack of correlation between the elements of the series given in Eq. 4.1

suggest alternative, bottom-up approach of constructing the approximants
to the non-additive kinetic energy, where the object of interest is not the

parent expression for Ts[ρ], but directly the functional derivative δT nad
s [ρA,ρB]

δρX
.

This strategy allows to build-in in a straightforward way an exact properties

derived for δT nad
s [ρA,ρB ]

δρX
(see Appendix A and B in this chapter), moreover,

it also leads to the new class of the approximants for the non-additive ki-
netic energy and its derivative referred as non-decomposable, i.e. the analytic

form of its two individual components δT̃s [ρ]
δρ

∣
∣
∣
ρ=ρA+ρB

and δT̃s[ρ]
δρ

∣
∣
∣
ρ=ρA

cannot

be reconstructed.
Following this idea, in this chapter construction of the new non-decomposable

approximant to δT nad
s [ρA,ρB ]

δρX
obeying certain exact condition is presented and

validated on several model systems.

4.2 Introduction

Numerical methods to study electronic structure in condensed matter use
mainly techniques developed for periodic systems. In many cases, however,
methods developed for finite systems are also used. They are especially
adequate for ionic solids, liquids, molecular crystals, clusters of molecules,
for instance, to study features of the electronic structure which are local in
character. In such a case, the electronic structure is modeled only in some
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well-defined region in space of direct relevance. The effect of the atoms out-
side of this selected region (referred to as environment in this work) is taken
into account by some embedding potential. Different strategies are applied
in practice to represent the embedding potential. They differ in the choice
of descriptor of the environment. The roughest simplification is to neglect
the environment entirely. It is commonly made in studies of chemical bond-
ing and reactivity in condensed phase if the solvent in which the reaction
takes place is known to play a secondary role. Representing the environment
(discrete or continuous, polarizable or not) by the electric field it generates,
makes it possible to take into account the effect of the environment [74, 75].
Such classical treatment of the effect of the environment on the electronic
structure is commonly used both in chemistry and in materials science (for
review see Ref. [76, 77, 78]). The embedding potential in such methods is ob-
viously orbital-free. It is, however, not exact because the quantum statistics
nature of electrons is completely neglected. Taking into account the fermion
nature of electrons might proceed by following a similar strategy as the one
applied by Phillips and Kleinman in the construction of pseudopotentials
in order to eliminate explicit treatment of core electrons [79]. For recent
developments along these lines, see Ref. [80].

Following the work of Weso lowski and Warshel [4], the exact univer-
sal embedding potential can be introduced within the Hohenberg-Kohn-
Sham formulation of density-functional theory. Its exact analytic from is
given in equation 2.7. This orbital-free effective embedding potential and its
vt[ρA, ρB](~r) component in particular, are used in various types of multi-level
numerical simulations (for a review, see Ref. [29] or Refs. [81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91] for representative recent reports). Such simulations
deal with condensed matter systems, for which the electronic features of a
selected subsystem (subsystem A) represent the primary target of investi-
gations whereas ρB is subject to additional simplifications. Other formal
frameworks use also vt[ρA, ρB](~r) such as: Cortona’s formulation of density
functional theory [28], where ρB is not an assumed quantity but a result
of fully variational calculations [28, 31, 92, 93, 94] or linear-response time-
dependent density-functional-theory description of electronic excitations lo-
calized in embedded systems [51, 52]. Finally, the orbital-free effective em-
bedding potential given in Eq. 2.7, and its vt[ρA, ρB](~r) component in partic-
ular, are used in combination with traditional wave-function based methods
by Carter and collaborators (see for instance Ref. [38]). For the formal anal-
ysis of applicability of such a combination, see Ref. [36] which shows that the
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exact embedding potential in such a case always comprises the vt[ρA, ρB](~r)
component.

The analytic form of vt[ρA, ρB](~r) is not known. Therefore, approximants
(ṽt[ρA, ρB](~r)) to this quantity are used in practical calculations. They are
expressed explicitly by means of ρA, ρB, and/or its derivatives.

As a result of using an approximant to vt[ρA, ρB](~r), all quantities derived
in practical simulations are not exact and lead to ṽt- induced errors. Obvi-
ously, other simplifications made in practice such as the use of approximants
to the exchange-correlation functional, and the assumed ρB contribute as
well to the overall error. In the present work, we analyze of the errors asso-
ciated only with approximants to vt[ρA, ρB](~r). It is worthwhile to point out
here the recent work by Jacob et al. [95] in which an empirical procedure to
construct overall errors in the whole orbital-free effective potential given in
Eq. 2.7 in the cases where the redistribution of electrons between subsystem
A and B at dissociation is known in advance. These authors, however, did
not construct an approximant to vt[ρA, ρB](~r) but used an explicit position-
dependent special term for this purpose.

If an approximant to T̃s[ρ] is used in Eqs. 2.3-2.5 to obtain an analytic
expression to ṽt[ρA, ρB](~r), the resulting potential will be referred here as
decomposable because the analytic form of all relevant approximants: T̃s[ρ],
T̃ nad

s [ρA, ρB], and ṽt[ρA, ρB](~r), is also available. If the form of the used
T̃s[ρ] comprises only low-level gradient-expansion [96] contributions, the cor-
responding decomposable ṽt[ρA, ρB](~r) cannot recover the exact relation given
in Eq. 4.8 (see Appendix A). Our interest in the local behavior of vt[ρA, ρB](~r)
at this particular limit is motivated by the fact that the corresponding con-
ditions occur if ρB comprises two electrons tightly bound to a distant nucleus
in the environment such as in the case of the helium atom, Li+ cation, Be2+,
etc. These conditions do not apply rigorously for heavier nuclei but we ex-
pect that should be of relevance locally in a volume element centered on the
nucleus where ρB is dominated by a doubly-occupied orbital.

The present work focuses on the investigation whether the exact rela-
tion given in Eq. 4.8 is of any practical relevance. To this end, we apply
the following strategy: i) We use a model system (Appendix B), for which
the conditions ρA −→ 0 and

∫

ρBd~r = 2 apply rigorously, to analyze the
importance of enforcing the correct local behavior of ṽt[ρA, ρB](~r). ii) We
construct a simple approximant to vt[ρA, ρB](~r) obeying the exact relation
given in Eq. 4.8 in the vicinity of nuclei. This approximant is used to analyze
the numerical significance of the considered exact property of vt[ρA, ρB](~r)
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in real systems where the conditions ρA −→ 0 and
∫

ρBd~r = 2 do not apply
rigorously.

Our ultimate goal is a new approximant to vt[ρA, ρB](~r) which can be
inexpensively evaluated in practice and obeys as much as possible of the
relevant exact properties. It should pointed out in this context that the
position-dependency of vt[ρA, ρB](~r) is the result of non-homogeneity of ρA

and/or ρB. Therefore, the symbol vt[ρA, ρB](~r) (or ṽt[ρA, ρB](~r) for approxi-
mants) is used throughout this work to indicate that this local quantity is a
functional of ρA and ρB. Explicit position dependence is strongly undesired in
density-functional-theory based methods because it is not straightforward to
obtain i) such potential as a functional derivative of some density functional,
and ii) functional derivatives of such potential needed in some formal frame-
works [51, 52]. General symbols such vt or vt(~r) are used in some discussions
where the issue of explicit position-dependence is not relevant.

Finally, we point out that the quality of the following quantities ob-
tained from Eq. 2.1: orbitals, orbital energies, and the electron density, is
directly determined by the used approximant to vt[ρA, ρB](~r). The total en-
ergies, however, are affected by the errors in the approximant to the potential
vt[ρA, ρB](~r) but also by the errors in the approximant to T nad

s [ρA, ρB]. There-
fore, the quality of the energies cannot be uniquely attributed to that of the
used approximant to vt[ρA, ρB](~r).

4.3 Conventional (decomposable) approximants

to vt[ρA, ρB](~r)

Before proceeding to the construction of the desired approximant to vt[ρA, ρB](~r),
which obeys the exact relation given in Eq. 4.8, we overview the conventional
construction of approximants to vt[ρA, ρB](~r) and the local behavior of the
obtained potential near a nucleus. The conventional strategy, which is ap-
plied in our own works and the works by others so far, is to start from some
explicit density functional T̃s[ρ] and to use its analytic form to derive the
corresponding approximant to T nad

s [ρA, ρB]:

T nad
s [ρA, ρB] ≈ T̃ nad

s [ρA, ρB] = T̃s[ρA + ρB] − T̃s[ρA] − T̃s[ρB] (4.2)
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and to use the obtained analytic expression to obtain ṽt[ρA, ρB](~r) by means
of functional differentiation.

vt[ρA, ρB](~r) ≈ ṽt[ρA, ρB](~r) =
δT̃ nad

s [ρ, ρB]

δρ

∣
∣
∣
∣
∣
ρ=ρA

(4.3)

This strategy can be applied for any approximant to T̃s[ρ] provided its form
makes it possible to obtain the analytic expression for ṽt[ρA, ρB](~r). Sim-
ple functionals T̃s[ρ], which depend explicitly on densities and their gradi-
ents, are of particular practical interest. They lead to ṽt[ρA, ρB](~r) which
depends explicitly only on ρA, ρB and their first- and second derivatives.
In the original work by Cortona [28], where the subsystem formulation of
density functional theory was introduced, a decomposable ṽt[ρA, ρB](~r) de-
rived from the Thomas-Fermi [9, 10] kinetic energy functional was used to
study ionic solids. In our own works, only decomposable ṽt[ρA, ρB](~r) derived
from gradient-dependent approximants to Ts[ρ] were considered so far (see
for instance the analyses of their accuracy in Ref. [72, 13] or their recent
applications in multi-level computer simulations of condensed matter [86]).

Thomas-Fermi kinetic energy functional [9, 10], which is exact for the
uniform electron gas, leads to the following approximant to T nad

s [ρA, ρB]:

T̃ nad(TF )
s [ρA, ρB] = CTF

∫ (

(ρA + ρB)5/3 − ρ
5/3
A − ρ

5/3
B

)

d~r (4.4)

where CTF = 3
10

(3π2)2/3.
The associated expression for ṽTF

t [ρA, ρB](~r) reads:

ṽTF
t [ρA, ρB](~r) =

5

3
CTF

(

(ρA + ρB)2/3 − ρ
2/3
A

)

(4.5)

Using the approximant to Ts[ρ] taken from the gradient expansion of
the kinetic energy [96] truncated to the second order leads to the following
approximant to T nad

s [ρA, ρB] [4]:

T̃ nad(GEA2)
s [ρA, ρB] = T nad(TF )

s [ρA, ρB] −
1

72

∫ |ρA∇ρB − ρB∇ρA|2

ρAρB(ρA + ρB)
d~r (4.6)

The associated expression for ṽGEA2
t [ρA, ρB](~r) is given in Ref. [4].
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For the the group of gradient-dependent approximants to Ts[ρ] of the
generalized gradient approximation form [72, 71] the analytic expression for
T̃ nad

s [ρA, ρB] reads:

T̃ nad(GGA)
s [ρA, ρB] = CTF

∫ [

(ρA + ρB)5/3 F (sAB) − ρ
5/3
A F (sA) − ρ

5/3
B F (sB)

]

d~r(4.7)

where F (s) (enhancement factor) depends on a dimensionless quantity s =
|∇ρ|

2(3π2)1/3ρ4/3 (reduced density gradient). Various analytic forms of F (s) were

proposed in the literature [97, 98, 99, 67]. The associated analytic expres-
sion for ṽGGA

t [ρA, ρB](~r) is given in Ref. [93]. The GGA form is flexible and
includes T̃ TF [ρ] and T̃GEA2[ρ] as special cases. Numerical values of s provide
useful information about shell structure and the distance from the nucleus in
atoms [100]. For an atom, s is known to be small near the nucleus, reach the
values of about 3 in the valence region, and diverge exponentially to +∞ at
large distances. In molecules, it behaves similarly with a noticeable excep-
tion of stationary points of electron density (bond midpoints for instance)
where s = 0. Each approximant given in Eqs. 4.4-4.7 comprises a dominant
Thomas-Fermi component and satisfies two exact conditions:

• Ts[ρA + ρB] − Ts[ρA] − Ts[ρB] = 0 for non-overlapping ρA and ρB.

• For uniform ρA and ρB, they recover the exact analytical expression for
Ts[ρA + ρB] − Ts[ρA] − Ts[ρB].

The common feature of each among the above approximants to Ts[ρ],
which are decomposable and gradient-expansion based, is that none of them
yields the exact analytic form of vt[ρA, ρB](~r) at ρA −→ 0 and

∫

ρBd~r = 2
(see Appendix A):

vt[ρA, ρB](~r)−→vlimit
t [ρB](~r) =

1

8

|∇ρB|2

ρ2
B

−
1

4

∇2ρB

ρB

(4.8)

The expression given in Eq. 4.5, which provides the dominant contri-
bution to gradient-expansion based approximants to vt[ρA, ρB](~r) does not
comprise the relevant term at all whereas the second-order term provides
only 1/9 of the exact expression. Figure 4.1 shows ṽ

KSCED(LDA)
emb [ρA, ρB](~r)

for a spherically symmetric case: ρB = ρHe, vB
ext(~r) = −2/r, and ρA −→ 0,
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Figure 4.1: Effective potential (Eq. 2.7) derived using local density approx-
imation for its exchange- and kinetic energy components for: ρB = ρHe,
ρA −→ 0, and vB

ext(~r) = −2/r.

which represents a helium atom far from subsystem A. In the Figure as well
as in the following discussion, r denotes the distance from the nucleus on
which ρB is centered. The potential shows the features which are common
also for heavier atoms if gradient expansion based approximants to Ts[ρ] are
used to derive vt[ρA, ρB](~r): a very narrow and deep well (reaching −∞)
centered on the nucleus and surrounding it repulsive shell. The vt[ρA, ρB](~r)
component of the shown embedding potential is finite at the nucleus instead
of behaving as ζ

r
. Note that the exact term has the same form as the poten-

tial due to Coulomb attraction by the nucleus of the charge Z. For ζ = Z,
this compensation is complete. The commonly used ”effective” values of ζ
are smaller than than of Z [101]. As a consequence, the compensation is
only partial. For the particular case considered in the Figure, the missing
ζ
r

component does not lead to any bound states (Appendix B). In general,
however, the wrong behavior of the singularity of vt(~r) at the nucleus, can
lead to an unphysical transfer of electron density from the investigated sys-
tem to its environment (charge-leak [102]). This can occur if an artificially
attractive (not sufficiently repulsive) approximant to the orbital-free effec-
tive embedding potential generates a bound state in the environment of the
energy which is lower than the eigenvalue of the highest occupied embedded
orbital associated with embedded subsystem A. Numerical cases confirming
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such scenario are known [95, 103]. Moreover, the numerical solution of the

Schrödinger equation with ṽ
KSCED(LDA)
emb [ρA, ρB](~r) for ρB = ρLi+ and the ex-

ternal potential of the −3
r

form, shows a deeply lying node-less bound state
of the energy -0.209665 hartree with the maximum of the radial electron
density at rmax = 2.912 bohr (Appendix B). The above observations indicate
that decomposable ṽt[ρA, ρB](~r) obtained from low-order gradient-expansion
based approximants to Ts[ρ] might not be adequate for, at least, Li+ cations
in the environment. The fact that the bound state associated with an atom
in the environment is too tightly bound to the nucleus indicates, however,
that the problem might be also present in atoms comprising more electrons.

In a subsequent section, a simple approximant to vt[ρA, ρB](~r) is con-
structed based on these observations. In principle, the exact limit should
be applied in any volume element in which ρA vanishes and ρB is obtained
from a doubly occupied orbital. In the proposed construction, the exact limit
is imposed only at volume elements near heavier-than-hydrogen nuclei the
exact relation given in Eq. 4.8 is most relevant there.

4.4 Building-in the exact local behavior of

vt[ρA, ρB](~r) at ρA −→ 0 for
∫

ρBd~r = 2.

The aforementioned flaws of decomposable strategy to construct gradient-
and Laplacian dependent approximants to vt[ρA, ρB](~r) suggest a bottom-up
approach in which vt[ρA, ρB](~r) is directly a target. A given approximant
ṽt[ρA, ρB](~r) will be referred to as non-decomposable if the analytic form of

its two individual components δT̃s[ρ]
δρ

∣
∣
∣
ρ=ρA+ρB

and δT̃s[ρ]
δρ

∣
∣
∣
ρ=ρA

cannot be recon-

structed. The non-decomposable strategy is motivated by the fact that there
are exact properties of vt[ρA, ρB](~r), which can be taken into account quite
easily in ṽt[ρA, ρB](~r), whereas building-in them into some approximant to
T̃s[ρ] is less straightforward. Abandoning the decomposable strategy is mo-
tivated also by the results of our recent dedicated studies of the accuracy
of various gradient-dependent approximant to T nad

s [ρA, ρB], which revealed
that there is no correlation between the accuracy of T̃ nad

s [ρA, ρB], ṽt[ρA, ρB](~r)
and the errors in the parent gradient-dependent approximant to T̃s[ρ] [13]. It
should be also pointed out that, that the individual contributions T̃ nad

s [ρA, ρB]
are not needed in practice.

The non-decomposable approximant to vt[ρA, ρB](~r) is constructed by
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enforcing the following exact conditions into its analytic form:

• The uniform electron gas limit:
T̃ nad

s [ρA, ρB] −→ T̃ nad(TF )
s [ρA, ρB] for uniform ρA and ρB.

• The zero-overlap limit:
T̃ nad

s [ρA, ρB] −→ 0 for non-overlapping ρA and ρB.

• Convergence of the gradient-dependent terms to the limit given in
Eq. 4.8:
ṽt[ρA, ρB] −→ vlimit

t [ρB] at ρA −→ 0 and
∫

ρBd~r = 2.

The first two conditions are automatically satisfied by the decomposable
gradient-expansion based approximants discussed in the previous section.
Since such approximants proved to be sufficiently accurate for many systems
the same conditions are retained in the new construction. The last condition
is the key element of the present construction.

Before proceeding to the construction of the approximant obeying the
considered exact condition, we note that vt[ρA, ρB](~r) can be alternatively
expressed as:

vt[ρA, ρB] = ṽdecomposable
t [ρA, ρB] + f [ρA, ρB] · vlimit

t [ρB] (4.9)

All functionals in the above equation are determined locally and the argu-
ment ~r is not written explicitly for simplicity and the functionals vt[ρA, ρB]

and f [ρA, ρB] are simply related (f [ρA, ρB] =
vt[ρA,ρB]−ṽdecomposable

t [ρA,ρB]

vlimit
t [ρA,ρB]

if

vlimit
t [ρA, ρB] is non-zero). The above form of vt[ρA, ρB] provides a conve-

nient starting point for construction of approximants to vt[ρA, ρB]. For any
decomposable ṽt[ρA, ρB] which violates the exact relation given in Eq. 4.8,
the functional f [ρA, ρB] has a clear physical meaning as a switching factor
determining whether it is needed to add locally the missing component of
the embedding potential.

The first approximation made here is replacing the switching factor de-
fined in Eq. 4.9 by a switching function:

f [ρA, ρB](~r) ≈ f̃(ρA, ρB,∇ρB,∇2ρB) (4.10)

The above considerations lead to the following general form of the approxi-
mant to vt[ρA, ρB](~r):

ṽt[ρA, ρB] = ṽdecomposable
t [ρA, ρB] + f̃(ρA, ρB,∇ρB,∇2ρB) · vlimit

t [ρB] (4.11)
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This form of ṽt[ρA, ρB] provides a clear interpretation for the switching func-
tion, which can be used as guideline in construction of approximants - it
“detects” such volume elements for which the conditions ρA −→ 0 and
∫

ρBd~r = 2 are most relevant and turns on the exact terms if they are not
accounted for properly in the first term. It is worthwhile to underline, that
the approximant of the form given in Eq. 4.11 does not satisfy the exact re-
lation given in Eq. 4.8 rigorously if the decomposable component comprises
the contribution derived from zeroth order in gradient expansion. For ap-
propriately chosen switching function, however, the gradient-dependence of
such approximants satisfies the exact limit even in such cases.

Eq. 4.11 represents a general form of a non-decomposable approximant to
vt[ρA, ρB]. Various alternative approximants of this form can be constructed
depending on the choice made for its decomposable part and the switching
function. As far as the choice for the decomposable component, both the
gradient-free potential given in Eq. 4.5 and the decomposable potential de-
rived from the Lembarki-Chermette [98] approximants to Ts[ρ] were shown
in dedicated studies [72, 13] to be reasonably accurate if ρA and ρB do not
overlap strongly. Both these approximants comprise the zeroth order con-
tribution. If ṽTF

t [ρA, ρB] is used as decomposable component in Eq. 4.9, the
terms vlimit

t [ρB] and ṽdecomposable
t [ρA, ρB] are local functions depending explic-

itly on ρA, ρB, ∇ρB, and ∇2ρB. Approximating f [ρA, ρB] by a local function
depending explicitly on these quantities leads to an approximant to vt[ρA, ρB]
involving a similar computational effort as conventional low-order gradient-
expansion based decomposable approximants. The subsequent construction
concerns the switching function if the Thomas-Fermi functional is used as
the decomposable component.

4.4.1 The switching function f̃ for environments com-
prising one-nucleus and two-electrons

In constructing f̃(ρA, ρB,∇ρB,∇2ρB) the following additional requirements
(simplifications) are made:

• f̃(ρA, ρB,∇ρB,∇2ρB) is one in the vicinity of a nucleus to account fully
for the missing ζ

r
component.

• The criterion for determining the range at which vlimit
t [ρB ] is nuclear

number independent.
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• f̃(ρA, ρB,∇ρB,∇2ρB) does not depend on ρA (to obtain the analytic
form of T̃ nad

s [ρA, ρB]: (f [ρA, ρB] ≈ f̃ [ρB])

The above criteria are very restrictive and leave us with not many choices.
The last one leads to the following form of the switching factor:

f [ρA, ρB] ≈ f̃(ρB,∇ρB,∇2ρB) (4.12)

Approximating f [ρA, ρB] by some function f(ρB) is one of possible further
simplifications. It is, however, very unlikely that a ρB-based switching func-
tion could be universal. The electron density near the nucleus depends on
the effective nuclear charge ζ [101] and varies strongly from atom to atom.
It is possible, however, to design an ζ-independent criterion. To this end, we
consider the reduced density gradient (sB(~r)) defined as:

sB =
|∇ρB|

2(3π2)1/3ρ
4/3
B

(4.13)

For ρB obtained from hydrogenic orbital 1s defined by some effective nuclear
charge ζ , the following ζ-independent observations can be made: i) For ρ1s

B =

2|1s|2, sr=0 = (6π)−1/3 = 0.376, and ii) vlimit
t [ρ1s

B ] changes sign from positive
to negative at sr=2/ζ = exp(4/3) · sr=0 = 1.426. These observations suggest
that the switching function can take a very simple and ζ-independent form

f̃(ρB,∇ρB) = f̃(sB) = Θ(sB − smin
B ) × Θ(smax

B − sB) (4.14)

where Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0 and smin
B = 0.376 and

smax
B = 1.426.

Since Eq. 2.1 can be used also to obtain forces [94], it is preferable to
use a smooth switching from 0 to 1 instead of Θ in the above definition (see
Appendix C).

The obtained switching factor f̃ allows us to investigate the importance of
enforcing the exact relation given in Eq. 4.8 in cases where the environment
comprises one nucleus and two electrons at large separation from subsystem
A. Not only the condition

∫

ρBd~r = 2 applies rigorously, but the consider-
ations leading to the ζ-independent values of smax

B and smin
B apply as well.

Such model systems as the complexes Li+-H2O and Be2+-H2O with the water
molecule playing the role of subsystem A fall into this category. At equilib-
rium geometry, adding the f̃ · vlimit

t [ρB] term results in a desired effect on
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calculated properties for these complexes. The lowest unoccupied embedded
orbital associated with subsystem A is indeed localized on the cation and its
energy is shifted by 0.262 eV in the case of Li+ and by 0.830 eV in the case
of Be2+. Addition of f̃ · vlimit

t [ρB] reduces also the dipole moment of a water
molecule in the vicinity of the cation by 0.071 Debye and 0.409 Debye for Li+

and Be2+, respectively. Such noticeable numerical effects obtained for sys-
tems, for which the condition

∫

ρBd~r = 2 applies rigorously, indicate clearly
that the exact relation given in Eq. 4.8 is relevant for practical calculations
where the environment is larger.

4.4.2 Fine-tuning the thresholds in the switching func-

tion f̃

Using only universal parameters smin
B and smax

B is very appealing. The con-
siderations of the previous section leading to their numerical values of these
thresholds do not apply in real systems. The construction of the switching
function described in the previous section and choice of the thresholds smin

B

and smax
B in particular can be expected not to be adequate for other systems

for the following reasons:

• The criterion 0.376 ≤ sB ≤ 1.426 applies at hydrogen nucleus where
addition of vlimit

t [ρB] is not expected to be needed. We recall here that
it is the danger of a collapse of electron density on a doubly occupied
hydrogenic 1s orbital provides the physical motivation for introducing
the vlimit

t [ρB]. Moreover, numerical studies on molecular electron den-
sities indicate clearly that enforcing the local behavior of the density
of the kinetic energy near nucleus corresponding to the von Weizsäcker
expression leads indeed to significant improvements of the approximant
to Ts[ρ] for all nuclei except that of hydrogen [104].

• For heavier atoms, electron density at the nucleus comprises contribu-
tions from other orbitals than the hydrogenic 1s. This can lead to the
possibility that vlimit

t [ρB] is negative although sB ≤ 1.426.

• The criterion 0.376 ≤ sB ≤ 1.426 might also be satisfied near sta-
tionary points of the electron density such as bond midpoints. It is
very unlikely that the condition

∫

ρBd~r = 2 can be relevant to any
volume element centered on a stationary points. Therefore addition
of vlimit

t [ρB] lacks formal justification there. Although the condition
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0.376 ≤ sB assures that vlimit
t [ρB ] is not added at the stationary point,

where |∇ρB| = 0, or in the close proximity to it, the numerical value of
this threshold requires verification in real systems. It should be added
at this point also that, if linear combination of atomic orbitals is used
to construct embedded orbitals, the quality of description of the density
at the nuclear cusp depends on the used basis set. A weaker criterion
should be used in practice to assure that the vlimit

t [ρB] is indeed added
in the vicinity of a nucleus.

We start with the choice made for smax
B . Numerical analyses in the sys-

tems discussed in the next section show that vlimit
t [ρB] is negative locally

even if sB is smaller than 1.426 for heavier nuclei. This suggest that this
threshold should be reduced. The smaller is the value for this threshold the
less probably is inclusion of negative vlimit

t [ρB], which is desired from the
point of view of universality of this threshold, but it comes at the expense
of loosing a part of the desired effect by reducing the range at which addi-
tion of vlimit

t [ρB] applies. We use the model system considered in Appendix
B to estimate the effect associated with the reduction of this range. The
underlying assumption leading to the value of 1.426 value is rigorously true
in the model system. The desired effect of reducing the charge distribution
on top of the nucleus is achieved mainly by adding vlimit

t [ρB](~r) very close
to the nucleus i.e. where sB < 0.6. Increasing further the value of the sB

threshold leads to smaller effect. Moreover, adding locally vlimit
t [ρB] to the

potential near the nucleus leads to negligible effect on orbital energies in the
system considered in Appendix B (it reaches a peak of about 10−4 eV at
sB = 1.426). These results for the model system indicate that any choice
for 0.6 < smax

B < 1.426 is acceptable. In real systems discussed in the next
section, lowering the threshold from 1.426 to to 0.9 assures that vlimit

t [ρB ] is
added only if it is positive.

The fine-tuning of smin
B follows other considerations. We note that, in the

model system considered in Appendix B, smin
B can be reduced even to zero

without affecting the results because lower values of sB than 0.376 do not
occur near the nucleus. To make sure that no nuclei is overlooked even if
the chosen atomic basis set in practical calculations is such that the exact
relation sB = 0.376 for r −→ 0 cannot be rigorously satisfied, smin

B is reduced
from 0.376 to 0.3. This change leads to negligible numerical effects if ρB

corresponds to atomic electron densities. For molecular ρB, retaining the
criterion based on the smin

B is necessary to avoid unjustified additions of
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vlimit
t [ρB] near stationary points.

The criteria based only on smin
B and smax

B are not sufficient if the environ-
ment comprises hydrogen atoms because they are satisfied also at hydrogen
nucleus. To avoid adding the vlimit

t [ρB] near hydrogens, the proposed switch-
ing function includes additionally the criterion based on smallness of ρB. It
is required that ρB is larger than the square of the 1s wave function of the
hydrogen atom (Z=1) at r = 0 which equals to 1/π = 0.318. Concerning
ρmin

B , increasing the idealized value of 0.318 to even 1 does not affect the
results for hydrogen-free systems because the density on top of any nucleus,
which is heavier than hydrogen, is at least one order of magnitude larger.
Increasing the value ρmin

B is desired for the same reasons as the ones moti-
vating the decrease of smin

B . The value of ρmin
B = 0.7 was arbitrary chosen for

practical calculations.
The final form of the “fine-tuned” switching function of more general

applicability and used in the subsequent section for studying the importance
of imposing the exact relation given in Eq. 4.8 in real systems takes the
following form:

f̃ =
(

exp(λ(−sB + smin
B )) + 1

)−1
×
(

1 − (exp(λ(−sB + smax
B )) + 1)−1

)

×
(

exp(λ(−ρB + ρmin
B )) + 1

)−1
(4.15)

where smin
B = 0.3, smax

B = 0.9, ρmin
B = 0.7.

The final form of the approximant to vt[ρA, ρB], which will be denoted
as ṽNDSD

t [ρA, ρB], where NDSD stands for Non-Decomposable approximant
using first- and Second Derivatives of ρ, reads:

ṽNDSD
t [ρA, ρB] = ṽTF

t [ρA, ρB] + f̃(ρB,∇ρB) · vlimit
t [ρB] (4.16)

where f̃(ρB,∇ρB) is given in Eq. 4.15 The notion of non-decomposability
is brought up here because the the second term in Eq. 4.11 does not have
the form of a difference between two functional derivatives of some common
explicit density functional T̃s[ρ].

The analytic expression for T̃ nad(NDSD)
s [ρA, ρB], which yields ṽNDSD

t [ρA, ρB]
after functional differentiation with respect to ρA can be easily constructed
because its decomposable component is given in Eq. 4.4 whereas the non-
decomposable vlimit

t [ρB ] component is ρA independent. It reads:
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T̃ nad(NDSD)
s [ρA, ρB] = CTF

∫ (

(ρA + ρB)5/3 − ρ
5/3
A − ρ

5/3
B

)

d~r (4.17)

+
∫

f̃(ρB,∇ρB) · ρA(~r)ṽlimit
t [ρB](~r)d~r + C[ρB]

where C[ρB] is ρA-independent. To assure the proper dissociation limit C[ρB]
must vanish.

Finally, we underline that the constructed approximant to vt[ρA, ρB] com-
prises always the zero-th order term which does not depend on density gra-
dients explicitly. We recall here that this component is finite at the nucleus
and we have chosen to retain it. A more refined treatment of this gradient-
free term, which would disappear at the considered limit if the approximant
were exact is possible. Works on such aproximants are in progress in our
lab. The present work, however, concerns the importance of the missing
gradient-dependent terms. Switching off the zero-order term would require
introduction of another switching function which would make drawing con-
clusions concerning the main issue of this work less straightforward.

It is worthwhile, to recall here that the issue of the amount of the von
Weizsäcker term which should be added to the Thomas-Fermi expression is
not new in the context of approximants to Ts[ρ][12]. It was also investigated
by Yang[105] in view of approximating density of the kinetic energy or more
recently by Kluner et al.[38] who proposed switching off the von Weizsäcker
term completely at large density gradients. Despite apparent similarity, these
developments are not directly related to the present analysis of approximants
to vt[ρA, ρB] which are non-decomposable i.e. their analytic forms do not
allow for the construction of a ”parent” approximant to Ts[ρ].

4.5 Numerical validations

Procedure to analyze ṽt-generated errors

In practical applications of Eq. 2.1, the results depend on ρB as well as on the
approximant to vt[ρA, ρB](~r). As far as assessment of the quality of the used
approximant to vt[ρA, ρB](~r) is concerned, a general procedure was proposed
in one of our earlier works [13, 71]. Its principal element is the comparison be-
tween numerical values of the calculated property (energy components, dipole
moments, total electron density, etc.) obtained from two fully variational



56 CHAPTER 4. EMBEDDING POTENTIAL AT NUCLEAR CUSPS

formal frameworks: that of Cortona [28] and that of Kohn and Sham [2].
Results obtained from both frameworks are not exact but the difference be-
tween them can be attributed only to the approximant to vt[ρA, ρB](~r) if all
technical parameters (approximant to the exchange-correlation functional,
basis sets for expanding orbitals, algorithms to calculate used matrix ele-
ments) are the same. We point out here, however, that direct comparisons
between the total electron densities derived from Kohn-Sham- and Cortona’s
calculations are cumbersome because these quantities are local. In practice,
it is more convenient to use global quantities (norm of the difference be-
tween these densities, or selected observables) in such analyses (see the next
section).

To obtain the pair of electron densities ρA and ρB which minimizes the
total energy in Cortona’s type of calculations, the self-consistent super cycle
of embedding calculations (freeze-and-thaw cycle) [31] is performed. At each
iteration, one-electron equations for embedded orbitals (Eq. 2.1) are solved.
In the subsequent iteration, ρA and ρB exchange their role. The freeze-
and-thaw iterations continue until self-consistency. In the end, a pair of
electron densities (ρ0

A and ρ0
B) and the corresponding two sets of embedded

orbitals are obtained. Obviously, the notion of embedded system and its
environment becomes meaningless because both subsystems are treated on
the equal footing. Freeze-and-thaw calculations are conducted in practice
for small model systems to validate the used ρB in large scale multi-level
numerical simulations [86] or, as it is made in the present work, to asses the
used approximant to vt[ρA, ρB](~r). All numerical results obtained with the
ṽNDSD

t [ρA, ρB](~r) approximant with the smoothing parameter λ = 500. Such
results can be practically considered as equivalent to the use of stepfunction
Θ (see Appendix C). Using a smaller value, such as λ = 50 recommendable
for practical calculations, affects the discussed shifts in dipole moments or
orbital-energies by less than 1%.

The effect of imposing the limit for vt[ρA, ρB] at ρA −→
0 and

∫

ρBd~r = 2 on the complexation induced dipole
moments.

ṽt-generated errors in complexation induced dipole moments can be expected
to be strongly affected by the local behavior of the used ṽt[ρA, ρB](~r) near
nuclei. Lack of sufficient repulsion near the nucleus might lead to an artificial
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transfer of electron density between subsystems reflected in the numerical val-
ues of the dipole moment. Therefore, this quantity was chosen for the analysis
of the ṽt-generated errors in a representative set of intermolecular complexes
including charged, polar and non-polar ones at their equilibrium geometries.
The key details of the numerical implementation of the relevant equations
are as follows i) LDA approximation for exchange-correlation functional: ex-
change [16] and Vosko al. parametrization [17] of the Ceperley-Alder data [18]
ii) TZP atomic basis sets of the STO type [106], iii) supermolecular expansion
of electron density of each subsystem (KSCED(s) label in Ref. [73], iv) equi-
librium geometries obtained from Kohn-Sham LDA calculations with TZP
basis sets (available from the authors upon request), v) numercial implemen-
tation of the ṽNDSD

t in ADF code ([106]) version ADF2007 downloaded from
svn repository on 2007-05-23.

Tables 4.1 and 4.2 collect the complexation induced dipole moments in
neutral or charged complexes, respectively. First of all, imposing the exact
relation given in Eq. 4.8 decreases the ṽt-generated errors in each of the con-
sidered cases. The effect on the errors is negligible if subsystems are neutral.
This indicates that the origin of the errors lies not in the violation the con-
dition considered in this work. For systems comprising charged components,
the effect of imposing the exact relation given in Eq. 4.8 is evident. The errors
are invariably reduced. The reduction of the relative errors depends on the
system from such a case as Li+-F− (from 9.8% to 8%) to a strong reduction
in such systems as Na+-Br− and (from 1.4% to 0.8%) and Na+-H2O (from
0.23% to 0.05%) for instance. Similarly as in the group of complexes formed
by neutral molecules, the origin for the remaining errors lies somewhere else.
The above numerical examples lead to the following principal conclusions:

• Violation of the exact relation given in Eq. 4.8 contributes to the overall
error in the calculated quantities but this contribution varies from one
system to another. It is rather negligible for complexes formed by neu-
tral components. It is numerically significant for complexes comprising
charged components.

• Our simple strategy to impose the exact relation given in Eq. 4.8 in
the vicinity of nuclear cusps leads invariably to reduction of errors.
Therefore it can be used generally as correction to any approximant
violating the exact relation.

• The construction of the approximant obeying the exact relation given
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Table 4.1: Total dipole moments (µ in Debye) obtained from the freeze-
and-thaw calculations using two approximations vt[ρA, ρB](~r). The target
Kohn-Sham results are given for comparison. Only dipole moment compo-
nents along the principal axis connecting the subsystems are given. Relative
percentage errors of the dipole moments derived from subsystem based cal-
culations (∆µsubsystem−∆µKohn−Sham

∆µKohn−Sham 100%) are given in parentheses.

freeze-and-thaw Kohn-Sham

Eq. 4.5 Eq. 4.16
A B µ

Li+ F− 5.429 5.540 6.020
(9.8) (8.0)

Li+ Cl− 5.768 5.930 6.828
(15.5) (13.1)

Li+ Br− 5.706 5.931 7.033
(18.9) (15.7)

Na+ F− 7.576 7.606 7.697
(1.6) (1.2)

Na+ Cl− 8.509 8.561 8.608
(1.2) (0.5)

Na+ Br− 8.637 8.686 8.758
(1.4) (0.8)

Be2+ O2− 4.225 4.341 6.120
(31.0) (29.1)

Mg2+ O2− 6.741 6.843 6.988
(3.5) (2.1)

H2O H2O 2.669 2.669 2.779
(3.9) (3.9)

HF HF 3.000 3.000 3.090
(2.8) (2.8)

He CO2 0.014 0.014 0.013
(-8.6) (-8.4)

Ne CO2 0.027 0.027 0.025
(-7.6) (-7.6)
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Table 4.2: Total dipole moment (µ in Debye) obtained from the freeze-and-
thaw calculations using two approximations vt[ρA, ρB](~r). The target Kohn-
Sham results are given for comparison. Only dipole moment components
along the principal axis connecting the subsystems are given. Relative per-
centage errors of the dipole moments derived from subsystem based calcula-
tions (∆µsubsystem−∆µKohn−Sham

∆µKohn−Sham 100%) are given in parentheses.

freeze-and-thaw Kohn-Sham

Eq. 4.5 Eq. 4.16
A B µ

Li+ H2O 5.298 5.351 5.513
(3.91) (2.94)

Li+ F2 7.783 7.804 7.807
(0.31) (0.04)

Li+ CO2 9.387 9.401 9.396
(0.10) (-0.05)

Na+ H2O 6.512 6.524 6.527
(0.23) (0.05)

H3O+ Ar 2.681 2.688 2.707
(0.96) (0.70)

NH+
4 Ar 1.661 1.661 1.816

(8.52) (8.52)
Be2+ He 12.475 12.565 12.986

(3.94) (3.24)
Be2+ H2O 12.066 12.298 13.569

(11.08) (9.37)
Mg2+ He 17.302 17.316 17.338

(0.20) (0.13)
Mg2+ H2O 19.441 19.531 19.751

(1.57) (1.11)
a for charged systems the dipole moment is calculated for the cation at the

origin.
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in Eq. 4.8 and the used switching criteria in particular, correspond to
a real case where a distant nucleus is surrounded by a frozen-density
shell comprising two electrons (He, Li+, Be2+, etc.). The fact that the
errors are reduced also for systems, where these idealized conditions do
not apply, indicates that the exact relation given in Eq. 4.8 is impor-
tant in practice and should be taken into account in construction of
approximants to vt[ρA, ρB](~r).

• Reflecting the exact relation given in Eq. 4.8 in ṽt[ρA, ρB](~r) does not
eliminate ṽt-generated errors. For some systems, it even does not lead
to noticeable improvements. Therefore, their origin must be looked for
somewhere else.

The effect of imposing the limit for vt[ρA, ρB] at ρA −→ 0
and

∫

ρBd~r = 2 on orbital energies

In this section, we analyze the complexation induced shifts of orbital energies
derived using the approximant ṽNDSD

t [ρA, ρB](~r) considered in the previous
section. Opposite to the dipole moments discussed previously, direct compar-
isons between the calculated shifts and the corresponding reference data are
less straightforward. However, we investigate the numerical effect associated
with imposing the exact relation given in Eq. 4.8 in view of the numerical
practice which indicates that shifting the levels of unoccupied orbitals lo-
calized in the environment would be desirable. Conventional decomposable
approximants to vt[ρA, ρB](~r) lead to artificially low levels of unoccupied
orbitals in the environment which might cause unphysical effects such as
charge-transfer between subsystems [103] or erroneous other observables [95].

The numerical results for a model system considered in Appendix B show
that inclusion of the vlimit

t [ρB] term everywhere where 0.6 ≤ sB ≤ 0.9 into
the effective embedding potential leads to a positive shift of the energy level
of the unoccupied orbital. In real intermolecular systems, the conditions
considered in Appendix B (ρA −→ 0 and ρB = 2|1s|2) do not apply rigorously
for the following reasons. If the subsystems are in finite separation and
the atom-centered basis set used to construct embedded orbitals comprises
atoms in both subsystems (supermolecular expansion labeled as KSCED(s)
in Ref. [73]), ρA can be significant at a nucleus associated with subsystem
B. As a consequence, the condition ρA −→ 0 may not apply. Moreover, if
the atom in the environment comprises also occupied 2s shell the condition
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Table 4.3: The effect of adding non-decomposable contribution to the em-
bedding potential on the energy on the lowest unoccupied orbital localized in
the environment (LUEO). For each complex, the used electron density of the
environment (ρB) is the ground-state Kohn-Sham (LDA) electron density of
the isolated subsystem B.

subsystem B subsystem A ǫLUEO ǫLUEO ∆ǫLUEO

ṽs = ṽTF ṽs = ṽNDSD

Li+ F− -2.249 -2.162 0.087
Li+ Cl− -2.669 -2.570 0.099
Li+ Br− -2.741 -2.638 0.103
Na+ F− -1.908 -1.799 0.108
Na+ Cl− -2.202 -2.172 0.030
Na+ Br− -2.253 -2.221 0.032
Be2+ O2− -4.922 -4.919 0.003
Mg2+ O2− -4.634 -4.608 0.026

∫

ρBd~r = 2 does not apply as well. The aim of the numerical analysis of this
section is the verification whether the desired effect of shifting unoccupied
orbital levels occurs in such cases.

Tables 4.3 and 4.4 collect the values of energy levels corresponding to the
lowest lying orbital localized mainly in the environment for the previously
considered complexes. The calculations are made not in the end of the freeze-
and-thaw cycle but for the same ρB obtained from Kohn-Sham calculations
for the isolated subsystem B. Including the non-decomposable (vlimit

t [ρB])
in the approximant to vt[ρA, ρB](~r) leads to the shifts of the energy levels of
unoccupied orbitals of the magnitude which significantly larger than that in
the model system. It is a very desired effect of the new approximant.

In the Li+-H2O case discussed in Ref. [103, 95], the energy of the lowest
unoccupied embedded orbital localized on Li+ crosses with that of the highest
occupied embedded orbital localized on H2O at the intermolecular distance
of 13 Å if Eq. 4.5 is used for vt[ρA, ρB](~r). At larger separations, the self-
consistent procedure to solve Eqs. 2.1 does not converge due to localization
of the highest occupied embedded orbital which jumps between subsystems
in subsequent iterations. Imposing the exact relation given in Eq. 4.8 leads
to shifts of the energy of the unoccupied embedded orbital localized at Li+

and does not affect the levels of occupied orbitals at all (see Figure 4.2, and
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Table 4.4: The effect of adding non-decomposable contribution to the em-
bedding potential on the energy on the lowest unoccupied orbital localized in
the environment (LUEO). For each complex, the used electron density of the
environment (ρB) is the ground-state Kohn-Sham (LDA) electron density of
the isolated subsystem B.

subsystem B subsystem A ǫLUEO ǫLUEO ∆ǫLUEO

ṽs = ṽTF ṽs = ṽNDSD

Li+ H2O -7.533 -7.335 0.198
Li+ F2 -8.501 -8.228 0.273
Li+ CO2 -9.069 -8.838 0.231
Na+ H2O -6.295 -6.227 0.068
Be2+ He -26.681 -25.915 0.766
Mg2+ He -18.376 -17.990 0.386
Be2+ H2O -21.737 -21.253 0.484
Mg2+ H2O -16.570 -16.253 0.317

Tables 4.5 and 4.6). Note that the levels still cross but it occurs at larger
separations (about 16 Å) than in the ṽTF

t [ρA, ρB] case (about 13 Å). Moreover,
the shifts increase with intermolecular separation. Crossing the levels in this
case, is a qualitatively wrong because it would result in wrong redistribution
of charges upon dissociation. The origin of crossing might be attributed to
several factors, i) the used approximant to the exchange-correlation potential
(wrong relative positions of frontier orbitals in the dissociated fragments),
ii) errors in ṽNDSD

t [ρA, ρB](~r) (not sufficiently repulsive), iii) the particular
choice for ρB (note the strong dependence of vlimit

t [ρB ] on ζ for hydrogenic
ρB discussed earlier). The first among these factors is not important because
the relative order of frontier orbitals in isolated H2O and Li+ is correct.
Therefore, the two remaining factors lie at the origin of the observed crossing.

We turn back to the approximant ṽNDSD
t [ρA, ρB](~r). The observed sig-

nificant shift of the level-crossing point provides thus the clear evidence of
a great relevance of the exact relation given in Eq. 4.8 in practice. In the
aforementioned work by Jacob et al. [95], the levels do not cross at all owing
to a position dependent term assuring that the whole embedding potential
disappears at dissociation. In practice, if the dissociation limit is known in
advance and the ṽNDSD

t [ρA, ρB](~r) together with some approximant to the
exchange-correlation potential describe it incorrectly, the empirical correc-
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Table 4.5: The effect of adding non-decomposable contribution to the em-
bedding potential on the energy on the highest occupied embedded orbital
(HOEO). For each complex, the used electron density of the environment
(ρB) is the ground-state Kohn-Sham (LDA) electron density of the isolated
subsystem B.

subsystem B subsystem A ǫHOEO ǫHOEO ∆ǫHOEO

ṽs = ṽTF ṽs = ṽNDSD

Li+ F− -6.716 -6.637 0.079
Li+ Cl− -6.399 -6.340 0.059
Li+ Br− -6.122 -6.069 0.053
Na+ F− -5.223 -5.202 0.21
Na+ Cl− -5.397 -5.383 0.014
Na+ Br− -5.277 -5.264 0.013
Be2+ O2− -6.724 -6.697 0.027
Mg2+ O2− -5.135 -5.103 0.032
H2Oa H2O -6.799 -6.799 0.000
HFa HF -9.450 -9.450 0.000
H2O

b H2O -8.010 -8.011 -0.001
HFb HF -10.896 -10.896 0.000

a acceptor of hydrogen bond
b donor of hydrogen bond
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Table 4.6: The effect of adding non-decomposable contribution to the em-
bedding potential on the energy on the highest occupied embedded orbital
(HOEO). For each complex, the used electron density of the environment
(ρB) is the ground-state Kohn-Sham (LDA) electron density of the isolated
subsystem B.

subsystem B subsystem A ǫHOEO ǫHOEO ∆ǫHOEO

ṽs = ṽTF ṽs = ṽNDSD

Li+ H2O -14.530 -14.493 0.037
Li+ F2 -16.507 -16.493 0.014
Li+ CO2 -14.749 -14.743 0.006
Na+ H2O -13.284 -13.276 0.008
Be2+ He -37.558 -37.339 0.219
Mg2+ He -31.410 -31.379 0.031
Be2+ H2O -25.208 -25.029 0.179
Mg2+ H2O -21.178 -21.117 0.061

tion introduced in Ref. [95] can be always combined with ṽNDSD
t [ρA, ρB](~r)

as a pragmatic solution.

4.6 Alternative non-decomposable approximants

to vt[ρA, ρB]

In principle, any decomposable approximant can be used as the first term
of Eq. 4.16 instead of the term derived from Thomas-Fermi functional con-
sidered in the previous section. In particular, this term can be derived from
second-order gradient expansion or generalized gradient expansion type of ap-
proximants to Ts[ρ] overviewed in the introductory sections. In this section,
we analyze the effect of imposing the relation given in Eq. 4.8 on gradient-
dependent decomposable approximants to vt[ρA, ρB](~r). It is worthwhile,
however, to point out that the gradient-free decomposable component of
ṽNDSD

t [ρA, ρB] cannot recover the exact relation of Eq. 4.8 at all whereas the
gradient-dependent decomposable approximants do it only partially. There-
fore, a proper care needs to be taken to avoid double-counting of gradient-
dependent terms in the approximant to vt[ρA, ρB] near nuclei. For instance,
ṽGEA2

t [ρA, ρB] comprises already 1/9 of vlimit
t [ρB]. Therefore, the plateau of
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Figure 4.2: The effect of imposing the exact relation given in Eq. 4.8 on the
orbital levels for the Li+-H2O complex at various intermolecular separations.
Only the energy of the highest embedded occupied orbital (HOEO) and low-
est unoccupied embedded orbital (LUEO) are shown. The TF and NDSD
energies of HOEO are not distinguishable on the figure and only one set of
data is shown. The NDSD curve is obtained using λ = 50 (see the discussion
in Appendix C).

the switching function reaches not 1 but 8/9 in such a case. For GGA-type
of approximants to vt[ρA, ρB], the value at the plateau must reflect the ana-
lytic dependence of the approximant on reduced density gradient s at small
gradients.

In this section, we construct two alternative approximants of the Eq. 4.16
form which take into account exact relation given in Eq. 4.8. One in which
ṽTF

t [ρA, ρB] in Eq. 4.16 is replaced by either ṽGEA2
t [ρA, ρB] [4] or ṽGGA97

t [ρA, ρB] [72].
In both cases, enforcing the exact relation given in Eq. 4.8 on the constructed
approximant brings improvements (see Table 4.7). This results indicates that
the exact relation given in Eq. 4.8 is indeed important in practice as imposing
it improves the decomposable approximants which violate it.

Compared to the results obtained using ṽNDSD
s [ρA, ρB](~r) discussed ear-

lier in this work, the two alternative non-decomposable approximants to
vs[ρA, ρB](~r) are not better.

We recall here the main reasons for singling out ṽGGA97
t [ρA, ρB]) among

other decomposable ones which depend explicitly on densities ρA and ρB as
well as their first- and second derivatives.
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Table 4.7: Total dipole moment (µ in Debye) obtained from the freeze-and-
thaw calculations using different approximations vt[ρA, ρB](~r). The target
Kohn-Sham results are given in Tables 4.1 and 4.2. Only dipole moment
components along the principal axis connecting the subsystems are given.
Relative percentage errors of the dipole moments derived from subsystem
based calculations (∆µsubsystem−∆µKohn−Sham

∆µKohn−Sham 100%) are given in parentheses.

system vGEA2
t vGEA2

t + f · vlimit
t vGGA97

t vGGA97
t + f · vlimit

t

Li+ Cl− 5.114 5.256 5.674 5.807
(25.1) (23.0) (16.9) (14.9)

Li+ H2O
a 5.024 5.078 5.256 5.293

(8.9) (7.9) (4.8) (4.0)
Na+ Cl− 7.612 7.654 8.321 8.360

(11.6) (11.1) (3.3) (2.9)
Na+ H2O

a 6.286 6.300 6.446 6.457
(3.7) (3.5) (1.24) (1.1)

Be2+ O2− 3.807 3.888 4.125 4.212
(37.8) (36.5) (32.6) (31.8)

HF HF 2.991 2.991 2.992 2.993
(3.2) (3.2) (3.2) (3.1)

a for charged systems the dipole moment is calculated for the cation at the
origin.

• ṽGEA2
t [ρA, ρB] obtained from the second-order gradient-expansion of

Ts[ρ] leads typically to worse results than that obtained from zeroth
order [13, 73] indicating that the contribution to vt[ρA, ρB] due to the
second term in Eq. 4.6 is erroneous. The deterioration of the results is
pronounced the most at very small overlaps between ρA and ρB.

• ṽGGA97
t [ρA, ρB] was introduced as a pragmatic solution replacing ṽGEA2

t [ρA, ρB].
Due to its analytic form, the gradient-dependent contribution disap-
pears at small overlaps between ρA and ρB.

• The functional T̃LC94[ρ] generating the decomposable approximant ṽGGA97
s [ρA, ρB]

is known to be also a very good approximant to Ts[ρ].
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In ṽNDSD
t [ρA, ρB], the problematic second-order term lying at the origin

of flaws of ṽGEA2
t [ρA, ρB] is either present, wherever the exact relation for

vt[ρA, ρB](~r) given in Eq. 4.8 is expected to be relevant (i.e. in the vicinity of
nuclei) or it is absent. Numerical results collected in Tables 4.1, 4.2, and 4.7
support the above formal reasons to consider ṽNDSD

t [ρA, ρB] as the successor
of ṽGGA97

t [ρA, ρB].

4.7 Conclusions

Approximants to Ts[ρ] are object of continuous efforts due to their possible
use in the orbital-free types of models dating back to the works of Thomas
and Fermi [9, 10]. For a representative current developments see the review
by Wang and Carter [61]. For any approximant T̃s[ρ], it is straightforward
to construct the associated decomposable approximant to vt[ρA, ρB](~r). In
methods using orbtial-free effective embedding potential [4], the approxi-
mants to the total kinetic energy are not directly used. The key quantity is
the approximant to vt[ρA, ρB](~r). Decomposable approximants constructed
starting from gradient expansion approximantion violate the relation given
in Eq. 4.8 which involves directly vt[ρA, ρB](~r).

Numerical results presented in this work indicate clearly that taking into
account the exact relation given in Eq. 4.8 leads to improved approximants.
Errors in the complexation induced dipole moments are reduced by more
than 50% in some cases. For neutral systems, reduction of error takes also
place but its magnitude is typically negligible. The bulk of numerical results
presented in this work concerns the effect of imposing the exact relation
given in Eq. 4.8 on the simplest decomposable approximant to vt[ρA, ρB](~r)
obtained from the Thomas-Fermi approximant to Ts[ρ]. Violation of the
exact relation given in Eq. 4.8 by decomposable approximants to vt[ρA, ρB](~r)
is numerically relevant not only in this case but also if other simple gradient-
dependent approximants to Ts[ρ] are used as indicated by supplementary
numerical results given in this work.

This indicates that one of important sources of inaccuracies in the con-
ventional (i.e. decomposable and gradient-expansion based) approximant to
vt[ρA, ρB](~r) was identified. The origin of the remaining contributions ṽt-
generated errors lies probably somewhere else.

As the result of the present work, a new approximant to (ṽNDSD
t [ρA, ρB](~r)

given in Eq. 4.16) is proposed as an alternative to the ones obtained previ-
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ously using conventional decomposable strategy especially if it uses low-order
terms in the gradient expansion of Ts[ρ] [96]. Advantages of ṽNDSD

t [ρA, ρB](~r)
are the following:
i) Formal: We believe that a proper strategy to improve approximants to
functionals in density functional theory should proceed by imposing the most
relevant exact conditions and ṽNDSD

t [ρA, ρB](~r) was constructed in this way.
ii) Practical: The numerical results reported in this work show indeed that
imposing this condition improves the obtained electron density and that the
improvement varies from negligible to significant depending on the system.
iii) Numerical: Evaluating ṽNDSD

t [ρA, ρB](~r) involves the same quantities
as evaluating its counterparts derived from gradient-expansion- (up to second
order) and so called generalized gradient approximants to Ts[ρ].

Concerning the area of applicability of ṽNDSD
t [ρA, ρB](~r), it should be

underlined that some arbitrary choices were made concerning the criteria
for “detecting” the vicinity of a nucleus based only on electron density ρB

and its derivatives in the proposed construction. The criteria to switch on
the vlimit

t [ρB ] term were designed based on the analysis of model system of
relevance for elements of the first-, second- and the third period. Finally, we
underline that the applied non-decomposable constriction can be combined
with any decomposable approximant to ṽNDSD

t [ρA, ρB](~r).

The local potential ṽNDSD
t [ρA, ρB](~r) introduced in this work is intrin-

sically non-decomposable. Although the analytic form of the functional
T̃ nad(NDSD)

s [ρA, ρB] and the potential ṽNDSD
t [ρA, ρB](~r) are given in this work,

the analytic form of neither T̃NDSD
s [ρ] nor δT̃ NDSD

s [ρ]
δρ

is available. Therefore,
the introduced here non-decomposable strategy can be seen as the first at-
tempt to decouple the search for T̃s[ρ] and its functional derivative, which
are needed in orbital-free calculations, from the search for an adequate ap-
proximant to the kinetic-kinetic-energy dependent component of the effective
orbital-free embedding potential. Opposite to orbital-free strategy [9, 10],
neither T̃s[ρ] nor its functional derivative are needed in methods applying
orbital-free effective embedding potential given in Eq. 2.7.

Finally, imposing the exact relation for vt[ρA, ρB](~r) given in Eq. 4.8 leads
to shifts of the level of the unoccupied orbitals localized in the environment.
Such shift is strongly desired in view of the earlier reports on possible practi-
cal inconveniences resulted from artificially low position of such levels when
approximants to vt[ρA, ρB](~r), which do not take into account the cusp con-
dition, are used [103, 95].
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Appendix A

Orbital-free embedding potential for ρA −→ 0 and ρB = 2|1s|2

For small δρ such that δρ −→ 0,

δT nad
s [ρA, ρB] = T nad

s [ρA + δρ, ρB] − T nad
s [ρA, ρB] (4.18)

= Ts[ρA + δρ + ρB] − Ts[ρA + ρB] − Ts[ρA + δρ] + Ts[ρA]

=
∫

δTs[ρ]

δρ
(~r)

∣
∣
∣
∣
∣
ρ=ρA+ρB

δρ(~r)d~r −
∫

δTs[ρ]

δρ
(~r)

∣
∣
∣
∣
∣
ρ=ρA

δρ(~r)d~r + O(δ2ρ)

If also ρA is small i.e. ρA −→ 0,

T nad
s [ρA + δρ, ρB] − T nad

s [ρA, ρB] =
∫

δTs[ρ]

δρ
(~r)

∣
∣
∣
∣
∣
ρ=ρB

δρ(~r)d~r + O(δ2ρ)

(4.19)

Therefore,

δT nad
s [ρ, ρB]

δρ
(~r)

∣
∣
∣
∣
∣
ρ−→0

≈
δTs[ρ]

δρ
(~r)

∣
∣
∣
∣
∣
ρ−→ρB

(4.20)

The above result that the kinetic-energy component of vKSCED
emb is just the

functional derivative of the Ts[ρ] calculated for ρ = ρB makes it possible to
express it analytically for any ρB which comprises just two electrons. For one-
electron and two-electron- spin-compensated systems the exact expression
reads [11]:

Ts[ρ] = TW
s [ρ] =

∫ 1

8

|∇ρ|2

ρ
d~r for

∫

ρd~r = 2 (4.21)

Therefore,

δTW
s [ρ]

δρ

∣
∣
∣
∣
∣
ρ=ρB

=
1

8

|∇ρB|2

ρ2
B

−
1

4

∇2ρB

ρB
if

∫

ρBd~r = 2 (4.22)
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Using Eq. 4.22 in Eq. 4.20 leads to the asymptotic form of the kinetic energy
component of vKSCED

emb in the case where ρA and ρB do not overlap signifi-
cantly and ρB is a two-electron spin-less electron density reads:

δT nad
s [ρ, ρB ]

δρ

∣
∣
∣
∣
∣
ρ=ρA−→0,

∫
ρBd~r=2

=
1

8

|∇ρB|2

ρ2
B

−
1

4

∇2ρB

ρB
(4.23)

ρB representing a doubly occupied hydrogenic 1s function (1s =
√

ζ3/π ·
exp(−ζr)) reads:

ρ1s
B (~r) = ρ1s

B (r) = 2 · ζ3/π · exp (−2ζr) , (4.24)

For ρ1s
B , Eq. 4.23 leads to the following potential:

δT nad
s [ρ, ρB]

δρ
(~r)

∣
∣
∣
∣
∣
ρ=ρA−→0,ρB=ρ1s

B

=
ζ

r
−

ζ2

2
(4.25)

The potential given in Eq. 4.25 is repulsive for r < 2
ζ
. For hydrogenic densities

ρ1s
B , the reduced density gradient equals to a ζ-independent value of 1.426.

Near the nuclear cusp, therefore, a pair of electrons on the 1s shell provides
a local repulsive potential which compensates the Coulomb attraction due
to the nuclear charge. Note that the effective nuclear charge ζ for the most
tightly bound orbital (1s) in a multi-electron atom is smaller than the charge
of the corresponding nucleus (Z) [101]. As a consequence, the compensation
is perfect only for one-electron hydrogenic systems.
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Appendix B

Dependence of the energies of bound states localized in the envi-
ronment far from subsystem A on approximants to vt[ρA, ρB](r)

We consider numerical solutions of the Schrödinger equation for one elec-
tron in the spherically symmetric potential which takes the general from
given in Eqs. 2.6-2.7. The analyzed potential corresponds to vKS

eff [ρA;~r] = 0,

vB
ext(~r) = −Z

r
, and vKSCED

emb [ρA, ρB;~r] defined in Eq. 2.7 for ρA −→ 0 and
ρB = ρ1s

B . Such a case represents a local potential around a nucleus with
the charge Z localized in the environment far from from the investigated
subsystem A and ρB comprising entire contribution from doubly occupied
1s shell centered on this nucleus. Dirac’s exchange energy expression [16] is
used to derive the exchange-correlation component of vKSCED

emb [ρA, ρB;~r]. The
solutions of one-electron Schrödinger equation for such potential is obtained
by radial quadrature described in Refs. [107, 108] implemented numerically
using MATLAB2006 environment [109]. Finite difference approximation and
the matrix representation with 127 radial points is used. The above model
system is used to investigate the dependence of the lowest energy level on
the used approximant to vt[ρA, ρB](r).

Such approximant to ṽt[ρA, ρB](r), which is finite at nuclear cusp, might
lead to appearance of artificially stabilized bound states due to improper
balance between the nuclear attraction, classical electron-electron repulsion,
which are both descried exactly and improperly behaving ṽt[ρA, ρB](r). This
imbalance does not cause qualitative problems in the Z=2 (helium atom)
case. No bound states occur if vt[ρA, ρB](r) is approximated by:

ṽmodel0
t =

δT nad(TF )
s [ρ, ρB]

δρ

∣
∣
∣
∣
∣
ρ=ρA−→0

(4.26)

=
5

3
CTFρ

2/3
B

derived from the uniform-electron gas expression for vt given in Eq. 4.5.
For Z = 3 (i.e. Li+), however, ṽmodel0

t leads to a bound state of the energy
-0.2096654 hartree. This value will be used as a reference for analysis of other
approximants to vt[ρA, ρB](~r).

The expression derived from the second-order gradient approximation to
δT nad

s [ρA,ρB ]
δρA

reads:
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ṽmodel1
t =

δT nad(GEA2)
s [ρ, ρB]

δρ

∣
∣
∣
∣
∣
ρ=ρA−→0

(4.27)

=
5

3
CTFρ

2/3
B −

1

72

∇2ρB

ρB
+

1

144

|∇ρB|2

ρ2
B

leads to a further lowering of the energy to -0.611935 hartree.
In the following part, other potentials will be considered, for which a local

non-decomposable contribution is added to that given in Eq. 4.26 near the
nucleus.

ṽmodel2
t (r) =

5

3
CTFρ

2/3
B (4.28)

+







1
8
|∇ρB|2

ρB
− 1

4
∇2ρB

ρ2
B

= ζ
r
− ζ2

2
for r ≤ rT

0 for r > rT

Figure 4.3 shows that, compared to the decomposable result, the addition
of a non-decomposable component destabilizes the energy but only for such
small values of r at which sB ≤ 1.6. The maximal destabilization occurs at
sB = 1.426 in line with the change of sign of the added term. A similar pic-
ture emerges from the analysis of the electron density at r = 0. Comparisons
of Figures 4.3 and 4.4 reveals that addition of the non-decomposable term to
the effective potential affects the orbital energies and electron density in a
different manner. Even very close to the nucleus this addition reduced elec-
tron density without affecting the orbital energy noticeably. From the point
of view of choosing smax

B determining the range of this additional potential
it is worthwhile to notice that the limit s = 1.426 should not be exceeded.
The energy level starts a rapid descend and the on-top density starts to rise
again at larger values of sT

B. As far as the lower limit for sB is concerned,
it should not be smaller than about 0.5 because points at which sB < 0.5
influence significantly the charge density at the nucleus.
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Figure 4.5: The energy of the lowest unoccupied orbital (LUEO) of Li+-
H2O plotted as a function of the smoothing parameter λ in Eq. 4.29. The
horizontal line represents the result obtained the sharp step function θ.

Appendix C

Smoothing the thresholds

In practical calculations, the use of the step-function Θ is not desirable. We
consider a smooth switching of the Fermi-Dirac statistics form:

f̃ =
(

exp(λ(−sB + smin
B )) + 1

)−1
(4.29)

where the parameter λ determines the smoothness of the switch. The value
of λ = 500 in Eq. 4.29 leads to equivalent results to that obtained with the
step function Θ (differences in dipole in the range of 10−6 Debye and orbital
energies in the range of 10−10 hartree). See also Figure 4.5. In the present
work the value of λ = 500 is used in all discussions concerning the importance
of the vlimit

t [ρB] term (induced dipole moments for instance).
It is worthwhile to point out here that the switching criterion is based on

the electron density of the tightest bound electrons in the subsystem B. If
the geometry of the system changes, the switching place moves together with
the corresponding nucleus. Therefore, even a rather sharp switching can be
expected to be acceptable in practice. In particular cases, however, smoother
switching would be desirable. Figure 4.6 shows the energy of the lowest
unoccupied embedded orbital localized on Li+ for the Li+-H2O complex at
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various intermolecular separations for three values of λ. Indeed, reducing
the value of λ from 500 to 50 smooths out some irregularities on the curve
without changing its overall shape. Note that the variation of the orbital
energy is one order of magnitude smaller than the effect of the presence of
the vlimit

t [ρB] in the NDSD approximant. We can conclude, therefore, that
the numerical value of λ should not be considered physically meaningful if it
exceeds 50. It should be considered as a technical parameter in this range.
In practical calculations, the value of λ = 50 should be rather used.
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Figure 4.6: The energy of the lowest unoccupied embedded orbitals (LUEO)
of Li+-H2O plotted as function distance for different values of λ.
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Chapter 5

Linearized Orbital-Free
Embedding Potential in
Self-Consistent Calculations

Conventionally, solving one-electron equations for embedded orbitals (Eqs.
20-21 in [Weso lowski and Warshel, J. Phys. Chem. 97, (1993) 8050]) pro-
ceeds by a self-consistent procedure in which the whole effective potential,
including its embedding component, is updated in each iteration. We pro-
pose an alternative scheme (splitSCF ), which uses the linearized embedding
potential in the inner iterative loop and the outer-loop is used to account
for its deviations from linearity. The convergence of the proposed scheme is
investigated for a set of weakly bound intermolecular complexes represent-
ing typical interactions with the environment. The outer loop is shown to
converge very fast. No more than 3-4 iterations are needed. Errors due to
skipping the outer loop completely and using the electron density obtained
in the absence of the environment in the linearized embedding potential are
investigated in detail. It is shown that this computationally attractive sim-
plification, used already in numerical simulations by others, is adequate not
only for van der Waals and hydrogen-bonded complexes but even if the com-
plex comprises charged components i.e. where strong electronic polarization
takes place. In charge-transfer type of complexes, larger changes of electron
of density upon complex formation occur and the above simplification is not
recommended.

79
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5.1 Introduction

Embedding strategies are commonly used to study large chemical systems
and condensed matter as the alternative to methods taking into account all
components of the investigated system at the same quantum mechanical level
of description. The common element in embedding methods is restricting the
use of explicit quantum mechanical level to a selected subsystem and tak-
ing into account the rest by some potential (embedding potential). Density
functional theory [1, 2] provides the concepts and definitions such as a refer-
ence system of non-interacting electrons, the exchange-correlation functional
(Exc[ρ]), and kinetic energy of non-interacting systems [3] (Ts[ρ]) which allow
one to express the embedding potential in a system-independent way [4]. To
minimize the total energy of a whole system comprising two components: the
one described at the orbital level, i.e. using the orbitals {φA

i } which yield the

density ρA = 2
∑NA

i

∣
∣
∣φA

i

∣
∣
∣

2
, and the other one (environment) described only

by some assumed electron density (ρB) by solving the one-electron equation
given in Eq. 2.1.

The density functionals Ts[ρ] and Exc[ρ] are not linear. Therefore, the
left-hand sides of the following equations:

T nad
s [ρA, ρB] = Ts[ρA + ρB] − Ts[ρA] − Ts[ρB] (5.1)

Enad
xc [ρA, ρB] = Exc[ρA + ρB] − Exc[ρA] − Exc[ρB] (5.2)

do not disappear and each of them defines a bi-functional depending on
two electron densities. The functional derivatives of these bi-functionals cal-
culated with respect to ρA provide the last two terms in the orbital-free
embedding potential:

vt[ρA, ρB](~r) =
δT nad

s [ρ, ρB]

δρ

∣
∣
∣
∣
∣
ρ=ρA

=
δTs[ρ]

δρ

∣
∣
∣
∣
∣
ρ=ρA+ρB

−
δTs[ρ]

δρ

∣
∣
∣
∣
∣
ρ=ρA

(5.3)

and

δEnad
xc [ρ, ρB]

δρ

∣
∣
∣
∣
∣
ρ=ρA

=
δExc [ρ]

δρ

∣
∣
∣
∣
∣
ρ=ρA+ρB

−
δExc [ρ]

δρ

∣
∣
∣
∣
∣
ρ=ρA

(5.4)
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Since the bi-functionals T nad
s [ρA, ρB] and Enad

xc [ρA, ρB] and their deriva-
tives are defined implicitly and their universally applicable analytic forms are
not known, practical applications of Eq. 2.1 in numerical simulations of con-
densed matter and/or molecular (see for instance [110, 111, 84, 112, 52, 81, 91,

85, 82, 83, 87, 88]) use approximants to δT nad
s [ρ,ρB]

δρ

∣
∣
∣
ρ=ρA

and δEnad
xc [ρ,ρB ]

δρ

∣
∣
∣
ρ=ρA

.

In our own numerical implementations of Eq. 2.1 [113, 114], solving it
proceeds by a similar self-consistent procedure as that most commonly ap-
plied for Kohn-Sham equations [2]. In both cases, the effective potential
is a local potential which is a functional of electron density. Therefore, in
the self-consistent procedure to solve either equations the effective poten-
tial is updated at each iteration. This is reflected in conventional numerical
implementations of these two types of equations. In the present work, we con-
sider an alternative pathway to reach self-consistency in the case of Eq. 2.1.
The dominant component of the embedding potential (the first two terms
in Eq. 2.7) is constant and does not require reevaluation during the self-
consistent procedure. However, its exchange-correlation- and kinetic compo-
nents need reevaluation each time ρA changes because each of them is the
functional derivative of a density functional which is not linear in ρA (for de-
tailed discussion of non-linearity of the exact functional Exc[ρ], see Ref. [115],
and Ref. [116] for Ts[ρ]). The above considerations on non-linearity hold also
for common approximants to Ts[ρ] and Exc[ρ] used in Eq. 2.7. Concerning
non-linearity of the kinetic energy component, linearizing it by expanding
around reference density ρ0

A chosen to be the density in the absence of envi-
ronment was found to be acceptable simplification [117]. For van der Waals
contacts, hydrogen bonds, and complexes involving cations the the corre-
sponding errors were found to be numerically insignificant.

This work builds on the above observations and the fact that, owing
to similar analytic forms of the kinetic- and the exchange-correlation com-
ponents of the orbital-free effective embedding potential, the latter can be
expected to be treated in a similar way as that in the linearization scheme
used previously for T nad

s [ρA, ρB]. Linearizing not only T nad
s [ρA, ρB] but also

Enad
xc [ρA, ρB] leads to the embedding potential, which does need to be re-

calculated each time ρA changes. Note that the electrostatic component of the
embedding potential does not depend on ρA at all. Therefore, an alternative
numerical procedures to solve Eq. 2.1 can be envisaged which take advantage
of the ρA-independence of the total embedding potential after linearization
of its non-linearized components. In the present work, such an alternative
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- splitSCF - is proposed. Compared to the conventional self-consistent cal-
culations, splitSCF involves two self-consistent loops (Figure 5.1. The inner
one uses linearized embedding potential whereas the outer one assures that
the linearized- and exact embedding potentials are the same in the end.

The splitSCF calculations provide, therefore, an alternative pathway to
achieve self-consistency compared to conventional calculations. Splitting the
iterative cycles opens also the possibility to introduce additional simplifica-
tions leading to reduction in time of calculations.

A key element in the splitSCF calculations is the linearized orbital-free
embedding potential. For any set of embedded orbitals, the associated electron

density is ρA = 2
∑NA

i

∣
∣
∣φA

i

∣
∣
∣

2
. Expanding the embedding potential vKSCED

emb [ρA, ρB;~r]

in a Taylor series around some well-chosen reference density (ρ0
A) and trun-

cating the series after the first non-disappearing term leads to the potential
referred to in this work as linearized orbital-free effective embedding potential:

vKSCED
emb [ρA, ρB;~r] ≈ vKSCED

emb [ρ0
A, ρB;~r] = vB

ext(~r) +
∫ ρB(~r′)

|~r′ − ~r|
d~r′ +(5.5)

δEnad
xc [ρ, ρB]

δρ

∣
∣
∣
∣
∣
ρ=ρ0

A

+ vt[ρ
0
A, ρB](~r)

The above potential is to be used in the inner loop in the splitSCF cal-
culations (Figure 5.1). The splitSCF scheme to solve Eq. 2.1 brings another
advantages. We recall here that the last two terms in the potential given in
Eq. 2.7 are density functionals. Therefore, if the densities ρ0

A and ρA are the
same, the corresponding embedding potentials are the same as well. If, how-
ever, they differ only slightly, skipping the outer loop might be an acceptable
approximation (linearization approximation). If the linearization approxima-
tion is applied in particular large-scale computer simulations, the splitSCF
provides an easy to use tool to estimate the adequacy of such simplification
for any type of contacts in the interface between the system described at
orbital-level and its environment. The differences between the results de-
rived from Eq. 2.1 using either Eq. 2.7 or Eq. 5.5 form of the embedding
potential will be referred as linearization errors in this work. From our nu-
merical experience [117], the good choice for ρ0

A is the isolated density of the
embedded subsystem.

The present work concerns the linearization of only the vKSCED
emb [ρA, ρB;~r]

component of the whole effective potential in Eq. 2.1. For several reasons,
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Figure 5.1: a) The splitSCF scheme: In the inner loop (i-index), the embed-
ding potential vemb[ρA, ρB] is evaluated for ρA taken from the previous iter-
ation in the outer loop (j-index) and remains constant, whereas the vKS[ρA]
component is recalculated as ρA changes. b) The conventional SCF scheme:
Both vKS[ρA] and vemb[ρA, ρB] are recalculated as ρA changes.
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linearization of the whole effective potential is of lesser practical interest.
The Enad

xc [ρA, ρB] and T nad
s [ρA, ρB] terms represent the differences between

the energies of the embedded system and its environment in their com-
plexed form and their isolated forms. Compared to the electrostatic com-
ponent of vKSCED

emb [ρA, ρB;~r] (which doeas not depend on ρA at all), or to
the exchange-correlation term in vKS

eff [ρA;~r], they involve small contribution
to the total energy, therefore, errors arising from their linearization can be
expected to be less significant. Retaining the exchange-correlation compo-
nent of vKS

eff [ρA;~r] in its non-linearized original form makes it also possible
to perform splitSCF in such schemes which use different approximants for
the exchange-correlation potential in vKS

eff [ρA;~r] and in the embedding po-
tential. This concerns cases where the use of more involved Kohn-Sham-
equation-based computational schemes are needed for vKS

eff [ρA;~r] (for exam-
ple such where orbital-dependent forms of the exchange-correlation energy
are used [118]). In this context, it is worthwhile to mention computational
schemes which use the orbital-free effective embedding potential of Eq. 2.7
but outside of the formal framework given in Eq. 2.1 such as the use of this
embedding potential in combination of wave-function based treatment of em-
bedded subsystem [36]. Practical calculations following such a generalized
scheme have been already reported in the literature where the linearized [37]
or partially linearized [38] potential given in Eq. 2.7 was used. The present
work provides the numerical analysis of the adequacy of this simplification
made in such calculations. To this end, we use the splitSCF scheme to investi-
gate the magnitude of the errors introduced by using the linearized function-
als in the orbital-free effective embedding potential given in Eq. 5.5 for such
observables as molecular density, embedded orbitals, interaction energies, or
complexation induced dipole moments.

5.2 Computational details

5.2.1 Approximants to T nad
s [ρA, ρB] and Enad

xc [ρA, ρB]

In principle, the convergence of the splitSCF procedure and the adequacy
of the linearization approximation should be subject of dedicated studies for
any approximant to T nad

s [ρA, ρB] and Enad
xc [ρA, ρB]. In our applications of

Eq. 2.1, only two types of approximants to the orbital-free effective embed-
ding potential are used so far - one which is gradient-free and another one
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which depends on up-to second derivatives of the electron density. For this
reason, the present analysis is concerns only these two recommended approxi-
mants to the potential given in Eq. 2.7: the gradient-free (denoted LDA) and
gradient-dependent (denoted with GGA). In each case, the approximants to
T nad

s [ρA, ρB] and Enad
xc [ρA, ρB] are matched by their formal origin and types

of variable on they depend (either gradient-free or gradient-dependent).
As far as T nad

s [ρA, ρB] is concerned, the analytic form of its gradient-free
approximant is obtained using Eq. 5.1 and the Thomas-Fermi expression
for the kinetic energy functional [9, 10]. In the gradient-dependent case,
the Lembarki-Chermette [98] approximant is used for this purpose. The
gradient-free approximant, was used already by Cortona [28] in calculations
following his formulation of density functional theory which also hinge on the
approximant to T nad

s [ρA, ρB] and in our original work introducing orbital-free
embedding [4]. This approximant is adequate in most cases although suffers
from some systematic flaws (see Refs. [13, 119]). The gradient-dependent
approximant to T nad

s [ρA, ρB] was introduced in Ref. [72] to overcome the
problems of the quantitative wrong behavior of the gradient-dependent ap-
proximant derived from regular gradient expansion approximantion [96] re-
ported in Ref. [73]. The analytic forms of these two approximants to the
kinetic energy component of the orbital-free embedding potential can be
found in Refs. [4, 67].

As far as Enad
xc [ρA, ρB] is concerned, its analytic form is obtained using

Eq. 5.2 and either the local density approximation [16, 18, 17] or the Perdew
and Wang [120, 121] form of the exchange-correlation energy.

5.2.2 Test sets of intermolecular complexes

The current generation of approximants to T nad
s [ρA, ρB], make the orbital-

free embedding calculations adequate only for such cases where the overlap
between the densities ρA and ρB is small. As a rule of thumb, weak in-
termolecular complexes near and beyond equilibrium geometry fall into this
category. A cheaply calculable approximant to T nad

s [ρA, ρB] applicable for
cases where ρA and ρB correspond to covalently linked subsystems is proba-
bly not in view [13].

The set of the systems used to test the adequacy of the linearization ap-
proximation follows into category of small ρA-ρB overlap systems. The con-
sidered intermolecular complexes can be ordered according to increasing mag-
nitude of deformation of electron density upon the intermolecular interaction:



86 CHAPTER 5. LINEARIZED EMBEDDING POTENTIAL

weakly bonded van der Waals complexes (Ne-Ne, CH4-CH4, C2H2-C2H2), hy-
drogen bonded complexes (HF-HF, H2O-H2O, NH3-H2O), one charged com-
plex (Li+-H2O), and one charge-transfer complex (NH3-ClF). The same set
of intermolecular complexes was used in our previous study on concerning
linearization of T nad

s [ρA, ρB]. The charge-transfer complex (NH3-ClF) is in-
cluded in the set although linearization can not be expected to be applicable
in this a case. This system provides a useful reference for discussion of the
convergence of the splitSCF procedure.

5.2.3 Numerical implementation

The aug-cc-pVTZ [122, 123] (cc-pVTZ [124, 123] for Li) atom centered basis
sets is used in all centers of the system (supermolecular expansion of the
basis sets refereed to as KSCED(s) calculations in Ref. [72]). The terms
representing electron-electron interactions are calculated using the set of fit-
ting functions referred to as GEN-A4* in Ref. [125]. Numerical integrations
were performed using the pruned grid with 90 radial and 590 angular points.
All the calculations are performed using our code - deMon2K-KSCED [113]
- which solves Eq. 2.1 and is based on the deMon2K [126] code.

5.3 Results

Performing the full double-loop of splitSCF leads to results which are nu-
merically indistinguishable from that obtained in conventional calculations
(within the tolerance of convergence criterion set to 10−8) in all investigated
systems.

Figure 5.2 shows the convergence of the outer loop for the H2O molecule
in the H2O-H2O complex. In this case, one water molecule corresponds to ρA

and the other to ρB according to the convention used in all equations in this
work. Both partners in this complex are polar and the density derived from
Eq. 2.1 for the water molecule in the dimer can be expected to differ from
that of the isolated water molecule due to electronic polarization. It is also
worthwhile to recall that atom centered basis is used to construct embedded
orbitals and that all the centers in the dimer are included. The complexa-
tion induced changes of electron density can involve, therefore, smearing of
electron density among both partners in the dimer. For all quantities shown
in Figure 5.2, the result of the conventional calculations are reached practi-



5.3. RESULTS 87

cally in the third outer loop iteration. Also in the charge-transfer complex
NH3-ClF, for which the largest complexation induced changes of electron
density occurs among the systems investigated here, splitSCF the outer loop
converges rapidly (the results obtained in four iterations and the convergent
ones are indistinguishable in the figure). The above result suggests that skip-
ping the outer-loop can be considered as an additional useful simplifications
in many possible applications.

The principal body of results presented in this work concerns a more de-
tailed analysis of the numerical consequences of skipping the outer loop i.e.
making the linearization approximation for a number of molecular properties.
For each system, the considered quantities include: i) the norm of the differ-
ence between the density and the Kohn-Sham density of the whole system,
ii) the orbital energies, iii) the dipole moment, iv) the interaction energy.
The first quantity is a well defined mathematical object whereas the other
ones are of more direct interest to chemical applications. The linearization
errors in orbital energies and dipole moments are determined only by the dif-
ference between the exact and linearized embedding potential. In each case,
the difference between the results obtained with- and without linearization
approximation is analyzed.

5.3.1 Electron densities

We start the analysis of the effect of the linearization approximation on
electron density. To this end, the geometrical distance (denoted by M) be-
tween the electron density derived from either the Kohn-Sham calculations
or Eq. 2.1 is analyzed. M is defined as:

M =
1

N

√
∫

(ρKS(~r) − (ρKSCED
A (~r) + ρB(~r)))

2
d~r (5.6)

where N is the number of electrons in both subsystems, and ρKSCED
A (~r) is

the density obtained either with- or without linearization of the orbital-free
embedding potential.

Linearization errors in M are evaluated as differences between M obtained
with- and without linearization approximation. M might be non-zero and
positive even if the linearization approximation is not applied for two princi-
pal reasons. First of all, the difference ρKS(~r)−ρB(~r) might be not pure-state
non-interacting v-representable. For instance, if the assumed electron den-
sity ρB is larger than ρKS(~r) for some ~r. Secondly, even if ρKS(~r) − ρB(~r)
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Figure 5.2: The convergence of the outer-loop of the splitSCF procedure for
various properties of the H2O molecule in the H2O-H2O complex. The results
of conventional self-consistent calculations are indicated by dashed lines.

is pure-state non-interacting v-representable, replacing the exact functional
T nad

s [ρA, ρB] by an approximant in Eq. 2.1 leads to an error in electron density.
As a consequence, the obtained density ρA might differ from ρKS(~r)− ρB(~r).

Since electron density is a local quantity comparisons between two den-
sities are not straightforward. The use of a global quantity, M makes the
discussion of the effects of linearization errors on density significantly sim-
pler. The linearization errors in M together with the reference values of this
quantity are collected in tables 5.1 and 5.2.
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Table 5.1: The effect of linearization approximation on electron density. For
definition of the norm M , see Eq. 5.6. Data for gradient-free approximant
(see text) to the orbital-free embedding potential.
Subsystem A Subsystem B Mlin M Error (ppm)
Ne Ne 0.66679989 0.66679989 0.00
CH4 CH4 0.28714628 0.28714629 0.03
C2H2 C2H2 0.28925929 0.28925929 0.00
H2O H2O

a 0.46032338 0.46032348 0.22
H2Oa H2O 0.46034112 0.46034127 0.33
NHa

3 H2O 0.41736040 0.41736046 0.14
H2O NHa

3 0.41733219 0.41733230 0.26
HFa HF 0.55946510 0.55946525 0.27
HF HFa 0.55945578 0.55945582 0.07
Li+ H2O 0.55220921 0.55220917 -0.07
H2O Li+ 0.55239902 0.55239716 -3.37
NH3 ClF 0.68951231 0.68951448 3.15
ClF NH3 0.68945022 0.68945044 0.32

a hydrogen-bond acceptor.

Table 5.2: The effect of linearization approximation on electron density. For
definition of the norm M , see Eq. 5.6. Data for gradient-dependent approx-
imant (see text) to the orbital-free embedding potential.
Subsystem A Subsystem B Mlin M Error (ppm)
Ne Ne 0.66960937 0.66960938 0.01
CH4 CH4 0.28994978 0.28994979 0.03
C2H2 C2H2 0.29195543 0.29195543 0.00
H2O H2O

a 0.46325912 0.46325905 -0.15
H2Oa H2O 0.46326234 0.46326231 -0.06
NHa

3 H2O 0.42026551 0.42026560 0.21
H2O NHa

3 0.42025334 0.42025329 -0.12
HFa HF 0.56237171 0.56237161 -0.18
HF HFa 0.56237513 0.56237508 -0.09
Li+ H2O 0.55588946 0.55588985 0.70
H2O Li+ 0.55609369 0.55609600 4.15
NH3 ClF 0.69043602 0.69043492 -1.59
ClF NH3 0.69037676 0.69037674 -0.03

a hydrogen-bond acceptor
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The quality of the densities is very good, both for LDA and GGA approx-
imants to the embedding potential. Comparison to the non-linearized case
reveals that most of the differences are very small, typically relative errors
are in the range of 0.3 ppm. In the case of H2O-Li+, strong polarization of
the water molecule due to the interaction with charged Li+ atom results in
the slightly larger error than in other molecules. Similarly, for the NH3-ClF
molecule, the deformation of the density because of the charge transfer char-
acter of the interaction leads to the relative linearization error reaching 3.15
ppm in the case of the gradient-free approximant.

Small linearization errors in M are not easily related to any quantities
used in chemically relevant discussions. Appropriate quantities will be ana-
lyzed in the subsequent sections. Here, we note that the absolute value of M
arises from the choice made for ρB and the choice made for the approximants
to the kinetic energy component of the orbital-free embedding potential. The
fact that the linearization errors are significantly smaller than M itself indi-
cates that the former choices affect the electron density derived from Eq. 2.1
more significantly than the linearization approximation.

5.3.2 Orbital energies

The linearization errors in orbitals energies together with the complexation
induced shifts of these quantities are collected in Tables 5.3 and 5.4. Only
the energies of the highest occupied embedded orbital (HOEO) and lowest
unoccupied embedded orbital (LUEO) are reported here.

The linearization errors for hydrogen-bonded- and van der Waals complexes
are very small. Typically, the errors are two orders of magnitude smaller than
complexation induced shifts of the orbital energy. In the LDA case, strong
polarization of H2O molecule induced by Li+ cation in the Li+-H2O complex
results in the linearization error reaching up to 8.0 meV and 117.3 meV, for
HOEO and LUEO, respectively. Although such magnitude of the error is the
largest in this group of complexes which does not include the charge-transfer
ones, the linearization approximation is still acceptable. In the LUEO case,
it amounts to only 1.8% of the total complexation induced orbital energy
shift. As expected, the strong deformation of the electron density due to
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Table 5.3: Linearization errors in energies (in meV) of the highest occupied
embedded orbital and the lowest unocupied embedded orbital. Data for
gradient-free approximant (see text) to the orbital-free embedding potential.
The complexation induced shifts of orbital energies (∆ǫHOEO and ∆ǫLUEO)
are given for comparison.
Subsystem A Subsystem B δlin(∆ǫHOEO) δlin(∆ǫLUEO) ∆ǫHOEO ∆ǫLUEO

Ne Ne 0.0 0.0 -2.9 82.2
CH4 CH4 0.2 8.6 16.6 -252.0
C2H2 C2H2 0.7 14.6 -39.4 -143.7
H2O H2O

a -1.3 1.4 551.4 216.4
H2Oa H2O 0.8 0.0 -586.1 -220.0
NHa

3 H2O 0.4 -0.7 -669.8 -196.6
H2O NHa

3 -1.4 4.5 710.6 134.0
HFa HF 1.4 0.7 -993.4 -468.8
HF HFa -1.2 2.2 410.2 212.5
Li+ H2O -0.1 1.3 1535.4 398.8
H2O Li+ 8.0 117.3 -7077.2 -6568.9
NH3 ClF 26.5 151.2 -979.7 -603.7
ClF NH3 0.1 0.8 884.3 1333.5

a hydrogen-bond acceptor
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Table 5.4: Linearization errors in energies (in meV) of the highest occu-
pied embedded orbital and the lowest unocupied embedded orbital. Data
for gradient-dependent approximant (see text) to the orbital-free embedding
potential. The complexation induced shifts of orbital energies (∆ǫHOEO and
∆ǫLUEO) are given for comparison.
Subsystem A Subsystem B δlin(∆ǫHOEO) δlin(∆ǫLUEO) ∆ǫHOEO ∆ǫLUEO

Ne Ne 0.1 1.8 -10.9 -42.8
CH4 CH4 0.2 9.8 -2.1 -293.8
C2H2 C2H2 0.3 25.2 -58.1 -169.9
H2O H2Oa 1.0 9.1 508.6 168.4
H2O

a H2O -0.4 -3.6 -644.9 -252.9
NHa

3 H2O 1.2 -2.5 -746.4 -223.0
H2O NHa

3 1.1 10.8 756.5 174.1
HFa HF -1.9 -6.9 -1037.7 -506.6
HF HFa 0.9 10.9 361.5 141.5
Li+ H2O 0.9 4.5 1449.2 73.6
H2O Li+ 3.9 -65.5 -7127.2 -6547.8
NH3 ClF -6.9 -2.9 -1253.7 -1129.2
ClF NH3 1.2 5.2 817.1 1207.9

a hydrogen-bond acceptor
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the charge-transfer character of NH3-ClF is a source of a large linearization
error in orbital energies. The error in the energy of LUEO reaches even 25%
of the complexation induced shift. These large relative errors confirm that
linearization approximation is not acceptable for the complexes of this type.

5.3.3 Interaction energies

The results collected in table 5.5 reveal very small linearization errors for
both gradient-free and gradient-dependent approximants to the embedding
potential. As expected, due to the significant deformation of the density in
H2O-Li+, the linearization error is more pronounced for this complex. Its
magnitude is, however, five orders of magnitude smaller than the absolute
value of the binding energy, which is of no importance in discussions relevant
for chemical accuracy. As expected, the linearization errors reaching 0.01712
kcal/mol (we provide four significant numbers for reference purposes) are
the largest in the NH3-ClF case. The linearization induced errors in the
interaction energies tend to be smaller in the case of gradient-free (LDA)
than gradient-dependent (GGA) approximant to the embedding potential.

5.3.4 Dipole moments

Tables 5.6 and 5.7 collect linearization errors in complexation induced dipole
moments.

The errors are rather small in most cases. Except for C2H2-C2H2, CH4-
CH4, and NH3-ClF, they do not exceed 1% of complexation induced shifts
of the dipole moment. Surprisingly, the largest error is found for C2H2-
C2H2, reaching 14% of and 4% of ∆µA

y for LDA- and GGA approximants
respectively. These large relative errors exceed even the ones in the NH3-ClF
complex, for which the relative errors equal to 7% and 1.4% respectively.
Moreover, in the C2H2-C2H2 complex the linearization errors in T nad

s [ρA, ρB]
and in Enad

xc [ρA, ρB] do not cancel (for comparison, see our previously re-
ported results [117]). This result indicates that adequacy of the linearization
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Table 5.5: Linearization errors in the energy of interaction (in kcal/mol)
between embedded subsystem and its environment. LDA and GGA denote
gradient-free and gradient-dependent approximants to the embedding poten-
tial, respectively (see text).

LDA GGA
Subsystem A Subsystem B Eint δlin(Eint) Eint δlin(Eint)
Ne Ne -0.08 0.00000 -0.40 0.00000
CH4 CH4 -0.43 0.00000 -0.84 0.00003
C2H2 C2H2 -1.53 0.00008 -1.88 0.00015
H2O H2Oa -4.07 0.00017 -4.86 0.00064
H2O

a H2O -3.77 0.00004 -4.68 0.00023
NHa

3 H2O -5.05 0.00005 -6.15 0.00063
H2O NHa

3 -5.44 0.00019 -6.34 0.00064
HFa HF -3.21 0.00009 -4.09 0.00033
HF HFa -2.86 0.00010 -3.96 0.00050
Li+ H2O -25.99 0.00000 -27.34 0.00001
H2O Li+ -40.87 0.00220 -43.21 0.00190
NH3 ClF -0.88 0.01712 -7.34 0.00766
ClF NH3 -0.63 0.00023 -5.70 0.00159

a hydrogen-bond acceptor

Table 5.6: Linearization errors in dipole moments (in mDebye). Data for
gradient-free approximant (see text) to the orbital-free embedding potential.
Interaction induced dipole ∆µA

q moments are given for comparison.
Subsystem A Subsystem B δlin(∆µA

x ) δlin(∆µA
y ) δlin(∆µA

z ) ∆µA
x ∆µA

y ∆µA
z

Ne Ne 0.0 0.0 0.0 0.0 0.0 0.7
CH4 CH4 0.0 0.0 0.3 -0.0 0.0 -6.4
C2H2 C2H2 -1.0 1.6 0.0 -117.2 10.9 0.0
H2O H2Oa -2.0 -0.0 0.4 -262.7 -3.3 43.9
H2Oa H2O -1.0 0.0 -0.3 -206.4 4.6 65.4
NHa

3 H2O -0.4 0.6 0.0 -264.9 72.3 0.3
H2O NHa

3 -2.2 -0.3 -0.0 -344.1 -21.6 -0.1
HF HFa 1.4 0.2 -0.0 238.1 58.1 -0.0
HFa HF 1.2 -0.2 0.0 145.9 -38.0 0.0
Li+ H2O 0.0 0.0 0.0 0.0 0.0 -19.7
H2O Li+ 0.0 0.0 -10.7 -0.0 -0.0 -1596.0
NH3 ClF 0.0 -0.0 -47.3 0.0 0.0 -675.8
ClF NH3 0.0 0.0 0.7 -0.0 0.0 -795.8

a hydrogen-bond acceptor
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Table 5.7: Linearization errors in dipole moments (in mDebye). Data for
gradient-dependent approximant (see text) to the orbital-free embedding po-
tential. Interaction induced dipole ∆µA

q moments are given for comparison.
Subsystem A Subsystem B δlin(∆µA

x ) δlin(∆µA
y ) δlin(∆µA

z ) ∆µA
x ∆µA

y ∆µA
z

Ne Ne 0.0 0.0 0.0 0.0 0.0 2.2
CH4 CH4 -0.0 0.0 0.4 0.0 -0.0 -7.1
C2H2 C2H2 -0.4 0.5 0.0 -114.5 10.9 0.0
H2O H2Oa 1.0 -0.0 0.2 -247.1 -3.2 41.6
H2Oa H2O 0.4 0.0 -0.2 -209.7 4.4 -62.3
NHa

3 H2O -1.7 0.4 0.0 -274.5 68.8 0.3
H2O NHa

3 1.1 -0.0 -0.0 -328.5 -21.8 -0.1
HFa HF -1.8 -0.1 0.0 238.9 57.4 -0.0
HF HFa -0.7 -0.2 0.0 133.9 -36.5 0.0
Li+ H2O 0.0 0.0 0.1 -0.0 -0.0 -17.5
H2O Li+ 0.0 0.0 -3.1 -0.0 -0.0 -1648.0
NH3 ClF 0.0 -0.0 11.6 0.0 -0.0 -858.1
ClF NH3 0.0 0.0 3.1 0.0 -0.0 -725.6

a hydrogen-bond acceptor

approximation should be subject to verifications on the case by case basis.
The proposed splitSCF scheme provides a numerical tool for performing such
verifications.

5.4 Discussion and Conclusions

The conventional strategy to obtain self-consistent solution of Eq. 2.1 and
splitSCF lead to equivalent numerical results for all systems considered. All
splitSCF calculations reported here started with ρ0

A chosen to be that ground
state electron density of the embedded molecule in absence of environment.
Since the potential given in Eq. 2.7 is an explicit functional of electron den-
sity, the linearization errors disappear if ρ0

A happens to be equal to ρA. The
numerical studies presented in this work show that the density of the isolated
embedded molecule is an optimal choice for ρ0

A used to start the splitSCF
calculations. The outer loop converges rapidly. For the H2O-H2O complex,
the convergent solution is practically reached in one outer-loop calculation.
Even for charge-transfer complexes, where linearization approximation is not
adequate, the splitSCF calculations are applicable because of the fast con-
vergence of the outer loop.

We do not, however, propose using splitSCF in large-scale computations
as an alternative to conventional algorithms. This work focuses rather on
using the simplified scheme linearization approximation, in which the outer
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loop iterations are not performed at all, and the actual electron density ρA is
replaced by the density of the isolated subsystem in the analytic expression
for the embedding potential given in Eq. 2.7. For each particular type of
interactions with the environment, we propose to use the splitSCF procedure
(Fig. 5.1) to verify the adequacy of such linearization approximation.

It was found that the linearization errors in such quantities as: energies
of embedded orbitals, energy of interaction with the environment, and dipole
moment, are not significant for a large class of embedded systems including
such where the interactions with environment involve: van der Waals bonded
contacts, hydrogen bonds, and even charged species. In charge-transfer com-
plexes, however, the molecular densities are strongly deformed upon com-
plexation and the linearization approximation is not acceptable. Indeed, the
numerical results for the NH3-ClF complex show that the error in the orbital
energies reach up to 25% of magnitude of the whole complexation induced
shift of the energy level.

Turning back to systems for which linearization is adequate, it is worth-
while to notice that they also comprise charged complexes in which the elec-
tron density of a neutral partner can be expected to differ significantly from
that in the absence of interactions (electronic polarization). Compared to
van der Waals or hydrogen-bonded complexes, the deformation of the den-
sity upon complexation leads to noticeably larger linearization errors in the
Li+-H2O complex. These errors are, however, rather small and the lineariza-
tion approximation remains an acceptable simplifications even in such a case.
It is important to underline that the linearization aoproximation is not di-
rectly related to neglect of electronic polarization which is accounted for by
the electrostatic component of the orbital-free embedding potential in its ei-
ther exact or linearized form. The exchange-correlation- and non-additive
kinetic energy terms include electron repulsion, which is much smaller com-
pared to the electrostatic components, linearizing these functionals in ρA by
expanding them around ρ0

A is still applicable even for charged complexes.
If applicable, the linearization approximation can be used to reduce the

time of calculations. In our current numerical implementation of the splitSCF
scheme, which does not take all of its possible advantages in this respect, the
time needed to perform one iteration is reduced from 25 s/iteration (conven-
tional calculations) to 17 s/iteration (inner loop in the splitSCF calculations)
even for such small systems as the HF-HF dimer. For larger systems, avoid-
ing recalculation of the embedding potential within the self-consistent loop
leads to larger savings. For C2H2-C2H2, the corresponding times are 859.8
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s/iteration and 145.5 s/iteration. For systems, where the environment is sig-
nificantly larger than the embedded system, and if linearization approxima-
tion is applicable, the expected computational benefits of this approximation
are the largest.

Besides the possibility of full control of the linearization errors, the splitSCF
scheme offers other advantages. It can be relatively easy implemented into
existing quantum chemistry codes, because the embedding potential given
in Eq. 5.5 is a conventional ρA-independent external potential and can be
simply implemented as an additional constant potential in the procedure
evaluating two-center integrals. Moreover, since a relatively small number of
outer-loop cycles is needed (three-four) to converge to the same solution as
the conventional scheme (Fig. 5.2), splitSCF offers possibility of additional
computational savings due to the constancy of the embedding potential in
the inner loop.

Essentially, the same conclusions concerning applicability of the lineariza-
tion approximation can be drown for gradient-free and gradient-dependent
approximates to the orbital-free effective embedding potential given in Eq. 2.7.
Typically, however, the linearization errors are smaller in the latter case. The
present analysis concerns only two approximant to the orbital-free embed-
ding potential. Recently, a new approximant to T nad

s [ρA, ρB] was constructed
(Eq. 23 in [119]) by enforcing the proper behavior of its derivative at small
ρA. The same conclusions concerning convergence of splitSCF and adequacy
of the linearization approximation can be expected for this new approximant
because it comprises terms already linear in ρA and the LDA approximant
considered in this work.

Finally, it is worthwhile to point out our previously reported study [117]
on linearization of only T nad

s [ρA, ρB] for the same set of intermolecular com-
plexes. The previous and the current analyses lead to essentially the same
conclusions concerning the adequacy of using the isolated molecule density
as ρA

0 in Eq. 5.5. Comparing the linearization errors discussed in these two
works indicates that the higher order terms in bi-functionals T nad

s [ρA, ρB] and
Enad

xc [ρA, ρB] expanded around ρ0
A cancel each other to some extend.
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Chapter 6

Equilibrium geometries of
noncovalently bound
intermolecular complexes
derived from subsystem
formulation of density
functional theory

In this chapter the subsystem formulation of density functional theory is
used to obtain equilibrium geometries and interaction energies for a repre-
sentative set of non-covalently bound intermolecular complexes. The results
are compared with literature benchmark data. The range of applicability of
two considered approximations to the exchange-correlation- and non-additive
kinetic energy components of the total energy is determined. Local density
approximation, which does not involve any empirical parameters, leads to ex-
cellent intermolecular equilibrium distances for hydrogen bonded complexes
(maximal error 0.13 Å for NH3-NH3). It is a method of choice for a wide class
of weak intermolecular complexes including also dipole-bound and the ones
formed by rare gas atoms or saturated hydrocarbons. The range of applica-
bility of the chosen generalized gradient approximation, which was shown in
our previous works to lead to good interaction energies in π-stacked systems,
remains limited to this group because it improves neither binding energies

99
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nor equilibrium geometries in the wide class of complexes for which local
density approximation is adequate.

The subsystem formulation of DFT allows to perform complete (or par-
tial) minimization of the interface energy with respect to the density and
geometrical parameters of both (or one of) subsystems. Several algorithms
are possible to achieve this task. All of them are outlined in this chapter.
We discuss in detail an efficient energy minimization procedure in which op-
timization of the geometry and the electron density of each subsystem is
made simultaneously. This approach leads to the most accurate results. The
representative application this strategy can be found in work by Fradelos et
al. [127] where the cooperative effect of hydrogen-bonded chains in the envi-
ronment of cis-7-hydroxyquinoline was studied. Algorithms involving partial
minimization of only one subsystem are also of practical importance. They
become handy in problmes where the geometry of only one of interacting
parnters is subject of interest, for instance equilibrium structure of small
chromophore embedded in large environment. Moreover, the time required
to perform optimization of only one subsystem is reduced when compared to
the schmes involving full optimization of the whole interface.

Additional savings in the time of calculations in the case of geometry
optimizations with subsystem formulation of DFT might be also gained by
using described in previous chapter linearized orbital-free embedding poten-
tial and splitSCF technique. In this case also geometrical degrees of freedom
are optimized in addition to the two iterative loops shown in Figure 5.1. It
has to be noted, however, that in such calculations convergence of the outer
loop is indispensable to obtain forces. The splitSCF technique can be con-
sidered of a great value in the studies where the equilibrium geometry of a
large systems needs to be find. In this chapter on the example of selected
benchmark molecules the first application of the linearized orbital-free em-
bedding potential in the geometry optimizations is presented together with
the discussion on the accuracy and benefits arising from this approach.

6.1 Introduction

The principal motivation for this work originates in our interest in the orbital-
free embedding formalism [4] to study environment-induced changes of the
electronic structure of an embedded species: localized electronic excitations
[52, 86], hyperfine tensor [111], dipole moments [110], f -levels [84], the gap
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between the high- and low spin potential energy surfaces [112], for instance.
In the orbital-free embedding calculations, all the information about the en-
vironment is confined in its electron density and only the selected subsystem
is described at the orbital level.

The quality of such properties of the total system as electron density dis-
tribution, total energy, response properties, etc., derived from the orbital-free
embedding calculations is determined by two factors: the use of approximate
density functionals for exchange-correlation- and non-additive kinetic energy
instead of the corresponding exact quantities (see the methods section be-
low), and the choice of the electron density corresponding to the environment,
which is derived from some other methods involving lower computational
costs. Whereas the accuracy of the used functionals cannot be controlled
because their exact forms are known only for some systems, the effect of the
choice of the electron density of the environment can be easily verified in
practice. The electron density assigned to the environment can be also sub-
ject of optimization. The process of minimization of the total energy with
respect to both components of the total electron density can proceed as a se-
ries of partial minimizations, in which both subsystems exchange their roles
until minimum is reached. [31] Of course, both subsystems are treated in such
calculations on equal footing and the notion of environment and embedded
subsystem looses its meaning at the end of the minimization procedure. Fully
variational calculations represent numerical implementation of the subsystem
formulation of density functional theory (DFT) introduced by Cortona [28].

In the multi-level computer simulations applying orbital-free embedding
formalism, fully variational calculations can be applied as a complementary
tool to asses the adequacy of the electron density chosen to represent the en-
vironment. For instance, the effect of relaxation of the electron density of the
environment in model systems was reported in several previous publications
[52, 86, 111, 84].

This work concerns the source of errors in orbital-free embedding calcu-
lations arising from the use of approximate density functionals for exchange-
correlation and non-additive kinetic energies. To this end, the subsystem
formulation of DFT is used to minimize the total energy with respect to
electron densities of both subsystems in a representative sample of weakly
interacting intermolecular complexes. Compared to investigations of the ad-
equacy of the applied density functional reported previously, we focus the
analysis not on interaction energies only but on equilibrium geometries.

The effect of the environment on the electronic structure of the embed-
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ded subsystem can be seen as the result of two effects: the environment
induced changes of the geometry and the direct electronic effects (for a re-
cent representative analysis, see Ref. [90]). In many cases, the geometry of
the investigated system is known form either experiment or computational
studies applying other methods. It would be, however, desirable to apply the
orbital-free embedding type of calculations also to optimize the geometry of
the embedded subsystem without relying on structural data obtained from
other methods.

Studying the applicability of the subsystem formulation of density func-
tional theory to derive equilibrium geometries, is made here not only for
the outlined pragmatic reasons. Opposite to the errors in the total energy,
which originate from the errors in the functionals and their derivatives, the
errors in the equilibrium geometry originate only from the fact that the func-
tional derivatives (effective potentials) of the relevant density functionals are
not exact. We note that the errors in electron density and all one-electron
properties also depend only on the quality of the effective potentials.

Opposite to the Kohn-Sham formulation of DFT, not a single reference
system of non-interacting electrons but several reference systems of non-
interacting electrons are used in the subsystem formulation of DFT [28]. As
a consequence, different components of the total energy are approximated by
means of explicit density functionals than in calculations based on the Kohn-
Sham framework. In the subsystem formulation of DFT, the approximated
components include exchange-correlation energy and small part of the ki-
netic energy (non-additive kinetic energy). Both local density approximation
(LDA) and generalized gradient approximation (GGA) types of functionals
for the kinetic energy component have been used/tested [72]. Using LDA
for all relevant energy contributions functionals in subsystem formulation of
DFT results in a computational method which is entirely parameter-free. In
previous computational studies of weakly intermolecular complexes, which
focused mainly on interaction energies, this approximation proved to be very
good for hydrogen-bonded complexes [128] as well as a number of other
complexes formed by atoms or non-polar molecules Ne-Ne, F2-Ne, N2-N2,
N2-Ar, Ar-Ar, CH4-CH4, for instance [93]. For a large class of weak inter-
molecular complexes, however, such as diatomic molecules interacting with
benzene [129], benzene dimer [130], C3H6-Ar, C6H6-Ar, C6H6-CH4, C6H6-
C2H6, C3H8-C3H8, C6H6-C2H4, C6H6-C2H2 [93], LDA leads to unsatisfactory
results. As a rule of thumb, LDA fails in obtaining interaction energies
if π-systems are involved in the intermolecular interaction [131]. For such
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system, a particular combination of gradient dependent functionals of the
GGA type proposed and tested for the first time in Ref. [129] improves the
interaction energies qualitatively. Unfortunately, this approximation wors-
ens the interaction energies in the case of systems for which LDA is ade-
quate. We underline that opposite to the LDA case, the GGA functionals
are not defined uniquely. In our choice for GGA functionals, motivated by
their properties, the non-additive kinetic energy is approximated using such
a GGA functional, which leads to the best associated functional derivative
in the case of weakly overlapping pairs of electron densities [72]. As far as
the exchange-correlation component is concerned, the chosen approximation
is the functional of Perdew and Wang [120, 121], which has the most sim-
ilar analytic form to the one for the kinetic energy part and satisfies the
Lieb-Oxford condition [132].

It is worthwhile to recall that in the original applications of the subsys-
tem formulation of density functional theory to ionic solids, the subsystems
corresponded to atoms and the LDA functionals were used together with
additional approximations on the symmetry and localization of orbitals for
each subsystem [28, 133]. In our adaptation of this formalism to molecular
systems, LDA and GGA functionals can be used and no restrictions are made
on symmetry or localization of orbitals in each subsystem [31].

The above numerical results concerning applicability of LDA and GGA
functionals in the subsystem formulation of DFT leave us, therefore, with
a number of questions of practical importance such as: i) In which class of
systems LDA can be reliably applied to obtain interaction energies? ii) In
which class of systems GGA can be reliably applied to obtain interaction
energies? iii) How good are LDA and GGA equilibrium geometries?

LDA applied in Kohn-Sham framework to approximate the exchange-
correlation energy is known to lead to rather unsatisfactory interaction ener-
gies for weakly bound intermolecular complexes. Therefore, the good perfor-
mance of LDA applied to both exchange-correlation and non-additive kinetic
energy functionals in the subsystem formulation of DFT indicates that er-
rors in the corresponding functionals cancel each other to some extend. This
brings up additional intriguing questions of more fundamental nature: iv)
What are the physical conditions for such cancellation to take place? v) How
to construct conjoint gradient-dependent approximations to the exchange-
correlation- and non-additive kinetic energies assuring that such cancellation
is maximal?

Moreover, since the overall accuracy of the interaction energy is deter-
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mined by the errors in two types of quantities: functionals and their func-
tional derivatives, it is important to asses the quality of these quantities
independently for each considered approximation.

In this work, we report the results of numerical analysis addressing some
of the above practical issues in detail. To this end, the equilibrium geometries
are in focus of our analysis. The quality of this property is determined
by the functional derivatives of the approximated density functionals. The
practical importance of determining the range of applicability of LDA and
GGA are obvious. This work complements the recently reported analysis of
the interaction energies [131] calculated at equilibrium geometries obtained
from benchmark wavefunction based calculations.

As far as accuracy of the kinetic-energy-functional dependent energy com-
ponent is concerned, the Kohn-Sham results (LDA and GGA) are also dis-
cussed in this work. In the applied computational scheme, any differences
between Kohn-Sham and subsystem-based calculations can be attributed to
this functional (and its derivative).

For some intermolecular complexes of high symmetry, we reported al-
ready the equilibrium geometries derived from subsystem based calculations
applying the functionals of the LDA and GGA type. The recent numerical
implementation of the formalism makes it possible to study systems with
more degrees of freedom such as the ones in the Zhao and Truhlar dataset
comprising equilibrium geometries and interaction energies for a group of rep-
resentative intermolecular complexes [134], obtained by means of high-level
wave-function based type of calculations and intended to be used as bench-
mark. These authors used the same reference data to asses the performance
of various approximations to the exchange-correlation energy functional ap-
plied within the Kohn-Sham framework.

The complexes in the test set are divided into the following groups [135,
136]:

• hydrogen bonded (HB6/04) NH3-NH3,HF-HF, H2O-H2O, NH3-H2O, HCONH2-
HCONH2, and HCOOH-HCOOH,

• dominated by dipolar interactions (DI6/04): H2S-H2S, HCl-HCl, H2S-
HCl, CH3Cl-HCl, HCN-CH3SH, and CH3SH-HCl,

• weakly bonded (WI9/04): He-Ne, He-Ar, Ne-Ne, Ne-Ar, CH4-Ne, C6H6-
Ne, CH4-CH4, C2H2-C2H2, and C2H4-C2H4.
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It is worthwhile to underline that the strength of intermolecular interactions
varies in a wide range (up to about 16 kcal/mol).

The numerical differences between our results and that in the compared
database can be attributed to three factors: i) the used basis sets, ii) nu-
merical procedures, and iii) the approximations to the relevant density func-
tionals. The errors due to the first two factors can be easily controlled and
reduced in our implementation of the formalism. The effect of using approx-
imated functionals instead of the exact ones requires, however, dedicated
studies on the case by case basis such as the ones reported in the present
work.

6.2 Methods

6.2.1 Energy minimization

In this work the two subsystems are treated on equal footing within the sub-
system formulation of Density-Functional Theory, solving the set of coupled
one-electron equations (Eq. 2.11-2.12) to construct the densities ρA and ρB.
In such a case, the local minimum at the Born-Oppenheimer potential energy
surface corresponds to a minimum of the functional ΞS[{φA

i }, {φ
B
i }] with re-

spect to several independent quantities: positions of nuclei in each subsystem
{RA} and {RB} (geometrical degrees of freedom) and two electron densities
ρA and ρB (electronic-structure related degrees of freedom). The electronic
energy in the Born-Oppenheimer approximation corresponds to the numeri-
cal value of the Hohenberg-Kohn total energy functional EHK [ρo

A + ρo
B]. All

quantities needed to evaluate EHK [ρo
A + ρo

B] and its gradients with respect
to nuclear positions are available at the end of the freeze-and-thaw procedure
(schemes A − C in Table 6.1).

If, however, only one component of the electron density (say ρA), is sub-
ject to optimization (Eq. 2.1) whereas ρB is not (schemes D − E in Ta-
ble 6.1), Eqs. 2.8 provides the upper bound for the electronic energy in the
Born-Oppenheimer approximation:

EHK [ρo
A(B) + ρB] ≥ EHK [ρo

A + ρo
B] = EHK [ρo

AB] (6.1)

where ρo
A(B) denotes the electron density obtained from Eq. 2.1, in which

a given ρB is used. On the virtue of the second Hohenberg-Kohn theorem,
the equality is reached only if the assumed ρB added to ρo

A(B) equals to
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Table 6.1: The considered optimization schemes.

Label Optimized Frozen Treatment of ρA and ρB

A {RA}, ρA, {RB}, ρB fully variational [28, 31]

B {RA}, ρA, ρB {RB} fully variational [28, 31]

C ρA, ρB {RA} {RB} fully variational [28, 31]

D {RA}, ρA {RB}, ρB partially variational [4]

E ρA {RA}, {RB}, ρB partially variational [4]

F {RA}, {RB} ρA, ρB non-variational (frozen) [137]

G {RA}, {RB}, ρA, ρB non-variational (frozen) [137]
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the ground-state electron density at this geometry (ρo
AB). Nevertheless, the

orbitals obtained from Eq. 2.1 provide all necessary quantities to evaluate
the numerical value of EHK [ρo

A(B) + ρB] − EHK [ρB] and its gradients with
respect to the coordinates of the nuclei in the subsystem A. Therefore, it is
possible to optimize the geometry of subsystem A with frozen geometrical and
electronic degrees of freedom of the subsystem B (scheme D in Table 6.1).
For an assumed ρB its adequacy can be controlled by comparing the results
obtained from schemes D and B (or E and C if the geometry is not the
subject of investigation).

We notice also that the Gordon-Kim model [138, 139] (schemes F and G in
Table 6.1), represents an extremely simplified optimization scheme, in which
changes of ρA and ρB associated with inter-subsystem degrees of freedom are
not taken into account. Such scheme is only applicable in some cases (rare
gas dimers, for instance). For molecules, neglecting the complexation induced
changes of the electron density is not a universally adequate approximation
as reported previously [128, 93].

Our numerical implementation of Eqs. 2.11-2.12 makes it possible to per-
form the total energy optimization following each of the schemes listed in
Table 6.1.

In this work, we focus on the adequacy of the used approximations
to Exc[ρ] and T nad

s [ρA, ρB] functionals for obtaining equilibrium geometries.
Therefore, scheme A (full optimization including geometrical and electronic
degrees of freedom) is applied. In our previous works, concerning the inter-
action energies at some representative points at the potential energy surface,
scheme C was applied [128, 93, 131]. We perform the search for the local
minima in the vicinity of the reference equilibrium structures taken from the
dataset of Zhao and Truhlar. The equilibrium geometries are obtained follow-
ing an efficient minimization procedure, in which the structural and electronic
degrees of freedom are optimized simultaneously (Sequence II in Table 6.2).
For each geometry update either Eq. 2.11 or 2.12 is solved only once. Until
the equilibrium energy is reached, the numerical value of EHK [ρo

A(B) + ρB]
(or EHK [ρA + ρo

B(A)]) does not correspond to the electronic energy in the
Born-Oppenheimer approximation. Obtaining this energy at intermediate
geometries would require performing the freeze-and-thaw procedure (see Se-
quence I in Table 6.2). Typically, the freeze-and-thaw procedure involves
solving the pair of equations 2.11 and 2.12 two or three times. Therefore,
Sequence II can be expected to reduce the computational effort by about fac-
tor five. In this work, we consider also an even more simplified optimization
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procedure, in which the exchange-correlation and non-additive kinetic energy
functionals are linearized in either ρA (Eq. 2.11) or in ρB (Eq. 2.12). The
errors associated with the linearization are small and they disappear by con-
struction at the end of the freeze-and-thaw procedure [117] (and also at the
end of the geometry optimization procedure). The resulting computational
savings depend on the number of iterations in the self-consistent procedure
to solve Eq. 2.1.

6.2.2 Approximations for Exc[ρ] and T nad
s [ρA, ρB]

In this work, LDA and GGA density functionals are considered. We will use
the labels KSCED LDA and KSCED GGA for the corresponding computa-
tional methods to solve Eqs. 2.1-2.12.

In the KSCED LDA calculations, the exchange functional is approxi-
mated using the expression for the uniform gas of non-interacting electrons
by Dirac [16], the correlation energy is approximated using the Vosko, et
al. [17] parametrization (equation [4.4] in Ref. [17] referred frequently as
”VWN V”) of the Ceperley-Alder [18] reference data for correlation energy
in the uniform electron gas, and the non-additive kinetic energy is approxi-
mated using the Thomas-Fermi formula for the kinetic energy [9, 10]. Note
that the above approximate functionals do not rely on any empirical data.

In the KSCED GGA calculations, the Perdew-Wang (PW91) [120, 121]
exchange-correlation functional is used, whereas the non-additive kinetic en-
ergy bi-functional T nad

s [ρA, ρB] is approximated according to the formula:
T nad

s [ρA, ρB] ≈ T nad(GGA97)
s [ρA, ρB] = TLC94

s [ρA +ρB]−TLC94
s [ρA]−TLC94

s [ρB],
where TLC94

s [ρ] denotes the Lembarki-Chermette [98] functional of the kinetic
energy. The T nad(GGA97)

s [ρA, ρB] was shown to provide a good approximation
to the non-additive kinetic energy functional and potential in the case of
weakly overlapping densities [71, 72].

6.2.3 Computational details

The calculations are carried out using our numerical implementation of the
subsystem formulation of DFT (the program deMon2K-KSCED [113]) based
on the program deMon2K [126]. For geometry optimization, the follow-
ing deMon2K-KSCED options and parameters are applied: 10−6 a.u. self-
consistent field energy convergence criterion, adaptive grid (TOL=5.0E-07
”GUESS” grid [140]), and the atomic basis set MG3S [141] used within the
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Table 6.2: Complete (sequence I) or partial (sequence II) optimization of the
total electron density in one update of the coordinates of all atoms in the
complex. The self-consistent procedure to solve Eqs. 2.11-2.12 is denoted
with freeze-and-thaw. The procedure to update of the coordinates in one
subsystem using analytic gradients obtained from Eq. 2.11 (for subsystem
A) or Eq. 2.12 (for subsystem B) is denoted with L-BFGS.

sequence I sequence II

Eq.9 or 10
︷ ︸︸ ︷

{Rk
B}, {R

i
A}, ρB ⇐⇒ ρA

︸ ︷︷ ︸

freeze−and−thaw

Eq.9
︷ ︸︸ ︷

{Rk
B}, {R

i
A}, ρB=⇒ρi

A

m
i=1,N−1

until RA convergence m
i=1,N−1

until RA convergence

L−BFGS
︷ ︸︸ ︷

{Rk
B}, {R

i
A}, ρA, ρB =⇒ {Ri+1

A }

L−BFGS
︷ ︸︸ ︷

{Rk
B}, {R

i
A}, ρ

i
A, ρB =⇒ {Ri+1

A }

Eq.10 or 9
︷ ︸︸ ︷

{Rk
B}, {R

N
A}, ρA⇐⇒ρB

︸ ︷︷ ︸

freeze−and−thaw

Eq.10
︷ ︸︸ ︷

{Rk
B}, {R

N
A}, ρ

N
A =⇒ρk

B

m
k=1,M−1

until RB convergence m
k=1,M−1

until RB convergence

L−BFGS
︷ ︸︸ ︷

{Rk
B}, {R

N
A}, ρA, ρB =⇒ {Rk+1

B }

L−BFGS
︷ ︸︸ ︷

{Rk
B}, {R

N
A}, ρ

N
A , ρk

B =⇒ {Rk+1
B }
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monomer-centered expansion scheme (KSCED(m) - see below). The MG3S
basis set is chosen based on our recently reported analysis [131] of the effect
of changing the basis set on the interaction energies. In principle, two types
of basis set expansions can be considered for orbitals corresponding to each
subsystem: centered on the monomer or centered on the dimer. The corre-
sponding calculations are labeled as KSCED(m) or KSCED(s), respectively,
following the convention of Ref. [72]. For a given choice of the atomic ba-
sis sets, the KSCED(s) scheme leads to results closer to the complete basis
set limit than the KSCED(m) one. However, if the atomic basis sets are
sufficiently large, as the ones chosen for these studies, the two schemes lead
to very similar interaction energies [131]. For the calculation of the interac-
tion energies on the optimized geometries, the following deMon2K-KSCED
program options are applied: 10−6 a.u. self-consistent field energy conver-
gence criterion, and the pruned “MEDIUM” (75,302)p [142] grid, and the
dimer-centered MG3S basis sets (KSCED(s) type of calculations).

Classical electron-electron interactions (Coulomb) are evaluated using
auxiliary fitting functions referred to as GEN-A2*, which are automatically
generated for any given orbital basis sets [125]. Further details concerning the
formal framework of the applied computational methods and the numerical
implementation can be found in Refs. [28, 31, 128].

The energy derivatives with respect to the coordinates of nuclei of the sub-
system A are calculated using the deMon2K-KSCED program and passed
together with the total energy and the coordinates of the subsystem A to
the generic limited-memory quasi-Newton code for unconstrained optimiza-
tion L-BFGS [143] (Broyden-Fletcher-Goldfarb-Shanno) using a Perl script,
which controls the optimization process. The L-BFGS algorithms uses the
following two non-default parameters: EPS=1.0E-05 (threshold for the norm
of the gradient in [hartree/bohr]), and M=5 (the number of corrections used
in the update of the inverse of the Hessian). Such an optimization proce-
dure yields the precision of the intermolecular distances for the given set of
molecules in order of 0.01 Å as tested by performing optimization starting
from different geometries. The applied optimization procedure is very effi-
cient in localizing the equilibrium intermolecular distance. For all systems
discussed in this study, the equilibrium geometries1 were obtained by per-
forming multiple optimization runs, each starting from a different geometry

1The cartesian and z-matrix coordinates of optimized complexes are available at:
http://pubs.acs.org/doi/suppl/10.1021/ct600367t/suppl file/ct600367t-file009.pdf
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of the complex. In the initial geometry, the original structure from the Zhao-
Truhlar database was modified by changing the intermolecular distance (by
a few Å) as well as mutual orientation of the monomers. Such a procedure
leads to almost identical final geometries (they lie within 0.01 Å). Unfortu-
nately, such a procedure fails to localize the minimum at flat potential energy
surfaces, where some degrees of freedom are associated with very small gra-
dients such as that corresponding to a parallel displacement of one monomer
in the benzene dimer.

6.3 Results and Discussion

6.3.1 Geometries: LDA

Table 6.3 collects the selected representative parameters describing inter-
molecular degrees of freedom in the considered complexes derived from KSCED
LDA calculations together with the corresponding reference data. The cho-
sen two geometrical parameters are the intermolecular distance R between
the closest two heavy atoms in two molecules forming the complex, and an
representative angle describing the relative orientation of the monomers (φ).
The labels given for the chosen angle allow one to identify it in a straightfor-
ward manner. For instance, the HOO denotes the H-O-O angle in the case
of the water dimer.

KSCED LDA performs very well for hydrogen bonded complexes. This
result is illustrated on Figs. 6.1-6.2 showing the optimized geometry super-
imposed on the reference one for two representative complexes: H2O-H2O,
for which KSCED LDA optimized geometry deviates the least from the ref-
erence one, and NH3-NH3, from which the deviation from the reference is the
largest among the hydrogen bonded complexes. The errors of intermolecular
distances R are smaller than 0.10 Å for all complexes in this set except for
NH3-NH3 and HCOOH-HCOOH. The errors in intermolecular distances tend
to decrease with increasing binding energy.

In the set of the complexes of dipole character the most important dif-
ference with respect to the reference geometry is found for HCl-HCl. In the
LDA optimized geometry, two monomers are in a parallel-like orientation
and in the reference one they are almost perpendicular.

For the most weakly bound systems, noticeable errors in the intermolec-
ular distance (0.2 − 0.3 Å) occur for He-Ne and He-Ar, and C6H6-Ne. Most
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Table 6.3: The key parameters of the equilibrium geometry obtained from
KSCED LDA calculations. R (in Å) denotes distance between the two clos-
est heavy atoms of different monomers, and φ (in degrees)is a representative
angle determining the relative orientation between the monomers. The ref-
erence values Rref and φref are taken from Ref. [135].

Compound DefR R Rref R − Rref Defφ φ φref

NH3-NH3 dNN 3.14 3.27 -0.13 HNN 16 14
HF-HF dFF 2.87 2.78 0.08 HFF 113 115
H2O-H2O dOO 2.96 2.94 0.02 HOO 5 4
NH3-H2O dNO 2.97 2.97 0.01 HON 5 6
HCONH2-HCONH2 dNO 2.89 2.88 0.01 ONC 114 116
HCOOH-HCOOH dOO 2.81 2.70 0.11 OOC 127 125

H2S-H2S dSS 4.03 4.12 -0.09 HSS 90 84
HCl-HCl dClCl 3.60 3.79 -0.19 HClCl 47 8
H2S-HCl dSCl 3.81 3.76 0.05 HClS 92 88
CH3Cl-HCl dClCl 3.70 3.61 0.09 ClClC 81 82
HCN-CH3SH dCS 3.62 3.52 0.10 SNC 170 162
CH3SH-HCl dSCl 3.70 3.61 0.09 HClS 14 11

He-Ne dHeNe 2.81 3.03 -0.22 - - -
He-Ar dHeAr 3.16 3.48 -0.32 - - -
Ne-Ne dNeNe 3.04 3.09 -0.05 - - -
Ne-Ar dNeAr 3.47 3.49 -0.02 - - -
CH4-Ne dCNe 3.44 3.49 -0.05 HNeC 70 71
C6H6-Ne dCNe 3.66 3.51 0.15 NeCC 79 79
CH4-CH4 dCC 3.61 3.61 -0.00 HCC 70 70
C2H2-C2H2 dCC 3.22 3.46 -0.23 CCC 122 123
C2H4-C2H4 dCC 3.83 3.83 0.00 CCC 80 80
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Figure 6.1: The optimized geometry (KSCED LDA) of the H2O-H2O complex
superimposed on the reference equilibrium geometry (dark colors).

Figure 6.2: The optimized geometry (KSCED LDA) of NH3-NH3 superim-
posed on the reference equilibrium geometry (dark colors).
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of the intermolecular equilibrium distances in this set are underestimated,
which is an opposite tendency found in the other sets.

Analyzing the overall performance of local density approximation shows
that it performs very well for hydrogen bonded complexes, which confirms the
results reported elsewhere [128], and reasonably well for weakly bound com-
plexes. In most cases, local density approximation overestimates intermolec-
ular distances, except for the complexes in the W9/04 set (weakly bound
complexes).

Local density approximation applied within the Kohn-Sham framework
leads systematically to worse results. In the case of all considered inter-
molecular complexes, the Kohn-Sham LDA calculations lead to underes-
timated intermolecular equilibrium distances. For hydrogen bonded com-
plexes, the errors reach -0.27 Å for NH3-NH3. In the case of dipole bound
species, the maximal error occurs for H2S-H2S (-0.38 Å). Taking into account
that the errors of equilibrium geometries are determined by the quality of
the exchange-correlation effective potential whereas the differences between
Kohn-Sham LDA and KSCED LDA results are due to the errors in the func-
tional derivatives of the T nadd

s , the superiority of KSCED LDA is the result
of the compensation of errors in these quantities. For interaction energies,
such compensation were reported previously for several systems [129, 93] (see
also below).

6.3.2 Geometries: GGA

KSCED GGA calculations leads to underestimated intermolecular distances
for all considered complexes (see Table 6.4).

For hydrogen bonded complexes, the errors in intermolecular distance are
larger than the ones in the KSCED LDA case reaching −0.43 Å for NH3-
NH3. Figs. 6.3-6.4 show the KSCED GGA optimized geometry superimposed
on the reference one for two representative complexes: HCOOH-HCOOH, for
which KSCED GGA optimized geometry deviates the least from the reference
one, and NH3-NH3, for which the deviation from the reference is the largest
among the hydrogen bonded complexes.

For the dipole-bound complexes, the largest difference with respect to
the reference geometry is found for HCl-HCl. As in the case of KSCED LDA
equilibrium geometry, the two monomers adopt a parallel-like orientation. In
this group of complexes, the errors in the intermolecular distances are rather
large reaching 0.44 Å for HCl-HCl.
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Table 6.4: The key parameters of the equilibrium geometry obtained from
KSCED GGA calculations. R (in Å) denotes distance between the two clos-
est heavy atoms of different monomers, and φ (in degrees) is a representative
angle determining the relative orientation between the monomers. The ref-
erence values Rref and φref are taken from Ref. [135].

Compound DefR R Rref R − Rref Defφ φ φref

NH3-NH3 dNN 2.83 3.27 -0.43 HNN 40 14
HF-HF dFF 2.73 2.78 -0.05 HFF 103 115
H2O-H2O dOO 2.84 2.94 -0.10 HOO 5 4
NH3-H2O dNO 2.86 2.97 -0.11 HON 6 6
HCONH2-HCONH2 dNO 2.77 2.88 -0.11 ONC 115 116
HCOOH-HCOOH dOO 2.68 2.70 -0.02 OOC 128 125

H2S-H2S dSS 3.84 4.12 -0.27 HSS 94 84
HCl-HCl dClCl 3.35 3.79 -0.44 HClCl 46 8
H2S-HCl dSCl 3.62 3.76 -0.14 HClS 87 88
CH3Cl-HCl dClCl 3.49 3.61 -0.12 ClClC 78 82
HCN-CH3SH dCS 3.21 3.52 -0.31 SNC 146 162
CH3SH-HCl dSCl 3.47 3.61 -0.14 HClS 21 11

He-Ne dHeNe 2.55 3.03 -0.48 - - -
He-Ar dHeAr 2.97 3.48 -0.51 - - -
Ne-Ne dNeNe 2.73 3.09 -0.36 - - -
Ne-Ar dNeAr 3.22 3.49 -0.27 - - -
CH4-Ne dCNe 3.15 3.49 -0.34 HNeC 70 71
C6H6-Ne dCNe 3.39 3.51 -0.12 NeCC 78 79
CH4-CH4 dCC 3.29 3.61 -0.33 HCC 70 70
C2H2-C2H2 dCC 2.95 3.46 -0.51 CCC 120 123
C2H4-C2H4 dCC 3.52 3.83 -0.31 CCC 79 80
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Figure 6.3: The optimized geometry (KSCED GGA) of the HCOOH-
HCOOH complex superimposed on the reference equilibrium geometry (dark
colors).

Figure 6.4: The optimized geometry (KSCED GGA) of NH3-NH3 superim-
posed on the reference equilibrium geometry (dark colors).
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In the last group of complexes (weakly bound), the errors of the KSCED
GGA equilibrium intermolecular distances are very large reaching 0.51 Å.

In view of the fact that the chosen GGA functional worsens significantly
the equilibrium geometry for the complexes, for which KSCED LDA leads
to rather good results, this approximation does not represent an universal
improvement over LDA. Since, however, it leads to significantly better bind-
ing energies for (π-stacked systems [93, 129, 130]), it can be considered as a
pragmatic choice for this type of complexes.

As far as Kohn-Sham calculations are concerned, the PW91 results are
significantly and systematically better the LDA ones. For instance, the er-
rors in the PW91 equilibrium intermolecular distances do not exceed 0.1 Å,
whereas the LDA once reach -0.27 Å for hydrogen bonded complexes. Op-
posite to the tendencies discussed previously for LDA, KSCED GGA are not
better than Kohn-Sham PW91 ones. The Kohn-Sham equilibrium geome-
tries are slightly (hydrogen bonded complexes) or noticeably (dipole bound
and van der Waals) better quality then the KSCED GGA results. This
indicates that the error in the PW91 exchange-correlation potential is not
compensated so well with the error in the GGA97 non-additive kinetic energy
potential as it is the case of LDA.

6.3.3 Binding energies at optimized geometries

Binding energies discussed in this section are calculated at the optimized ge-
ometries and are obtained using the dimer centered expansion of the electron
density of each subsystem (KSCED(s) type of calculations). The basis set
superposition error and the errors resulting from the superposition of numer-
ical grids are taken into account following the procedure of Ref. [131], which
is also given in Supporting Information. We start the analysis with the LDA
results. For most of the considered hydrogen bonded complexes, the binding
energies are very good. For dipole-bound complexes, the errors in the binding
energy are larger. The maximal relative overestimation of the binding energy
for HCN-CH3SH reaches 30%, whereas the binding energy in CH3Cl-HCl is
underestimated by 18%. For van der Waals complexes, KSCED LDA does
not perform uniformly. The interactions of helium with other atoms is over-
estimated significantly. The accuracy of the KSCED LDA binding energies
changes from excellent to mediocre along the series, Ne-Ne, Ne-Ar, Ne-CH4,
Ne-C6H6. For complexes involving saturated hydrocarbons, KSCED LDA
performs reasonably well underestimating, however, the binding energy.
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Results collected in Table 6.5 indicate clearly that the presence of a mul-
tiple bond of one molecule in the vicinity of the other molecule in the com-
plex, leads systematically to significant errors in binding energies calculated
at the KSCED LDA level. Except for C2H2-C2H2, they are underestimated
by about factor two. This trend is in line with that for interaction energies
calculated at reference intermolecular geometries for the same [131] or other
complexes involving conjugated π systems [93, 129, 130].

The choice of the GGA functionals (exchange-correlation- and non-additive
kinetic energies) used in this work was shown previously to lead to sig-
nificant improvements of accuracy of the interaction energies in the cases
where KSCED LDA fails: complexes between diatomic molecules and ben-
zene [129], benzene dimer [130], and other complexes involving interactions
with π bonds [93]. Results collected in Table 6.5 show that this choice of
gradient-dependent functionals for exchange-correlation- and non-additive
kinetic energies significantly worsens this quantity for all types of complexes
considered in this work.

As far as the compensation of errors in the exchange-correlation- and
non-additive kinetic energies are concerned, similar trends (for LDA, the
compensation of errors in the energies occurs systematically whereas it is
less systematic in the GGA case) can be seen as those for the accuracy of
the effective potentials discussed in the previous section. The binding ener-
gies derived from Kohn-Sham LDA calculations are significantly worse than
their KSCED LDA counterparts. For all the considered complexes, the de-
viations from the reference data are rather large, reaching 7.75 kcal/mol
for HCONH2-HCONH2 and 12.01 kcal/mol for HCOOH-HCOOH (the cor-
responding KSCED LDA errors are 0.08 kcal/mol and 1.72 kcal/mol) for
instance. As far as GGA is concerned such systematic trends cannot be
identified. On the average, the Kohn-Sham PW91 binding energies are bet-
ter than KSCED GGA.

6.3.4 Acceleration techniques for geometry optimiza-

tion

In this section, we consider two optimization schemes (see Table 6.2), as well
as their two modifications: i) Sequence I’, in which the converged freeze-and-
thaw cycle is replaced by solving the pair or Eqs. 2.11 and 2.12 only once
per geometry update, and ii) a modified Sequence II, in which the functional
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Table 6.5: Binding energies (−∆E in kcal/mol) calculated at optimized ge-

ometries. The relative error (∆E−∆ERef

∆ERef ×100%) is given in parenthesis.

Compound −∆ELDA −∆EGGA −∆ERef

NH3-NH3 3.99 ( 27) 5.59 ( 77) 3.15
HF-HF 4.12 (-10) 5.00 ( 9) 4.57
H2O-H2O 4.97 ( 0) 5.94 ( 20) 4.97
NH3-H2O 6.72 ( 5) 8.03 ( 25) 6.41
HCONH2-HCONH2 15.03 ( 1) 17.85 ( 19) 14.94
HCOOH-HCOOH 14.43 (-11) 17.47 ( 8) 16.15
H2S-H2S 2.12 ( 28) 2.76 ( 66) 1.66
HCl-HCl 2.18 ( 8) 3.19 ( 59) 2.01
H2S-HCl 3.44 ( 3) 4.34 ( 30) 3.35
CH3Cl-HCl 2.89 (-19) 4.05 ( 14) 3.55
HCN-CH3SH 4.68 ( 30) 5.73 ( 60) 3.59
CH3SH-HCl 4.40 ( 6) 5.74 ( 38) 4.16
He-Ne 0.09 (125) 0.46 (1050) 0.04
He-Ar 0.15 (150) 0.47 ( 683) 0.06
Ne-Ne 0.08 ( 0) 0.52 ( 550) 0.08
Ne-Ar 0.12 ( -8) 0.54 ( 315) 0.13
CH4-Ne 0.15 (-32) 0.66 ( 200) 0.22
C6H6-Ne 0.23 (-51) 0.95 ( 102) 0.47
CH4-CH4 0.44 (-14) 1.03 ( 102) 0.51
C2H2-C2H2 1.84 ( 37) 2.72 ( 103) 1.34
C2H4-C2H4 1.06 (-25) 2.00 ( 41) 1.42
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Table 6.6: The key parameters of the equilibrium geometry obtained using
four optimization procedures considered in the text. Coordinates of only one
molecule (A) in the complex (A-B) are optimizeda.

Compound/parameter Sequence I Sequence I’ Sequence II
Sequence II
linearized

H2O-H2O dOO 2.95 2.95 3.02 3.00
HOO 6 6 6 6

HCl-CH3SH dSCl 3.66 3.69 3.76 3.77
HClS 16 15 19 19

a) Starting parameters: dOO: 3.38 Å, HOO: 60◦, dSCl: 2.65 Å, HClS: 108◦

Exc[ρA + ρB] − Exc[ρA] + T nad
s [ρA, ρB] is linearized in ρA in the procedure to

solve Eq. 2.11 in order to accelerate it (for Eq. 2.12, Exc[ρA +ρB]−Exc[ρB] +
T nad

s [ρA, ρB] is linearized in ρB). By construction, linearization is exact at
the end of the freeze-and-thaw cycle. In view of the fact that linearization
might lead to noticeable savings in the computer time, it is worthwhile to
investigate the effect of linearization applied without converging freeze-and-
thaw cycle in the intermediate stages. For two intermolecular complexes
(H2O-H2O, HCl-CH3SH), performance of the four alternative optimization
procedures is analyzed in either the complete or partial optimization of ge-
ometry. In the partial optimization case, the geometry of one monomer is
optimized keeping the geometry of the other frozen (Scheme B in Table 6.1).
In the geometry optimization, the same convergence criteria and the other
optimization parameters as described in the previous section, and local den-
sity approximation are applied. The starting geometries were prepared by
modifying the coordinates taken from Ref. [134] for one molecule in the com-
plex (the selected intermolecular degrees of freedom are given in Table 6.6).

In the complete optimization calculations, all four optimization schemes
lead to equivalent results. The Cartesian coordinates of corresponding atoms
in optimized structures differ by less than 0.01 Å. This scatter of the mini-
mized geometries corresponds to the precision of the optimization procedure
itself. The key geometrical parameters obtained in the partial optimization
(rigid geometry of one monomer) are collected in Table 6.6. All simplified
schemes lead to the optimized geometries, which do not differ significantly
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from that derived using the Born-Oppenheimer surface type of optimization
(Scheme I in Table 6.2).

The computational costs of the four considered optimization schemes dif-
fer significantly. In the case of the H2O-H2O dimer, the most expensive one
(Sequence I) involves 88 geometry updates to converge the coordinates of the
first subsystem, and solving the pair of Eqs. 2.11-2.12 two to three times per
geometry update. Sequence I’ converges after 91 geometry updates, how-
ever, the pair of Eqs. 2.11-2.12 is solved only once per geometry update. In
Sequence II, the number of geometry updates increases to 117, but involves
solving equation 2.11 only once per geometry update. The most effective
among the studied optimization schemes is the one in which Scheme II is
used and Eq. 2.11 are solved using linearized functionals. Linearization re-
sults in an additional reduction of the time of computations by 20-25% per
geometry update. Optimization of geometry using this scheme involves 71
geometry updates.

6.4 Conclusions

The current study concerns the applicability of the subsystem formulation
of density functional for studies of equilibrium geometries and binding en-
ergies in weakly bound intermolecular complexes. Two types of approxima-
tions are considered: i) local density approximation, which was shown in
our previous studies to lead to good binding energies in hydrogen bonded
systems [128], and several weakly bound complexes [93, 131] but fails for
π-stacked complexes [129, 93, 131], and ii) our choice for gradient depen-
dent approximation which improves significantly the interaction energies in
π-stacked complexes [129, 93, 131]. In the present work, a systematic analysis
of the accuracy of equilibrium geometries is made, complementing thus the
previously obtained results concerning interaction energies and equilibrium
geometries in complexes of high-symmetry.

Concerning the applicability of local density approximation in the subsys-
tem formulation of DFT in deriving not only intermolecular energies but also
equilibrium geometries, the present work confirms the adequacy of this ap-
proximation for hydrogen bonded complexes (the largest deviation between
calculated and reference intermolecular distance amounts to 0.13 Å for NH3-
NH3), group of dipole-bound complexes (the largest deviation between calcu-
lated and reference intermolecular distance amounts to 0.19 Å for HCl-HCl,
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for which also the relative orientation is the worst), and even very week in-
termolecular complexes involving Ne, Ar, and saturated hydrocarbons. In
this group of complexes, the maximal relative errors in the binding ener-
gies reach 30% but they are significantly smaller in most cases. Using local
density approximation in the subsystem formulation of DFT is, however,
not recommended if the target of calculations is both the binding energy
and equilibrium geometry in complexes involving molecules with conjugated
bonds (benzene, ethylene). This trend is in line with our previously reported
results concerning π stacked complexes. For the weakest bonds involving
He, local density approximation leads to the parameters of the potential en-
ergy surface, of only qualitative value (binding energies are overestimated by
factor two or three in He-Ne and He-Ar dimers, respectively, whereas the
equilibrium distances are too short by 0.2-0.3 Å).

As far as the chosen gradient dependent approximation is concerned, it
improves neither binding energies nor equilibrium geometries in the group
of complexes for which local density approximation is adequate (hydrogen
bonds, dipole-bonds, weak complexes involving, Ne, Ar, or saturated hy-
drocarbons). Its range of applicability seems, therefore, to be limited to π
stacked systems determined in our previously reported studies.

Owing to the mathematical structure of the subsystem formulation of
density functional theory, performing simultaneous optimization of different
types of degrees of freedom (electron density and nuclear coordinates in each
subsystem) is straightforward. An efficient optimization scheme is proposed,
in which the system reaches the minimum on the Born-Oppenheimer surface
only at the end of the procedure reducing thus the computational efforts in
the intermediate geometries.

This work represents an intermediate step toward development of first-
principles based multi-level simulation techniques for studying electronic
structure in condensed matter systems. The orbital-free embedding formal-
ism uses functionals and potentials defined in the Kohn-Sham formulation
of density functional theory. However, they are applied for another basic de-
scriptors of the whole investigated system: the embedded orbitals for one part
and electron density only for another one. In the present work, we explore the
applicability of the simplest approximation - local density approximation -
to derive energetic and geometrical properties of weakly interacting systems.
Confirming our previous analyzes based only on energies [128, 131], we can
conclude that this approximation is especially suitable for deriving key pa-
rameters of the potential energy surface for such cases where the subsystems
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are linked by hydrogen bonds and no direct interactions involving π-electrons
occur. The accuracy of the effective potential determines directly the qual-
ity of electronic properties obtained from orbital-free embedding calculations
but also that of equilibrium geometries analyzed in this work. This brings us
to the most important result as far as practical aspects are concerned that
KSCED LDA provides a complete formalism, in which both electronic prop-
erties as well as potential energy surface are adequately described in a large
class of embedded systems identified in this work. In this class, the balance
of approximate terms is such, that the errors of the exchange-correlation-
and non-additive kinetic energy functionals cancel to large extend. Practical
applications of KSCED LDA framework in multi-scale numerical studies are
currently curried out in our group. As far as going beyond LDA is concerned,
the current study indicates clearly that the GGA functionals chosen based
on our previous studies provide only a temporary solution. Although for sys-
tems involving interacting π-electrons this choice improves upon LDA, the
improvement is not uniform for other systems. In particular, for hydrogen
bonded complexes GGA results are even worse that the LDA ones. Develop-
ment of a consistent GGA approximation retaining the strengths of LDA and
providing an efficient compensation of errors in gradient-dependent terms is
an objective of our current studies.

Appendix A: Numerical Implementation of the

Subsystem Formulation of Density Functional

Theory

The numerical implementation of the subsystem formulation of density func-
tional theory in its Kohn-Sham with Constrained Electron Density (KSCED)
form into the deMon2k KSCED program is presented. Currently the self-
consistent field (SCF) procedure, the SCF energy, and the analytical nuclear
gradients of the SCF energy are available.

The formulas are given in atomic units for the spin-compensated case.
The program flowchart shows the default VXCTYPE BASIS route for the
self-consistent field orbital-free embedding calculations.
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Symbols and definitions

The electron density ρA of the subsystem A (associated here with so called
ACTIVE subsystem, what means the subsystem for which a set of KSCED
equations (see section 6.4) is solved) is given by

ρA(r) =
∑

µ,ν

(P A)µνµ
A(r)νA(r), (6.2)

where PA is the density matrix of the subsystem A:

(PA)µν = 2
occ(A)
∑

i

cA
µic

A
νi, (6.3)

µA is the contracted atomic Gaussian orbital of the subsystem A, and cA
µi

is the molecular orbital coefficient of the subsystem A. The approximated
electron density ρ̃A of the subsystem A is given by

ρ̃A(r) =
m̄A∑

k̄=1

xA
k̄ k̄A(r), (6.4)

where xA
k̄ is the density fit coefficient of the subsystem A, and k̄A is primi-

tive Hermite Gaussians function of the subsystem A. The primitive Hermite
Gaussians function (without normalization factor) at atom K with exponent
ζk has the form:

k̄(r) =

(

∂

∂Kx

)k̄x
(

∂

∂Ky

)k̄y
(

∂

∂Kz

)k̄z

e−ζk(r−K)2 (6.5)

Analogously for the subsystem B (associated here with so called FROZEN
subsystem, what means the subsystem the electron density of which is kept
frozen when a set of KSCED equations is solved) we define:

ρB(r) =
∑

σ,τ

(PB)στσ
B(r)τB(r), (6.6)

where PB is the density matrix of the subsystem B:

(PB)στ = 2
occ(B)
∑

i

cB
σic

B
τi, (6.7)
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σB is the contracted atomic Gaussian orbital of the subsystem B, and cB
σi

is the molecular orbital coefficient of the subsystem B. The approximated
electron density ρ̃B of the subsystem B is given by

ρ̃B(r) =
m̄B∑

l̄=1

xB
l̄ l̄B(r), (6.8)

where xB
l̄ is the density fit coefficient of the subsystem B, and l̄B is primitive

Hermite Gaussians function of the subsystem B. The number of electrons NA

in the subsystem A is given by

NA =
∑

µ,ν

(P A)µν(SA)µν , (6.9)

where (SA)µν is the element of the overlap matrix between the contracted

atomic Gaussian orbitals of the subsystem A. The number of electrons NB

in the subsystem B is given by

NB =
∑

σ,τ

(P B)στ (SB)στ , (6.10)

where (SB)στ is the element of the overlap matrix between the contracted

atomic Gaussian orbital of the subsystem B. The “core” Hamiltonian HA of

the subsystem A is defined as:

(HA)µν = 〈µA| −
1

2
∇2|νA〉 + 〈µA| −

NA
nuc∑

α=1

ZA
α

|r −RA
α |
|νA〉 (6.11)

The “core” Hamiltonian HB of the subsystem B is defined as:

(HB)στ = 〈σB| −
1

2
∇2|τB〉 + 〈σB| −

NB
nuc∑

β=1

ZB
β

|r −RB
β |
|τB〉 (6.12)

The total nuclear repulsion energy of the system is defined as:

ENA
nucNB

nuc
=

NA
nuc∑

α=1

NB
nuc∑

β=1

ZA
α ZB

β

|RA
α − RB

β |
(6.13)
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The nuclear repulsion energy of the subsystem A is defined as:

ENA
nucNA

nuc
=

1

2

NA
nuc∑

α1=1

NA
nuc∑

α2 6=α1

ZA
α1

ZA
α2

|RA
α1

− RA
α2
|

(6.14)

The nuclear repulsion energy of the subsystem B is defined as:

ENB
nucNB

nuc
=

1

2

NB
nuc∑

β1=1

NB
nuc∑

β2 6=β1

ZB
β1

ZB
β2

|RB
β1

−RB
β2
|

(6.15)

Total energy bifunctional

Total energy bifunctional (for the ground state noninteracting pure state
v-representable electron densities ρA and ρB): reads [4, 72]:

E[ρA, ρB] =
∑

µ,ν

(P A)µν (HA)µν +
1

2
〈ρA‖ρA〉 + ENA

nucNA
nuc

+
∑

σ,τ

(P B)στ (HB)στ +
1

2
〈ρB‖ρB〉 + ENB

nucNB
nuc

+
∑

µ,ν

(P A)µν〈µ
A| −

NB
nuc∑

β=1

ZB
β

|r− RB
β |
|νA〉

+
∑

σ,τ

(P B)στ 〈σ
B| −

NA
nuc∑

α=1

ZA
α

|r − RA
α |
|τB〉

+ 〈ρA‖ρB〉 + ENA
nucNB

nuc

+ Exc[ρ
A + ρB] + T nad

s [ρA, ρB], (6.16)

where T nad
s [ρA, ρB] = Ts[ρ

A + ρB]− Ts[ρ
A]− Ts[ρ

B], and the symbol ‖ stands
for the Coulomb operator 1

|r1−r2|
. With the density fitting procedure [144]

the following total energy bifunctional expression is obtained:

E[ρA, ρB] =
∑

µ,ν

(P A)µν (HA)µν + 〈ρA‖ρ̃A〉 −
1

2
〈ρ̃A‖ρ̃A〉 + ENA

nucNA
nuc

+
∑

σ,τ

(P B)στ (HB)στ + 〈ρB‖ρ̃B〉 −
1

2
〈ρ̃B‖ρ̃B〉 + ENB

nucNB
nuc

+
∑

µ,ν

(P A)µν〈µ
A| −

NB
nuc∑

β=1

ZB
β

|r −RB
β |
|νA〉
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+
∑

σ,τ

(PB)στ 〈σ
B| −

NA
nuc∑

α=1

ZA
α

|r −RA
α |
|τB〉

+ 〈ρA‖ρ̃B〉 + 〈ρ̃A‖ρB〉 − 〈ρ̃A‖ρ̃B〉 + ENA
nucNB

nuc

+ Exc[ρ
A + ρB] + T nad

s [ρA, ρB]

− λ(
∫

ρ̃A(r)d r − NA) (6.17)

where
∫

ρ̃A(r)d r =
∑m̄A

k̄=1
xA

k̄ 〈k̄
A〉 (with 〈k̄A〉 =

∫

k̄A(r)d r), and the Lagrange
multiplier λ was introduced to ensure the normalization of the approximated
ACTIVE electron density ρ̃A to the number of electrons in the ACTIVE
subsystem. The derivation of Eq. 6.17 using the variational fitting of ρA +ρB

is presented in Ref. [145].

Total energy bifunctional partitioning

Total energy bifunctional can be partitioned into the two components:

E[ρA, ρB] = EFDFT1[ρA, ρB] + EFDFT3[ρB], (6.18)

where:

EFDFT3[ρB] =
∑

σ,τ

(PB)στ (HB)στ + 〈ρB‖ρ̃B〉 −
1

2
〈ρ̃B‖ρ̃B〉 + ENB

nucNB
nuc

+ Exc[ρ
B], (6.19)

EFDFT1[ρA, ρB] = E[ρA, ρB] − EFDFT3[ρB] =

EFDFT3[ρA] − Exc[ρ
A]

− Exc[ρ
B] + Exc[ρ

A + ρB] + T nad
s [ρA, ρB] + ENA

nucNB
nuc

+
∑

µ,ν

(P A)µν〈µ
A| −

NB
nuc∑

β=1

ZB
β

|r− RB
β |
|νA〉

+
∑

σ,τ

(P B)στ 〈σ
B| −

NA
nuc∑

α=1

ZA
α

|r− RA
α |
|τB〉

+ 〈ρA‖ρ̃B〉 + 〈ρ̃A‖ρB〉 − 〈ρ̃A‖ρ̃B〉, (6.20)

EFDFT3[ρA] =
∑

µ,ν

(P A)µν (HA)µν + 〈ρA‖ρ̃A〉 −
1

2
〈ρ̃A‖ρ̃A〉 + ENA

nucNA
nuc

+ Exc[ρ
A] − λ(

∫

ρ̃A(r)d r− NA). (6.21)
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We identify EFDFT3[ρA] as the SCF KSCED energy calculated using the
ACTIVE density.

KSCED matrix

The derivative of the EFDFT1[ρA, ρB] (see Eq. 6.20) with respect to the
density matrix element (PA)µν defines the ACTIVE KSCED matrix:

(KA)µν =




∂EFDFT1[ρA, ρB]

∂(P A)µν





{xA
k̄
}

=




∂EFDFT3[ρA]

∂(P A)µν





{xA
k̄
}

−




∂Exc[ρ

A]

∂(P A)µν





{xA
k̄
}

+




∂Exc[ρ

A + ρB]

∂(P A)µν





{xA
k̄
}

+




∂T nad

s [ρA, ρB]

∂(P A)µν





{xA
k̄
}

+ 〈µA| −
NB

nuc∑

β=1

ZB
β

|r− RB
β |
|νA〉 +

m̄B∑

l̄=1

〈µAνA‖l̄B〉xB
l̄ . (6.22)

The element µν of the KSCED matrix associated with the local energy func-
tional EY [ρ] is defined as the derivative of EY [ρ] with respect to the density
matrix element (P )µν :

∂EY [ρ]

∂(P )µν
=
∫

δEY [ρ]

δρ(r)

∂ρ(r)

∂(P )µν
dr ≡

∫

νY [ρ]
∂ρ(r)

∂(P )µν
dr, (6.23)

where νY [ρ] is the potential.
When the exchange-correlation and kinetic potentials are calculated using

the approximated densities ρ̃A and ρ̃B, the derrivatives of the approximated
electron density ρ̃A with respect to the elements of the KSCED matrix are
needed:

∂ρ̃A

∂(P A)µν

=
m̄A∑

k̄=1

∂xA
k̄

∂(P A)µν

k̄A(r). (6.24)

Using the explicit expression for the fit coefficients (Eq. 8.2.7) from
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Ref. [145] together with the definition 6.9 we obtain:

xA
k̄ =

m̄A∑

j̄=1

(GA)−1
kj

(
∑

µ,ν

(PA)µν〈µ
AνA‖j̄A〉 + (JAB)j

)

+ (GA)−1
k(m̄A+1)

∑

µ,ν

(P A)µν(SA)µν . (6.25)

Employing that the matrix (GA)−1 is symmetric we obtain the derrivative of

the fit coeffient:

∂xA
k̄

∂(P A)µν

=
m̄A∑

j̄=1

〈µAνA‖j̄A〉(GA)−1
jk + (SA)µν(GA)−1

(m̄A+1)k.

This result when first inserted into 6.25 and used in Eq. 6.24 yields to fol-
lowing expression for KSCED matrix element (KA)µν :

(K̃
A

)µν = (HA)µν + (SA)µν(λ + z̄A
n ) +

m̄A∑

k̄=1

〈µAνA‖k̄A〉(xA
k̄ + zA

k̄ )

+ 〈µA| −
NB

nuc∑

β=1

ZB
β

|r − RB
β |
|νA〉 +

m̄B∑

l̄=1

〈µAνA‖l̄B〉xB
l̄ , (6.26)

where zA
l̄ is the exchange-correlation-kinetic fitting coefficient:

zA
l̄ =

m̄A∑

k̄=1

(GA)−1
l̄k̄
〈k̄A‖ν̃xcT 〉, (6.27)

and ν̃xcT is the effective embedding exchange-correlation-kinetic potential
calculated using the approximated densities ρ̃A and ρ̃B:

ν̃xcT [ρ̃A, ρ̃B] = ν̃xc[ρ̃
A] + ν̃xc[ρ̃

A + ρ̃B] − ν̃xc[ρ̃
A] +

δT nad
s [ρ, ρ̃B]

δρ

∣
∣
∣
∣
∣
ρ=ρ̃A

≡
δExcT [ρ, ρ̃B]

δρ

∣
∣
∣
∣
∣
ρ=ρ̃A

= ν̃xc[ρ̃
A] + ν̃′xcT [ρ̃A, ρ̃B]. (6.28)

When the exchange-correlation and kinetic potentials are calculated using
the “exact” densities ρA and ρB, the KSCED matrix element (KA)µν reads:

(KA)µν = (HA)µν + (SA)µνλ +
m̄A∑

k̄=1

〈µAνA‖k̄A〉xA
k̄ + 〈µA|νxcT |ν

A〉
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+ 〈µA| −
NB

nuc∑

β=1

ZB
β

|r −RB
β |
|νA〉 +

m̄B∑

l̄=1

〈µAνA‖l̄B〉xB
l̄ , (6.29)

where νxcT is the effective embedding exchange-correlation-kinetic potential
calculated using the “exact” densities ρA and ρB:

νxcT [ρA, ρB] = νxc[ρ
A] + νxc[ρ

A + ρB] − νxc[ρ
A] +

δT nad
s [ρ, ρB]

δρ

∣
∣
∣
∣
∣
ρ=ρA

= νxc[ρ
A] + ν′xcT [ρA, ρB]. (6.30)

It should be noted that during the SCF procedure in deMon an additional
criterion (Eq. 26 in Ref. [144]) of convergence is used:

∆A =
m̄A∑

ī=1





m̄A∑

j̄=1

(

xA
j̄ (new) − xA

j̄ (old)
)

〈j̄A‖̄iA〉





2

, (6.31)

where xA
j̄ (new) and xA

j̄ (old) denote the fit coefficient of the approximated
ACTIVE electron density of two successive SCF iterations.
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Program SCF flowchart
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Analytical gradient of the energy

In this section the expression for the component of the cartesian gradient of
the SCF energy EX (derivative of the SCF energy with respect to a carte-
sian coordinate of a nucleus of the ACTIVE system) is given for the default
VXCTYPE BASIS route in the deMon2k KSCED program. To facilitate the
notation the superscript X denotes the partial derivative with respect to a
cartesian coordinate of a nucleus of the ACTIVE system.

The derivation of EX is straightforward. First, the component of the
gradient of the exchange-correlation and kinetic energies can be written as:

EX
xcT [ρA, ρB] = (6.32)

∑

µ,ν

(P A)µν〈(µ
AνA)X |νxcT 〉 +

∑

µ,ν

(P AX)µν〈µ
A|νxcT |ν

A〉,

owing to the following equation, holding for a local energy functional EY [ρ]:

EX
Y [ρ] =

∫
δEY [ρ]

δρ(r)
ρX(r)dr =

∫

νY [ρ]ρX(r)dr, (6.33)

and the formula for the component the ACTIVE electron density gradient:

ρAX(r) =
∑

µ,ν

(PA)µν(µA(r)νA(r))X +
∑

µ,ν

(P AX)µνµ
A(r)νA(r).

Using Eq. 6.32 EX yields:

EX = EFDFT1X[ρA, ρB] + EFDFT3X[ρB] = EFDFT1X[ρA, ρB] =

=
∑

µ,ν

(PA)µν



(HAX)µν + (SAX)µνλ +
m̄A∑

k̄=1

〈µAνA‖k̄A〉XxA
k̄ + 〈(µAνA)X |νxcT 〉





+
∑

µ,ν

(PAX)µν



(HA)µν + (SA)µνλ +
m̄A∑

k̄=1

〈µAνA‖k̄A〉xA
k̄ + 〈µA|νxcT |ν

A〉

+ 〈µA| −
NB

nuc∑

β=1

ZB
β

|r − RB
β |
|νA〉 +

m̄B∑

l̄=1

〈µAνA‖l̄B〉xB
l̄





−
1

2

m̄A∑

k̄=1

m̄A∑

l̄=1

〈k̄A‖l̄A〉XxA
k̄ xA

l̄ + EX
NA

nucNA
nuc



IMPLEMENTATION OF SFDFT 133

+
∑

µ,ν

(PA)µν



〈µA| −
NB

nuc∑

β=1

ZB
β

|r − RB
β |
|νA〉X +

m̄B∑

l̄=1

〈µAνA‖l̄B〉XxB
l̄





+
∑

σ,τ

(PB)στ



〈σB| −
NA

nuc∑

α=1

ZA
α

|r −RA
α |
|τB〉X +

m̄A∑

k̄=1

〈σBτB‖k̄A〉XxA
k̄





−
m̄A∑

k̄=1

m̄B∑

l̄=1

〈k̄A‖l̄B〉XxA
k̄ xB

l̄ + EX
NA

nucNB
nuc

. (6.34)

The result of Eq. 6.34 can be simplified using the ’Pulay relation’ [146]
(Eq. 6.37), where the calculation of explicit derivatives of the ACTIVE den-
sity matrix elements (PAX)µν is avoided.

The final expression for the component of the cartesian gradient of the
SCF energy EX reads:

EX =
∑

µ,ν

(P A)µν



(HAX)µν +
m̄A∑

k̄=1

〈µAνA‖k̄A〉XxA
k̄ + 〈(µAνA)X |νxcT 〉





−
∑

µ,ν

(W Aλ)µν(SAX)µν −
1

2

m̄A∑

k̄=1

m̄A∑

l̄=1

〈k̄A‖l̄A〉XxA
k̄ xA

l̄ + EX
NA

nucNA
nuc

+







∑

µ,ν

(PA)µν



〈µA| −
NB

nuc∑

β=1

ZB
β

|r − RB
β |
|νA〉X +

m̄B∑

l̄=1

〈µAνA‖l̄B〉XxB
l̄





+
∑

σ,τ

(PB)στ



〈σB| −
NA

nuc∑

α=1

ZA
α

|r − RA
α |
|τB〉X +

m̄A∑

k̄=1

〈σBτB‖k̄A〉XxA
k̄





−
m̄A∑

k̄=1

m̄B∑

l̄=1

〈k̄A‖l̄B〉XxA
k̄ xB

l̄ + EX
NA

nucNB
nuc






, (6.35)

with the following, modified energy-weighted density matrix:

(WAλ)µν = 2
occ(A)
∑

i

(ǫA
i − λ)cA

µic
A
νi, (6.36)

and where the curly braces delimit the terms specific to KSCED.
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Derivation of the ’Pulay relation’

The ’Pulay relation’ reads:

∑

µ,ν

(P AX)µν(KA)µν = −
∑

µ,ν

(WA)µν(SAX)µν , (6.37)

where WA is the energy-weighted density matrix:

(W A)µν = 2
occ(A)
∑

i

ǫA
i cA

µic
A
νi. (6.38)

Eq. 6.37 can be obtained as follows. From Eq. 6.3 we have:

∑

µ,ν

(P AX)µν(KA)µν =
∑

µ,ν

2
occ(A)
∑

i

(

cAX
µi (KA)µνc

A
νi + cA

µi(K
A)µνc

AX
νi

)

=
∑

µ,ν

2
occ(A)
∑

i

2 cAX
µi (KA)µνc

A
νi,

where the last line results because the KSCED matrix KA is symmetric.

Using the KSCED eigenvalue problem
∑

ν(KA)µνc
A
νi = ǫA

i

∑

ν(SA)µνc
A
νi, and

noting that from the orthonormalization of orbitals
∑

µ,ν cA
µi(S

A)µνc
A
νi = δij it

follows that 2
∑

µ,ν cAX
µi (SA)µνc

A
νi = −

∑

µ,ν cA
µi(S

AX)µνc
A
νi, we obtain:

∑

µ,ν

(PAX)µν(KA)µν =
∑

µ

2
occ(A)
∑

i

(

2 cAX
µi ǫA

i

∑

ν

(SA)µνc
A
νi

)

=

−
∑

µ,ν

2
occ(A)
∑

i

ǫA
i cA

µic
A
νi(S

AX)µν .

Appendix B: Binding energies and Kohn-Sham

optimized geometries

The interaction energies discussed here were corrected for the effects associ-
ated with the basis set superposition error (BSSE) and the grid superposition
error (GSE). The origin and treatment of these two types of errors is sim-
ilar as in all methods in which the interaction energy is evaluated as the
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difference of total energies. In the KSCED(s) case, BSSE originates from
the fact that for each subsystem, the basis sets includes also atomic orbitals
belonging to the other subsystem. Such orbitals are missing in the Kohn-
Sham calculations to derive the total energy of the isolated subsystem. The
Boys-Bernardi counterpoise technique [147] is used to correct for BSSE. In
this case, the counterpoise technique eliminates also the grid superposition
error because the same grid is used to calculate the energy of each isolated
monomer as well as for the dimer. The situation is different in the case of
KSCED(m) calculations. The set of centres of the atomic basis sets is the
same for both the isolated- and embedded monomer. The grids differ how-
ever. A larger one - that corresponding to the whole dimer - is used for
the embedded monomer whereas a smaller one is used for isolated monomer.
This imbalance of the grid sizes gives rise to a small numerical effect which
is nevertheless also accounted for.

In the KSCED(m) case, the same set of atomic orbitals are is used in
both calculations. Because of these particularities in correcting both types
of errors in the interaction energy, the procedure to evaluate the corrected in-
teraction energy denoted as ∆E(BSSE) throughout the text is given below.
We use the notation from Ref. [148] and start with the KSCED(s) case.

• the electronic energy of a molecular system M at geometry G computed
with basis set σ is denoted by Eσ

G(M),

• ∆E = Eα∪β
AB (AB)−

[

Eα
A(A) + Eβ

B(B)
]

is the interaction energy without
BSSE correction,

• ∆E(FCP ) = Eα∪β
AB (AB)−

[

Eα∪β
AB (A) + Eα∪β

AB (B)
]

is the interaction en-

ergy corrected by means of the function counterpoise (fCP) technique

• ∆E(BSSE) = ∆E(FCP ) + Eα
rel(A) + Eβ

rel(B) = ∆E(FCP ) + Erel is
the fCP corrected interaction energy including the relaxation effects of
the geometry of each monomer,

• Eα
rel(A) = Eα

AB(A) − Eα
A(A),

• Eβ
rel(B) = Eβ

AB(B) − Eβ
B(B).

Note that, in the KSCED(m) case all the above formulas and definitions
apply provided that the symbol α ∪ β means that the α basis set is used for



136 IMPLEMENTATION OF SFDFT

the subsystem A and β for the subsystem B. ∆E(FCP ) defined above takes
into account the correction for GSE in the KSCED(m) case.

The reported results are given as binding energies (the negative of the
above-mentioned interaction energies) in kcal/mol.

In the statistical analysis the errors have the following definitions (ERef.
i

is the reference binding energy taken from Refs. [134, 135, 136], Ei is the
calculated binding energy, and N is the number of the complexes in the
given set):

• MD (Mean difference) = 1
N

∑N
i=1(ERef.

i − Ei),

• MAD (Mean absolute difference) = 1
N

∑N
i=1 |E

Ref.
i − Ei|,

• MRAD (Mean relative absolute difference) = 1
N

∑N
i=1 |E

Ref.
i −Ei|/E

Ref.
i ,

• MAX (Maximal error) = maxN
i=1 |E

Ref.
i − Ei|,

• MAXR (Maximal relative error) = maxN
i=1 |E

Ref.
i − Ei|/E

Ref.
i ).



Table 6.7: Binding energies (in kcal/mol) calculated using the LDA and MG3S basis set. C denotes the number of compound
and S its number within the given set, respectively. KSCED(m), KSCED(s), and Ref. denote monomolecular KSCED,
supermolecular KSCED, and reference results respectively. NMAX and NMAXR are the numbers of the complexes with the
given maximal (MAX and MAXR, respectively) errors.

KSCED(m) KSCED(s)
C, S Compound −∆E −∆E(fCP ) −∆E(BSSE) −∆E −∆E(fCP ) −∆E(BSSE) −Erel Ref.

01, 01 NH3-NH3 3.88 3.91 3.88 4.17 4.01 3.99 -0.02 3.15
02, 02 HF-HF 4.04 4.05 4.04 4.51 4.13 4.12 -0.01 4.57
03, 03 H2O-H2O 5.06 5.08 5.06 5.44 4.99 4.97 -0.02 4.97
04, 04 NH3-H2O 6.53 6.58 6.53 7.03 6.77 6.72 -0.05 6.41
05, 05 HCONH2-HCONH2 14.31 14.99 14.31 15.46 15.71 15.03 -0.68 14.94
06, 06 HCOOH-HCOOH 13.54 14.62 13.53 15.00 15.52 14.43 -1.09 16.15

MD (MAD) 0.47 (0.79) 0.16 (0.52) 0.47 (0.79) -0.24 (0.64) -0.16 (0.51) 0.15 (0.57)
MAX (NMAX) 2.61 (6) 1.53 (6) 2.62 (6) 1.15 (6) 0.86 (1) 1.72 (6)

MRAD (MAXR, NMAXR) 0.10 (0.23, 1) 0.08 (0.24, 1) 0.10 (0.23, 1) 0.11 (0.32, 1) 0.09 (0.27, 1) 0.09 (0.27, 1)
07, 01 H2S-H2S 1.98 1.98 1.98 2.30 2.12 2.12 0.00 1.66
08, 02 HCl-HCl 2.02 2.02 2.02 2.31 2.19 2.18 -0.01 2.01
09, 03 H2S-HCl 3.17 3.18 3.17 3.68 3.45 3.44 -0.01 3.35
10, 04 CH3Cl-HCl 2.73 2.74 2.73 3.05 2.90 2.89 -0.01 3.55
11, 05 HCN-CH3SH 4.43 4.46 4.44 4.83 4.70 4.68 -0.02 3.59
12, 06 CH3SH-HCl 4.02 4.04 4.02 4.64 4.43 4.40 -0.03 4.16

MD (MAD) -0.01 (0.39) -0.02 (0.38) -0.01 (0.39) -0.41 (0.58) -0.24 (0.46) -0.23 (0.45)
MAX (NMAX) 0.84 (5) 0.87 (5) 0.85 (5) 1.24 (5) 1.11 (5) 1.09 (5)

MRAD (MAXR, NMAXR) 0.12 (0.23, 5) 0.12 (0.24, 5) 0.13 (0.24, 5) 0.21 (0.39, 1) 0.16 (0.31, 5) 0.16 (0.30, 5)
13, 01 He-Ne 0.08 0.08 0.08 0.14 0.09 0.09 0.00 0.04
14, 02 He-Ar 0.14 0.14 0.14 0.17 0.15 0.15 0.00 0.06
15, 03 Ne-Ne 0.07 0.07 0.07 0.20 0.08 0.08 0.00 0.08
16, 04 Ne-Ar 0.11 0.11 0.11 0.22 0.12 0.12 0.00 0.13
17, 05 CH4-Ne 0.12 0.12 0.13 0.29 0.15 0.15 0.00 0.22
18, 06 C6H6-Ne 0.00 0.23 0.23 0.00 0.23 0.23 0.00 0.47
19, 07 CH4-CH4 0.42 0.42 0.42 0.45 0.44 0.44 0.00 0.51
20, 08 C2H2-C2H2 1.77 1.77 1.77 1.90 1.85 1.84 -0.01 1.34
21, 09 C2H4-C2H4 1.04 1.05 1.03 1.10 1.08 1.06 -0.02 1.42

MD (MAD) 0.06 (0.18) 0.03 (0.15) 0.03 (0.15) -0.02 (0.21) 0.01 (0.15) 0.01 (0.15)
MAX (NMAX) 0.47 (6) 0.43 (8) 0.43 (8) 0.56 (8) 0.51 (8) 0.50 (8)

MRAD (MAXR, NMAXR) 0.54 (1.33, 2) 0.48 (1.33, 2) 0.48 (1.33, 2) 0.96 (2.50, 1) 0.49 (1.50, 2) 0.49 (1.50, 2)

MD (MAD) 0.16 (0.41) 0.05 (0.32) 0.15 (0.40) -0.20 (0.44) -0.11 (0.34) -0.02 (0.36)
MAX (NMAX) 2.61 (6) 1.53 (6) 2.62 (6) 1.24 (11) 1.11 (11) 1.72 (6)

MRAD (MAXR, NMAXR) 0.29 (1.33, 14) 0.27 (1.33, 14) 0.27 (1.33, 14) 0.50 (2.50, 13) 0.28 (1.50, 14) 0.28 (1.50, 14)



Table 6.8: Binding energies (in kcal/mol) calculated using the GGA and MG3S basis set. C denotes the number of
compound and S its number within the given set, respectively. KSCED(m), KSCED(s), and Ref. denote monomolecular
KSCED, supermolecular KSCED, and reference results respectively. NMAX and NMAXR are the numbers of the complexes
with the given maximal (MAX and MAXR, respectively) errors.

KSCED(m) KSCED(s)
C, S Compound −∆E −∆E(fCP ) −∆E(BSSE) −∆E −∆E(fCP ) −∆E(BSSE) −Erel Ref.

01, 01 NH3-NH3 5.25 5.30 5.25 5.83 5.64 5.59 -0.05 3.15
02, 02 HF-HF 4.92 4.93 4.92 5.47 5.01 5.00 -0.01 4.57
03, 03 H2O-H2O 6.03 6.05 6.03 6.49 5.96 5.94 -0.02 4.97
04, 04 NH3-H2O 7.70 7.76 7.70 8.41 8.09 8.03 -0.06 6.41
05, 05 HCONH2-HCONH2 16.86 17.73 16.87 18.33 18.71 17.85 -0.87 14.94
06, 06 HCOOH-HCOOH 16.27 17.62 16.28 18.11 18.81 17.47 -1.34 16.15

MD (MAD) -1.14 (1.14) -1.53 (1.53) -1.14 (1.14) -2.08 (2.08) -2.00 (2.00) -1.61 (1.61)
MAX (NMAX) 2.10 (1) 2.79 (5) 2.10 (1) 3.39 (5) 3.77 (5) 2.91 (5)

MRAD (MAXR, NMAXR) 0.22 (0.67, 1) 0.24 (0.68, 1) 0.22 (0.67, 1) 0.34 (0.85, 1) 0.29 (0.79, 1) 0.27 (0.77, 1)
07, 01 H2S-H2S 2.55 2.55 2.55 2.95 2.76 2.76 0.00 1.66
08, 02 HCl-HCl 2.93 2.94 2.93 3.33 3.20 3.19 -0.01 2.01
09, 03 H2S-HCl 3.96 3.97 3.96 4.57 4.35 4.34 -0.01 3.35
10, 04 CH3Cl-HCl 3.80 3.83 3.80 4.21 4.07 4.05 -0.02 3.55
11, 05 HCN-CH3SH 5.42 5.47 5.42 5.87 5.79 5.73 -0.05 3.59
12, 06 CH3SH-HCl 5.21 5.24 5.21 5.96 5.77 5.74 -0.04 4.16

MD (MAD) -0.93 (0.93) -0.95 (0.95) -0.93 (0.93) -1.43 (1.43) -1.27 (1.27) -1.25 (1.25)
MAX (NMAX) 1.83 (5) 1.88 (5) 1.83 (5) 2.28 (5) 2.20 (5) 2.14 (5)

MRAD (MAXR, NMAXR) 0.33 (0.54, 1) 0.34 (0.54, 1) 0.33 (0.54, 1) 0.51 (0.78, 1) 0.45 (0.66, 1) 0.44 (0.66, 1)
13, 01 He-Ne 0.46 0.46 0.46 0.52 0.46 0.46 0.00 0.04
14, 02 He-Ar 0.45 0.45 0.45 0.49 0.47 0.47 0.00 0.06
15, 03 Ne-Ne 0.52 0.53 0.53 0.66 0.52 0.52 0.00 0.08
16, 04 Ne-Ar 0.51 0.51 0.51 0.67 0.54 0.54 0.00 0.13
17, 05 CH4-Ne 0.60 0.60 0.60 0.82 0.66 0.66 0.00 0.22
18, 06 C6H6-Ne 0.91 0.92 0.92 1.24 0.95 0.95 0.00 0.47
19, 07 CH4-CH4 0.97 0.97 0.97 1.04 1.03 1.03 0.00 0.51
20, 08 C2H2-C2H2 2.62 2.64 2.62 2.79 2.74 2.72 -0.02 1.34
21, 09 C2H4-C2H4 1.98 2.00 1.97 2.07 2.03 2.00 -0.02 1.42

MD (MAD) -0.53 (0.53) -0.53 (0.53) -0.53 (0.53) -0.67 (0.67) -0.57 (0.57) -0.56 (0.56)
MAX (NMAX) 1.28 (8) 1.30 (8) 1.28 (8) 1.45 (8) 1.40 (8) 1.38 (8)

MRAD (MAXR, NMAXR) 3.37 (10.50, 1) 3.39 (10.50, 1) 3.39 (10.50, 1) 4.17 (12.00, 1) 3.50 (10.50, 1) 3.50 (10.50, 1)

MD (MAD) -0.82 (0.82) -0.94 (0.94) -0.82 (0.82) -1.29 (1.29) -1.18 (1.18) -1.06 (1.06)
MAX (NMAX) 2.10 (1) 2.79 (5) 2.10 (1) 3.39 (5) 3.77 (5) 2.91 (5)

MRAD (MAXR, NMAXR) 1.60 (10.50, 13) 1.62 (10.50, 13) 1.61 (10.50, 13) 2.03 (12.00, 13) 1.71 (10.50, 13) 1.70 (10.50, 13)



In the tables below, we present the key geometrical parameters of the
equilibrium geometries obtained from Kohn-Sham calculations, as well as
corresponding binding energies.

Table 6.9: The key parameters of the equilibrium geometry obtained from
KS LDA calculations. R (in Å) denotes distance between the two closest
heavy atoms of different monomers, and φ (in degrees) is the selected angle
determining the relative orientation between the monomers. The labels used
for these parameters specified in the fields DefR and Defφ identify the relevant
atoms and are the same as the ones used in the Supplementary Material-1.
The reference values Rref and φref are taken from Ref. [135].

Compound DefR R Rref R − Rref Defφ φ φref

NH3-NH3 dNN 3.00 3.27 -0.27 HNN 14 14
HF-HF dFF 2.56 2.78 -0.22 HFF 100 115
H2O-H2O dOO 2.73 2.94 -0.21 HOO 5 4
NH3-H2O dNO 2.75 2.97 -0.22 HON 6 6
HCONH2-HCONH2 dNO 2.69 2.88 -0.19 ONC 118 116
HCOOH-HCOOH dOO 2.47 2.70 -0.23 OOC 120 125

H2S-H2S dSS 3.74 4.12 -0.38 HSS 84 84
HCl-HCl dClCl 3.46 3.79 -0.33 HClCl 7 8
H2S-HCl dSCl 3.44 3.76 -0.32 HClS 88 88
CH3Cl-HCl dClCl 3.33 3.61 -0.28 ClClC 80 82
HCN-CH3SH dCS 3.33 3.52 -0.19 SNC 161 162
CH3SH-HCl dSCl 3.31 3.61 -0.30 HClS 10 11

He-Ne dHeNe 2.47 3.03 -0.56 - - -
He-Ar dHeAr 2.93 3.48 -0.55 - - -
Ne-Ne dNeNe 2.56 3.09 -0.53 - - -
Ne-Ar dNeAr 2.93 3.49 -0.56 - - -
CH4-Ne dCNe 3.24 3.49 -0.25 HNeC 70 71
C6H6-Ne dCNe 3.09 3.51 -0.42 NeCC 78 79
CH4-CH4 dCC 3.33 3.61 -0.28 HCC 70 70
C2H2-C2H2 dCC 3.14 3.46 -0.32 CCC 119 123
C2H4-C2H4 dCC 3.54 3.83 -0.29 CCC 80 80



Table 6.10: The key parameters of the equilibrium geometry obtained from
KS PW91 calculations. R (in Å) denotes distance between the two closest
heavy atoms of different monomers, and φ (in degrees) is the selected angle
determining the relative orientation between the monomers. The labels used
for these parameters specified in the fields DefR and Defφ identify the relevant
atoms and are the same as the ones used in the Supplementary Material-1.
The reference values Rref and φref are taken from Ref. [135].

Compound DefR R Rref R − Rref Defφ φ φref

NH3-NH3 dNN 3.21 3.27 -0.06 HNN 14 14
HF-HF dFF 2.72 2.78 -0.06 HFF 109 115
H2O-H2O dOO 2.87 2.94 -0.07 HOO 4 4
NH3-H2O dNO 2.88 2.97 -0.09 HON 6 6
HCONH2-HCONH2 dNO 2.84 2.88 -0.04 ONC 117 116
HCOOH-HCOOH dOO 2.61 2.70 -0.09 OOC 122 125

H2S-H2S dSS 4.01 4.12 -0.11 HSS 87 84
HCl-HCl dClCl 3.70 3.79 -0.09 HClCl 7 8
H2S-HCl dSCl 3.60 3.76 -0.16 HClS 90 88
CH3Cl-HCl dClCl 3.54 3.61 -0.07 ClClC 88 82
HCN-CH3SH dCS 3.61 3.52 0.09 SNC 171 162
CH3SH-HCl dSCl 3.48 3.61 -0.13 HClS 6 11

He-Ne dHeNe 2.76 3.03 -0.27 - 0 -
He-Ar dHeAr 3.33 3.48 -0.15 - 0 -
Ne-Ne dNeNe 2.99 3.09 -0.10 - 0 -
Ne-Ar dNeAr 3.38 3.49 -0.11 - 0 -
CH4-Ne dCNe 3.48 3.49 -0.01 HNeC 70 71
C6H6-Ne dCNe 3.53 3.51 0.02 NeCC 79 79
CH4-CH4 dCC 3.97 3.61 0.36 HCC 71 70
C2H2-C2H2 dCC 3.50 3.46 0.04 CCC 124 123
C2H4-C2H4 dCC 4.11 3.83 0.28 CCC 84 80



Table 6.11: Binding energies (in kcal/mol) calculated using the LDA and
MG3S basis set. C denotes the number of compound and S its number
within the given set, respectively. KS, and Ref. denote Kohn-Sham, and
reference results respectively.

KS
C, S Compound −∆E −∆E(fCP ) −∆E(BSSE) −Erel Ref.

01, 01 NH3-NH3 6.25 6.15 6.03 -0.12 3.15
02, 02 HF-HF 8.54 8.17 8.01 -0.16 4.57
03, 03 H2O-H2O 9.19 8.80 8.60 -0.20 4.97
04, 04 NH3-H2O 11.50 11.63 11.10 -0.53 6.41
05, 05 HCONH2-HCONH2 23.29 26.24 22.69 -3.55 14.94
06, 06 HCOOH-HCOOH 29.18 43.72 28.16 -15.56 16.15
07, 01 H2S-H2S 4.31 4.18 4.08 -0.10 1.66
08, 02 HCl-HCl 5.00 4.85 4.73 -0.12 2.01
09, 03 H2S-HCl 8.13 8.42 7.81 -0.61 3.35
10, 04 CH3Cl-HCl 7.92 8.05 7.63 -0.42 3.55
11, 05 HCN-CH3SH 6.96 7.08 6.78 -0.30 3.59
12, 06 CH3SH-HCl 11.26 12.37 10.92 -1.45 4.16
13, 01 He-Ne 0.40 0.33 0.33 0.00 0.04
14, 02 He-Ar 0.38 0.36 0.36 0.00 0.06
15, 03 Ne-Ne 0.58 0.42 0.42 0.00 0.08
16, 04 Ne-Ar 0.72 0.55 0.55 0.00 0.13
17, 05 CH4-Ne 0.67 0.52 0.52 0.00 0.22
18, 06 C6H6-Ne 1.53 1.11 1.14 0.04 0.47
19, 07 CH4-CH4 1.15 1.15 1.13 -0.02 0.51
20, 08 C2H2-C2H2 2.54 2.50 2.47 -0.02 1.34
21, 09 C2H4-C2H4 3.05 3.01 2.98 -0.03 1.42



Table 6.12: Binding energies (in kcal/mol) calculated using the GGA and
MG3S basis set. C denotes the number of compound and S its number
within the given set, respectively. KS, and Ref. denote Kohn-Sham, and
reference results respectively.

KS
C, S Compound −∆E −∆E(fCP ) −∆E(BSSE) −Erel Ref.

01, 01 NH3-NH3 3.70 3.54 3.50 -0.04 3.15
02, 02 HF-HF 5.46 5.02 4.97 -0.05 4.57
03, 03 H2O-H2O 5.89 5.43 5.35 -0.08 4.97
04, 04 NH3-H2O 7.73 7.61 7.36 -0.25 6.41
05, 05 HCONH2-HCONH2 14.98 16.09 14.52 -1.56 14.94
06, 06 HCOOH-HCOOH 17.70 22.08 16.96 -5.12 16.15
07, 01 H2S-H2S 2.04 1.90 1.88 -0.02 1.66
08, 02 HCl-HCl 2.41 2.25 2.22 -0.04 2.01
09, 03 H2S-HCl 4.72 4.70 4.45 -0.25 3.35
10, 04 CH3Cl-HCl 3.89 3.80 3.67 -0.13 3.55
11, 05 HCN-CH3SH 4.01 3.98 3.89 -0.09 3.59
12, 06 CH3SH-HCl 6.46 6.86 6.19 -0.67 4.16
13, 01 He-Ne 0.32 0.27 0.27 0.00 0.04
14, 02 He-Ar 0.25 0.24 0.24 0.00 0.06
15, 03 Ne-Ne 0.45 0.33 0.33 0.00 0.08
16, 04 Ne-Ar 0.45 0.35 0.35 0.00 0.13
17, 05 CH4-Ne 0.53 0.40 0.40 0.00 0.22
18, 06 C6H6-Ne 0.79 0.50 0.55 0.05 0.47
19, 07 CH4-CH4 0.40 0.39 0.40 0.01 0.51
20, 08 C2H2-C2H2 1.23 1.20 1.20 0.00 1.34
21, 09 C2H4-C2H4 0.82 0.78 0.79 0.01 1.42



Part IV

Multi-level simulations in
condensed phase
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Chapter 7

Modeling solvatochromic shifts
using orbital-free embedding
potential at statistically
averaged solvent density

The correspondence between the exact embedding potential and the pair of
the electron densities - that of the embedded molecule and that of its en-
vironment [Wesolowski and Warshel, J. Phys. Chem. 97 (1993), 8050] -
is used to generate the average embedding potential and to calculate sub-
sequently the solvatochromic shifts in a number of organic chromophores in
solvents of various polarities. The averaged embedding potential is evaluated
at a fictitious electron density of the solvent, which is obtained by means of
”dressing up” with electrons the classical site distributions derived from the
statistical-mechanical, 3D molecular theory of solvation (a.k.a. 3D-RISM
method) [Kovalenko in Molecular theory of solvation, Ed. by Hirata, Under-
standing Chemical Reactivity, vol. 24, 2003], self-consistently coupled with
the electronic structure of the solute. The proposed approach to modeling
solvatochromic shifts can be situated between the implicit and explicit type
of models for the solvent. Numerical examples are given for the lowest-lying
n → π∗ and π → π∗ excitations.
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7.1 Introduction

Solvents are known to affect such physicochemical properties of molecules as
geometry, conformational equilibria, reaction rates, as well as their UV/Vis,
IR, or NMR spectra, for instance [149]. A large number of computer mod-
eling techniques were developed to study solvent effects on such properties.
In the most simple ones, the environment of a solvated molecule is treated
implicitly. It is represented as a cavity in a homogeneous dielectric which
gives rise to the reaction field (for recent reviews see Ref. [150, 151]). The
implicit models have been used extensively and describe adequately the sol-
vent effects on many properties. One of their drawbacks is neglecting spe-
cific intermolecular interactions such as hydrogen bonds. Explicit solvent
models, where both the solvent as well as the environment are described
at the level of non-relativistic Schrödinger equation in Born-Oppenheimer
approximation, can be situated at another end. In principle, such models
can describe almost every property of solvated molecules but their practi-
cal applications are limited for two principal reasons: the fast increase of
the computational cost with the increase of the size of the system and the
need for averaging due to the statistical nature of the solvent. The explicit
models can be simplified by treating the whole quantum mechanical system
comprising the solvated molecule on one hand and the solvent molecules on
another hand in a hybrid way, in which the system of interest is described
at the quantum-mechanical (QM) level, whereas solvent at some lower level
of description. Such schemes are known under such labels as QM/QM [152]
or QM/MM [153]. Another group of approaches, where the solvent is de-
scribed by means of site probabilities, can be situated between implicit and
explicit levels. The statistical-mechanical molecular theory of liquids, three-
dimensional reference interaction site model (3D-RISM) [154] in particular,
provides a formal framework to obtain the probabilities (referred to in the
present work as site distributions) of finding a solvent molecule at a given
position and orientation with respect to the solute. At the 3D-RISM level,
the solvent is not uniform and the specific interactions are accounted for as
modifications of the three-dimensional site distributions, which are statis-
tical quantities. The interactions between the subsystem described at the
quantum-mechanical level and its 3D-RISM environment are taken into ac-
count in a straightforward manner by the electrostatic potential derived from
3D-RISM site distributions.

Turning back to the QM/MM and QM/QM models, the possible strategy



to include the solvent in the calculation of molecular properties is based on
the embedding strategy, in which only a selected part of the whole system
is described using quantum-mechanical descriptors, whereas the remaining
part (environment) is taken into account by means of a special potential (em-
bedding potential) added to the gas phase Hamiltonian. The most commonly
used embedding potentials comprise terms originating in the theory of in-
termolecular interactions. In the simplest version, the embedding potential
comprises only terms representing classical Coulomb interactions, which are
frequently further simplified using truncated multipole expansion, whereas
more refined potentials account also for solvent polarization through a re-
action field (discrete or continuous) [155, 156, 157, 152, 153] (for extensive
review, see [78, 77, 150, 151]). The Hohenberg-Kohn variational principle
provides another strategy to construct the embedding potential in a system-
independent way [4, 36, 39]. Wesolowski and Warshel [4] showed that the
optimal (i.e. minimizing the Hohenberg-Kohn energy functional [1]) embed-
ding potential is uniquely determined by the pair of the electron densities
- that of the investigated embedded system (ρA(~r)) and that of its envi-
ronment (ρB(~r)). Using density functionals for: i) the kinetic energy of
non-interacting reference system (Ts[ρ]) and ii) the exchange-correlation en-
ergy (Exc[ρ]), known in the Kohn-Sham formulation [2] of density functional
theory and their constrained search definitions [3], this correspondence reads:

vKSCED
emb [ρA, ρB;~r] = vB

ext(~r) +
∫

ρB(~r′)

|~r′ − ~r|
d~r′ (7.1)

+ vnad
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and
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are non-additive kinetic-energy and exchange-correlation potentials, respec-
tively. Term vB

ext(~r) is external potential generated by nuclei of the environ-
ment.



The above equation provides system-independent, exact expression for the
universal embedding potential coupling two subsystems. The Kohn-Sham-
like equations for embedded orbitals φA:

[

−
1

2
∇2 + vKS

eff [ρA, ~r] + vKSCED
eff [ρA, ρB;~r]

]

φA
i = ǫA

i φA
i i = 1, NA (7.4)

provide a self-consistent way to minimize of the energy of the total system
for a given ρB(~r), i.e., to optimize the embedded electron density in the sub-

system A (ρA = 2
∑NA

i

∣
∣
∣φA

i

∣
∣
∣

2
). For the complete description of the formalism

based on the above equation see Ref. [29]. The environment is described
only by its electron density ρB, which is an assumed quantity. No additional
information about orbital structure of solvent is required. Note also, that
density ρB remains constant during iterative process of solving Eq. 7.4. For
this reasons we commonly refer to such method as Orbital-Free Embedding
(OFE) or Frozen Density Embedding (FDE). The label KSCED in Eq. 7.4
stands for the Kohn-Sham Equations with Constrained Electron Density and
is introduced to indicate that the total effective potential in Eq. 7.4 differs
from the one in the Kohn-Sham equations.

Although vKSCED
emb [ρA, ρB;~r] was derived for embedding a reference sys-

tem of non-interacting electrons, the same or very similar correspondence
between the optimal embedding potential and the pair of electron densities
ρA and ρB exist for embedding other quantum mechanical objects such as
embedded wavefunction [36] or embedded one-particle reduced density ma-
trix [39]. The results of practical applications of the embedding potential
given in Eq. 7.1 in combination with wavefunction based models are encour-
aging [37, 38, 158]. Considering applications of Eq. 7.4, various studies are
available in the literature [127, 53, 86, 84]. In all of them the quality of
the results hinges on the choice of the density ρB corresponding to the en-
vironment. Owing to the fact that this density is an assumed quantity, a
variety of theoretical methods working at different level of approximation
can be applied to obtain ρB. In our common practice, depending on the
studied system or on the observable of interest, we adopted several strategies
to generate ρB, all of them based on the Kohn-Sham formalism. The lowest
level of description of the electron density of the environment is to construct
ρB as the sum of the atomic or molecular densities of atoms or molecules in
the environment [159]. This level might be adequate if neither the solvent
molecules nor the embedded molecule are polar. This model can be further



refined if ρB(~r) is obtained in one Kohn-Sham calculation for the whole en-
vironment but with the absence of the embedded molecule. Such treatment
of the solvent is adequate only if the electron density of the environment is
not significantly modified by the presence of the solute (electronic polariza-
tion of the solvent molecules, for instance). In such a way, ρB includes the
interactions between molecules constituting it, however, it does not account
for the polarization of the environment by the embedded subsystem. This
can be partly overcome by performing the Kohn-Sham calculations of the
whole environment including point charges or dipole moments representing
the field of embedded system, leading to pre-polarized ρB, i.e., to use as ρB

the electron density of the molecules in the environment, which is polarized
by the electric field generated by the solute. The most accurate approach
is not to do any assumptions concerning ρB but to obtain it variationally,
i.e., to find such a pair of densities ρA and ρB, that minimizes the Cortona
functional for the total energy [28]. Such minimization can be performed
using the the freeze-and-thaw algorithm [31]. In freeze-and-thaw calcu-
lations, both the embedded molecule and the environment are treated on
equal footing and the notion of embedded system and the environment is not
applicable. In our applications of Eq. 7.4, the freeze-and-thaw calculations
are used to verify the adequacy of simplifications made for ρB(~r) in large
scale simulations. Numerical examples of the convergence of the calculated
properties along the above hierarchy of methods to generate the electron den-
sity of the environment can be found in our previous works on ligand-fields
splitting of f-levels in lanthanide impurities [84] or on solvent effect on the
UV/Vis spectra of organic chromophores [53, 86]. In the discussed above
schemes, ρB(~r) has always a quantum-chemical origin and can be associated
with some molecular system at a given geometry. In the present work, an
alternative approach to generate density ρB(~r) is introduced. The quantum-
chemical descriptors for the electron density of the environment are not used
at all. Instead, the electron density of the environment is obtained using the
classical-theory-of-liquids derived site distributions, which are subsequently
”dressed up” with electrons. The resulting electron density - the averaged
electron density of the solvent denoted with 〈ρB(~r)〉 throughout this work -
is used subsequently in the evaluation of the orbital-free embedding potential
given in Eq. 7.1. We exploit here explicitly the fact that Eq. 7.1 provides an
unique correspondence between the exact embedding potential and charge
densities even if ρB(~r) is not obtained from any quantum mechanical method
[4, 36, 39]. 〈ρB(~r)〉 cannot be associated with the electron density of any



molecular system as it represents a local function giving the ensemble av-
eraged probability to find an electron in a given place in space. This is an
entirely new strategy in the orbital-free embedding calculations. In the sub-
sequent discussion, we will refer to such potential as the average orbital-free
embedding potential or just average embedding potential. It is worthwhile to
recall that the idea of averaging the potential generated by the solvent is not
new in molecular simulations [160, 161, 162, 163]. The name - ”Averaged
Solvent Electrostatic Potential” - used for such a potential in Ref. [160], for
instance, illustrates clearly the difference between such averaged potentials
and the average embedding potential in the present work, where it is not the
potential which is averaged but the solvent charge density, and where the
potential in question includes also a non-electrostatic part. The difference
between averaging the potential directly or calculating it at the averaged sol-
vent charge density arises from the fact that the potential given by Eq. 2.7
is non-linear in ρB [164].

The stress on the embedding potential not just on the expression for the
total energy of an embedded system is made here in view of our interest in
properties directly related to the electronic structure. The target property
analyzed in the present work is the shift of the absorption band center of
a chromophore induced by the interactions with the solvent molecules (sol-
vatochromic shift). A straightforward approach to simulate solvatochromic
shifts uses an ensemble representing the solvent and evaluation of the ex-
citation energy for each configuration in the ensemble. The quality of the
spectral shifts obtained in this way depends on the quality of the evaluated
excitation energy at each geometry but also on the used sample of geometries
of the solvent. Concerning the latter factor, molecular dynamics simulations
are frequently used for this purpose [53, 86, 165, 166]. Such simulations allow
one to obtain not only the spectral shifts but also the shape of the absorption
bands.

As far as the former factor is concerned, the spectral shifts can be obtained
following the linear-response time-dependent density-functional-theory (LR-
TDDFT) strategy [51] applied for the embedded orbitals (i.e. orbitals de-
rived from Eq. 7.4). For a description of the details of such calculations and
benchmark results, see Refs. [52, 127]. The absorption band in such a case
is just:

I(ω) =
∑

i

fi

[

ρB({RB
j })

]

δ
(

ω − ωi

[

ρB({RB
j })

])

(7.5)



where fi and ωi are the oscillator strength and the resonance frequency for
the transition i, {RB

j } denotes the positions of the nuclei in the environment
(j changes from 1 to the total number of atoms in the environment), fi

and ωi are functionals of the electron density ρB(~r) of the environment of
the chromophore, and δ is the Dirac delta function. Note that the square
brackets in the above equation denote the fact that the evaluated quantity
is a functional of the electron density, i.e., is uniquely determined by the
function inside the square brackets.

For an environment of a flexible structure, such as the molecules sur-
rounding a chromophore in the liquid phase, the picture based on single
arrangement of nuclei in the environment ({RB

j }) is not adequate. Due to
difference in time-scale of the electronic transitions and the motions of the
nuclei in the environment, Eq. 7.5 can be generalized by averaging over the
ensamble of configurations {RB(n)

j }, where n is the index for the configura-
tions of the nuclei in the solvent.

I(ω) =

〈
∑

i

fi

[

ρB({RB(n)
j })

]

δ
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ω − ωi

[

ρB({RB(n)
j })

])
〉

n
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In our previously reported work on acetone [53] and on aminocoumarin [86],

the ensemble of structures of the solvent {RB(n)
j } was obtained from either

classical, i.e., pair-potential based or quantum-mechanical (Car-Parrinello [167])
molecular dynamics simulations. For such chromophores, which are charac-
terized by broad and diffuse absorption bands, the strategy based on Eq. 7.6
implies, however, averaging over a large number of orientations, otherwise
the sample of the used configurations is not representative. The CPU costs
of the calculation of the excitation energy at one configuration of the solvent
can be significantly reduced by using the aforementioned hierarchy of meth-
ods to generate ρB(~r) in a simplified manner. In practice, it is the number
of configurations used to represent the solvent, that determines the overall
CPU costs of the simulation of the absorption band.

In the present work, we consider an alternative strategy to obtain the
spectral shifts. Instead of averaging fi and ωi over a large number of configu-
rations, these quantities are evaluated for a fictitious density 〈ρB(~r)〉, which
is the ensemble averaged electron density of the environment. Simulating
the absorption bands by performing the orbital-free embedding calculations
of the excitation energy at the averaged solvent density 〈ρB(~r)〉 is proposed
here principally as the method to overcome the difficulty in obtaining the



excitation energy for a sufficient number of solvent configurations to repre-
sent adequately the statistical ensemble. This problem arises from the fact
that the overall computational costs of the simulation increases linearly with
the number of configurations used in the averaging procedure and is propor-
tional to the computational cost of the evaluation of the excitation energy
for a given configuration of the solvent.

The strategy to obtain the averaged quantities applied in the present work
corresponds to the following approximation:

I(ω) =

〈
∑

i
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ρB({RB(n)
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]
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≈
∑

i

fi [〈ρB〉] δ(ω − ωi [〈ρB〉])

Note that the averaged electron density of the solvent (〈ρB〉) depends
on the position but it does not involve any explicit variables describing the
geometry of the solvent molecules. Simplifying the description of the en-
vironment by abandoning the atomistic treatment of the ensemble of the
solvent and using, instead, the average density of the solvent 〈ρB(~r)〉 in the
evaluation of excitation energy aims, therefore, at obtaining better averages.
It is, however, an approximation introduced in Eq. 7.7. Moreover, 〈ρB(~r)〉
provides less complete descriptor of the solvent as the statistical ensemble
of configurations. For instance, the shape of the absorption band cannot
be obtained from such calculations but only individual lines (see Eq. 7.7).
Finally, the position of the absorption band depends on the quality of the
used 〈ρB(~r)〉.

Eq. 7.7 is the main new element in the computational protocol for calcu-
lating the solvatochromic shifts proposed in this work and it is also one of
the two main approximations (the other is the procedure to obtain 〈ρB(~r)〉
described in the subsequent sections). Besides the fact that, the approxima-
tion given in Eq. 7.7 cannot describe the shapes of the absorption lines, even
the position of the absorption band can be affected by this approximation.
Averaging the electron density of the solvent, neglects the coupling between
the instantaneous electronic structure of the solute and the structure of the
solvent. Such coupling can be expected to play an important role for non-
polar but polarisable solutes in polar solvents. The unique correspondence
between the pair of electron densities (solvent and solute) and the embed-
ding potential given in Eq. 7.1 brings also another important consequence



for the linear-response time-dependent density-functional-theory calculations
which hinge on functional derivatives of the effective potential. Such corre-
spondence makes it possible not only to replace averaging the potential by
potential calculated at the average density 〈ρB(~r)〉 but also do the same for
response kernel, it is instead of averaging the kernel, calculation of the kernel
at 〈ρB(~r)〉.

In the present work, we obtain 〈ρB(~r)〉 not from quantum-mechanical
calculations, but by ”dressing up” with electrons the classical site distribu-
tions (quantities related to nuclear positions rather than to electrons) ob-
tained from a particular variant of the Ornstein-Zernike equations of the
statistical theory of liquids, i.e., the three-dimensional reference interact-
ing site model with the Kovalenko-Hirata closure approximation (3D-RISM-
KH) [154]. Such densities are subsequently ”dressed up” with electron den-
sities leading to the average electron density of the solvent, which is denoted
with 〈ρB(~r)〉. The overall computational protocol combining: the average
electron density of the liquid obtained as ”dressed up” 3D-RISM-KH site dis-
tributions, orbital-free embedding with the applied approximants in Eq. 7.4,
and the evaluation of the spectral shifts from linear-response calculations
for embedded subsystem, will be labeled with OFE/RISM for the sake of
simplicity in the present work.

Several chromophores, for which the strong dependency of the UV/Vis
spectra bands on the surrounding media is known, are chosen for the study.
Our previous works validated the use of the orbital-free embedding strategy
to obtain hydrogen-bonding induced shifts of the excitation energies in the
case of a rigid environment of the chromophore. The present work addresses
rather the issue of efficient calculation of averages for flexible environments
such as the considered solvents.

7.2 Methodology

7.2.1 Spectral shifts from the orbital-free embedding
calculations at a rigid geometry of the environ-

ment

The applications of the orbital-free embedding potential to evaluate the
complexation-induced shifts of the low-lying excitations in organic chro-
mophores follows the same framework as the one introduced in Ref. [52]



and subsequently applied in several works [53, 86, 127]. In this framework,
the linear-response time-dependent density-functional strategy to obtain elec-
tronic excitation is applied not for the Kohn-Sham orbitals and the Kohn-
Sham effective potential but for the corresponding quantities in Eq. 7.4, i.e.,
the embedded orbitals and the total effective potential. Such computational
scheme is especially suited for modeling the complexation induced shifts and
not the absolute values of the excitation energies because the latter depend on
the quality of the excitation energy for the isolated chromophore derived from
LR-TDDFT. The straightforward application of the supermolecular strategy,
i.e., evaluation of the shifts as the difference between the LR-TDDFT exci-
tation energies calculated for the chromophore in the complex and for the
isolated chromophore, hinges on the cancellation of errors in the effective
potential and in its functional derivative (response kernel). The errors in
these quantities result in the errors in excitation energies of the magnitude
reaching the 0.1-0.2 eV [168], i.e., the same order of magnitude as the in-
vestigated spectral shifts. The situation is quite different in the orbital-free
embedding case. Owing to the unique correspondence between the pair of
the electron densities (chromophore and its environment) and the embedding
potential (Eq. 7.1), also the embedding component of the response kernel is
uniquely determined by this pair of densities. The errors in the calculated
spectral shifts at a given rigid geometry of the environment arise from the
fact that non-electrostatic terms in Eq. 7.1 are defined as density function-
als of unknown analytical form and they are evaluated using approximants.
In the hydrogen bonded complexes, the electrostatic part of the orbital-free
embedding potential dominates and the errors in the part evaluated using ap-
proximants can be expected to play smaller relative role. As a consequence,
the errors in the spectral shifts can be expected to be smaller than the ones
in the absolute excitation energies. Indeed, numerical results confirm this
[52, 127]. The absolute values of the excitation energies in the complex
are as good as their counterparts for the isolated component and can vary
depending on the choice for the approximant for the exchange-correlation po-
tential and its functional derivative. The applied approach is by construction
only applicable for excitations localized in the chromophore [58]. Otherwise,
the non-dynamical (frequency dependent) response of the electron density in
the environment has to be taken into account. In the case of localized ex-
citations, the embedding strategy offers a serious advantage over a possible
alternative, in which the LR-TDDFT calculations are applied for the whole
system including the chromophore and the environment. Such calculations



not only scale unfavorably with the size of the environment but are known
to suffer from artificial low lying charge-transfer excitations [54, 55, 56, 57].
The importance of such spurious excitations increases with increasing size
of the system. Restricting the orbital space to the confined system provides
thus a practical remedy for this problem.

The applied scheme to evaluate the spectral shifts in the case of a struc-
turally rigid environment of a chromophore is based on a number of approx-
imations/simplifications of various nature. Some of them have clear physical
interpretation, others are due to the use of approximants for the density
functionals defined in the exact embedding theory, and some are of purely
technical character. They are summarized below:

• NDRE - neglect of the dynamic response in the environment.

By construction, neither in solving Eq. 7.4 nor in solving response equa-
tions in LR-TDDFT, the electron density ρB is allowed to vary. It is
fixed (frozen) at some initial value. As the consequence, the dynamic re-
sponse of the environment to the electron excitation is neglected. Only
virtual embedded orbitals (φA in Eq. 7.4) which are localized on chro-
mophore are used to construct its response. Therefore, only interfaces
in which the environment does not absorb in the considered spectral
range can be accurately described. In the considered cases, NDRE is
an adequate approximation as confirmed in our dedicated analysis of
complexation induced shifts in similar systems [127]. NDRE can be
lifted by using the full framework combining the subsystem formula-
tion of DFT with LR-TDDFT [51]. In practice, the most efficient way
to lift this simplification is to allow for coupled responses [58].

• The use of the same geometry of the solute with- and without the
environment.

It was already shown in previous studies, that influence of the solvent
on the geometry and absorption spectrum of the solute can be very
important [169, 170]. For the examples provided in this work, the sol-
vatochromic shifts were evaluated assuming the same geometry of the
solute in each of the considered solvents. This is obviously an approxi-
mation. Dedicated studies on solvatochromic shifts in a representative
sample of the chromophores indicate that this effects affects the shifts
in vertical excitation energy on average by 20% [171]. This bring us to



another approximation made commonly in the simulations of the sol-
vatochromic shifts, where it is assumed that the shifts in the maxima
of the absorption bands from the gas phase to a solvent (or between
two different solvents) is the same as the shifts in the vertical excita-
tion energy. In this work, the same assumption is made (for detailed
analysis see Ref. [172]).

• The use of approximants instead of the exact density functionals.

In practical calculations, the kinetic end exchange-correlation compo-
nents of the effective potential in Eq. 7.4 and of the response kernel are
obviously not evaluated exactly but by means of some approximants
to these quantities. The choices for the approximants made for these
quantities were tested previously for similar systems [127, 52]. The
term vnad

t [ρA, ρB](~r) in Eq. 7.4 vanishes with the increasing distance
from chromophore. The applied approximant for this term satisfies
this exact condition. It can be expected, therefore, that the asymp-
totic behavior of the embedding potential used in practical calculations
is correct. Note that the electrostatic terms in Eq. 7.1 are exact. In
our previously reported study on the DNA base pairs [52], it was shown
that maximum deviation in the shifts of excitation energies obtained
applying embedding strategy does not exceed 0.05 eV when compared
to supermolecular approach. The respective deviation with the experi-
mental result was recently established to not exceed 0.04 eV [127]. The
magnitude of such discrepancies is, however, smaller than the magni-
tude of the solvatochromic shifts in most of the cases analyzed in the
present work. For these reasons we will not discuss solvent induced
shifts of absorption bands smaller than these values.

• Numerical implementation.

All the calculations are made using finite basis sets, numerical grid inte-
grations, and the iterative procedure to diagonalize the response matrix
in LR-TDDFT. The choices made for these numerical parameters (see
the ”computational details section” are based on the accumulated nu-
merical experience with the used solvent and are expected to affect the
calculation spectral shifts less than the aforementioned approximants
and approximations.

The overall accuracy of the solvatochromic shifts is not only determined
by the above factors, which determine the accuracy of spectral shifts at a



rigid environment, but also on the quality of the description of the statisti-
cally fluctuating solvent. In particular, it is affected by the main approxi-
mation of this work given in Eq. 7.7. The factors affecting the quality of the
average electron density of the environment (〈ρB(~r)〉) used in Eq. 7.7 will be
overviewed in the subsequent sections.

7.2.2 Classical site distributions from the 3D-RISM-
KH theory

The classical site distributions for a molecular solvent around a solute of
arbitrary shape are obtained by using the 3D-RISM-KH molecular theory of
solvation [154, 173]. The 3D-RISM integral equation can be derived from the
six-dimensional, molecular Ornstein-Zernike integral equation [174] for the
solute-solvent correlation functions by averaging out the orientation degrees
of freedom of solvent molecules while keeping the orientation of the solute
macromolecule described at the three-dimensional level [154, 173]. It has the
form

huv
γ (~r) =

∑

α

∫

d~r′cuv
α (~r − ~r′)χvv

αγ(r′), (7.8)

where huv
α (~r) is the 3D total correlation function of solvent site γ around the

solute macromolecule (the superscripts “u” and “v” denoting the solute and
solvent, respectively) giving the normalized deviation of the solvent density
from its bulk value, which is related to the 3D solute-solvent site distribution
function gγ(~r) = hγ(~r) + 1, and cuv

α (~r) is the 3D direct correlation func-
tion representing “direct” correlations between the solute and solvent site γ,
which has the long-range asymptotics of the 3D solute-solvent site interaction
potential: cuv

γ (~r) ∼ −βuuv
γ (~r), where β = 1/kBT is the inverse temperature

with the Boltzmann constant kB. The site-site susceptibility of pure solvent
χvv

αγ(r) = ωvv
αγ(r) + ρv

α hvv
αγ(r) gives the response, in terms of the distribu-

tions in pure bulk solvent, of site γ to the presence of site α at separation
r. It consists of the intramolecular matrix ωvv

αγ(r) = δ(r − lvv
αγ)/(4π(lvv

αγ)2)
specifying the intramolecular correlations of solvent molecules with the ge-
ometry given by the z-matrix of site separations lvv

αγ , and the intermolecular
part given by the bulk solvent site number density ρv

α times the site-site ra-
dial correlation functions of pure bulk solvent hvv

αγ(r). The latter is obtained
in advance to the 3D-RISM calculations from the dielectrically consistent



RISM theory (DRISM) developed by Perkyns and Pettitt [175] which pro-
vides a consistent description of the dielectric properties for ions in polar
solvent. The DRISM integral equation is complemented with the KH clo-
sure approximation (see below). The DRISM-KH theory ensures appropriate
treatment of systems with strongly associating components, such as aqueous
electrolyte solutions and solvent/co-solvent mixtures, in a wide range of con-
centrations [154, 176, 177, 178, 179, 180, 181, 182, 183, 184]. While yielding
the dielectric properties of polar solvent around the solute macromolecule
at the level of a macroscopic dielectric constant, the bulk solvent suscepti-
bility χαγ(~r) obtained from the DRISM-KH equations and then inserted in
the 3D-RISM equation 7.8 properly accounts for short-range solvation struc-
ture effects, such as chemical specificities of solute and solvent molecules,
hydrogen bonding, hydrophobicity, steric effects, nanoconfinement, etc.

The convolution in the 3D-RISM Eq. 7.8 (as well as that in the DRISM
integral equation) is calculated as a product in the reciprocal space. In
calculating the forward and backward Fourier transforms between the di-
rect and reciprocal space by using the 3D fast Fourier transform (3D-FFT)
technique, the long-range electrostatic parts of the direct and total correla-
tion functions are separated out and handled analytically for both the radial
solvent-solvent and 3D solute-solvent correlation functions to ensure their
proper asymptotics. For ionic or highly polar solutes, simply truncating the
electrostatic asymptotics would lead to catastrophic errors. Using the Ewald
summation in a 3D periodic supercell causes huge distortions in the solvation
structure and thermodynamics, but the corresponding analytical corrections
restore the proper non-periodic asymptotics of the 3D site correlation func-
tions and accurately eliminate the errors in the solvation chemical potential
[185, 186, 154]. Here we use a somewhat different, non-periodic version of
the analytical account for the electrostatic asymptotics that we had imple-
mented in the 3D-RISM-KH coupled with KS-DFT in the ADF program
package [187]. The 3D solute-solvent site interaction potential uuv

γ (~r) and
the 3D site correlation functions cuv

γ and huv
γ are specified on a 3D linear grid

in a nonperiodic rectangular box. The electrostatic asymptotics are specified
analytically and subtracted from cuv

γ and huv
γ before applying the 3D-FFT

to the remaining short-range parts and then added back after the transform.
The 3D box has to be large enough to to have the short-range parts of the
3D site correlation functions around the macromolecular solute decay at its
boundaries. It has to be padded with zeros to double size in each dimen-
sion when performing the 3D-FFT to prevent aliasing, but can be truncated



back to the original size in the direct space after calculating the product
cuv
γ (~r)χvv

αγ(k) for the convolution in Eq. 7.8 and performing the backward 3D-
FFT. The electrostatic asymptotics of the 3D direct correlation function is
given by that of the 3D interaction potential, cuv(as)

γ (~r) = −βuuv(as)
γ (~r). (The

asymptotics cuv(as)
γ (~r) and uuv(as)

γ (~r) cancel out in the closure relation (7.14) -
see below, and the equations are in fact being solved for the short-range part
of cuv

γ (~r).) It is chosen as the potential of the site charges gauss-smeared with
half-width η which has a convenient form in both the direct and reciprocal
space (with the suppressed singularity at r → 0 and gaussian decay for large
k),

cuv(as)
γ (~r) = −β

∑

i

Q̃u
i q

v
γ

|~r − ~Ri|
erf
(
|~r − ~Ri|

η

)

, (7.9)

cuv(as)
γ (~k) = −β

∑

i

4πQ̃u
i q

v
γ

k2
exp

(

−
1

4
k2η2 + i~k · ~Ri

)

, (7.10)

where Q̃u
i are point-like partial site charges representing the charge distri-

bution of both the solute electrons and atomic cores, and the smearing pa-
rameter is set as η ≈ 1 Åto ensure smoothness of the form (7.9) within
a molecular core and quick decay of the form (7.10) with k. Substitution

of the long-range cuv(as)
γ (~k) given by (7.10) into the 3D-RISM integral equa-

tion (7.8) yields the renormalized, long-range h̃uv(as)
γ (~k) =

∑

α cuv(as)
α (~k)χvv

αγ(k)
which has an involved form rather not amenable to analytical transforma-
tion to the direct space. However, it suffices instead to introduce a simple
analytical form but with the same asymptotic behavior. The electrostatic
asymptotics of the 3D total correlation function huv

γ represents the distri-
bution of solvent site charges resulting in dielectric screening of the solute
charge density by solvent polar molecules and Debye screening by solvent
ions. Thus, it is dipole-dipole for a polar solute in polar solvent, ion-dipole
for an ionic solute in polar solvent, and Debye-screened ion-ion for an ionic
solute in electrolyte solution. The latter cannot be neglected in the case of
electrolyte solution at medium and especially low ionic concentration, and
the analytical electrostatic asymptotics subtracted from huv

γ before applying
the backward 3D-FFT and then added back are thus specified as

huv(as)
γ (~k) = −β

∑

i

4πQ̃u
i q

v
γ

k2 + κ2
D

exp
(

−
1

4
k2η2 + i~k · ~Ri

)

, (7.11)



huv(as)
γ (~r) = −β

∑

i

Q̃u
i q

v
γ

ε|~r − ~Ri|
exp

(

−
1

4
κ2

Dη2
)

×
1

2






exp

(

−κD|~r − ~Ri|
) [

1 − erf
(

κDη

2
−

|~r − ~Ri|

η

)]

− exp
(

κD|~r − ~Ri|
) [

1 − erf
(

κDη

2
+

|~r − ~Ri|

η

)]





,(7.12)

where ε in the dielectric constant of the polar solvent (specified as an input

parameter into the DRISM theory for bulk solvent), and κD =
(

4πβ
∑

j ρv
j q

v
j 2/ε

)1/2

is the inverse Debye length of the electrolyte solution with ionic species j of
concentrations ρv

j .

The 3D-RISM integral equation 7.8 must be complemented with a clo-
sure relating the total and direct correlation functions. Although the exact
closure to the Ornstein-Zernike (OZ) integral equation of liquid state the-
ory is known, it has the form of an extremely complex non-local functional
of the total correlation function [174]. Therefore, it is replaced in prac-
tice with approximations adequately representing the physics and/or chem-
istry phenomena occurring in the system, among the most popular being the
so-called hypernetted chain (HNC) closure, mean-spherical approximation
(MSA), Percus-Yevick (PY) closure, Verlet closure, Martynov-Sarkisov (MS)
closure, and others [174]. It is not trivial difficulty to represent, with just
one of these approximations, both short-range features of solvation struc-
ture (such as steric effects and excluded volume of the repulsive cores) and
long-range effects (association due to chemical specificities in complex liquids
and long-range fluctuations in near-critical fluids and liquid mixtures near
separation lines). To overcome such difficulties, a renormalization approach
was developed in which the interaction potential between the particles is
subdivided into a ”reference” subsystem amenable to an accurate treatment
with one of the closures (for example, liquid of hard-sphere or specially de-
fined repulsive cores) and “the rest” of the interaction potential, typically the
long-range part of Lennard-Jones and the electrostatics, and the OZ integral
equation is re-written accordingly. The resulting combined closure provides a
considerable improvement, for example, the reference HNC closure (RHNC)
[174] very accurately describes a system of Lennard-Jones particles. How-
ever, a problem occurs for a strong crossover between short- and long-range
features of the solvation structure: repulsive core exclusion areas, association



peaks at different distances, and long-range attraction tails of the distribu-
tion functions; unfortunately, this is typically the case for complex liquids and
liquid mixtures, and a huge variety of macromolecules and nanostructures in
solution.

The closures to the RISM and 3D-RISM integral equations for the site-site
and 3D site correlations are constructed in analogy with the above closure
approximations to the OZ integral equation for simple liquids. The RISM-PY
theory pioneered by Chandler and Andersen [188] was successful in describing
hard-body molecular fluids. Hirata and co-workers extended the description
to polar molecular liquids and electrolyte solutions by proposing the RISM-
HNC theory [189, 190, 191]. The 3D-RISM-HNC theory was conceptually
sketched by Chandler and co-workers in their derivation of density functional
theory for classical site distributions of molecular liquids [192, 193] and then
introduced in that way by Beglov and Roux for polar liquids [194]. Kovalenko
and Hirata derived the 3D-RISM integral equation from the six-dimensional
molecular Ornstein-Zernike integral equation [174] for the solute-solvent cor-
relation functions by averaging out the orientation degrees of freedom of
solvent molecules while keeping the orientation of the solute macromolecule
described at the three-dimensional level [154, 173].

The 3D analogue of the so-called hypernetted chain (HNC) closure to the
3D-RISM equation 7.8 is constructed as

guv
γ (~r) = exp(−βuuv

γ (~r) + huv
γ (~r) − cuv

γ (~r)), (7.13)

where uuv
γ (~r) is the 3D interaction potential between solvent site γ and the

whole solute. Beglov and Roux [194] have obtained the 3D-RISM/HNC equa-
tions, Eqs. 7.8 and 7.13, within the density functional method by reduction
of the generalized closure of Chandler, McCoy, and Singer for nonuniform
polyatomic systems [195]. In the case of a relatively strong attractive po-
tential between the solute and solvent sites, the 3D-HNC closure 7.13 can
become divergent [173, 185, 186, 154].

A closure approximation appropriate and successful for the description
of the solvation structure and thermodynamics of various inorganic and or-
ganic solutes and macromolecules with multiple partial charges in different
non-polar and polar liquids, mixtures, and electrolyte solutions, as well as
solid-liquid interfaces has been proposed by Kovalenko and Hirata (KH ap-



proximation) [173, 154]:

guv
γ (~r) =

{

exp
(

X uv
γ (~r)

)

for X uv
γ (~r) ≤ 0

1 + X uv
γ (~r) for X uv

γ (~r) > 0
,

X uv
γ (~r) = −βuuv

γ (~r) + huv
γ (~r) − cuv

γ (~r).

(7.14)

Eq. 7.14 combines the exponential HNC approximation for the regions of
depletion of the distribution function, guv

γ (~r) < 1, the mean spherical ap-
proximation (MSA) for the regions of enrichment, guv

γ (~r) > 1, with the func-
tion and its first derivative continuous at the joint point X uv

γ (~r) = 0. The
3D-KH approximation 7.14 enforces the proper long-range asymptotics of
the direct correlation function cuv

γ (~r) in the same way as the original HNC
and MSA closures. The MSA-type linearization prevents the artifact of the
distribution function diverging in the regions with a large potential. This
partial linearization somewhat reduces and widens high peaks of the distri-
bution functions, whereas it much less affects the coordination numbers of
the solvation shells.

The 3D-HNC approximation 7.13 leads to the excess chemical potential
of solvation in the closed analytical form [173, 154]

∆µHNC = kBT
∑

γ

ρv
γ

∫

d~r
[

1

2
(huv

γ (~r))2 −
1

2
huv

γ (~r)cuv
γ (~r) − cuv

γ (~r)
]

(7.15)

equivalent to that derived by Singer and Chandler for the site-site RISM/HNC
equations [196]. For the 3D-KH closure 7.14, the analytical expression is
somewhat different [173, 154],

∆µKH = kBT
∑

γ

ρv
γ

∫

d~r
[

1

2
(huv

γ (~r))2Θ(−huv
γ (~r)) −

1

2
huv

γ (~r)cuv
γ (~r) − cuv

γ (~r)
]

,

(7.16)
where Θ in the Heaviside step function which puts the term h2 in effect in
the regions of density depletion only.

Accurate calculation of the integral in the excess chemical potential of
solvation (7.16) (or equally in (7.15)) requires analytical treatment of the
asymptotics of the 3D correlation functions (7.9) and (7.12). In the last
term in the expression (7.16), the electrostatic asymptotics of cuv

γ (~r) cancel
out upon the summation over the site index γ because of the electroneutrality
condition. With the short-range parts of the 3D correlation functions decay-
ing at the 3D box boundaries, the asymptotic forms of the first two terms



in (7.16) are subtracted from it and then added back, forming the short-
range and long-range integrands, the former integrated numerically over the
3D box volume V and the latter containing just the analytical asymptotics
integrated over the whole space,

∆µKH = kBT
∑

γ

ρv
γ

∫

V

d~r
[
1

2
(huv

γ (~r))2Θ(−huv
γ (~r)) −

1

2
huv

γ (~r)cuv
γ (~r) − cuv

γ (~r)

−
1

2
(huv(as)

γ (~r))2Θ(Quqv
j ) +

1

2
huv(as)

γ (~r)cuv(as)
γ (~r)

]

+ kBT
∑

γ

ρv
γ

∫

d~r
[
1

2
(huv(as)

γ (~r))2Θ(Quqv
j ) −

1

2
huv(as)

γ (~r)cuv(as)
γ (~r)

]

,(7.17)

where Qu =
∑

i Q
u
i is the total charge of the solute, and qv

j =
∑

γ∈j qv
γ is

the total charge of solute ionic species j which site γ belongs to. The factor
Θ(Quqv

j ) switches the asymptotics term (huv(as)
γ (~r))2 on for like charges of the

solute and solvent ion Qu and qv
j , and off for unlike ones, according to the term

(huv
γ (~r))2Θ(−huv

γ (~r)) being switched on at long range in the excess chemical
potential (16) by the depleted long-range tale of huv

γ (~r) for like charges and
off by its enhanced long-range tale for unlike charges. The factor Θ(Quqv

j ) is
dropped for the excess chemical potential (15) in the 3D-HNC approximation
(13). In the expression (17), the latter integral of the asymptotics over the
whole space is analytically reduced to 1D integrals easy to compute,

kBT
∑

γ

ρv
γ

∫

d~r
[

1

2
(huv(as)

γ (~r))2Θ(Quqv
j ) −

1

2
huv(as)

γ (~r)cuv(as)
γ (~r)

]

=
1

π

∑

γ∈v

κ2
γ

κD

1∫

0

dx
∑

ii′∈u

Qu
i Q

u
i′ J0(κDluu

ii′ x) exp
(

−
1

2
(κDηx)2

)

×

[

x2

ε (x2 + (1 − x)2)2 −
1

x2 + (1 − x)2

]

, (7.18)

where κ2
γ = 4πβρv

γq
v
γq

v
j /ε is the partial contribution of site γ of solution ionic

species j to the Debye length squared, J0(x) is the zero-order Bessel function
of the first kind, and luu

ii′ are the site separations between the solute point-like
partial site charges Q̃u

i .



7.2.3 Self-consistent combination of the orbital-free em-

bedding potential and the 3D-RISM-KH site dis-
tributions

The principal goal of the present work is the calculation the average solvent
dependent shifts in the absorption spectra. To this end, we construct the
embedding potential defined in Eq. 7.1, which is determined by the averaged
electron density of the solvent and use Eq. 7.7 to derive the solvent-induced
spectroscopic shifts. The 3D-RISM-KH site distributions cannot be directly
used to evaluate the orbital-free embedding potential, as they represent not
the electron densities needed in Eq. 7.1 but the classical nuclear probabilities.
To combine the 3D-RISM-KH method with orbital-free embedding frame-
work, two issues must be, therefore, resolved: i) the procedure to ”dress
up” the site densities with electrons and ii) the method to take into account
the solute-solvent interactions in generating the classical 3D-RISM-KH site
distributions.

”Dressing up” classical site distributions in electron density

The 3D-RISM-KH method is used to obtain the equilibrium density distribu-
tions of their classical interaction sites γ. Such distributions do not suffice to
evaluate the orbital-free embedding potential as they are essentially related
to nuclei and not electrons. The second key new approximation introduced
in this work, besides that in Eq. 7.7, is the applied procedure to ”dress up”
the site distributions with electrons.

First of all, it is assumed that the electron density attributed to each site
(qv

γ(~r)) is “rigid”. This assumption was used already in the first application
of the orbital-free embedding potential in simulating solvated system [159]
where it was assumed that a “rigid” electron density cloud moves together
with the nuclei. In other words, the inhomogeneous average electron density
of solvent around the solute molecule is obtained as the convolution of the
inhomogeneous probability density of the solvent nuclei and the electron den-
sity around each of them. Note that the electron density around each nucleus
is assumed to be translationally and rotationally invariant. Therefore, inho-
mogeneities of the average solvent charge density arise due to inhomogeneities
of the nuclear distributions. Such construction of 〈ρB(~r)〉 neglects, therefore,
any instantaneous fluctuations of the electron density of each solvent molecule
due to fluctuations of its induced dipole moments. Note, however, that the



“rigid” density used for each solvent molecule does not correspond to the
gas phase but to the liquid. The averaged electron density of the solvent is
obtained thus as:

〈ρB(~r)〉 =
∑

γ

∫

d~r′qv
γ(|~r − ~r′|)ρv

γg
uv
γ (~r′), (7.19)

where the angle brackets 〈. . .〉 denote the statistical ensemble average, and
guv

γ (~r) is the 3D solute-solvent site distribution function obtained from the
3D-RISM-KH theory described in the previous section.

Such simplified construction of the electron density of the environment
was used in a number of our subsequent applications in liquids [53, 86]. In
the present work, a further simplification is introduced: the “rigid” electron
densities are orientationally averaged, spherically symmetric distributions
centered at atoms (O, H in the case of water, for instance) or groups of
atoms (O, H, and CH3, in the case of methanol, for instance). The third
approximation made in the procedure to dress-up the RISM site distribu-
tions concerns the evaluation of the convolution (Eq. 7.19). We note that
the functions qv

γ(~r) are short ranged whereas the RISM grid at which the

site distributions are evaluated is large (0.5 Å). Therefore, to a good ap-
proximation, the integration can be replaced by summation involving only
diagonal elements, with the weights corresponding to the number of electrons
associated to each site (8.8 e for oxygen in water and 0.6 e for a hydrogen
in water for instance). This assumption means that the weights represent
the average charge distribution in the solvent molecule which is not affected
by the instantaneous configuration of the solvent. Lifting this simplification
by using an orientation-dependent charge density qv

γ(r, Ω) would involve the
orientation-dependent site distributions guv

γ (~r, Ω). As a consequence, solving
3D-RISM equations would become significantly more involved. It is impor-
tant to underline that the average charge distribution differs, however, from
its gas-phase counterpart.

The three above assumptions lead to the following expression for 〈ρB(~r)〉
at the 3D-RISM grid, which reads:

〈ρB(~r)〉 =
∑

γ

qv
γρ

v
γg

uv
γ (~r). (7.20)

Solute-solvent interactions in the 3D-RISM-KH approach

To account for the solute-solvent coupling in the 3D-RISM-KH calculations
aimed at obtaining the site distributions guv, we adopt the same approach as



the one introduced in our previous work on embedding a Kohn-Sham system
in the average solvent potential generated by the 3D-RISM-KH method [187,
197]. Here, the solute-solvent coupling is represented in a classical way. Its
basic features are outlined below.

The use of the average electron density of the solvent, i.e.,〈ρB(~r)〉 in
Eq. 7.4, is based on the generalization of the Hohenberg-Kohn energy func-
tional to the ensembles of solvent conformations. This can be made similarly
to the case of density functional theory for ensembles of electronic states in
which ensemble operators and mean values for the system quantities are de-
fined [7, 198]. The whole system is thus described by means of the Helmholtz
free energy functional

〈A〉[〈ρA〉, {ρ
v
γ}] = 〈EA〉[〈ρA〉, 〈ρB〉] + ∆µKH

solv[{ρv
γ}] (7.21)

of the mean electronic density of the embedded molecule 〈ρA(~r)〉 and the set
of the classical 3D solvent site density distributions ρv

γ(~r) = ρv
γg

uv
γ (~r) for all

solvent sites γ. At this stage, assuming the coupling between the embedded
subsystem A and environment B to be weak enough we apply the same
above-described OFE functionals to the mean densities 〈ρA(~r)〉 and 〈ρB(~r)〉.
For simplicity, we will drop the ensemble averaging brackets in all notations
below, keeping in mind that all quantities are mean values averaged over the
ensemble of the environment.

The environment electron density obtained from the 3D-RISM theory
in the form 7.20 can be used right away to calculate the non-electrostatic
components vnad

xc [ρA, ρB](~r) and vnad
t [ρA, ρB](~r) of the embedding potential

vKSCED
emb [ρA, ρB;~r] defined in Eq. 7.1. Furthermore, the electrostatic terms

in the embedding potential vKSCED
emb [ρA, ρB;~r] explicitly dependent on the po-

sitions of the environment nuclei in the original OFE are replaced in our
ensemble approach by the statistical-mechanical average of the electrostatic
potential of solvent sites acting on the solute, defined as a variational deriva-
tive of the system free energy 7.21 with respect to the embedded density
ρA(~r):

velec
solv(~r) ≡

A[ρA, {ρv
γ}]

δρA(~r)
=
∑

γ

ρv
γ

∫

d~r′vel
γ (|~r − ~r′|)huv

γ (~r′), (7.22)

where vel
γ (~r) is the electrostatic potential created by the site electronic charge

density qv
γ(~r), and huv

γ (~r) = guv
γ (~r) − 1 is the 3D solute-solvent site total

correlation function obtained from the 3D-RISM-KH theory. Note that the



expression 7.22 is obtained by definition with the variational differentiation of
the expression for the solvation chemical potential of the embedded molecule
with respect to its electronic density ρA(~r) [173].

The 3D-RISM-KH integral equations 7.8 and 7.14 are solved for the
3D solute-solvent site correlation functions describing the classical solvation
structure around the embedded solute molecule, using the input of the clas-
sical interaction potentials uuv

γ (~r) of the solute acting on solvent site γ that
enter the closure relation 7.14. In a self-consistent field loop, these interac-
tion potentials are defined by the variational differentiation of the system free
energy functional 7.21 with respect to the classical 3D solvent site density
distributions ρv

γ(~r). We further break them up into the short-range interac-

tion part represented by the sum of the Lennard-Jones potentials u
uv(LJ)
iγ (~r)

between solvent site γ and all the atoms i centered at positions ~Ri in the em-
bedded solute molecule, the electrostatic interaction potential between the
solvent site charge density qv

γ(~r) and the solute atomic cores with charges Qu
i

at ~Ri, and the electrostatic interaction potential between the solvent site and
the valence electron density of the embedded molecule ρA(~r) [173, 187],

uuv
γ (~r) ≡

A[ρA, {ρv
γ}]

δρv
γ(~r)

=
∑

i

(

u
uv(LJ)
iγ (|~r − ~Ri|) +

∫

d~r′
Qu

i q
v
γ(|~r′ − ~r|)

|~r′ − ~Ri|

)

(7.23)

−e
∫

d~r′d~r′′
ρA(~r′)qv

γ(|~r′′ − ~r|)

|~r′′ − ~r′|
.

The latter term in Eq. 7.23 is calculated in the density fitting procedure
[114]. Following the standard force fields, the solvent site charge densities
qv
γ(~r) can be represented with point-like partial charges qv

γ to simplify this
expression to

uuv
γ (~r) =

∑

i

(

u
uv(LJ)
iγ (|~r − ~Ri|) +

Qu
i q

v
γ

|~r − ~Ri|

)

− e
∫

d~r′
ρA(~r′)qv

γ

|~r′ − ~r|
. (7.24)

Note that the analytical form for the free energy of solvation (Eq. 7.16)
and for the coupling potentials (Eq. 7.22 and 7.23) yield the analytical ex-
pressions for the derivatives of the system free energy 7.21 with respect to
nuclei coordinates Ri of the embedded molecule. As a consequence, effi-
cient algorithms based on analytic gradients can be used in the geometry
optimization and reaction pathway studies of solvated systems [187, 197].

Practical applications of Eq. 7.4 involve numerical integration on the grid.
The adequate grid used for this purpose extends on both the embedded



system and its environment and, similarly to grids used in solving the Kohn-
Sham equations, is not uniform. The 3D-RISM-KH calculations use also
a grid which is, however, different. The classical site distributions are more
homogeneous than the electron density. To facilitate evaluation of the Fourier
transforms, it is uniform and cubic. Calculations, which involve

the combination of these two grids, are implemented in our local version
of the ADF 2008 program [114, 199] and involve four principal stages: i) The
OFE module is used to generate the OFE grid. ii) The 3D-RISM-KH site
distributions are evaluated on the 3D-RISM grid and ”dressed up” with elec-
trons. The density 〈ρB(~r)〉 and the corresponding electrostatic potential are
evaluated thus on the 3D-RISM grid. The numerical values of these quan-
tities are interpolated on the OFE grid (obtained in stage i)) and imported
into the 3D-RISM module. iii) The interpolated density and potential are
imported back to OFE module [37], which solves Eq. 7.4, and obtains all the
quantities needed to evaluate the excitation energies following the approach
introduced in Ref. [52], i.e., embedded orbitals, their energies, and the contri-
bution to the response kernel due to the orbital-free embedding potential. iv)
Evaluation of the excitation energies. The modification of the ADF 2008 code
allowing for such calculations concern primarily the stage ii), which involves
”dressing up” the classical site distributions with electrons and interfacing
the grid generated at stage i) with that needed at stage ii). Concerning the
solver of Eq. 7.4 and the solver of LR-TDDFT response equations for embed-
ded system the numerical implementation of the methodology introduced in
the present work do not require any specific code modifications.

Finally, we point out that difference between the approach taken in the
present work and that in Refs. [187, 197] lies in the embedding potential
used in quantum mechanical part of the applied computational protocol and
not in the evaluation of the classical site distributions which are evaluated
in the same way as in Refs. [187, 197]. Compared to the embedding poten-
tial of Wesolowski and Warshel [4] (Eq. 7.1), the embedding potential used
in the previous studies comprises only the first two electrostatic terms of
vKSCED

emb [ρA, ρB;~r]. Such simplification corresponds to a purely electrostatic
embedding. The neglected terms vnad

xc [ρA, ρB](~r) and vnad
t [ρA, ρB](~r), which

account for the Pauli repulsion, were shown to be indispensable in many
types of embedded systems [52, 200, 84].



7.3 Computational details

7.3.1 3D-RISM-KH

To obtain the solvent site distributions and atomic charges of the solvent
which are self-consistent, the Kohn-Sham DFT/3D-RISM-KH scheme intro-
duced and recently implemented by Gusarov et al. [187] in the ADF program
package [114] was used. The size of the 3D-FFT grid was chosen to 64 × 64
× 64 points in cell size 32 × 32 × 32 Å (64 × 64 × 128 in cell size 32 × 32 ×
64 Å for benzophenone). In the KS-DFT/3D-RISM-KH scheme the partial
charges used for the solute are taken from the multipole derived population
analysis (labelled as mdc-q in ADF output) [201]. In order to assure the high
quality of these charges, STO(TZP) basis set with modified fit functions to
give better multipole moments was used [201]. For the exchange-correlation
functional LDA approximation [16, 18, 17] was used, integration parameter
was set to 6.0. The van der Waals parameters required to solve 3D-RISM-KH
equations were taken from OPLS force field [202, 203]. If not stated other-
wise, in all calculations the geometry of considered chromophores was opti-
mized in gas-phase in KS-DFT framework using BP86 exchange-correlation
functional [19, 21].

7.3.2 Orbital-free embedding

The effective embedding potential given in Eq. 7.1 is evaluated for each in-
stantaneous pair of densities, ρA(~r) and 〈ρB(~r)〉, using the following approx-
imants:

• For the vnad
t [ρA, ρB](~r) component of the embedding potential, its an-

alytic form was obtained using Eq. 7.2 applied to the Thomas-Fermi
expression for kinetic energy functional[9, 10].

• For the vnad
xc [ρA, ρB](~r) component of the embedding potential, local

density approximation was used for its exchange- [16] and correlation
parts [18, 17].

The electrostatic component was evaluated using the monomer expansion
of the 3D-RISM potential using all the centers of the 3D-RISM grid (see
Eq. 7.22).



The exchange-correlation component of the total effective potential in
Eq. 7.4, which is generated by the embedded density ρA, i.e., δExc[ρA]

δρA
, is ap-

proximated using the SAOP potential [204, 205]. Such hybrid treatment of
the total exchange-correlation potential is motivated by the fact that SAOP
is known to describe better the electronic excitations in the isolated chro-
mophore. Note that SAOP cannot be used for approximating the corre-
sponding component of the orbital-free embedding potential because it de-
pends explicitly on orbitals which are not available for ρA + ρB.

In all calculations, the orbitals of the chromophore are expanded using the
Slater type of atomic orbitals (TZ2P basis set) which included only atomic
centers localized in the chromophore (the (KSCED(m) variant of the finite
basis version of Eq. 7.4 [71]). The integration parameter for the grid gener-
ation was set to 6.0.

7.4 Results and discussion

For the following chromophores: aminocoumarin C151, acetone, acrolein,
and benzophenone, the solvatochromic shifts are discussed in separate sec-
tions below. The lowest lying excitations of the π → π∗ and/or n → π∗ type
are discussed. The solvatchromism of acetone and amnocoumarin in water,
was already studied using the orbital-free embedding strategy [53, 86]. The
previous simulations did not use the key approximation introduced in the
present work, given in Eq. 7.7, and can be used as the reference for estab-
lishing adequacy of this approximation.

The analysis of the significance of the non-electrostatic components of the
embedding potential is provided in the separate section.

7.4.1 Aminocoumarin C151

We start the analysis of the solvatochromic shifts for the π → π∗ excitations
in aminocoumarin C151 (see Figure 7.1). Experimental [206, 207, 208] as
well as theoretical studies [209, 210] including previous work applying the
embedding potential of Eq. 7.1 [86] indicate that lowest absorption band is
of the π → π∗ character showing pronounced red-shift in polar solvents.

Aminocoumarin C151 is especially suited for the analysis of the key ap-
proximation in the computational approach introduced in Eq. 7.7 of the
present work, i.e., the replacement of a large number of calculations spectral



Figure 7.1: Structure of aminocoumarin C151

Table 7.1: Solvatochromic shifts from water to gas phase of aminocumarin
π → π∗ absorption band calculated using orbital-free effective embedding
potential and the two strategies to account for the statistical nature of the
solvent: explicit and thorough 3D-RISM. Data taken from Neugebauer et al.
[86]. For description see text.
Model of solvent ∆ε [eV ]
explicit: 300 H2O, 50 snapshots (Ref. [86]) -0.28
explicit: 300 H2O, 400 snapshots (Ref. [86]) -0.25
3D-RISM -0.25

Experiment -0.22a

aRef. [206]

shifts for different configurations of the solvent to obtain averages by only
one calculation but using the average embedding potential. In simulations
reported in Ref. [86] as well as in the present work, the orbital-free embedding
potential given in Eq. 7.1 was used to obtain the shifts between the absorption
maxima in the gas phase and in water. Therefore, the solvatochromic shifts
obtained following these two strategies can be used to analyze the adequacy
of the approximation made in Eq. 7.7.

The spectral shifts were evaluated in Ref. [86], using either 50 or 400
configurations of 300 solvent molecules. The configurations were taken from
either one or eight 50 ps long equilibrated molecular dynamic trajectory.
The calculated spectral shifts reported in Ref. [86] amount to -0.28 eV and
-0.25 eV for the 50 or 400 configuration based statistics, respectively. These
values are in remarkable agreement with the OFE/RISM results (see Ta-
ble 7.1). This agreement calls for a more detailed analysis. The OFE/RISM
results could be considered as the ensemble average only if the orbital-free
embedding potential was independent on ρA. In such a case, Eq. 7.7 would



Table 7.2: Calculated excitation energies and solvatochromic shifts (in [eV])
to the gas phase of π → π∗ absorption band in aminocoumarin. The numbers
in parentheses correspond to the case when electrostatic-only embedding is
used.
Solvent εOFE/RISM ∆εOFE/RISM ∆εa

exp

H2O 2.988 (2.985) -0.25 (-0.25) -0.22
Methanol 3.028 (3.029) -0.21 (-0.21) -0.31
Diethyl Ether 3.102 (3.103) -0.13 (-0.13) -0.21
n-Hexane 3.236 (3.235) 0.00 (0.00) -
Gas phase 3.234 - -

aRef. [206]

not be an approximation but an exact expression. Our dedicated studies
on the dependence of the orbital-free embedding potential on ρA showed
that indeed this dependence is weak [164] for the type of intermolecular in-
teractions as the ones occurring in the systems studied here. This justifies
treating the OFE/RISM shifts as a target and interpreting the agreements be-
tween the shifts obtained as averages over 400 ps long MD trajectory and the
OFE/RISM results as the evidence that the trajectory obtained in Ref. [86]
represents adequately the statistical ensemble. Note that the OFE/RISM
strategy requires only one evaluation of the excitation energies whereas the
explicit strategy requires 400 of such evaluations.

The results of the OFE/RISM calculations together with the survey of
available experimental data are gathered in Table 7.2. In this table (and
in respective tables for other examples considered in the present work), the
values in parentheses are obtained using the electrostatic-only embedding,
i.e., with the vnad

xc [ρA, ρB](~r) and vnad
t [ρA, ρB](~r) terms in Eq. 7.1 neglected.

They will be discussed in a separate section of this work.

In all of considered solvents, the calculated lowest-lying excitations have
the π → π∗ character, are red-shifted compared to the free chromophore,
and agree reasonably well with experiment. For water, OFE/RISM overes-
timates the solvatochromic shift by only 0.03 eV. In the case of the other
two considered solvents, 65% (for methanol) and 63% (for dimethyl ether) of
the experimental shifts is recovered. Discrepancies between the experimental
and calculated shifts can be attributed to several factors. The most probable
ones are the errors due to approximants to the density functionals in Eq. 7.1,
the neglect of dynamic response of the environment, and the treatment of the



statistical nature of the solvent. The agreement between the shifts obtained
for aminocoumarin in water in the present work with the previously pub-
lished data [86] suggest that the last factor is less important. The analyses
of Ref. [86] indicate also that NDRE is most likely the main contributor to
the error.

The widely used COSMO model [211], is based on the continuum repre-
sentation of the solvent. It is useful to compare the results obtained with the
two levels of description of the solvent: COSMO (Table 7.3) and OFE/RISM
(Table 7.2). Similarly to OFE/RISM, the COSMO shifts are in reasonable
agreement with experiment. OFE/RISM is clearly superior for the non-polar
solvent (n-hexane), whereas the two methods lead to very similar results for
more polar solvents.

Neither OFE/RISM nor COSMO describe the fact that the magnitude
of the solvatomic shift is smaller in water than in methanol. The failure to
describe the larger magnitude of the solvatochromic shifts of the π → π∗

transition in aminocoumarin in methanol than in water by mean of either
methods remains to be clarified.

Considering practical use of discussed here methods, the LR-TDDFT cal-
culations of isolated aminocoumarin take 2.5h or single core machine, while
including solvent by either COSMO or OFE/RISM takes 3h and 7h, respec-
tively. It can be seen that compared to COSMO, OFE/RISM calculations
involve about twofold increase in the time of calculations performed using
the ADF implementation of these two methods. This indicates that intro-
ducing a more realistic level of the description of the solvent by replacing
the simplest continuum by non-uniform 3D-RISM site probabilities involves
acceptable additional CPU costs.

7.4.2 Acetone

Acetone is commonly used as a model system to test the accuracy of theo-
retical methods to predict solvatochromic shifts [212, 53, 165, 213, 214, 215,
216, 217, 218, 219, 220, 221]. For the survey and comparison of available
computational studies, see Ref. [165]. Acetone is also very well characterized
experimentally [222, 223, 224, 225, 226]. For the overview of the experimen-
tal data, see the recent analyses by Renge [227]. The previous studies, where
the orbital-free embedding strategy to calculate the solvatochromic shifts of
acetone in water was also applied but the averaging was made without the
approximation introduced in Eq. 7.7, provide excellent reference [53].



Table 7.3: Excitation energies and solvatochromic shifts to the gas-phase
of π → π∗ absorption band in aminocoumarin calculated with the COSMO
model (excitation energies and shifts in [eV]).
Solvent εCOSMO ∆εCOSMO ∆εa

exp

H2O 3.041 -0.19 -0.22
Methanol 3.043 -0.19 -0.31
Diethyl Ether 3.089 -0.14 -0.21
n-Hexane 3.157 -0.08 -
Gas phase 3.234 - -

aRef. [206]

Figure 7.2: Structure of acetone

The experimental studies indicate that the lowest transition in acetone is
of the n → π∗ character. The solvatochromic shift in water is well estimated
to be between 0.19-0.22 eV [222, 223, 224, 225, 226, 227]. Our results are
gathered in Table 7.4.

For all of the considered solvents, OFE/RISM predicts the lowest excita-
tion (HOMO to LUMO) to be the n → π∗ transition. The magnitude of the
excitation energy increases with the polarity of the solvent. Comparison of
solvatochromic shifts with the experimental results reveals good agreement
in all of the cases. For non-polar solvents, like n-hexane, the calculated shift
is very small, which corroborates with the recent experimental reports [227].
In the case of the diethyl ether, the experimental result is slightly overesti-
mated by 0.04 eV. For polar solvents the results are also close to the reference
data. For methanol, the OFE/RISM combination predicts shift to be equal
to 0.12 eV, which is in remarkable agreement wit the most recent experi-
mental studies [227]. In the case of the water, the estimated solvatochromic
shift is within the range of the reference values. In summary, the proposed
computational approach describes acetone in a proper way.



Table 7.4: Calculated excitation energies and solvatochromic shifts (in [eV])
to the gas phase of n → π∗ absorption band of acetone. The numbers
in parentheses correspond to the case when electrostatic-only embedding is
used.
Solvent εOFE/RISM ∆εOFE/RISM ∆εa

exp

H2O 4.768 (4.727) 0.19 (0.15) 0.22, (0.19 - 0.21b)
Methanol 4.702 (4.683) 0.12 (0.10) 0.12, (0.15c)
Diethyl Ether 4.638 (4.616) 0.06 (0.04) 0.02, (0.04d)
n-Hexane 4.592 (4.585) 0.01 (0.00) -0.004d

Gas phase 4.581 - -
a The most recent re-examination of experiment data provided in Ref. [227]
is used as reference. The results of previous experimental studies are given
in parentheses: bRef. [222, 223, 224, 225, 226] cRef. [225] dRef. [228].

Recently, Neugebauer et al. [53] applied the orbital-free embedding for-
malism and explicit solvent level for acetone in water. The instantaneous
electron densities of the solvent (about 175 atoms) were calculated for 220
configurations extracted from equilibrated CPMD trajectory and used to
evaluate the instantaneous excitation energies. The reported average sol-
vatochromic shift equal to 0.20 eV evaluated in this tedious and laborious
protocol requiring considerable amount of computer resources, is in excellent
agreement with the shift obtained in the present work. Using 3D-RISM-KH
to generate 〈ρB〉 reduces the time of computations to only 25 minutes and
leads to the spectral shift (0.19 eV) also in good agreement with experiment.
Owing to the approximation introduced in Eq. 7.7, the repetitive generation
solvent density for each solvent configurations is avoided. The obtained shifts
with- and without the approximation given in Eq. 7.7 agree excellently with
the most recent experimental data [227] (0.22 eV). Moreover, the most recent
theoretical value for this shift obtained using high-level ab-initio description
(CCSD) of the acetone are also very similar (0.20 eV [165]).

In the same work [53], the authors identify and report the σ − π∗ va-
lence transition, which is not known experimentally due to the low intensity,
however, calculations reveal strong red-shift in excitation energy when go-
ing from gas-phase to water. For instance, Neugebauer et al. report the
shift of -0.32 eV for a single configuration of 57 water molecules taken from
equilibrated MD trajectory. The authors do not report, however, the av-
eraged value of this shift, making direct comparisons with our OFE/RISM



result (-0.23 eV) impossible. In view of this, both calculated shifts appear
consistent.

7.4.3 Acrolein

s-trans-acrolein (Fig. 7.3) is a simple aldehyde, for which the lowest transition
has the n → π∗ character. The absorption spectra are available [229, 230,
231, 232, 233, 234, 235, 236, 237, 238, 239, 240]. Most recent measurements
estimate that the absorption energy of acrolein solvated in water is blue-
shifted by 0.25 eV with respect to gas-phase [229]. The theoretical studies
for this spectrum were reported [241, 242, 243, 244, 245, 246] (for survey
see Ref. [229]). In the work by Ten-no [220], where SCF-RISM method
was applied to obtain excitation energies, the authors report the change in
the absorption band upon solvation to be 0.20 eV, in good agreement with
the experiment. The spectral shift obtained in the present study (0.33 eV)
overestimates slightly the experimental result.

Figure 7.3: Structure of s-trans-acrolein

7.4.4 Benzophenone

Benzophenone (see Fig. 7.4) is an interesting molecule for theoretical studies.
The experimental UV/Vis absorption spectra [247] is characterized by two
main bands - the first one of the n → π∗ character, and the second broad
one is of the π → π∗ type. Experiment reveals also that, upon solvation,
the n → π∗ excitation is blue-shifted, whereas the π → π∗ band shows
pronounced red-shift.



The OFE/RISM solvatochromic shifts in benzophenone combination are
given in Table 7.5. The geometry of the solute was taken from Ref. [248]. The
broad π → π∗ band originates from four transitions. The intensity weighted
average of the calculated absorption lines is, therefore, used for comparisons
with experiment. For methanol and diethyl ether, the OFE/RISM describes
very well the both blue- and red-shifts in n → π∗ and π → π∗ transitions.
The deviation from the experimental findings does not exceed 0.02 eV. For
water, the calculated shifts are less satisfactory. The OFE/RISM results re-
cover only 59% and 50% of the experimental shifts, in n → π∗ and π → π∗

transitions, respectively. This underestimation might originate from both
the interpretation of the experimental data or from the many simplifica-
tions/approximations in the computational protocol applied in this work.
The experimental studies [247] indicate that with the increasing polarity of
the solvent the formation of the shoulders in absorption spectrum is observed.
In the case of water, this effect is already pronounced and it leads to the un-
certainty in experimental absorption maxima as large as 0.1 eV. Concerning
the possible deficiencies in the calculations reported here, the discrepancy
between the experimental and calculated data could be attributed to the
underestimated average polarization of the benzophenone molecule by the
solvent. The detailed analysis of the simulations reported in [248] support
such attribution. In the approach applied in Ref. [248], the induced dipole
moment of the solute was obtained in a self-consistent manner to correspond
to the structure of the solvent molecules and the authors stress the impor-
tance of proper accounting of this effect in proper modeling of the solva-
tochromic shifts. It is worth noting that this requirement of self-consistency
between the electronic and solvation structures of the solute is met in the
present work due to the electrostatic coupling between the solute charges
(from quantum mechanical calculations) and the solvent site distributions
(from classical statistical-mechanical calculations). The self-consistent solute
charges are evaluated taking into account the electrostatic coupling with the
solvent. The charges accounting for the electron distribution on the solute
are self-consistently recalculated for every new distribution of the solvent
sites in the self-consistent field loop. The converged dipole moment of ben-
zophenone solvated in water given by Georg et al. is equal to 5.84 D which
is significantly larger than that of the isolated solute by 2.73 D (MP2/6-
311++G(d,p) calculations). In the present work, the corresponding values
are 5.89 D and 2.16 D, respectively. The solute-solvent interaction induced
increase of the dipole moment of benzophenone is, probably, underestimated



in the present OFE/RISM calculations. The interpretation that this under-
estimation as the principal source of the underestimation of the OFE/RISM
solvatochromic shifts in the n → π∗ transition, is supported by the fact
that the shift obtained in Ref. [248] (0.25 eV) is in excellent agreement with
experiment (0.27 eV), whereas the OFE/RISM result is significantly under-
estimated (0.16 eV). Turning back to the possible underestimation of the
solvation induced dipole moment of benzophenone in OFE/RISM calcula-
tions, it probably results from the basic approximation made in evaluating
averages made in this work, i.e., Eq. 7.7.

Figure 7.4: Structure of benzophenone taken from Ref. [248]

7.4.5 The role of the non-electrostatic terms in the
orbital-free embedding potential

Various embedding schemes are currently in use for simulations of condensed
matter. In view of the studies aimed at the electronic structure, it is worth-
while to underline that it is determined by the way the environment is
represented at the level of the electronic Hamiltonian rather than in the
final expression used for the energy. According to the exact embedding the-
ory [4, 36, 39], the embedding potential comprises non-electrostatic terms.
Very commonly, only electrostatic potential is used to represent the environ-
ment in the Hamiltonian. Moreover, this potential is frequently evaluated
not exactly but it is simplified using the multi-center multipole expansion of



Table 7.5: Solvatochromic shifts (in [eV]) to the gas phase for benzophenone.

The shift in the π → π∗ transition is calculated as the average < ε >=
∑

i
εiωi

∑

i
ωi

,

where ε denotes the transition energy and ω the corresponding intensity.
The numbers in parentheses correspond to the case when electrostatic-only
embedding is used.
Solvent Transition ∆εOFE/RISM ∆εa

exp

H2O n → π∗ 0.16 ( 0.14) 0.27
π → π∗ -0.10 (-0.12) -0.20

Methanol n → π∗ 0.16 ( 0.16) 0.16
π → π∗ -0.08 (-0.09) -0.10

Diethyl Ether n → π∗ 0.06 ( 0.06) 0.03
π → π∗ -0.02 (-0.02) -0.03

Hexane n → π∗ 0.00 ( 0.00) -
π → π∗ 0.00 ( 0.00) -

aRef. [247]

the electrostatic potential generated by the environment, for instance. Such
approach is adequate especially if the target of the simulations is the poten-
tial energy surface. The non-electrostatic contributions to the total energy
are added a posteriori as additional terms in the energy. This approach is
know in literature to provide reliable results and is commonly used to treat
problems in the fields of chemistry and biochemistry [249]. In studies of the
electronic structure, electrostatic embedding leads sometimes to artifacts. It
may lead, for instance, to artificial charge transfer from the embedded system
to the environment caused by strong Coulomb attraction in the vicinity of
solvent nuclei [29, 200, 250]. The full embedding potential given in Eq. 7.1
comprises the non-electrostatic components in addition to the electrostatic
potential. The role of the vnad

t [ρA, ρB](~r) component of the embedding po-
tential is to provide counterbalancing repulsive force [200] eliminating such
artifacts.

In the present work, the electrostatic potential of environment in Eq. 7.1
is obtained from 3D-RISM-KH method as a statistical-mechanical average
of the electrostatic potentials of solvent sites acting on embedded system
(Eq. 7.22). This potential was already used to account for solvent effects
in connection with Kohn-Sham method [173, 187, 197] or with Hartree-Fock
[163, 220] and multiconfigurational methods [251]. To estimate the role of



the non-electrostatic components in the embedding potential, each of the
numerical value discussed in the previous section is complemented by its
counterpart obtained with neglecting non-electrostatic terms in Eq. 7.1. The
numerical values are given in parentheses in tables 7.2, 7.4, 7.5. We start
analysis from acetone (table 7.4). In the case of this molecule the effect of
the non-electrostatic terms is rather noticeable for polar solvents, especially
for water. It increases the magnitude of the solvatochromic shift by 0.04 eV,
i.e., by 21%. The relative effects decreases with decreasing polarity of the
solvent: 16% for methanol and decreases further for diethyl ether and hexane.

In the case of benzophenone (table 7.5), the strongest effect of neglecting
non-electrostatic terms occurs for water. The solvatochromic shift is affected
by 0.03 eV, i.e., 12% and 27% of the whole shift for the n → π∗ and π → π∗

transitions, respectively). For other solvents, the electrostatic-only embed-
ding potential seems to be already accurate as it leads to practically the same
shifts as the full vKSCED

emb [ρA, ρB;~r] potential.

The solvatochromic shifts in aminocoumarin are not noticeably affected
by neglecting non-electrostatic terms.

The above results indicate that non-electrostatic terms in the embed-
ding potential affect most significantly the calculated shifts in such cases
where the environment constitutes polar molecules with large dipole moment.
This result is in line with our previous analyses of the embedding potential
of charged systems, for which a significant charge-transfer from embedded
molecule to the embedded system can be expected to happen in the absence
of two terms in the embedding potential representing the intermolecular Pauli
repulsion [102].

7.5 Conclusions

In this work, the ensemble average of the charge density of the solvent is used
to represent the solvent surrounding a chromophore. Such treatment can be
situated between the explicit atomistic- and the continuum type of models
of the solvent. The average charge density accounts for inhomogeneity in the
statistically averaged electron density but does not correspond to the electron
density of any molecular system at a given geometry. Nevertheless, owing to
the unique correspondence between the pair of electron densities (that of the
chromophore and of its environment) and the embedding potential [4, 36, 39],
the formalism used previously to evaluate spectral shifts in cases where the



environment of a chromophore was structurally rigid [127, 52] can be also
used for cases where the electron density of the environment lacks such a
clear interpretation.

The averaged electron density of the solvent, was obtained by ”dressing
up” with electron density the site distributions derived from classical the-
ory of liquids. The 3D-RISM theory using the Kovalenko-Hirata [173, 154]
closure is used to obtain site distributions.

Using previously reported shifts obtained in explicit simulations for aminocoumarin
in water, it is shown that the averaging of the absorption lines corresponding
to instantaneous conformations of the solvent can be efficiently replaced by a
single evaluation of the excitation energy of a solvent molecules in the average
embedding potential. In atomistic simulations, the shifts of the lowest-lying
π → π∗ excitations depend strongly on the number of instantaneous configu-
rations. They were reported to be equal to -0.28 eV and -0.25 eV for one- and
eight 50 ps trajectories, respectively [86]. The shift obtained in the present
work, which involves only one evaluation of the excitation energy of the sol-
vated molecule, amounts to -0.25 eV which is in remarkable agreement with
the results of the atomistic simulations. A similar agreement between results
obtained with the orbital-free embedding potential but with- and without the
approximation concerning the averaging procedure introduced in this work
was found for solvatochromic shifts of the acetone in water. Abandoning the
explicit level of description of the solvent makes it, however, impossible to get
the shape of the absorption band. Only the position of the maximum of each
band maximum can be evaluated. The accuracy of the calculated spectral
shifts depends primarily on the accuracy of the method used to calculate the
excitation energy shifts at a given geometry of the environment (based on the
combination of the linear-response time-dependent density functional theory
LR-TDDFT and orbital-free embedding [51, 52] in the present case). Our
benchmarking studies on hydrogen-bonding induced spectral shifts for simi-
lar systems [127, 52] indicate that such error is in the range of 0.02-0.05 eV.
Taking as the study case, the spectral shifts for the n → π∗ excitations for
acetone in solvents of various hydrogen-bonding properties, (water, methanol,
diethyl ether, n-hexane), shows that the used method to account for solvent
structural flexibility does not lead to deterioration of the quality of the calcu-
lated shifts. For these solvents, the discrepancies between the calculated and
measured maxima of the absorbtion bands in liquid phase are in the range
of 0.04 eV (or smaller). These rather small errors can be thus attributed to
the intrinsic accuracy of the applied method to calculate spectral shifts at a



rigid geometry. For the ensemble of the studied chromophores and solvents,
the calculated solvatochromic shifts agree rather well with experimental mea-
surements. In the worst case, i.e., n → π∗ excitation for benzophenone in
water, the calculations reproduce 50% of the experimental shifts (-0.10 eV
vs. -0.20 eV). This underestimation is probably due to the approximation
made in Eq. 7.7 which neglects the instantaneous coupling between the in-
duced dipole moment of the chromophore and the structure of the solvent,
which is averaged out in the applied method. In the absence of such coupling,
the contributions to the absorption band due to such configurations of the
solvent which generate strong electric field are underrepresented.

The proposed strategy to evaluate the solvatochromic shifts fails, however,
to describe the increase of the magnitude of the experimental shift in the
π → π∗ transition in aminocoumarin C151 from -0.22 eV to -0.31 eV when
going from water to methanol. Whereas the calculated spectral shift in water
is rather good (-0.25 eV), it is underestimated in methanol (-0.21 eV).

The applied approach offers significant computational saving due to re-
placing a great number of evaluations of the excitation energy at different
embedding potentials (one for each solvent configurations) by one evaluation
of the excitation energy but with the average embedding potential. The pos-
sible savings are proportional to the number of configurations used in the
statistical ensemble. This might depend on the system and on technique to
generate the instantaneous geometries for the statistical ensemble but can be
expected in the order of 1000 configurations at least. Additional savings are
possible due to the fact that the generation of the averaged electron density
from ”dressed up” 3D-RISM site distributions is faster than explicit evalua-
tion of the frozen electron density of solvent molecules. Note that a number
of simplifications can be applied for this purpose in atomistic simulations
[53, 86].

Finally, it is worthwhile to underline that the orbital-free embedding po-
tential of Wesolowski and Warshel, similarly to most of the embedding po-
tentials reported in the literature, comprises the electrostatic component.
It comprises, however, also the non-electrostatic terms derived in the exact
embedding theory [29, 36, 39]. These terms are not given as exact analytic
expressions because such expressions are not known. They are evaluated
by means of some approximants to the exact density functionals. The nu-
merical results obtained with neglecting non-electrostatic components in the
exact embedding potential are included in the present work for comparison
purposes. They indicate that non-electrostatic terms lead typically to im-



proved agreement between calculated and measured spectral shifts, although
the non-electrostatic components of the embedding potential lead to negli-
gible effect on the excitation energies in some cases. It should be under-
lined that the non-electrostatic terms in the orbital-free embedding potential
(Eq. 7.1) assure that the embedded orbitals (occupied and non-occupied) are
obtained from variational calculations. In practice, it manifests itself by the
fact that their shapes and energies depend less on the choice of the basis
set used to construct the embedded orbitals than in the electrostatic-only
case [73, 84, 52, 200].
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Chapter 8

LiSc(BH4)4: A Novel Salt of
Li+ and Discrete Sc(BH4)

−
4

Complex Anions

LiSc(BH4)4 has been prepared by ball milling of LiBH4 and ScCl3. Vibra-
tional spectroscopy indicates the presence of discrete Sc(BH4)4− ions. DFT
calculations of this isolated complex ion confirm that it is a stable complex,
and the calculated vibrational spectra agree well with the experimental ones.
The four BH4− groups are oriented with a tilted plane of three hydrogen
atoms directed to the central Sc ion, resulting in a global 8 + 4 coordina-
tion. The crystal structure obtained by high resolution synchrotron powder
diffraction reveals a tetragonal unit cell with a = 6.076 Å, c = 12.034 Å (space
group P-42c). The local structure of the Sc(BH4)4− complex is refined as a
distorted form of the theoretical high symmetry structure. The Li ions are
found to be disordered along the z axis.

8.1 Introduction

The development of suitable hydrogen storage materials is a key barrier to
the realization of a hydrogen economy. It is currently thought that a viable
onboard hydrogen carrier must have very high gravimetric and volumetric
hydrogen capacities as well as kinetic and thermodynamic properties that
are within rather stringent limits. [252] To date, no directly reversible hydro-
gen material has been identified that meet all of these criteria. In view of
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their high theoretical hydrogen storage capacities, metal borohydrides have
recently been the subject of intensive investigation. [253, 254, 255, 256, 257,
258, 259, 260, 261, 262, 263, 264, 265, 266, 267] The dehydrogenation of
lithium and Group II borohydrides is plagued by severe kinetic limitations
and irreversibility that precludes the utilization of these compounds under
practical conditions [253, 254, 255, 256, 257, 258, 259] even as components of
binary hydride mixtures. [261, 262, 263, 264, 265, 266, 267] Many transition
metal borohydride complexes also have suitable gravimetric hydrogen den-
sities. [268] However, neutral transition metal borohydride complexes, such
as Zr(BH4)4, can be eliminated a priori from consideration as practical hy-
drogen carriers due to their high volatility under the conditions required for
dehydrogenation. [268] Additionally, the elimination of diborane often com-
petes with dehydrogenation of the neutral complexes. [269] In an attempt
to circumvent these problems, we have explored the hydrogen storage prop-
erties of Group I salts of anionic transition metal borohydride complexes.
Preliminary studies have shown these materials to hold promise as practical
hydrogen storage materials. [269] Efforts to develop these materials would be
greatly aided by an understanding of their molecular structure. However, the
characterization of this class of complexes has, to date, been limited to 11B
NMR spectroscopic studies of LiSc(BH4)4. [270] Thus structural basics, such
as the coordination mode of the [BH4] ligands have not been determined. In
the present work, we have used a combination of vibrational spectroscopy,
DFT calculations, and X-ray diffraction to elucidate the structure of this new
potential hydrogen storage material.

8.2 Experimental details

The compound has been prepared by ball milling of LiBH4 with ScCl3 in
4:1 molar ratio respectively. Raman spectra were obtained using 2 different
set-ups: the first one is an Ar ion laser (488nm) with a Kaiser Optical Instru-
ments Holospec Monochromator and a liquid nitrogen cooled CCD camera
and finally an Ar-Kr laser (568nm) in conjunction with a Spex 1404 dou-
ble monochromator and a PM detector. The spectral resolution is 3-4 cm−1

for all Raman experiments. IR spectra were obtained using a Perkin Elmer
Spectrum One instrument in conjunction with a ”Golden Gate” ATR set-up.
The spectral resolution is 2 cm−1 for the IR experiments. The samples were
handled in a glove box and were sealed in glass capillaries for the Raman



experiments.

The Kohn-Sham [2] DFT calculations (PBE [25] exchange-correlation
functional in TZP basis set) were applied to optimize the geometry of the
studied complexes. For such obtained minima, the vibrational frequencies
were calculated. All the computations were performed using the ADF [106,
271] program package. Preliminary powder diffraction data (PXD) were
measured on the diffractometer STOE IP-PSD equipped with curved im-
age plate detector and using KCuα1 radiation. The sample was filled in 1
mm boron-glass spinning capillary. High resolution synchrotron radiation
powder diffraction (SR-PXD) data were collected at the Swiss-Norwegian
Beamlines (SNBL, BM01B) at the ESRF, Grenoble, France. A beam with
λ=0.5000 Å was provided by a double Si monochromator. The angular
range 2θ = 1.00o to 25.50o was scanned with a detector bank consisting of 6
scintillation detectors mounted in series with 1.1o separation. The data were
binned to the step size ∆2θ = 0.002o. The sample was contained in a 0.5
mm boron-glass spinning capillary. The observed reflections of LiSc(BH4)4

were indexed with DICVOL04 [272], the structure was solved with the direct
space method program FOX [273] and refined with the Rietveld method by
using the program TOPAS [274].

8.3 Results and discussion

IR spectra of the product confirm that LiBH4 has completely reacted. This is
also supported by the powder x-ray diffraction which shows only the presence
of LiCl and LiSc(BH4)4 (see below).

As a first structural hypothesis for the new sample (and following the
proposal by Nakamori et al [275]), the spectra were compared with those
reported previously for Al(BH4)3 [276, 277], as one expects from crystallo-
chemical considerations some similarities between Al and Sc. In Al(BH4)3,
the central Al has a sixfold coordination of hydrides in D3 symmetry.

The literature experimental spectra of Al(BH4)3 present a strong IR band
at 1531 cm−1 which corresponds to a H-B-H bending mode of E symmetry
(labelled υ19 in [276]) of the bridging hydrides [276]. This band is not ob-
served in our Sc compound.

A further difference is seen in the Al-B stretching modes, the correspond-
ing strong IR band is observed at 598 cm−1, while the strong Raman Al-B
band appears at lower frequencies, namely 495 cm−1. The spectra of the Sc



Figure 8.1: Experimental Raman and IR spectra of LiSc(BH4)4 (this work)
and Zr(BH4)4

complex, however (see Figure 8.1), show in this spectral range a strong IR
band at lower frequency than the Raman band (423 vs 474 cm−1).

The observation of the highest B-H stretching mode around 2468 (IR) and
2483 (Raman) as well as a doublet around 2200 -2270 cm−1 suggests rather
the presence of a tridentate B-H binding to the central metal ion [277] .The
complex Zr(BH4)4 had been shown to present this type of B-H binding, and
its vibrational spectra have been published previously [278]. These old data
are compared to our new experiments of the Scandium complex in 8.1 and
Table 8.1. Analysis of the results reveals indeed many similarities between
both IR and Raman spectra of the two compounds.

We then performed a DFT calculation on the isolated [Sc(BH4)4]
− com-

plex. The optimization of the geometry without symmetry constraints and
the calculation of the vibrational spectra confirm that this ion has a stable
structure, similar to the one found for Zr(BH4)4.

The calculated structure (see Figure 8.2 and Table 8.2) shows that each
BH4− ion has a plane of three hydrides oriented partly towards the central
Sc atom, resulting in a global 8 + 4 coordination with 8 Sc-H distances
of 2.11-2.15 and 4 Sc-H distances of 2.31 Å. The last B-H bond points to
the outside, yielding the high calculated B-H stretching frequencies between



Table 8.1: Comparison between Experimental IR and Raman Spectra of
LiSc(BH4)4. All values in cm−1.

Raman Zr [278] Raman Sc ∆ IR Zr [278] ∆ ∆

233 216 17 198
237 231 6 489 423 66
507 504
556 474 82 1057 1113 -56
589 1180 1194 -14

1079 1221
1080 1112 -32 1284 1325 -41

1247 2123 2199 -76
1289 1325 -36 2180 2259 -79
2176 2211 -35 2576 2468 108

2264
2567 2483 84

2485 and 2498 cm−1. Figure 8.3 compares the calculated and observed IR
spectrum.

The calculated frequencies are typically within less than 30 -50 cm−1 of
the experimental ones. The agreement between those results is surprisingly
good taking into account the three factors influencing the DFT calculations:
use of an approximated exchange-correlation functional for the exchange-
correlation energy, harmonic approximation, and the complete neglect of the
effects due to the crystal packing forces.

In view of the previous DFT studies on the alkali borohydrides [279],
which showed that the effect of environment on vibrations of the borohydride
ion reaches up to 100 cm−1, this overall good agreement is probably the effect
of compensation of these three types of errors.

The PXD data showed as a major phase in the sample LiCl ( 60 wt%),
the second phase corresponded to the title compound. A primitive cubic unit
cell (a = 6.064 Å ) without systematic extinctions explained the positions
of the observed reflections of LiSc(BH4)4 in PXD data. The structure was
solved in the space group P23 providing one lithium atom (position 1a), one
scandium atom (position 1b) and four BH4 groups (position of the boron
atom 4e) within a unit cell. The structure was solved with the BH4 groups



Figure 8.2: Structure of the Sc(BH4)−4 complex from the DFT calculations

Figure 8.3: Comparison between observed IR spectrum of LiSc(BH4)4 and
(full line) and calculated theoretical DFT spectrum (dashed line) for indi-
vidual Sc(BH4)−4 ions.



Table 8.2: Selected bond distances and angles from the DFT calculations on
the Isolated Sc(BH4)−4 ion and as refined from synchrotron PXD. The angles
(Sc-H-B) are calculated only on the three hydrogen atoms pointing towards
scandium.

DFT X-ray

d(B-H1) [Å] 1.21 1.08(2)
d(B-H2) [Å] 1.24 1.08(2)
d(B-H3) [Å] 1.24 1.08(2)
d(B-H4) [Å] 1.24 1.08(2)
(Sc-H-B)min [deg] 75 63
(Sc-H-B)max [deg] 83 95
d(Sc-B)min [Å] 2.33 2.28(1)
d(Sc-B)max [Å] 2.33 2.28(1)
(B-Sc-B)min [deg] 105 96.5(5)
(B-Sc-B)max [deg] 113 125.4(5)

as rigid bodies with fixed B-H distances of 1.2 Å.
The high resolution SR-PXD data showed that the symmetry is lower

than cubic as some peaks were split. Indexing with the first 20 observed
peaks from SR-PXD data showed excellent agreement with a tetragonal unit
cell (a = 6.076 Å, c = 12.034 Å). The observed extinction rules were in
agreement with the space groups P42mc, P42mmc and P-42c. Due to the
good agreement between the PXD data and the cubic structure model, it
was assumed that CsCl-type ordering of the Li-Sc sublattice was basically
correct. It can be described in any of the three candidate space groups.
However, only P-42c has site symmetry for Sc that allows for tetrahedral
coordination by four BH4 tetrahedra. Thus, this space group was assumed
as correct one.

An approximate structure model was obtained by fixing Li and Sc in the
positions corresponding to the cubic model (Li on 2e and Sc on 2c), opti-
mizing both the position and orientation of rigid BH4 tetrahedra. The final
Rietveld refinement (χ2 = 1.1, Rietveld plot in the supplementary material)
of the model showed the disordering of Li around the 2e position to the 4k
position with z 0.1 (Figure 8.4 top). The disordering can be understood from
the analysis of interatomic distances. The distance between the Li atom and
four B atoms from the coordinating BH4 groups would be 3.00 Å if Li were



on the position 2e. The disordering of Li to the 4k position decrease the
number of coordinating BH4 groups from four to two, but with Li-B dis-
tances of 2.54(1) Å (Figure 8.4 bottom), closer to this distance observed
in LiBH4 (2.48-2.54 Å ) [280, 281]. Whether the disordering of Li along
the c-axis of the tetragonal structure is of dynamic or static nature stays
to be investigated. However, it indicates a high mobility of the Li atoms in
this compound which is possibly as good ionic conductor as it was recently
recognized for the HT-phase of LiBH4 [282]

As shown in Figure 8.4, the Sc3+ is surrounded by four [BH4]− tetrahe-
dra in deformed tetrahedral coordinations (see table 8.2 for selected bond
distances and angles). A similar tetrahedral coordination of a cation by four
[BH4]− anions is known for Li+ in ambient pressure phases of LiBH4 [280,
281], Zr4+ in zirconium borohydride at 113 K [283], and it was recently
observed also for Mg2+ in magnesium borohydride [284]. As for the Li+ co-
ordination (discussed above), it looks unusual (Figure 8.4 bottom) compared
to LiBH4, and reflects the high mobility of the Li+ cations in the structure.
On the other side each [BH4]

− is approximately linearly coordinated by one
Sc3+ and one Li+ with half occupancy (Sc-B-Li = 148.8(5)o). The coordi-
nation of cations by hydrogen atoms cannot be determined unambiguously
due to not enough accurate determination of the [BH4]

− tetrahedra orienta-
tion and lithium atom localization. However, from the analysis of the cation
coordination in similar borohydrides like LiBH4 [3,34] and Mg(BH4)2 [285]
and from the space filling consideration we conclude that each Sc3+ is co-
ordinated approximately by triangular faces of four BH4 tetrahedra (Sc-H
distances 1.92(5), 2.08(3) and 2.55(8) Å ), thus resulting in an 8 + 4, rela-
tively irregular hydrogen coordination. The comparison of the DFT structure
with the refined crystal structure (see table 8.2) shows that the distortion
from a high symmetry D3 complex seen by the DFT calculation is pushed
further in the crystal structure.

As for Li+ coordination by hydrogen it can be understood either like
by vertices or by edges (Li-H distances 1.98(8) and 2.5(1) Å ) of two BH4

tetrahedra. A single B-H distance of 1.08(2) Å was refined for rigid BH4

tetrahedron. It compares well with those in related borohydrides such as
LiBH4 (1.04-1.28 Å). [280, 281]

The Raman spectra suggest that the borohydride groups are not subject
to orientation disorder, as the band width remains rather sharp (FWHM ca
16 cm−1 for the B-H bending modes). Raman spectra of the alkali borohy-
drides have shown significant broadening of the B-H bending modes in the



Figure 8.4: Crystal structure of LiSc(BH4)4 viewed along the a-axis (top)
and approximately along the [1-10] direction showing the coordination of Li
and Sc by BH4 tetrahedra (bottom)



disordered phase. [285, 286]

Finally, we have performed DFT calculations on a model complex com-
prising two Sc(BH4)4 units separated by 4 Li atoms to simulate a truncated
tetragonal unit cell. Initially, the Li atoms were placed on the (0 0 0.6)
between the two Sc complexes. During the geometry optimization, two di-
agonally opposed Li ions moved towards the upper Sc complex, while the
two others moved to the lower complex in agreement with the preferred Li-B
distances of 2.54 Å (Figure 8.4 bottom).

Although this model calculation is biased by the symmetry constraints
and the absence of charge compensation outside of the complex (resulting
in several imaginary vibrational frequencies), it confirms the trend of the
Li ions to form bonds with the BH4 units rather than occupy an average
central position. The resulting geometry and IR spectra are given in the
supplementary informations. Periodic DFT calculations on this compound
are planned, to account for the effect of the interactions of the studied system
with its neighbors present in the solid but absent in the considered theoretical
model.

8.4 Conclusions

The structure of LiSc(BH4)4 has been studied using a combination of vi-
brational spectra, DFT calculations and high resolution synchrotron powder
diffraction. The local symmetry of the isolated Sc(BH4)4− complex, as ob-
tained from the DFT calculations, was confirmed by the crystal structure
analysis. The combined experimental and theoretical results show consis-
tently that each Sc3+ is tetrahedrally surrounded by triangular faces of four
BH4− tetrahedra. The crystal structure data show in addition disorder for
the Li ions, which in turn leads to reasonable Li - B distances. Preliminary
DFT calculations on a model complex comprising two Sc(BH4)4 units sepa-
rated by 4 Li atoms confirm the trend to reduce individual Li - B distances
in contrast to the average high symmetry central position.

The title compound is apparently the same as the material obtained by
Nakamori et al through the balling milling of ScCl3 and LiBH4 in 1:3 molar
ratio which they misformulated as Sc(BH4)3. [287] Their observation of the
onset of hydrogen desorption for the compound around 450 K and complete
release of hydrogen around 529 K [287] is noteworthy in view of its very high,
14.4, hydrogen weight percentage. Another potential practical application of



this material is suggested by our observation of the disordering of Li+ in the
crystal structure. This finding points to the possibility that this material
may be a good conductor of lithium ions.

The ionic radius of Al3+ is too small to present a similar BH4− coordi-
nation, as this would lead to much closer hydride contacts which destabilize
the potential [Al(BH4)4]− ion. However, the [Al(BH4)4]

− anion is reported
to exist [288]. Thus either the anion is misformulated or the coordinative
interactions of the complex ion is very different those we have elucidated for
LiSc(BH4)4.
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Appendix: cartesian coordinates of model Li4(Sc(BH4)4)
2+

complex, calculated ADF vibrational frequen-

cies and IR intensities for the isolated com-

plex, calculated IR spectrum of model Li4(Sc(BH4)4)
2+

complex and Rietveld plot for synchrotron pow-

der diffraction data.

Calculated coordinates of the Sc(BH4)
−
4 complex (in Å)

Atom X Y Z

Sc 3.038010 3.038008 9.025393

B 4.457403 4.317227 7.687211

H 4.793417 4.266899 8.884974

H 5.311018 4.851632 7.016605

H 3.344350 4.867042 7.644379

H 1.791596 2.934188 7.313645

B 1.618608 1.758628 7.687287

H 1.282586 1.809555 8.885009

H 0.764610 1.224620 7.016862

H 2.731418 1.208377 7.644321

H 4.284781 3.141493 7.314003

B 1.618499 4.317310 10.363485

H 1.282508 4.266436 9.165765

H 0.764568 4.851402 11.033931

H 2.731542 4.867558 10.406402

H 4.284719 2.934348 10.736865

B 4.457454 1.758683 10.363527

H 4.793474 1.809196 9.165829

H 5.311116 1.224292 11.034080



H 3.344204 1.208761 10.406357

H 1.791517 3.141745 10.737071

Cartesian coordinates of theoretical model Li4(Sc(BH4)4)
2+

complex.
B 1.529705 1.332592 7.689584

H 1.754045 1.306577 8.901148

H 2.593091 1.298742 7.078646

H 0.762886 2.234626 7.381507

Sc 0.000000 0.000000 9.219440

H -1.035813 -0.269646 7.317769

B -1.529705 -1.332592 7.689584

H -1.754045 -1.306577 8.901148

H -2.593091 -1.298742 7.078646

H -0.762886 -2.234626 7.381507

H 1.035813 0.269646 7.317769

B -1.536789 1.194208 10.354034

H -1.786983 1.081499 9.125380

H -2.426974 1.690430 10.979572

H -0.441608 1.807550 10.382510

H 1.279901 -0.038083 10.756853

B 1.536789 -1.194208 10.354034

H 1.786983 -1.081499 9.125380

H 2.426974 -1.690430 10.979572

H 0.441608 -1.807550 10.382510

H -1.279901 0.038083 10.756853

B 1.522038 1.142729 1.698457

H 1.799189 1.037536 2.913386

H 2.401089 1.630277 1.048236

H 0.431444 1.769684 1.671620

Sc 0.000000 0.000000 2.895030

H -1.230952 0.008983 1.302331

B -1.522038 -1.142729 1.698457

H -1.799189 -1.037536 2.913386

H -2.401089 -1.630277 1.048236

H -0.431444 -1.769684 1.671620

H 1.230952 -0.008983 1.302331

B -1.493545 1.339180 4.518702

H -1.777146 1.362490 3.318372

H -2.585458 1.466366 5.076122

H -0.636673 2.171302 4.794559

H 1.120380 -0.208513 4.837110

B 1.493545 -1.339180 4.518702

H 1.777146 -1.362490 3.318372

H 2.585458 -1.466366 5.076122

H 0.636673 -2.171302 4.794559

H -1.120380 0.208513 4.837110

Li -2.836992 -3.078395 7.218469

Li -2.656521 2.568991 6.373243

Li 2.656521 -2.568991 6.373243

Li 2.836992 3.078395 7.218469



Figure 8.5: Calculated IR spectrum of model Li4(Sc(BH4)4)2+ complex.
The imaginary frequencies are plotted as negative frequencies.

Figure 8.6: Rietveld plot of high resolution synchrotron data of LiSc(BH4)4,
= 0.5000 Å , 2 = 1.1, Rwp= 0.10, RBragg = 0.056 for LiSc(BH4)4. The
position of reflections of LiSc(BH4)4 and of LiCl are shown by vertical bars.
The splitting of cubic reflections and the superstructure reflection (011) of
LiSc(BH4)4 are shown in the inset.



Table 8.3: Calculated ADF vibrational frequencies and IR intensities for the
isolated complex

Frequency (cm−1) Dipole Strength (10−40 esu2) Absorption Intensity (km/mole)

158.686915 0.505051 0.020089
179.058886 362.814150 16.283890
191.731635 1.782952 0.085686
201.985284 67.406649 3.412719
205.772673 338.598971 17.464309
209.713981 780.822615 41.044771
220.592754 1061.708426 58.704930
264.433359 62.734468 4.158154
272.258028 371.402531 25.345661
277.234549 7.045440 0.489591
286.054231 250.082215 17.931196
327.234373 125.855903 10.323111
338.305688 0.698887 0.059264
438.926559 1099.744809 120.993448
459.309669 605.337970 69.691783
466.926066 0.249581 0.029210
469.984082 927.486956 109.261971
481.020760 1260.045493 151.924605
500.493830 276.789293 34.723707
506.319156 14.760058 1.873227
529.961616 0.792026 0.105211

1033.300282 118.627934 30.724978
1034.298588 14.721578 3.816615
1037.451086 1.910265 0.496752
1043.836195 1.657207 0.433598
1059.369465 51.393886 13.646993
1061.381041 0.105682 0.028116
1069.560730 155.266292 41.625619
1074.860886 57.410768 15.467627
1099.102523 272.187462 74.986726
1103.314170 195.417982 54.043291
1111.677402 565.974559 157.708012
1131.956995 0.072441 0.020554
1189.675481 173.311506 51.681365
1202.836232 39.889600 12.026638
1212.978220 178.976698 54.416119
1226.330746 118.610496 36.459341
1231.818666 24.919104 7.694090
1234.295336 0.555864 0.171975
1241.636157 30.974568 9.640014
1248.287624 1.097482 0.343392
2243.558029 101.016042 56.807506
2246.835189 86.738589 48.849671
2249.676797 199.708234 112.614463
2252.647803 70.776095 39.962989
2259.068633 0.208244 0.117918
2266.088555 39.320044 22.334125
2269.021234 107.683870 61.244527
2273.049404 0.864114 0.492332
2286.349697 148.802380 85.276743
2287.597084 192.138282 110.172069
2288.874164 4.684833 2.687782
2294.774759 235.324859 135.358627
2484.974464 362.294651 225.663813
2488.026081 495.939959 309.287309
2491.865296 228.297542 142.594859
2497.888040 5.409636 3.387031
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This thesis concerns new developments within the orbital-free embedding
theory, improvement of the existing functionals and design of the new algo-
rithms facilitating multi-level simulations in condensed matter.

The important component of the orbital-free embedding formalism is the
non-additive kinetic energy functional, Tnad

s [ρA, ρB]. In common practice it
is calculated from known approximants to the non-interacting kinetic energy
Ts[ρ]. Dedicated studies [13] revealed, however, that there is no correlation
between the accuracy of Tnad

s [ρA, ρB] and related potential with the accu-
racy of the parent approximant to Ts[ρ]. Those conclusions stimulated a
completely new, bottom-up strategy to develop approximants, where the di-
rect quantity of interest is term vt[ρA, ρB] - the non-additive kinetic energy
potential. This route was succesfully applied in Chapter 4. Moreover, by
studying the asymptotic behaviour of vt[ρA, ρB] on large intermolecular dis-
tances, the new exact relation for this potential was derived. The violation
of this property by conventional approximations to vt[ρA, ρB] is the reason
behind the artificial transfer of the density from the embedded system to
its environment on the intermediate intermolecular distances. In Chapter 4,
the asymptotic relation was build-in the construction of the new approxi-
mant to the embedding potential, which leaded to the completely new class
of non-decomposable approximants to vt[ρA, ρB], i.e. where the parent ap-
proximation to Ts[ρ] is impossible to recover. The numerical results clearly
indicate that the proposed functional, dubbed as NDSD (Non-Decomposable
approximant using first- and Second Derivatives of ρ), improve the studied
observables, in some cases even by more than 50% when compared to refer-
ence data. Moreover, for the molecular systems where the artificial transfer
of the density occurs, the new approximant partially cures this problem by
improving the description of the unoccupied orbitals.

The author believes that the strategy to construct relevant density func-
tionals by enforcing known exact properties is very promising. The numerical
results in Chapter 4 confirm this statement. The NDSD functional can be
treated as a successor of the widely used GGA97 approximation to vt[ρA, ρB],
however, it still does not bring a major improvements in the practical ap-
plications. By including the exact asymptotic condition in construction of
this functional, one important reason of inaccuracies was eliminated, never-
theless others still remain to be discovered. Although NDSD was developed
as an non-empirical approximation, the practical implementation relies on
arbitrary chosen parameters in the switching function f. The development
of the non-empirical form of function f might lead, therefore, to further im-



provement of results.
The assessment of the accuracy conventional decomposable approximants

to Tnad
s [ρA, ρB] and vt[ρA, ρB] was one of the concerns in Chapter 6, where the

first application of subsystem formulation of density functional theory to find
the equilibrium geometries of noncovalently bound intermolecular complexes
was presented. It relied on the efficient algorithm to perform geometry min-
imization, where the Born-Oppenheimer energy minimum is reached only at
the end of the optimization procedure. Such approach brought a consider-
able savings in the time of calculations. Moreover, modular implementation
of the method in computer code allowed for the optimization with various
degrees of freedom being kept fixed.

Turning back to the approximants to Tnad
s [ρA, ρB] and vt[ρA, ρB], the op-

timization procedure was tested on LDA and GGA97 approximants. In all of
the studied cases, except π − π stacked complexes, the former approximant
leaded to superior results over the latter. The reason for this might be the
fortunate error cancellation between local density approximation for kinetic-
and exchange-correlation energy. The equilibrium geometries obtained with
subsystem formulation of DFT are also close to the reference data taken from
high-accuracy ab-initio calculations. Typically the deviations in the inter-
molecular distances are smaller than 0.1 Å in the case of LDA. Additionally,
it has been observed that in some cases subsystem DFT leads to better equi-
librium structures than corresponding Kohn-Sham calculations. Again, the
aforementioned error cancellation between functionals might be the reason
for such outcome.

The numerical results presented in Chapter 6 show that subsystem for-
mulation of density functional theory is not only a tool that can be used
to predict the properties of the embedded molecules. The calculated in-
teraction energies between two subsystems and their equilibrium geometries
match closely the reference data, providing, therefore, a complete descrip-
tion of the molecular interface. This leads to the conclusion, that taking into
account the flexibility in the choice of degrees of freedom to be optimized
within subsystem DFT, application of studied in this thesis theory might be
especially beneficial in the case of the problems where, for instance, energet-
ics, geometry and electronic structure of the chromphore embedded in large,
rigid environment is subject of interest.

The orbital-free embedding potential depends on the density of the envi-
ronment, ρB. In principle, the choice of this density is arbitrary - for example
it can be taken from any quantum-chemical method working at any level of



description. For this reasons, the embedding potential if perfectly suited for
multi-level simulations combining various methods of treatment of embedded
molecule and its environment. The development of algorithm facilitating ap-
plications of embedding potential for this purpose was subject of Chapter
5, whereas the example of using environment density taken from statisti-
cal mechanical theory of the liquids to calculate the statistically averaged
embedding potential was presented in Chapter 7.

Linearizing orbital-free embedding potential (Chapter 5) by expanding it
in Taylor series around some arbitrary chosen ρ0

A and truncating the series
on first non-disappearing term, provides an approximation which can be very
useful in practical applications. Avoiding the reevaluation of the embedding
potential during every self-consistent field iteration reduces considerably the
time of calculations. Moreover, the linearized embedding potential can be
easily interfaced between different computer codes. This facilitates the imple-
mentation of possible multi-level modeling schemes, for example embedding
of mutlideterminantal wave function in orbital-free environment. Such ap-
proaches were already successfully tested and used in practice [37, 38].

As in the case of every approximation, linearized form of the embedding
potential introduces an error in the calculations. This error will depend on
the choice of the reference density ρ0

A - the closer it will be to the ground-
state density of the embedded system, ρA, the smaller discrepancy is to be
expected. Dedicated analysis showed that optimal choice for ρ0

A is the den-
sity of isolated subsystem A. Among the studied weakly bound complexes,
such choice of the linearized potential is not adequate only for the molecules
where large charge-transfer occurs. To control the linearization errors, a spe-
cial procedure, dubbed as splitSCF, was proposed where the self-consistent
calculations are divided in the two loops - inner where the linearized em-
bedding potential is used, and outer, where this potential is updated. It
was shown that after three iterations of the external loop, the linearization
error disappears and the results are equivalent to conventional calculations
utilizing embedding potential. In the case of intermolecular complexes char-
acterized by charge transfer, four iterations of the outer loop are required.
The splitSCF procedure is not recommend to be applied in the large-scale
multi-level simulations, as the linearization approximation with adequately
chosen ρ0

A is very good and efficient approach. It is, however, very useful to
verify the adequacy of the linearization approximation, especially in the case
where large interaction induced deformation of the density occurs.

The benefits from using linearization approximation were also presented



in Chapter 6. It was applied to obtain the equilibrium geometries for the
chosen compounds, leading to the results which are in agreement with the
benchmark data, but computed at reduced cost.

In all of the previous applications employing orbital-free embedding po-
tential all the molecules constituting environment were included explicitly.
Replacing the explicit description by ”dressed up” in electron density site dis-
tributions obtained from statistical mechanical theory of the liquids reduces
the complexity of computations and allows one to consider large environments
of flexible structure. Additionally, opposed to other approaches describing
solvent in an implicit way, applied in Chapter 7 3D-RISM method retains
chemical specificity of molecular interactions (i.e. hydrogen bonds) which
has a crucial importance in the applications where the interaction induced
shifts of absorption bands are direct subject of interest.

The ”dressed up” site distributions provide statistically averaged solvent
density, which is used to obtain the statistically averaged orbital-free embed-
ding potential. Such potential, as demonstrated in Chapter 7, allows one to
replace costly calculations of the excitation energies on ensemble of solvent
configurations by only one single evaluation. This is the advantage of multi-
scale models. To validate the adequacy of OFE/3D-RISM-KH combination,
the results where compared with the previous atomistic simulations and ex-
perimental studies on acetone and aminocoumarin C151. The outcome was
encouraging, for both of the considered chromophores the numerical results
were in remarkable agreement with reference data. This allows one to draw
the general conclusion, that despite of the fact that application of average
potential gives only the positions of the maxima of the spectrum and not its
shape, it recovers its most characteristic features. The reasons for the addi-
tional discrepancies might be buried either in 3D-RISM part (inadequacy of
chosen force-field parameters or closure) or in OFE part (for example NDRE
approximation, inaccurate functionals). Despite of this, the combination of
orbital-free embedding with 3D-RISM method benefits from the properties
of the both partners. The 3D-RISM-KH method provides statistical descrip-
tion of the solvent that can be situated between explicit and implicit models
and can be evaluated without considerable computational effort. The orbital-
free embedding formalism on the other hand, relies on the exact embedding
potential (in the limit of exact functionals), that is an universal quantity
defined for any density of the environment. Its analytical form constitutes
exact electrostatic and non-electrostatic components, where the latter pro-
vide Pauli repulsion force necessary to avoid artificial transfer of the density



from the embedded system to its environment. Dedicated analysis in Chap-
ter 7 showed that those terms typically lead to better agreement of calculated
spectral shifts with the experimental data.

Considering application of quantum-chemical tools to aid the experimen-
tal studies, in Chapter 8 the Kohn-Sham density functional theory was used
to reinforce the interpretation of powder diffraction and vibrational spec-
troscopy findings on the structure of LiSc(BH4)4. The equilibrium geometry
of [Sc(BH4)4]− complex and the corresponding IR spectrum were estimated.
Theoretical results were in very good agreement with the experimental re-
ports, and confirmed the structure of the complex anticipated from pow-
der diffraction. The preliminary computational studies on Li4(Sc(BH4)4)2+

where also reported and they provide excellent starting point for furtherer
investigations involving orbital-free embedding potential.

As a final remark, this thesis concerns applications and new develop-
ments in orbital-free embedding formalism. It was presented that the intrin-
sic properties of the orbital-free embedding potential makes it ideally suited
for large-scale multi-level simulations of chemical interactions. The discrep-
ancies in the results are to be attributed to the deficiencies of the existing
density functionals - both exchange correlation energy and non-additive ki-
netic energy. The latter is a crucial component of studied formalism, and for
this reasons this work addresses its exact properties and introduces a new
class of approximants that inherit all the good features of its ancestors and
comprises the new exact asymptotic relation. Moreover, the results discussed
in this thesis open many possibilities for continuation of started studies. The
new and previously unexplored approach to construct approximations to non-
additive kinetic energy potential was proposed. In view of previous studies
showing the lack of correlation between Ts[ρ], Tnad

s [ρA, ρB] and vt[ρA, ρB] this
route seems to be very promising. The efficient geometry optimization algo-
rithm allows one to tackle problems where dependence of electronic structure
and properties of the embedded system on the mutual orientation of both
subsystems is subject of interest. The splitSCF procedure together with lin-
earization approximation are ready to be used to interface the orbital-free
embedding potential with any quantum-chemical code. On the other end,
the multi-scale model combining orbital-free embedding formalism with sta-
tistical mechanical theory of the liquids proposed and validated in Chapter 7,
already allows to study the properties of the large chromophores embedded
in various solvents and offers many possible applications to come.
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