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a b s t r a c t

The McGurk effect is a textbook illustration of the automaticity with which the human

brain integrates audio-visual speech. It shows that even incongruent audiovisual (AV)

speech stimuli can be combined into percepts that correspond neither to the auditory nor

to the visual input, but to a mix of both. Typically, when presented with, e.g., visual /aga/

and acoustic /aba/ we perceive an illusory /ada/. In the inverse situation, however, when

acoustic /aga/ is paired with visual /aba/, we perceive a combination of both stimuli, i.e.,

/abga/ or /agba/. Here we assessed the role of dynamic cross-modal predictions in the

outcome of AV speech integration using a computational model that processes continuous

audiovisual speech sensory inputs in a predictive coding framework. The model involves

three processing levels: sensory units, units that encode the dynamics of stimuli, and

multimodal recognition/identity units. The model exhibits a dynamic prediction behavior

because evidence about speech tokens can be asynchronous across sensory modality,

allowing for updating the activity of the recognition units from one modality while sending

topedown predictions to the other modality. We explored the model's response to

congruent and incongruent AV stimuli and found that, in the two-dimensional feature

space spanned by the speech second formant and lip aperture, fusion stimuli are located in

the neighborhood of congruent /ada/, which therefore provides a valid match. Conversely,

stimuli that lead to combination percepts do not have a unique valid neighbor. In that case,

acoustic and visual cues are both highly salient and generate conflicting predictions in the

other modality that cannot be fused, forcing the elaboration of a combinatorial solution.

We propose that dynamic predictive mechanisms play a decisive role in the dichotomous

perception of incongruent audiovisual inputs.

© 2015 Published by Elsevier Ltd.

1. Introduction

In face-to-face communication speech is perceived through

the visual and the auditory modalities. Compared with pure

acoustic stimuli, the presence of a congruent visual stimulus

enhances accuracy and shortens reaction times (Giard &

Peronnet, 1999; Van Wassenhove, Grant, & Poeppel, 2005),

and this effect is maximal when acoustic stimuli are weak,

noisy or degraded. The performance enhancement induced by
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visual cues in speech-in-noise occurs largely because vision

and audition offer complementary information about the

stimulus; vision conveys the place of articulation, while

audition primarily conveys voicing andmanner (Summerfield,

1987), providing concurrent cues that are ultimatelymerged in

a single representation. Although at speech onset visual

speech cues precede acoustic cues by approximately 100msec

(Chandrasekharan et al., 2009), in connected speech acoustic

cues can precede visual cues by asmuch as 40msec (Schwartz

& Savariaux, 2014). The temporal correlations between visual

and acoustic cues in normal speech hence define a 200 msec

temporal window of integration (Massaro & Cohen, 1993;

Munhall, Gribble, Sacco, & Ward, 1996; Stevenson & Wallace,

2013), ranging from approximately 30 msec of visual lag to

about 170 msec of visual lead (Van Wassenhove, Grant, &

Poeppel, 2007).

Audiovisual integration in speech perception is so power-

ful that it occurs even when the acoustic and visual streams

are discrepant as exemplified by the McGurk effect (McGurk &

MacDonald, 1976). In their seminal paper McGurk and Mac-

Donald showed that visual /ga/ paired with auditory /ba/ leads

to /da/ responses, termed fusion, whereas the responses to the

opposite pairing of visual /ba/ with auditory /ga/ contained

combination responses such as /bga/. Qualitatively, fusion has

been described as the synthetic process by which the brain

constructs a percept that coincides neither with the visual nor

the acoustic modality. Combination, on the other hand, is

usually described as a failure to fuse the two modalities,

which results in the concatenation of the acoustic and visual

tokens.

Here, we assume that incongruent audiovisual tokens

leading to fusion and those leading to combination are qual-

itatively different, when taking into account the reciprocal

predictions that visual and auditory modalities provide each

other. We demonstrate that the incongruent simultaneous

presentation of visual /aga/ and acoustic /aba/ closely

matches a congruent /ada/ presentation in a two-dimensional

space formed by lip aperture and the second formant (F2). In

this case, the integrated predictions from both modalities do

not conflict strongly and are close to /ada/. Conversely, no

such close single-consonant audiovisual match exists for

combination stimuli, which are characterized by salient visual

and acoustic information. In that case, eachmodality provides

strong and contradictory information about the other mo-

dality by way of cross-modal predictions. We hence hypoth-

esize that the failure to find a single consonant match results

in a combinatorial multi-consonant solution.

To illustrate these prediction effects across sensory mo-

dalities we used a hierarchical predictive coding framework

(Friston, Trujillo-Barreto, & Daunizeau, 2008). Predictive cod-

ing is an optimal inference framework based on the idea that

the brain internalizes forward models (how world events lead

to sensory consequences), and that what travels from the

sensory periphery to the brain are prediction errors (Rao &

Ballard, 1999). The presence of predictive mechanisms in

auditory and audio-visual speech processing has been shown

experimentally (Bendixen, Scharinger, Strauß, & Obleser,

2014; Gagnepain, Henson, & Davis, 2012; Peelle & Davis,

2012; Sohoglu, Peelle, Carlyon, & Davis, 2012; Van

Wassenhove, 2013) and explored at the theoretical level

(Yildiz, von Kriegstein, & Kiebel, 2013). The model we present

involves predictive mechanisms in audio-visual speech syn-

thesis and, unlike previous works (Bejjanki, Clayards, Knill, &

Aslin, 2011; Magnotti & Beauchamp, 2014; Magnotti, Ma, &

Beauchamp, 2013; Massaro, 1998; Omata & Mogi, 2008; Yildiz

et al., 2013), takes into account the dynamic processing of

both acoustic and visual information.

2. Materials and methods

2.1. Predictive coding model of AV speech perception

Perception results from the processing of sensory inputs

through a hierarchy of brain structures, where stimuli are

represented with increasing levels of abstraction through a

process that uses statistical knowledge about the

environment.

To simulate this process, predictive coding uses a genera-

tive model, which represents the hierarchical structure and

statistics of the world, and relates sensory inputs to their

external causes. The brain's task is to infer the causes that

create the sensory input, and this is simulated by inverting the

generative model. The inversion involves topedown pre-

dictions from the generativemodel and bottomeup prediction

errors. We used the model inversion based on Dynamic

Expectation Maximization (DEM) (Friston et al., 2008). DEM

inverts dynamic hierarchical models with a message-passing

scheme thatminimizes prediction errors. Activity at any given

level predicts activity at the lower level using the generative

model. Topedown communication relays predictions from a

given level to the level below. Discrepancies between pre-

dicted and actual activity generate a bottomeup signal rep-

resenting prediction error (PE). The level above can then use

the PE signal to update its state so that its prediction becomes

more accurate and prediction error minimal.

To apply DEM to AV speech perception we built a hierar-

chical generative model connecting a single multimodal

recognition level to two sensory input modalities, auditory

and visual. Between the recognition level containing abstract

representations of congruent /aba/, /ada/ and /aga/, and the

sensory level representing lip aperture (visual cue) and F2

(acoustic cue), we introduced an intermediate level of

sequence units that determined the timing and ordering of lip

and F2 associated with each speech token.

Fig. 1 shows the three levels of the model together with

sample dynamics when confronted with a congruent /ada/

stimulus. Units at the top level, when active, generate both

acoustic and visual estimates in the lower levels. Each

recognition unit at the top level is associated with one of the

three AV tokens through a distinct pattern of lip motion and

second formant modulation in time (Fig. 2B). These internal-

ized patterns are part of the generative model; they represent

the lip and F2 sensorymodulations as a sequence of 18 values.

Since the speech token approximately corresponds to

400 msec of speech input, 18 points correspond to a temporal

precision of approximately 25 msec. For each of the 18 time

points there is a corresponding unit in the sequence level.

The generative model drives the sensory estimates by

providing a target pair of lip and F2 values to the sensory level
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at each time point (‘Topedown input’ in Fig. 3). Target lip and

F2 values are determined by the internalized AV patterns and

the instantaneous activation of recognition and sequence

units. The dynamics at the sequence level are such that

sequence units show transient sequential activation (Fig. 1,

middle panel on the right). Consequently, for most of the time

the input to the sensory level is dominated by the lip and F2

values corresponding to only one of the 18 points in the

internalized patterns. The sequence level therefore selects

the time point in the pattern and the recognition units select

the appropriate pattern (/aba/, /ada/ or /aga/). At the start of

the process all three recognition units are equally active and

Fig. 1 e Left: Model schematics and flow of information. Topedown: current estimates of causal units; bottomeup:

prediction errors. Prediction errors originate at the sensory level, in which lip and F2 predictions derived from the current

state of the model is compared with incoming lip and F2 from the sensory periphery. Prediction errors are used to change

the activity of the units in the model so that their generated lip and F2 predictions are closer to the sensory signals. Right:

sample activity dynamics of causal units (v) at each level when themodel recognizes congruent /ada/ input. Top: recognition

units, middle: sequence units, bottom: sensory units. The plots show normalized activity for the top two levels and scaled

versions of lip aperture and second formant for the audiovisual features.

Fig. 2 e A. Lip aperture and second formant extracted from 10 productions of the three audiovisual speech tokens /aba/,

/ada/and /aga/ from a single speaker. The data is represented as trajectories in the (F2, lip aperture) plane. The trajectory

starts on the top branch and returns along the lower branch. The vertical lines signal the discontinuity in the second

formant, which is not defined during the intervocalic interval. The figure shows that for a single speaker the trajectories are

clearly separable. B. Based on the productions represented on the left panel we defined three pairs of lip aperture and

second formant patterns used by the generative model to produce continuous topedown predictions for lip and formant

values. The /aCa/ productions were represented in the model by lip aperture and F2 values sampled at 18 time points. The

congruent productions generated by these patterns are shown in Fig. 3B.
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the target lip and F2 correspond to the mean of the three

patterns. Since all patterns are indistinguishable at the

beginning of the stimulus, there is no prediction error. As the

modulation in the sensory input progresses, equal activation

of the three recognition units generates a prediction error,

which is minimized by increasing the activity of one of the

recognition units. In the model recognition units have a time

constant of ~ 200 msec, which allows them to integrate in-

formation, i.e., remember, over a period of time consistent

with the known time window of integration in AV speech

processing.

2.2. Generative model equations

The dynamics within each level are encoded by units/vari-

ables denoted by the letter x. Levels send information about

their current state to the level below through causal/output

units v. Discrepancies between the predictions coming from

higher levels and the actual values are used in a message

passing scheme to update state and causal units at each level

so that prediction error is minimized. Both dynamic and

causal variables are subject to random fluctuations, which, in

the predictive coding implementation from Friston et al.

(2008), can have temporal correlations.

The generative model has the general form:

_xðiÞ ¼ f
�
xðiÞ; vðiÞ�þ uðiÞ

vði�1Þ ¼ g
�
xðiÞ; vðiÞ�þ zðiÞ

where (i) denotes the level. u and z at each level represent

random fluctuations; their covariance and precision (inverse

covariance) play a critical role in the inference process. The

inference process is driven by prediction errors (PE), the de-

viations from the generative model expectations:

xðiÞx ¼ _xðiÞ � fðxðiÞ;vðiÞÞ and xðiÞv ¼ vði�1Þ � gðxðiÞ; vðiÞÞ. These travel

from each level to the immediate level up the hierarchy (Fig. 1,

left). How much each prediction error term contributes to the

updating of x and v is related to their relative precisions; the

smaller the fluctuation amplitudes of u(i) and z(i), the more the

corresponding prediction error terms x(i)x and x(i)v will be

weighted (Friston et al., 2008). As in standard Bayesian inte-

gration, the relative precisions will determine the relative

Fig. 3 e A. Generation of synthetic congruent audiovisual speech tokens. Left top and down panels represent the 2nd and

3rd levels of the model. The output of the /ada/ recognition unit is fixed to one (left panel, top) and the 18 sequence output

units represented in different gray levels become sequentially activated (left panel, bottom). The two together, generate at

each time step the driving input (middle) to the sensory level (right), which is a low-pass filtered version of the driving input.

B. The three congruent patterns obtained by running the generative model using the patterns in Fig. 2B (/aba/ solid black

lines, /ada/ solid grey lines, /aga/ black dashed lines; lip thin lines, F2 thick lines). C. Recognition of a congruent /ada/ token

by the model. Left, the lip and F2 sensory inputs; middle, the driving input to the sensory level units consistent with the

activity at the recognition level (right panel, top) and sequence units (right panel, bottom). In contrast to A, activity in the

recognition units is driven by sensory inputs. Initially the three recognition units are similarly activated but as their

associated patterns (B) separate from each other prediction error is minimized by increasingly activating the /ada/

recognition unit.

c o r t e x 6 8 ( 2 0 1 5 ) 6 1e7 564

http://dx.doi.org/10.1016/j.cortex.2015.04.008
http://dx.doi.org/10.1016/j.cortex.2015.04.008


driving force that internal dynamics, topedown predictions

and bottomeup prediction errors will have in the updating of

states and estimates.

The left panel of Fig. 1 gives an overview of the model ar-

chitecture with its three levels. Sensory inputs, one per mo-

dality, enter through the lower sensory level. v(0) represents

the sensory inputs, which are compared with the topedown

predictions g(x(1),v(1)). The resulting prediction error

v(0)�g(x(1),v(1)) is passed to the level above. The goal is then to

change v(1) so that the prediction g(x(1),v(1)) is closer to the

audiovisual input. Since v(1) is predicted by x(2) and v(2) through

g(x(2),v(2)), any change in v(1) to improve the predictions for the

sensory stimulus at the bottom level, will generate in turn

changes on the higher level through the corresponding pre-

diction error: v(1)�g(x(2),v(2)). This is how the external sensory

input can drive recognition at the top level (right panel of

Fig. 1).

2.2.1. Level 3 (top-level): consonant identity units
There are 3 units in the top level (top left panel of Fig. 1). Each

consonant from the set {b, d, g} is represented by one unit,

which when active generates the corresponding /aCa/ F2

transitions and lip motion. There are state units xi (i ¼ 1, …,3)

with internal dynamics, and output units vi (i ¼ 1, …,3). The

output units transmit information to the lower levels; the

output reaches level 1 through level 2.

_xð3Þ
i ¼ �a

�
xð3Þ
i � c

�
� b

X
isj

1
.�

1þ exp
�
� axð3Þ

i

��
þ u

ð3Þ
i (1)

vð2Þ
i ¼ exp

�
�xð3Þ

i

�,0
@X

j

exp
�
�xð3Þ

j

�1Aþ zð3Þi (2)

The dynamic equations for the states (x) contain a decay

term (a: inverse time constant) and all-to-all inhibition

(without self-inhibition). v is a normalized version of the ac-

tivity of the state units. The top right panel of Fig. 1 shows the

activity of the output units; initially the three units are simi-

larly activated, but as sensory evidence arrives, the /ada/ unit

becomes the one explaining best the sensory input. a and b are

constants that amplify the winner-take-all component in the

dynamics, while c sets the range of x. Parameter values were:

a ¼ .015, b ¼ .3, c ¼ 2, a¼ 3.

During recognition dynamic units were initialized at the

uniform fixed point obtained from Eq. (1). The equation

0 ¼ �a(x�c)�2b/(1þexp(�ax)), was solved numerically.

2.2.2. Level 2 (middle level): sequence/timing units
The dynamics of the states are such that only one unit is

highly active, with the active unit changing in a pre-

determined order. A first set of state units (x) is connected so

that they become active sequentially. A second set of state

units (y) imposes normalization so that the output is bounded

between zero and one (Yildiz et al., 2013). They represent

timing units and they divide the entire duration into nt in-

tervals. We chose nt ¼ 18, so that each timing unit represented

about 25 msec of speech.

_xð2Þ
i ¼ 2

�
� xð2Þ

i

.
18�Wð2Þ

ij

�
1þ exp

�
�xð2Þ

j

���1
þ 1

�
þ u

ð2Þ
x;i (3)

_yð2Þ
i ¼

0
@exp

�
xð2Þ
i

�
� yð2Þ

i

X
j

exp
�
xð2Þ
j

�1A,
2þ u

ð2Þ
y;i (4)

v 1ð Þ ¼ max min y 2ð Þ; 1
� �

;0
� �

;v 2ð Þ� �þ z 2ð Þ≡ y;u½ �T þ z 2ð Þ (5)

Wi;i�1 ¼ 0:5; Wi;i ¼ 0; Wi;iþ1 ¼ 1:5; otherwise Wi;j ¼ 1

Wi j is a connectivity matrix from unit j to unit i and bold

letters denote vectors. The output units send the value of the

normalized states y together with the output received from

level 3, v(2), which we rename as u. y carries information about

an internally referenced time and u about the relative acti-

vation of recognition units. The middle panel of the right

column in Fig. 1 shows the activity of the 18 y units in a

simulation; each of them dominates the output at a specific

time.

2.2.3. Level 1 (low-level): sensory units
The lowest level is made up of two units representing lip

aperture and second formant (Bottom left panel in Fig. 1).

We use a simple first order linear equation for the

dynamics:

_x 1ð Þ
i ¼0:6 �x 1ð Þ

i þ
X
j;k

Pijkujyk

0
@

1
Aþu

1ð Þ
i ; i¼L;F j¼1;2;3 k¼1;/;18

(6)

v 0ð Þ ¼ xL; xF½ �T þ z 1ð Þ (7)

L and F stand for lip aperture (the visual cue) and second

formant (the acoustic cue). P is amatrix that contains the time

profiles for the whole /a-consonant-a/ (/aCa/) transition of the

two sensory features (lip and second formant) associated with

each of the 3 AV tokens (/aba/, /ada/, /aga/) sampled at nt ¼ 18

time points each. The way the patterns were defined is

explained below under the heading Synthetic AV speech

stimuli. This term changes, from moment to moment, the

target value for the states xi and consequently the internal

estimate of the sensory inputs v. Matrix P represents a

spatiotemporal pattern encoded by the identity/recognition

units at the top level (Fig. 2B).

2.3. Synthetic AV speech stimuli

The input to be recognized by themodel consisted of synthetic

signals designed to capture the most salient features of audio

and video signals of actual /aba/, /ada/ and /aga/ productions

from a single speaker. Acoustic stimuli were represented by

the second formant (F2), which was extracted from the sound

waveformwith Praat (Boersma&Weenink, 2014).We chose F2

because it can reliably be detected and distinguishes between

/aba/ /ada/ and /aga/. Visual stimuli were represented by lip

aperture, which was extracted from the video with custom

scripts written in MATLAB (The Mathworks, Natick, Massa-

chussetts, version 8.2.0.701).

Synthetic signals were obtained by running the generative

model presented above. The critical quantities defining the

characteristics of the acoustic and visual signals generated by
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the model are the patterns encoded in matrix P of the first,

sensory, level. As explained above, P encodes the lip and

formant profiles of congruent AV speech tokens sampled at 18

consecutive time points.

To define reasonable values for P we selected about

400 msec of the audiovisual signal from the productions of a

single speaker. This interval was bounded by the maximum

lip aperture before and after the consonantal constriction.

F2 was divided by 2000 Hz and lip aperture was normalized

so that maximal aperture was 1. From the median time

profile across the 10 productions of each token we extracted

F2 values immediately before (Foff) an after (Fon) the inter-

vocalic interval, approximate timing of intervocalic interval

(toff and ton), as well as the amplitude of lip closure (Lc). The

18 values for the pattern were then chosen from the

following parameterization, which captures the main F2

and lip aperture features extracted from the medians:

F tð Þ ¼
F0 þ Foff � F0

� �
exp � toff � t

� ��
toff

� �
t< toff

0 toff < t< ton
F0 þ Fon � F0ð Þexp � t� tonð Þ=tonð Þ t> ton

8<
: (8)

LðtÞ ¼ ð1� Lc½ � cosð2pt=TÞ � cosð4pt=TÞ=20þ ð19=20Þ�=2Þ (9)

T is the total duration of the speech token. The values from

the medians of the 10 productions of each of the three AV

speech tokens were as follows: Fon: (.75, .9, 1.2) and Lc¼ (1, .5,

.37) for /aba/, /ada/, /aga/ respectively. For simplicity we set

Foff ¼ Fon.

Unlike lip aperture, the second formant is not defined for

the whole duration of the speech token since it is not present

during the oral cavity constriction. This is reflected in an

overall decrease in power during the intervocalic interval. We

accounted for this fact indirectly by setting pattern values for

F2 ¼ 0 during this interval. Since all recognition (Level 3) units

will generate the same formant value during this interval,

there is no information about the speech token to be extrac-

ted. However, there is a strong cue about timing, which can

bias/reset the activity of units at the sequencing/timing level.

Thus our F2 can be regarded as a combined second formant

and onset/offset signal. The AV signals produced by the

generative part of themodel presented above with these three

patterns defined our synthetic congruent inputs. Thus we

fixed the activity of the relevant recognition unit at the top

level and saved the resulting lip and F2 outputs (L(t), F(t)). The

400 msec of stimulus were represented by 120 time points,

which corresponded to ~ 3msec time steps.

To simulate variability across and within speakers in AV

speech production, we created stimuli with varying lip and F2

profiles in a 2D continuum by considering independent linear

mixtures of /aba/ and /aga/ lip and F2 components:

LðtÞ ¼ aLLðtÞaba þ ð1� aLÞLðtÞaga (10)

FðtÞ ¼ aFFðtÞaba þ ð1� aFÞFðtÞaga (11)

L(t)aba/aga stands for the lip aperture profile, F(t)aba/aga for

the second formant profile (from the congruent generation). In

this parameterization the congruent tokens are represented

by (aL, aF): /aba/¼ (1, 1), /aga/¼ (0, 0), /ada/¼ (.21, .67). The

values corresponding to /ada/ were obtained by solving the

equations derived by using the values for Lc and Fon given

above (by definition Lc¼ L(tc) and Fon¼ F(ton)) with tc the time of

maximum lip closure and ton the time of F2 onset after the

intervocalic interval. Lada(tc)¼aLLaba(tc)(1�aL)þLaga(tc)0

aL¼(Lada(tc)�Laga(tc))/(Laba(tc)�Laga(tc))

Similarly, aF¼ (Fada(ton)�Faga(ton))/(Faba(ton)�Faga(ton))

2.4. Simulations

The simulations presented in this paperwere performedusing

the dynamic expectation maximization tools of SPM8 (Well-

come Trust Center for Neuroimaging, UCL), running in MAT-

LAB. The integration time step was the same as the time step

of the stimulus (approximately 3 msec). Qualitatively similar

results were obtainedwhen running a control simulationwith

half the time step.

The fixed log precision parameters (log P), unless otherwise

indicated, were as follows. Level 3, states and causes log

P ¼ 12. Level 2, states and causes log P ¼ 10. Level 1, states and

causes for lip aperture log P ¼ 5, states and causes for F2 log

P ¼ 8.

The outcome of the inference process depends on preci-

sion values. The values used here were chosen to illustrate

how cross-modal predictions can lead to fusion and combi-

nation stimuli. To reduce the number of free parameters we

considered equal precision for causal and hidden states at

each level. For noisy sensory inputs one should rather opt for a

higher precision for hidden states than for causal states (e.g.,

Yildiz et al., 2013), but since we did not use noisy stimuli, this

was not necessary.

Our goal was to find parameters that i) lead to recognition

of congruent tokens and ii) result in similar effective strengths

of visual and acoustic cues. The first requirement was met by

setting higher precision values for higher levels in the hier-

archy. To meet the second requirement we chose higher

precision values for acoustic than visual cues. With equal

precision for both sensory cues, the visual cue has a stronger

impact on the outcome because it gives information at every

time point, whereas acoustic information is not available in

the intervocalic period. In Fig. 5 we illustrated how the infer-

ence outcome changes with the relative precision of acoustic

and visual cues. Choosing more extreme precision ratios in

favor of one of the sensory modalities leads to the expected

result that both fusion and combination are biased towards

the strongermodality (data not shown). Assuming that people

may differ in the relative precision they assign to acoustic and

visual cues, interindividual variability might explain the

different incidence of combination and fusion responses in

psychophysics experiments. Future work will explore more

systematically the effect of precision and use behavioral data

to constrain them as much as possible.

3. Results

3.1. Separability of audiovisual speech tokens

To represent the audiovisual tokens we chose a single feature

per modality; the second formant of the spectrogram for the

auditory stream and lip aperture for the visual stream. Fig. 2A
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shows 10 trajectories in the lip aperture and formant space,

for each of the three tokens /aba/, /ada/, /aga/from a single

speaker. Although additional features would be needed to

further distinguish, for example, between the /bdg/ and /ptk/

consonants, this representation is sufficient for the current

purpose. The three /aCa/ tokens have distinct trajectories and

we created synthetic signals with the same qualitative fea-

tures; duration of intervocalic interval, peak second formant

value just before and after the occlusion, related drop in sound

intensity, and size of lip aperture modulation (amount of lip

closure).

3.2. Generation and inference in a hierarchical predictive
coding model of AV speech perception/categorization

The hierarchical generative model was designed to explore

the predictive action of the visual and acoustic modalities in

AV speech processing. The relationship between the activity

at the top/recognition level of the hierarchy and the bottom/

sensory level qualitatively mimics how an actual speech

token leads to the associated audiovisual percept. We will

show that fusion stimuli are processed very similarly to

congruent /ada/ because the prediction of the early activity is

not contradicted by subsequent features in the stimuli. In

contrast, the processing of combination stimuli leads to pre-

dictions early in the stimulus presentation that are subse-

quently contradicted by later features in the stimuli.

When themodel is used for perceptual inference, if there is

a discrepancy between sensory inputs and the estimate of the

sensory inputs derived from the current state of dynamic and

causal states in the model, error signals (PE) are passed to

higher levels and are used to update the dynamic and output

units in all levels so that prediction errors are minimized

(Friston et al., 2008). Our basic approach to study the
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Fig. 4 e Recognition units in response to 36 combinations of lip aperture and F2. Each individual panel shows the activity of

the recognition units as a function of time. Lip closure is constant along rows, with the top row having the maximal lip

closure (corresponding to /aba/) and the bottom row minimal lip closure (/aga/). Columns are arranged according to the size

of the formant transition, maximal for /aga/ (right column) and minimal for /aba/ (left column). Stereotypical congruent

audiovisual tokens are marked with a solid black rectangle, the stereotypical fusion and combination stimuli with a dashed

grey, respectively, black rectangle. The shaded regions reflect the 95% confidence intervals. Fusion stimuli are relatively

close to a congruent /ada/; combination stimuli however (dashed grey square) are not close to a single consonant transition

and no single recognition unit can appropriately account for the stimulus. Some features of the pattern of activations are

rather robust to changes in relative precisions. The acoustic cue for /aga/ and the visual cue for /aba/ are particularly salient;

this is reflected in the rapid rise of the activity related to /aga/ (dashed black) in all the stimuli of the right column, and the

rapid rise of /aba/ activity (solid black) on the top row. When the activity of one unit predominates over the others, it is

effectively making a prediction in time about the identity of the stimulus; the topedown component in the model sends an

/aba/ respectively /aga/ prediction. When the predicted sensory input conflicts with the actual input (top right quadrant of

the picture), prediction error leads to a reevaluation, the activity does not stabilize and both /aba/ and /aga/ units are

strongly active at some point during the stimulus. In contrast, fusion stimuli (visual /aga/, auditory /aba/) are processed

similarly to congruent /ada/.
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qualitative features of prediction in multimodal processing of

AV speech signals is to use a model that can robustly recog-

nize congruent AV speech tokens and test its performance on

non-congruent speech tokens to unveil the differences be-

tween fusion and combination responses.

Instead of building a model that learns appropriate pat-

terns from congruent productions from an actual speaker, we

considered a model that generates congruent AV speech sig-

nals, sharing the main features of recorded productions from

a single speaker (see Methods). Model-synthesized speech

signals (Fig. 3B) and their incongruent combinations were

subsequently used as inputs to the model for identification/

perceptual inference.

The generative part of the model is illustrated in the top

row of Fig. 3, in which the activated unit encodes /ada/

(v(2)ada ¼ 1). The topedown driving input to the first level dy-

namic units (x(1)L,F) is a weighted sum of the pattern values

over time and over identity (Eq. (6), Fig. 1B). The instantaneous

weights are given by the instantaneous activities of sequence

output units (v(1)) and recognition output units (v(2)). During

generation, only one of the three recognition output units is

active and from the sequence output units one dominates

over the others most of the time; therefore the input to the

first level successively goes through the values encoded in the

pattern at the 18 sampled time points (corresponding to a

temporal precision of ~25msec) one after the other at the

natural rhythm of the sequence units (which we fixed so that

the whole 18 unit sequence would span 400 msec of AV

speech).

Fig. 3B shows the three lip and F2 profiles obtained for the

three congruent /aCa/ tokens by running the generativemodel

with the patterns of Fig. 2B. We considered these profiles as

the standard congruent sensory stimuli. During inference, the

model is driven by sensory stimuli. In the simulation illus-

trated in Fig. 3C the inferencemodel is confronted with one of

the standard congruent sensory stimuli obtained with the

generativemodel, in this case /ada/. Since the three congruent

patterns (Fig. 2B) initially have the same values, at the very

beginning none of the top-level recognition units is favored.

However, as the separation of lip aperture and second formant

amongst the three profiles increases (Fig. 3B) the /ada/

encoding unit gets increasingly activated and eventually

dominates the output of the top level.

3.3. Predictive contributions to the processing of
incongruent AV speech tokens

Finally the model defined by the three congruent /aba/, /ada/

and /aga/ recognition units was presented with parametric

combinations of lip and F2 modulations. Synthetic stimuli

were constructed by varying independently the degree of lip

closure and peak F2 between their minimum and maximum

values. Lip closure is minimal for /aga/ andmaximal for /aba/,

while the opposite is true of peak F2; maximal for /aga/ and

minimal for /aba/ (Fig. 3B). This family of stimuli contained

congruent-like stimuli, fusion-like stimuli and combination-

like stimuli and allowed us to illustrate the qualitative dif-

ference between fusion and combination stimuli. The syn-

thetic congruent stimuli captured the main features of lip and

F2 profiles of a set of AV productions from a single speaker. By

considering a two parametric family of lip and F2 pairings we

could qualitatively mimic the variability across speakers and

trial-to-trial productions.

Fig. 5 e Output of the recognition process when the precision associated with either the visual cue (left panel) or the acoustic

cue (right panel) is increased relative to our standard simulations (center panel, Fig. 4 and Fig. A.1). Input stimuli consisted

of 12 £ 13 pairs of lip aperture and F2 modulations obtained by varying the amount of lip closure and F2 modulation

independently (see Methods for a detailed description). The position on the grid determines the relative distance from the

/aba/ stimulus in the lip closure dimension (AV) and F2 modulation dimension (AF). The positions of the standard /aba/

(AV ¼ 1, AF ¼ 1), /ada/ (AV ¼ .21, AF ¼ .67) and /aga/ (AV ¼ 0, AF ¼ 0) are marked with a square, and those of the standard

fusion (AV ¼ 0, AF ¼ 1) and combination stimuli (AV ¼ 1, AF ¼ 0) by a circle. At each point of the grid, the color of the filled

circles represents the identity of the recognition unit with highest activity at the end of the process. The size of the filled

circle is inversely related to the fluctuations in recognition unit activity (smaller circles related to larger cross-modal

conflict). Only precisions for causal states at the bottom level differed across panels. A: log precision for lip causal state log

P(vL) ¼ 6, and for F2 causal state log P(vF) ¼ 7. B: log precision for lip causal state log P(vL) ¼ 5, and for F2 causal state log

P(vF) ¼ 8. C: log precision for lip causal state log P(vL) ¼ 4, and for F2 causal state log P(vF) ¼ 9.
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Fig. 4 shows the activity of the three recognition units at

Level 3 for 36 lip closure and F2 modulation pairs (Fig. A.1

shows the same simulation with a finer sampling of the lip

closure and F2 space). The pairs closest to the three congruent

AV tokens are marked with a black square. The response to a

fusion-like stimulus (lip profile from /aga/ presented together

with the F2 profile from /aba/) is surrounded by a solid grey

squareand that to a combination-like stimulus (lip profile from

/aba/presentedwith the F2 from/aga/) by adashedgrey square.

Importantly, the position on the grid of the congruent AV

stimuli (black solid squares) illustrates that /aba/ and /ada/ are

closer in the acousticmodality and /aga/ and /ada/ are closer in

the visual modality. As a result, fusion stimuli are closer to a

congruent stimulus than combination stimuli and, as is the

case in the simulation of Fig. 4, the incongruencemight not be

detected and the fusion stimuli can be perceived as /ada/.

As is typical in optimal inference, the relative precision (in-

verse covariance of fluctuations) of the variables in the model

plays a determinant role in the outcome of the inference pro-

cess; quantities with higher precision (lower amplitude fluctu-

ations) drive the inference process more strongly. In particular

the relative precision of the two sensorymodalities determines

which modality is going to be weighed more, while relative

precisions across levels in the hierarchy determine the relative

weight of bottomeup sensory driven changes and of topedown

predictions from the prior/internalized categories. In the

simulation of Fig. 4 the relative precision of visual and acoustic

cues were chosen so that both modalities had a similar weight

on the inference process, as evidenced by the strong activation

of both /aba/ and/ada/ units for combination stimuli, which are

characterized by strongly informative acoustic and visual cues

(the top right corner of the figure). We assume that this situa-

tion leads to amaximum of combination and fusion responses

to combination-generating (top right region) and fusion-

generating (bottom left region) stimuli, respectively.

When the activity of one unit predominates over the

others, as is the case in the presence of strong evidence for one

of the three speech tokens, it is effectivelymaking a prediction

about the identity of the stimulus. If the evidence comes pri-

marily from one of the two modalities (because of its salience

or timing) the topedown generative part of themodel predicts

the sensory input on the other modality. If the actual sensory

input in the other modality is sufficiently close to the tope-

down predicted input, it reinforces the current estimate. This

is the case for congruent /aba/ or /aga/. The opposite is

observed for combination stimuli, for which both acoustic

/aga/ and visual /aba/ provide strong evidence (for /aga/ and

/aba/ respectively). The prediction from one modality is not

confirmed in the othermodality and themodel cannot provide

a single consonant solution. The activity in the top right panel

of Fig. 4 shows that both the /aba/ recognition unit (black) and

the /aga/ recognition unit (dashed) are strongly activated at

different times of the stimulus presentation.

Starting with the parameters used for the simulations

shown in Fig. 4, we varied the relative precision of visual and

acoustic streams at the lower level of the model and run the

recognition task on (12 lip closure � 13 F2) pairs. The central

panel in Fig. 5 corresponds to the same parameters as those in

Fig. 4. The recognitionunitmost activeat theendof theprocess

isnowrepresentedby thecolor of thefilledcircle. Someplots in

Fig. 4 (diagonal region in theupper right quadrant) showstrong

activation of /aba/ and /aga/ recognition units alternating in

time. This alternation reflects cross-modal conflict and is

represented inFig. 5 by the sizeof thefilledcircles,with smaller

circles representing less congruence, i.e., more conflict. As an

examplewemay compare the sizeof the circle for the standard

combination in Fig. 5B,marked by the black circle on the upper

right quadrant, and the corresponding recognition unit acti-

vations for the same stimulus in Fig. 4 (gray dashed square).

Small size circles denote that the dominant recognition unit

varies (alternates), signaling conflicting stimuli. Larger circles

in Fig. 5B, indicate a steady rampup of a single recognition unit

when stimuli are not conflicting.

When the strength of the visual cue was strengthened by

decreasing the amplitude of fluctuations corresponding to xL
(the lip aperture variable) and increasing the amplitude of the

fluctuations for xF (the second formant variable), the pattern

of activity in the recognition units changed in the stimulus

region around the largest cross-modal conflict (upper right

quadrant). There was a shift from dominant /aga/ (light grey)

to dominant /aba/ (black) and the conflict region (smaller

sized circles) shifted downwards in the direction of /aga/

(Fig. 5A). That is, some stimuli that were perceived as /aga/

(control, Fig. 5B) changed to /aba/ (Fig. 5A) and for other

stimuli conflict increased (reduction of circle size). The same

qualitative changes, but in the opposite direction (from /aba/

to /aga/) were obtained when the amplitude of the fluctua-

tions for xF was decreased and those for xL increased, leading

to a relative strengthening of the acoustic cue (Fig. 5C). The

winner-take-all dynamics in the model also suggests that

earlier arriving cues could have an advantage over later cues.

We found a subtle effect consistent with such an advantage

(Fig. A.2). When the model encoded AV patterns with later

arriving acoustic cues (Appendix 1, Fig. A.2A), the /aba/

recognition unit in the cross-modal conflict region (stimuli

close to a visual /aba/ and auditory /aga/) was favored, sug-

gesting a relative advantage of the visual cue. With patterns

with earlier acoustic cues (Fig. A.2C), it was the activity of the

/aga/ recognition unit that showed increased activity and

lower conflict in the visual /aba/, auditory /aga/ region of

stimulus space, thus pointing to a relative advantage of the

acoustic cues. The other regions of stimulus space, which are

closer to congruent and fusion stimuli, underwent only

modest changes (Appendix 1).

In summary, since the recognition units at the top level are

multimodal and send topedown connections to the individual

sensory modalities, early salient information about the stim-

ulus in one sensory modality is transferred to the other mo-

dality in the form of predictions of sensory input (through the

topedown generative component of the model). Our simula-

tions suggest that fusion occurs because cross-modal pre-

dictions are consistent, and the brain does not detect

incongruence. Conversely, combination percepts occur

because cross-modal predictions are violated.

4. Discussion

To investigate the role of predictions across modalities in the

early stages of audiovisual speech processing, we explored
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how a hierarchical predictive coding model with acoustic and

visual sensory input would process incongruent audiovisual

speech tokens. The model was designed to produce synthetic

versions of real congruent AV productions of /aba/, /ada/ and

/aga/from a single speaker. The model's performance was

subsequently tested on arbitrary incongruent combinations of

acoustic and visual cues.

Optimal probabilistic inference provides a principled and

useful framework to describe basic features of multisensory

cue integration (Pouget, Beck, Ma, & Latham, 2013) such as

reliability-based cue weighting and the brain's interpretation

of sensory stimuli based on prior knowledge. Predictive cod-

ing, in addition, considers the brain as a predictive machine,

with higher cortical areas trying to explain/predict activity in

lower areas (Clark, 2013; Rao & Ballard, 1999). It naturally in-

corporates topedown information and can deal with time

varying continuous inputs. In this work we used a predictive

coding framework based on Dynamic Expectation Maximiza-

tion (Friston et al., 2008) that has previously been used to

model acoustic speech processing (Yildiz et al., 2013). Yildiz

et al. modeled words or sentences individually with a single

module encoding a 6 band acoustic cochleogram of a spoken

word or sentence. Our predictive coding model included the

visual modality in addition to the acoustic modality and we

explicitly included several patterns (/aba/, /ada/, /aga/)

competing to explain the incoming input.

The generative model is a crucial element in predictive

coding; it approximates the statistical relationship between

an external cause and its sensory consequences, in the pre-

sent case between the identity of the audiovisual token, and

the acoustic and visual sensory cues. We represented the

identity of the audiovisual speech tokens with supramodal

recognition units at the top level of the hierarchy. There were

three recognition units, representing three possible congruent

AV speech tokens of the form /aCa/ with C one of the conso-

nants /b/, /d/ or /g/. The topedown generation process of the

model drove activity in the sensory units by aweighted sumof

memorized/internalized patterns; how much each pattern

contributed to the sensory units was determined by the

normalized activity of the supramodal recognition units at the

top. Such normalization is a candidate basic operation in brain

computations (Carandini&Heeger, 2012; Ohshiro, Angelaki,&

DeAngelis, 2011).

At the other end of the hierarchical model, there were two

sensory units, one per modality. We chose lip aperture as the

visual cue and the second formant transitions of the sound

spectrogram as the acoustic cue. Although there are other

available cues related to the AV speech tokens, lip aperture

and second formant were sufficient to distinguish between

the congruent productions in our data set. Formant transi-

tions are one of the important acoustic features for plosive

consonant classification (Soli & Arabie, 1979; Edwards, 1981;

Stevens, 2002) and the second formant transitions were

determinant for distinguishing between /b/ and /d/ in noise

(Varnet, Knoblauch, Meunier, & Hoen, 2013). The visual

contribution to speech is not well understood but it includes

both identity and timing information (Brancazio, 2014;

D'Ausilio, Bartoli, Maffongelli, Berry, & Fadiga, 2014; Ten

Oever, Sack, Wheat, Bien, & van Atteveldt, 2013). Lip aper-

ture is related to articulatory gestures (Browman & Goldstein,

1992) and provides place of articulation information that

complements manner of articulation, which is only available

acoustically. The internalized lip and second formant patterns

associated with the three phonemic segments /b/, /d/, /g/

within the context set by the initial and final vowel /a/ con-

sisted of appropriate target values in the two sensory modal-

ities sampled at approximately 40 Hz.

Amongst the parameters of themodel, therewere two time

scales of special significance, the detail in the pattern repre-

sentation and the integration time constant at the recognition

level. The temporal detail in the representation corresponded

to ~20msec (gamma range). The integration time constant, i.e.,

the time constant of evidence accumulation, was ~200 msec,

in the theta range. The integration time constant corresponds

to the temporal window of integration, the duration over

which features are integrated into a single speech token. This

window has been estimated to be about 200 msec in audio-

visual speech (Massaro & Cohen, 1993; VanWassenhove et al.,

2007). However, even within the acoustic domain, consonants

are characterized by a collection of acoustic features spanning

a typical duration of the order of 100 msec (Luo & Poeppel,

2012). This reflects the hierarchy of time scales present in

the acoustic speech signal; which contains both fast events

~20 msec such as the onset and offset of vocalic voicing and

the broadband burst after the release of the oral cavity oc-

clusion, and slower ~100msecmodulations in the envelope of

the speech sound and smooth formant transitions. The online

continuous processing presented here opens up the possibil-

ity for exploring different temporal scales either nested

(Ghitza, 2011) or in parallel.

Precision is also an important parameter of the model, as

exemplified by the observation that changing the relative

precision of acoustic and visual cues biases the outcomes to-

ward the visual or the acoustic token in combination stimuli

(Fig. 5). If precision values, which could be related to pyrami-

dal cell excitability (Brown & Friston, 2012), varied across in-

dividuals and attentional state, they would be consistent with

the variability of fusion and combination responses across

individuals (Nath & Beauchamp, 2012) and under differing

attentional settings (Alsius, Navarra, Campbell, & Soto-

Faraco, 2005; Tiippana, Andersen, & Sams, 2004).

According to the classification by Schwartz, Robert-Ribes,

and Escudier (1998) the model presented here would fall into

the direct identification bimodal category; the recognition/

classification units being driven/driving audiovisual sensory

features without an intermediate unimodal classification

stage. Our model is agnostic about the nature of the top-level

amodal representations, which here are just abstract symbols

(Nearey, 1992). They are encoded as the temporal patterns of

sensory activity associated with each of the three phonemic

segments /bdg/ within the context provided by the initial and

final vowel /a/.

The fuzzy logical model of speech perception (FLMP) is a

reference model in audiovisual speech perception (Massaro,

1998) and is related to cue combination based on Bayes theo-

rem. It assumes that the two sensorymodalities are processed

independently, each providing evidence for each speech

token. It has also been applied to fit McGurk perception data.

Although it can account for fusion percepts, it cannot account

for combination percepts because predictions for the
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audiovisual input result from a product of probabilities of re-

sponses for unimodal stimuli and combination percepts are

very rare for unimodal stimuli. The present model can be

viewed as a generalization into an online dynamic inference

process. Unlike FLMP, it can detect combinations, under the

assumption that the cross-modal conflict identified by the

model is occasionally resolved by combination percepts.

Another difference is our introduction of topedown predictive

signals that bias activity at the unimodal level towards pat-

terns compatible with existing representations at the top

level. Therefore, our model does not process modalities

independently; the processing in one modality influences the

processing in the other one, as suggested by electrophysio-

logical data (Arnal, Wyart, & Giraud, 2011; Van Wassenhove

et al., 2005, 2007).

The model is built at an abstract level and it does not

implement many features of auditory and visual processing.

We implemented the minimum amount of features that are

liable to illustrate our main hypothesis, namely, that there are

continuous cross-modal predictive signals in general audio-

visual processing. AV speech processing provides a useful

model to study such predictive signals, and incongruent AV

speech tokens illustrate cross-modal predictions that are

either easily confirmed, as in the case of fusion percepts, or

initially violated and requiring further processing, as in the

case of combination percepts. We did not model the process

by which cross-modal contradiction is resolved by a combi-

nation percept, but we believe that auditory echoic and visual

iconic memory could play a role; in the absence of a satis-

factory syllabic/coarse level match, the brain might resort to a

slower matching process involving more temporal details by

combining sub-syllabic features, and comparing the predicted

audiovisual features to the content of the sensory buffers,

which store about 1 sec of detailed acoustic and visual infor-

mation. We therefore propose that in the case of combination

percepts a match to the incongruent audiovisual stimulus is

also found. As Massaro and Cohen (1993) point out, combi-

nation percepts can only arise if the resulting percept is

“reasonably compatible with the physical properties of a

cluster articulation”. We suggest that this matching requires

processing at a more detailed level, which takes longer to be

achieved. This prediction still requires experimental

validation.

We did not explicitly implement transmission delays

either. Transmission delays are assumed to be larger for visual

than acoustic information and this can be implicitly imple-

mented in the model by the relative timing of the predicted

second formant and lip closure dynamics, which in the model

is encoded in the patterns represented in Fig. 2B. As shown in

additional simulations, changing the relative timing in the

encoded patterns did not change the main observations

(Fig. A.2).

4.1. Across-modality predictions, fusion versus
combination

Since our generative model was used to create congruent

audiovisual speech tokens, its predictive coding version

properly processed congruent stimuli by design. The model

was then tested on incongruent stimuli. Rather than restrict-

ing the model input to the two prototypical incongruent

pairings based on our synthetic congruent stimuli, taking the

lip aperture from /b/, or /g/ and the second formant from /g/ or

/b/, respectively, we explored the model behavior on the two

dimensional feature space spanned by lip aperture and sec-

ond formant. We hypothesize that stimuli represented in this

two-dimensional space include the natural variability in

speech productions across and within speakers. The location

of prototypical congruent and incongruent pairings in this

space represented a meaningful metric. Incongruent stimuli

evoking fusion responses fell relatively close to the congruent

/ada/, while combination evoking incongruent stimuli fell far

from congruent tokens, confirming what was noted by

Massaro and Cohen (1993) and quantified by Omata and Mogi

(2008). This resulted in a qualitative difference in the nature of

the predictions/expectations generated at the sensory level by

the recognition units. In fusion-generating stimuli the /ada/

token was activated and the ensuing predictions were not far

from the actual sensory inputs; sensory predictions were

hence confirmed. This contrasted with the combination

evoking stimuli. Since both acoustic /aga/ and visual /aba/

provided salient and conflicting information, the expectations

on the complementarymodalitywere contradicted, and in our

simulations the recognition units representing /aga/ and /aba/

were both strongly activated, though at different times. The

activation sequence was determined by the modality depen-

dent timing of consonant specific information,maximal in the

intervocalic period for the visual modality and maximal just

before and after the intervocalic period for the acoustic mo-

dality. Jesse and Massaro (2010) also found differences in the

timing of available information from the visual and acoustic

modalities in English consonant-vowel-consonant words. Our

model also reproduces their finding that early evidence has a

relative advantage over later arriving evidence. In the model

this comes from the winner-take-all architecture at the

recognition level; the more one of the recognition units

dominates over the others, the larger the evidence/prediction

error needed to change the output at the recognition level

(Fig. A.2).

Neurophysiological data also suggest a qualitative differ-

ence between fusion and combination. Brain activity in early

auditory cortex in fusion trials in which participants do give

fused responses, is very similar to that observed upon

congruent token presentations (Kislyuk, M€ott€onen, & Sams,

2008) with differences appearing elsewhere (Erickson et al.,

2014). Arnal et al. (2011) compared congruent and incon-

gruent non-McGurk AV speech tokens, leading only to com-

bination percepts when incongruent, and found different

patterns of brain activation. The visual input showed two

kinds of effects on the perceptual process: an early non-

specific effect on auditory cortex and a token-specific effect

related to the informative content of the visualmodality about

the consonant. That is, a prediction error signal, which

correlated with increased gamma activity in sensory areas,

was detected when the acoustic token invalidated the visual

prediction. The observed brain activity changes presumably

reflected intrinsically distinct processing for incongruent

stimuli that can or cannot be fused.
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4.2. Timing and oscillations

In this modeling work, we focused on speech identity infor-

mation carried by the visual modality. However, the early

visually mediated enhancement of auditory cortex activity

does not seem to be content specific (Arnal, Morillon, Kell, &

Giraud, 2009; Van Wassenhove et al., 2005). It is possible that

early detection of lip motion predicts the timing of auditory

events and synchronizes the activity of auditory cortex neu-

rons (Arnal & Giraud, 2012; Lakatos, Chen, O'Connell, Mills, &

Schroeder, 2007; Schroeder, Lakatos, Kajikawa, Partan, &

Puce, 2008). The timing units of the model, which here were

initialized by hand so that the first sequence unit was in its

active state at the beginning of the simulation, could provide

an appropriate model for such an early resetting. The dynamic

equations at the sequence unit level yield two types of solu-

tions: a periodic mode in which the units get activated in

sequence, and an equilibrium mode in which all the units are

concurrently activated. We could relate the equilibrium mode

with asynchronous activity; a strong input to the unit encoding

the beginning of the audiovisual pattern could set the

sequence in motion and would be equivalent to resetting/

synchronization of oscillations. Future instantiations of the

model will be able to address these timing issues.

The sequenceunit level of themodelwas used to extract the

right ordering of the stored audiovisual pattern associatedwith

each speech token. How sequences are stored and retrieved by

the brain is the subject of ongoing research but sequence rep-

resentations of the form used here are observed in the firing of

the songbird HVC neurons at specific times within a birdsong

(Hanhloser et al., 2002). Similarly, sequential activation is also

observed in thehippocampus,where it is associated to replayof

behavioral experience (Louie & Wilson, 2001) and stored

sequence retrieval and replay (Lisman et al., 2009).

4.3. Model extension

The present work should be seen as a proof of principle that

predictive coding is a useful framework for addressing the

computational bases of speech processing. Although we

focusedhere on the /bdg/ consonant family, lip aperture and F2

modulations in the /ptk/ family are very similar. Distinguishing

between /bdg/ and /ptk/would require augmenting thenumber

of recognition units and the number of sensory features that

the model generates, adding a voicing dimension. Extending

themodel to /ptk/would alsodelay the timeatwhich one of the

recognition units dominates, since the discriminant cues be-

tween /ptk/ and /bdg/ occur later than those needed to distin-

guish tokenswithin the /bdg/ family. However, the inclusion of

further recognition units would still preserve the qualitative

differences between fusion and combination, and we predict

that the model would give similar results on all classes of

phonemic families. Beyond such a straightforward extension,

an additional level of processing able to resolve the conflict

occurring in combination conditions by explicitly resorting to

phonemic-level recognition units could be added. This would

allow more precise predictions about the conflict resolution

mechanismandwould therefore help interpreting the patterns

of brain activity in response to incongruent audiovisual speech

tokens (Arnal et al., 2011).

5. Conclusion

In this contribution to this special Cortex issue, we have pre-

sented a minimal predictive coding model of incongruent

audiovisual speech processing. The model architecture per-

mits the dynamic deployment of predictions across modal-

ities. We found that fusion happens because the

representation of fusion-evoking stimuli in the two-

dimension lip/F2 space fall close to the representation of a

congruent stimulus, hence meeting expectations for a

congruent stimulus. Therefore fusion percepts are not

accompanied by any mismatching sensation. In contrast,

combinations happen because each stimulus modality gen-

erates strong conflicting predictions about the othermodality.
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Appendix

Two-dimensional visuo-acoustic stimulus space

Fig. A.1 shows the recognition process shown in Fig. 4 but on a

finer scale, which allows a more precise representation of the

/ada/ congruent token. It also shows that with our parameters,

the /aba/-/ada/ transition is smoother than the /aga/-/ada/

transition. This is because /aba/ and /ada/ differ mostly in the

visual dimension, which has a lower precision (log P(xL) ¼ log

P(vL) ¼ 5; log P(xF) ¼ log P(vF) ¼ 8)./ada/ differs from /aga/

mostly in the acoustic dimension, which has a higher preci-

sion and therefore a more abrupt transition.

Relative cue timing

Fig. A.2 explores the role of relative cue timing across mo-

dalities. It shows three hypothetical lip and F2 patterns for

congruent /aba/, /ada/ and /aga/ tokens. The patterns differ in

the relative timing of peak lip closure and F2 onset and offset

times. For each pattern we generated congruent stimuli and

then combined them with the same (AF and AL) combinations

to test performance for a wide range of lip closure and F2

pairings.

The recognition performance with all other parameters

unchanged shows a change in the activity of recognition units

presentedwith lip and F2mixtures close to the diagonal of the

upper right quadrant. The recognition unit most activated at

the end of stimulus presentation changes from /aga/ to /aba/

when visual information, which is more salient for /aba/, ar-

rives earlier. Conversely, the most activated unit changes

from /aba/ to /aga/ when the visual information arrives later

(Fig. A.2).
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Fig. A.1 e Model performance on a two-dimensional family of lip closure and F2 paired stimuli. A more detailed sampling of

the space with the same parameters used in Fig. 4.
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