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ABSTRACT

The McGurk effect is a textbook illustration of the automaticity with which the human
brain integrates audio-visual speech. It shows that even incongruent audiovisual (AV)
speech stimuli can be combined into percepts that correspond neither to the auditory nor
to the visual input, but to a mix of both. Typically, when presented with, e.g., visual /aga/
and acoustic /aba/ we perceive an illusory /ada/. In the inverse situation, however, when
acoustic /aga/ is paired with visual /aba/, we perceive a combination of both stimulj, i.e.,
/abga/ or /agba/. Here we assessed the role of dynamic cross-modal predictions in the
outcome of AV speech integration using a computational model that processes continuous
audiovisual speech sensory inputs in a predictive coding framework. The model involves
three processing levels: sensory units, units that encode the dynamics of stimuli, and
multimodal recognition/identity units. The model exhibits a dynamic prediction behavior
because evidence about speech tokens can be asynchronous across sensory modality,
allowing for updating the activity of the recognition units from one modality while sending
top—down predictions to the other modality. We explored the model's response to
congruent and incongruent AV stimuli and found that, in the two-dimensional feature
space spanned by the speech second formant and lip aperture, fusion stimuli are located in
the neighborhood of congruent /ada/, which therefore provides a valid match. Conversely,
stimuli that lead to combination percepts do not have a unique valid neighbor. In that case,
acoustic and visual cues are both highly salient and generate conflicting predictions in the
other modality that cannot be fused, forcing the elaboration of a combinatorial solution.
We propose that dynamic predictive mechanisms play a decisive role in the dichotomous
perception of incongruent audiovisual inputs.

© 2015 Published by Elsevier Ltd.

1. Introduction

In face-to-face communication speech is perceived through
the visual and the auditory modalities. Compared with pure

acoustic stimuli, the presence of a congruent visual stimulus
enhances accuracy and shortens reaction times (Giard &
Peronnet, 1999; Van Wassenhove, Grant, & Poeppel, 2005),
and this effect is maximal when acoustic stimuli are weak,
noisy or degraded. The performance enhancement induced by
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visual cues in speech-in-noise occurs largely because vision
and audition offer complementary information about the
stimulus; vision conveys the place of articulation, while
audition primarily conveys voicing and manner (Summerfield,
1987), providing concurrent cues that are ultimately merged in
a single representation. Although at speech onset visual
speech cues precede acoustic cues by approximately 100 msec
(Chandrasekharan et al., 2009), in connected speech acoustic
cues can precede visual cues by as much as 40 msec (Schwartz
& Savariaux, 2014). The temporal correlations between visual
and acoustic cues in normal speech hence define a 200 msec
temporal window of integration (Massaro & Cohen, 1993;
Munhall, Gribble, Sacco, & Ward, 1996; Stevenson & Wallace,
2013), ranging from approximately 30 msec of visual lag to
about 170 msec of visual lead (Van Wassenhove, Grant, &
Poeppel, 2007).

Audiovisual integration in speech perception is so power-
ful that it occurs even when the acoustic and visual streams
are discrepant as exemplified by the McGurk effect (McGurk &
MacDonald, 1976). In their seminal paper McGurk and Mac-
Donald showed that visual /ga/ paired with auditory /ba/ leads
to /da/ responses, termed fusion, whereas the responses to the
opposite pairing of visual /ba/ with auditory /ga/ contained
combination responses such as /bga/. Qualitatively, fusion has
been described as the synthetic process by which the brain
constructs a percept that coincides neither with the visual nor
the acoustic modality. Combination, on the other hand, is
usually described as a failure to fuse the two modalities,
which results in the concatenation of the acoustic and visual
tokens.

Here, we assume that incongruent audiovisual tokens
leading to fusion and those leading to combination are qual-
itatively different, when taking into account the reciprocal
predictions that visual and auditory modalities provide each
other. We demonstrate that the incongruent simultaneous
presentation of visual /aga/ and acoustic /aba/ closely
matches a congruent/ada/ presentation in a two-dimensional
space formed by lip aperture and the second formant (F2). In
this case, the integrated predictions from both modalities do
not conflict strongly and are close to /ada/. Conversely, no
such close single-consonant audiovisual match exists for
combination stimuli, which are characterized by salient visual
and acoustic information. In that case, each modality provides
strong and contradictory information about the other mo-
dality by way of cross-modal predictions. We hence hypoth-
esize that the failure to find a single consonant match results
in a combinatorial multi-consonant solution.

To illustrate these prediction effects across sensory mo-
dalities we used a hierarchical predictive coding framework
(Friston, Trujillo-Barreto, & Daunizeau, 2008). Predictive cod-
ing is an optimal inference framework based on the idea that
the brain internalizes forward models (how world events lead
to sensory consequences), and that what travels from the
sensory periphery to the brain are prediction errors (Rao &
Ballard, 1999). The presence of predictive mechanisms in
auditory and audio-visual speech processing has been shown
experimentally (Bendixen, Scharinger, Straufd, & Obleser,
2014; Gagnepain, Henson, & Davis, 2012; Peelle & Davis,
2012; Sohoglu, Peelle, Carlyon, & Davis, 2012; Van
Wassenhove, 2013) and explored at the theoretical level

(Yildiz, von Kriegstein, & Kiebel, 2013). The model we present
involves predictive mechanisms in audio-visual speech syn-
thesis and, unlike previous works (Bejjanki, Clayards, Knill, &
Aslin, 2011; Magnotti & Beauchamp, 2014; Magnotti, Ma, &
Beauchamp, 2013; Massaro, 1998; Omata & Mogi, 2008; Yildiz
et al.,, 2013), takes into account the dynamic processing of
both acoustic and visual information.

2. Materials and methods
2.1. Predictive coding model of AV speech perception

Perception results from the processing of sensory inputs
through a hierarchy of brain structures, where stimuli are
represented with increasing levels of abstraction through a
process that wuses statistical knowledge about the
environment.

To simulate this process, predictive coding uses a genera-
tive model, which represents the hierarchical structure and
statistics of the world, and relates sensory inputs to their
external causes. The brain's task is to infer the causes that
create the sensory input, and this is simulated by inverting the
generative model. The inversion involves top—down pre-
dictions from the generative model and bottom—up prediction
errors. We used the model inversion based on Dynamic
Expectation Maximization (DEM) (Friston et al., 2008). DEM
inverts dynamic hierarchical models with a message-passing
scheme that minimizes prediction errors. Activity at any given
level predicts activity at the lower level using the generative
model. Top—down communication relays predictions from a
given level to the level below. Discrepancies between pre-
dicted and actual activity generate a bottom—up signal rep-
resenting prediction error (PE). The level above can then use
the PE signal to update its state so that its prediction becomes
more accurate and prediction error minimal.

To apply DEM to AV speech perception we built a hierar-
chical generative model connecting a single multimodal
recognition level to two sensory input modalities, auditory
and visual. Between the recognition level containing abstract
representations of congruent /aba/, /ada/ and /aga/, and the
sensory level representing lip aperture (visual cue) and F2
(acoustic cue), we introduced an intermediate level of
sequence units that determined the timing and ordering of lip
and F2 associated with each speech token.

Fig. 1 shows the three levels of the model together with
sample dynamics when confronted with a congruent /ada/
stimulus. Units at the top level, when active, generate both
acoustic and visual estimates in the lower levels. Each
recognition unit at the top level is associated with one of the
three AV tokens through a distinct pattern of lip motion and
second formant modulation in time (Fig. 2B). These internal-
ized patterns are part of the generative model; they represent
the lip and F2 sensory modulations as a sequence of 18 values.
Since the speech token approximately corresponds to
400 msec of speech input, 18 points correspond to a temporal
precision of approximately 25 msec. For each of the 18 time
points there is a corresponding unit in the sequence level.

The generative model drives the sensory estimates by
providing a target pair of lip and F2 values to the sensory level
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Fig. 1 — Left: Model schematics and flow of information. Top—down: current estimates of causal units; bottom—up:
prediction errors. Prediction errors originate at the sensory level, in which lip and F2 predictions derived from the current
state of the model is compared with incoming lip and F2 from the sensory periphery. Prediction errors are used to change
the activity of the units in the model so that their generated lip and F2 predictions are closer to the sensory signals. Right:
sample activity dynamics of causal units (v) at each level when the model recognizes congruent /ada/ input. Top: recognition
units, middle: sequence units, bottom: sensory units. The plots show normalized activity for the top two levels and scaled
versions of lip aperture and second formant for the audiovisual features.

at each time point (‘Top—down input’ in Fig. 3). Target lip and
F2 values are determined by the internalized AV patterns and
the instantaneous activation of recognition and sequence
units. The dynamics at the sequence level are such that
sequence units show transient sequential activation (Fig. 1,
middle panel on the right). Consequently, for most of the time

the input to the sensory level is dominated by the lip and F2
values corresponding to only one of the 18 points in the
internalized patterns. The sequence level therefore selects
the time point in the pattern and the recognition units select
the appropriate pattern (/aba/, /ada/ or /aga/). At the start of
the process all three recognition units are equally active and

A. CONGRUENT PRODUCTIONS B. MODEL PATTERNS

40 . O - Lip, /aba/
S S & Lip, /ada/
®© LA O Lip, /aga/
° o~ —@— F2, /aba/
3 2 L 14 —4— F2, /adal/
I} -g —— F2, /aga/
& e /aba/ s
o ® /ada/ p
- 0 ! /aga/ g

1 2 3 0
F2 (kHz) Time (s)

Fig. 2 — A. Lip aperture and second formant extracted from 10 productions of the three audiovisual speech tokens /aba/,
/ada/and /aga/ from a single speaker. The data is represented as trajectories in the (F2, lip aperture) plane. The trajectory
starts on the top branch and returns along the lower branch. The vertical lines signal the discontinuity in the second
formant, which is not defined during the intervocalic interval. The figure shows that for a single speaker the trajectories are
clearly separable. B. Based on the productions represented on the left panel we defined three pairs of lip aperture and
second formant patterns used by the generative model to produce continuous top—down predictions for lip and formant
values. The /aCa/ productions were represented in the model by lip aperture and F2 values sampled at 18 time points. The
congruent productions generated by these patterns are shown in Fig. 3B.
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Fig. 3 — A. Generation of synthetic congruent audiovisual speech tokens. Left top and down panels represent the 2nd and
3rd levels of the model. The output of the /ada/ recognition unit is fixed to one (left panel, top) and the 18 sequence output
units represented in different gray levels become sequentially activated (left panel, bottom). The two together, generate at
each time step the driving input (middle) to the sensory level (right), which is a low-pass filtered version of the driving input.
B. The three congruent patterns obtained by running the generative model using the patterns in Fig. 2B (/aba/ solid black
lines, /ada/ solid grey lines, /aga/ black dashed lines; lip thin lines, F2 thick lines). C. Recognition of a congruent /ada/ token
by the model. Left, the lip and F2 sensory inputs; middle, the driving input to the sensory level units consistent with the
activity at the recognition level (right panel, top) and sequence units (right panel, bottom). In contrast to A, activity in the
recognition units is driven by sensory inputs. Initially the three recognition units are similarly activated but as their
associated patterns (B) separate from each other prediction error is minimized by increasingly activating the /ada/

recognition unit.

the target lip and F2 correspond to the mean of the three
patterns. Since all patterns are indistinguishable at the
beginning of the stimulus, there is no prediction error. As the
modulation in the sensory input progresses, equal activation
of the three recognition units generates a prediction error,
which is minimized by increasing the activity of one of the
recognition units. In the model recognition units have a time
constant of ~ 200 msec, which allows them to integrate in-
formation, i.e., remember, over a period of time consistent
with the known time window of integration in AV speech
processing.

2.2. Generative model equations

The dynamics within each level are encoded by units/vari-
ables denoted by the letter x. Levels send information about
their current state to the level below through causal/output
units v. Discrepancies between the predictions coming from
higher levels and the actual values are used in a message
passing scheme to update state and causal units at each level
so that prediction error is minimized. Both dynamic and

causal variables are subject to random fluctuations, which, in
the predictive coding implementation from Friston et al
(2008), can have temporal correlations.

The generative model has the general form:

%0 = F(x0 y0) 4 0

pD = g(x® y0) + 20

where (i) denotes the level. v and z at each level represent
random fluctuations; their covariance and precision (inverse
covariance) play a critical role in the inference process. The
inference process is driven by prediction errors (PE), the de-
viations from the generative model expectations:
£ — %0 _ f(x® y0) and 9 = yi-D — g(x) y®), These travel
from each level to the immediate level up the hierarchy (Fig. 1,
left). How much each prediction error term contributes to the
updating of x and v is related to their relative precisions; the
smaller the fluctuation amplitudes of w® and z% the more the
corresponding prediction error terms &%, and £9, will be
weighted (Friston et al., 2008). As in standard Bayesian inte-
gration, the relative precisions will determine the relative
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driving force that internal dynamics, top—down predictions
and bottom—up prediction errors will have in the updating of
states and estimates.

The left panel of Fig. 1 gives an overview of the model ar-
chitecture with its three levels. Sensory inputs, one per mo-
dality, enter through the lower sensory level. v© represents
the sensory inputs, which are compared with the top—down
predictions g(x®™,u®). The resulting prediction error
vO—g(x® v®) is passed to the level above. The goal is then to
change v so that the prediction g(x®,u™) is closer to the
audiovisual input. Since v is predicted by x® and v through
g(x?,u@), any change in v™® to improve the predictions for the
sensory stimulus at the bottom level, will generate in turn
changes on the higher level through the corresponding pre-
diction error: v —g(x®,v®). This is how the external sensory
input can drive recognition at the top level (right panel of
Fig. 1).

2.2.1. Level 3 (top-level): consonant identity units

There are 3 units in the top level (top left panel of Fig. 1). Each
consonant from the set {b, d, g} is represented by one unit,
which when active generates the corresponding /aCa/ F2
transitions and lip motion. There are state units x; (i =1, ...,3)
with internal dynamics, and output units v; (i = 1, ...,3). The
output units transmit information to the lower levels; the
output reaches level 1 through level 2.

Y = fa(xl@ - c) by 1/ (1 + exp( - axi@)) + o 1)

i#j

v = exp(—x?))/ Zexp(—x}@) +2z¥ ()
j

The dynamic equations for the states (x) contain a decay
term (a: inverse time constant) and all-to-all inhibition
(without self-inhibition). v is a normalized version of the ac-
tivity of the state units. The top right panel of Fig. 1 shows the
activity of the output units; initially the three units are simi-
larly activated, but as sensory evidence arrives, the /ada/ unit
becomes the one explaining best the sensory input. « and b are
constants that amplify the winner-take-all component in the
dynamics, while ¢ sets the range of x. Parameter values were:
a=.015b=.3,c=2,a=3.

During recognition dynamic units were initialized at the
uniform fixed point obtained from Eq. (1). The equation
0 = —a(x—c)—2b/(1+exp(—ax)), was solved numerically.

2.2.2. Level 2 (middle level): sequence/timing units

The dynamics of the states are such that only one unit is
highly active, with the active unit changing in a pre-
determined order. A first set of state units (x) is connected so
that they become active sequentially. A second set of state
units (y) imposes normalization so that the output is bounded
between zero and one (Yildiz et al., 2013). They represent
timing units and they divide the entire duration into n, in-
tervals. We chose n; = 18, so that each timing unit represented
about 25 msec of speech.

3 _ 2( % /18- WP (1+exp(—x?)) Ty 1) ol ()

o = (exp<xgz>) e zexp<x;z>>) o @
j

v® = (max(min(y®,1),0),v?) +z?=[y, u]" + z? (5)

Wii 1 =0.5, Wl'_j =0, Wi, =15, otherwise Wi.j =1

W; j is a connectivity matrix from unit j to unit i and bold
letters denote vectors. The output units send the value of the
normalized states y together with the output received from
level 3, v®, which we rename as u. y carries information about
an internally referenced time and u about the relative acti-
vation of recognition units. The middle panel of the right
column in Fig. 1 shows the activity of the 18 y units in a
simulation; each of them dominates the output at a specific
time.

2.2.3. Level 1 (low-level): sensory units

The lowest level is made up of two units representing lip
aperture and second formant (Bottom left panel in Fig. 1).
We use a simple first order linear equation for the
dynamics:

Xfl):0.6 —Xlgl)—i-zpijku}'Yk +w§1), i=LFj=123 k=118
jk

(6)

v =[x, x7|" +zV 7)

L and F stand for lip aperture (the visual cue) and second
formant (the acoustic cue). P is a matrix that contains the time
profiles for the whole /a-consonant-a/ (/aCa/) transition of the
two sensory features (lip and second formant) associated with
each of the 3 AV tokens (/aba/, /ada/, /aga/) sampled at n. = 18
time points each. The way the patterns were defined is
explained below under the heading Synthetic AV speech
stimuli. This term changes, from moment to moment, the
target value for the states x; and consequently the internal
estimate of the sensory inputs v. Matrix P represents a
spatiotemporal pattern encoded by the identity/recognition
units at the top level (Fig. 2B).

2.3. Synthetic AV speech stimuli

The input to be recognized by the model consisted of synthetic
signals designed to capture the most salient features of audio
and video signals of actual /aba/, /ada/ and /aga/ productions
from a single speaker. Acoustic stimuli were represented by
the second formant (F2), which was extracted from the sound
waveform with Praat (Boersma & Weenink, 2014). We chose F2
because it can reliably be detected and distinguishes between
/aba/ /ada/ and /aga/. Visual stimuli were represented by lip
aperture, which was extracted from the video with custom
scripts written in MATLAB (The Mathworks, Natick, Massa-
chussetts, version 8.2.0.701).

Synthetic signals were obtained by running the generative
model presented above. The critical quantities defining the
characteristics of the acoustic and visual signals generated by
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the model are the patterns encoded in matrix P of the first,
sensory, level. As explained above, P encodes the lip and
formant profiles of congruent AV speech tokens sampled at 18
consecutive time points.

To define reasonable values for P we selected about
400 msec of the audiovisual signal from the productions of a
single speaker. This interval was bounded by the maximum
lip aperture before and after the consonantal constriction.
F2 was divided by 2000 Hz and lip aperture was normalized
so that maximal aperture was 1. From the median time
profile across the 10 productions of each token we extracted
F2 values immediately before (Fof) an after (Fon) the inter-
vocalic interval, approximate timing of intervocalic interval
(tofr and topn), as well as the amplitude of lip closure (L.). The
18 values for the pattern were then chosen from the
following parameterization, which captures the main F2
and lip aperture features extracted from the medians:

Fo + (Foy —Fo)exp(—(toy —t)/7o5r) <t
F(t) = 0 toff <t <tom (8)
Fo + (Fon — Fo)exp(—(t — ton)/Ton) t> ton

L(t) = (1 — L[ — cos(2nt/T) — cos(4nt/T)/20 + (19/20)]/2) 9)

T is the total duration of the speech token. The values from
the medians of the 10 productions of each of the three AV
speech tokens were as follows: Foy: (.75, .9, 1.2) and L. =(1, .5,
.37) for /aba/, /ada/, /aga/ respectively. For simplicity we set
Fott = Fon.

Unlike lip aperture, the second formant is not defined for
the whole duration of the speech token since it is not present
during the oral cavity constriction. This is reflected in an
overall decrease in power during the intervocalic interval. We
accounted for this fact indirectly by setting pattern values for
F2 = 0 during this interval. Since all recognition (Level 3) units
will generate the same formant value during this interval,
there is no information about the speech token to be extrac-
ted. However, there is a strong cue about timing, which can
bias/reset the activity of units at the sequencing/timing level.
Thus our F2 can be regarded as a combined second formant
and onset/offset signal. The AV signals produced by the
generative part of the model presented above with these three
patterns defined our synthetic congruent inputs. Thus we
fixed the activity of the relevant recognition unit at the top
level and saved the resulting lip and F2 outputs (L(t), F(t)). The
400 msec of stimulus were represented by 120 time points,
which corresponded to ~ 3msec time steps.

To simulate variability across and within speakers in AV
speech production, we created stimuli with varying lip and F2
profiles in a 2D continuum by considering independent linear
mixtures of /aba/ and /aga/ lip and F2 components:

L(t) = aLL(t)aba + (1 - aL)L(t)aga (10)

F(t) = apF(t) g, + (1 — ap)F(t) (12)

aga

L(t)abasaga stands for the lip aperture profile, F(t)apa/aga fOr
the second formant profile (from the congruent generation). In
this parameterization the congruent tokens are represented
by (a., ag): /aba/= (1, 1), /aga/= (0, 0), /ada/= (.21, .67). The
values corresponding to /ada/ were obtained by solving the

equations derived by using the values for L. and F,, given
above (by definition L. = L(t.) and F,,, = F(ton)) With t. the time of
maximum lip closure and t,, the time of F2 onset after the
intervocalic interval. Lada(te)=0rLapa(te)(1—ar)+Laga(ts) =
a:=(Lada(tc)—Laga(tc))/ (Lava(te) —Laga(tc))

Simﬂal’ly, ap = (Pada(ton)_Faga(ton))/(Faba(ton)_Faga(ton))

2.4. Simulations

The simulations presented in this paper were performed using
the dynamic expectation maximization tools of SPM8 (Well-
come Trust Center for Neuroimaging, UCL), running in MAT-
LAB. The integration time step was the same as the time step
of the stimulus (approximately 3 msec). Qualitatively similar
results were obtained when running a control simulation with
half the time step.

The fixed log precision parameters (log P), unless otherwise
indicated, were as follows. Level 3, states and causes log
P =12. Level 2, states and causes log P = 10. Level 1, states and
causes for lip aperture log P = 5, states and causes for F2 log
P =28.

The outcome of the inference process depends on preci-
sion values. The values used here were chosen to illustrate
how cross-modal predictions can lead to fusion and combi-
nation stimuli. To reduce the number of free parameters we
considered equal precision for causal and hidden states at
each level. For noisy sensory inputs one should rather opt for a
higher precision for hidden states than for causal states (e.g.,
Yildiz et al., 2013), but since we did not use noisy stimuli, this
was not necessary.

Our goal was to find parameters that i) lead to recognition
of congruent tokens and ii) result in similar effective strengths
of visual and acoustic cues. The first requirement was met by
setting higher precision values for higher levels in the hier-
archy. To meet the second requirement we chose higher
precision values for acoustic than visual cues. With equal
precision for both sensory cues, the visual cue has a stronger
impact on the outcome because it gives information at every
time point, whereas acoustic information is not available in
the intervocalic period. In Fig. 5 we illustrated how the infer-
ence outcome changes with the relative precision of acoustic
and visual cues. Choosing more extreme precision ratios in
favor of one of the sensory modalities leads to the expected
result that both fusion and combination are biased towards
the stronger modality (data not shown). Assuming that people
may differ in the relative precision they assign to acoustic and
visual cues, interindividual variability might explain the
different incidence of combination and fusion responses in
psychophysics experiments. Future work will explore more
systematically the effect of precision and use behavioral data
to constrain them as much as possible.

3. Results
3.1 Separability of audiovisual speech tokens
To represent the audiovisual tokens we chose a single feature

per modality; the second formant of the spectrogram for the
auditory stream and lip aperture for the visual stream. Fig. 2A
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Recognition on 2D audiovisual feature space
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Fig. 4 — Recognition units in response to 36 combinations of lip aperture and F2. Each individual panel shows the activity of
the recognition units as a function of time. Lip closure is constant along rows, with the top row having the maximal lip
closure (corresponding to /aba/) and the bottom row minimal lip closure (/aga/). Columns are arranged according to the size
of the formant transition, maximal for /aga/ (right column) and minimal for /aba/ (left column). Stereotypical congruent
audiovisual tokens are marked with a solid black rectangle, the stereotypical fusion and combination stimuli with a dashed
grey, respectively, black rectangle. The shaded regions reflect the 95% confidence intervals. Fusion stimuli are relatively
close to a congruent /ada/; combination stimuli however (dashed grey square) are not close to a single consonant transition
and no single recognition unit can appropriately account for the stimulus. Some features of the pattern of activations are
rather robust to changes in relative precisions. The acoustic cue for /aga/ and the visual cue for /aba/ are particularly salient;
this is reflected in the rapid rise of the activity related to /aga/ (dashed black) in all the stimuli of the right column, and the
rapid rise of /aba/ activity (solid black) on the top row. When the activity of one unit predominates over the others, it is
effectively making a prediction in time about the identity of the stimulus; the top—down component in the model sends an
/aba/ respectively /aga/ prediction. When the predicted sensory input conflicts with the actual input (top right quadrant of
the picture), prediction error leads to a reevaluation, the activity does not stabilize and both /aba/ and /aga/ units are
strongly active at some point during the stimulus. In contrast, fusion stimuli (visual /aga/, auditory /aba/) are processed

similarly to congruent /ada/.

shows 10 trajectories in the lip aperture and formant space,
for each of the three tokens /aba/, /ada/, /aga/from a single
speaker. Although additional features would be needed to
further distinguish, for example, between the /bdg/ and /ptk/
consonants, this representation is sufficient for the current
purpose. The three /aCa/ tokens have distinct trajectories and
we created synthetic signals with the same qualitative fea-
tures; duration of intervocalic interval, peak second formant
value just before and after the occlusion, related drop in sound
intensity, and size of lip aperture modulation (amount of lip
closure).

3.2. Generation and inference in a hierarchical predictive
coding model of AV speech perception/categorization

The hierarchical generative model was designed to explore
the predictive action of the visual and acoustic modalities in

AV speech processing. The relationship between the activity
at the top/recognition level of the hierarchy and the bottom/
sensory level qualitatively mimics how an actual speech
token leads to the associated audiovisual percept. We will
show that fusion stimuli are processed very similarly to
congruent /ada/ because the prediction of the early activity is
not contradicted by subsequent features in the stimuli. In
contrast, the processing of combination stimuli leads to pre-
dictions early in the stimulus presentation that are subse-
quently contradicted by later features in the stimuli.

When the modelis used for perceptual inference, if there is
a discrepancy between sensory inputs and the estimate of the
sensory inputs derived from the current state of dynamic and
causal states in the model, error signals (PE) are passed to
higher levels and are used to update the dynamic and output
units in all levels so that prediction errors are minimized
(Friston et al., 2008). Our basic approach to study the
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Fig. 5 — Output of the recognition process when the precision associated with either the visual cue (left panel) or the acoustic
cue (right panel) is increased relative to our standard simulations (center panel, Fig. 4 and Fig. A.1). Input stimuli consisted
of 12 x 13 pairs of lip aperture and F2 modulations obtained by varying the amount of lip closure and F2 modulation
independently (see Methods for a detailed description). The position on the grid determines the relative distance from the
/aba/ stimulus in the lip closure dimension (Ay) and F2 modulation dimension (Ag). The positions of the standard /aba/
(Av = 1, Ar = 1), /ada/ (Av = .21, Ar = .67) and /aga/ (Ay = 0, Ar = 0) are marked with a square, and those of the standard
fusion (Ay = 0, Ar = 1) and combination stimuli (Ay = 1, Ay = 0) by a circle. At each point of the grid, the color of the filled
circles represents the identity of the recognition unit with highest activity at the end of the process. The size of the filled
circle is inversely related to the fluctuations in recognition unit activity (smaller circles related to larger cross-modal
conflict). Only precisions for causal states at the bottom level differed across panels. A: log precision for lip causal state log
P(v.) = 6, and for F2 causal state log P(vi) = 7. B: log precision for lip causal state log P(v;) = 5, and for F2 causal state log

P(vg) = 8. C: log precision for lip causal state log P(v;) = 4, and for F2 causal state log P(vg) = 9.

qualitative features of prediction in multimodal processing of
AV speech signals is to use a model that can robustly recog-
nize congruent AV speech tokens and test its performance on
non-congruent speech tokens to unveil the differences be-
tween fusion and combination responses.

Instead of building a model that learns appropriate pat-
terns from congruent productions from an actual speaker, we
considered a model that generates congruent AV speech sig-
nals, sharing the main features of recorded productions from
a single speaker (see Methods). Model-synthesized speech
signals (Fig. 3B) and their incongruent combinations were
subsequently used as inputs to the model for identification/
perceptual inference.

The generative part of the model is illustrated in the top
row of Fig. 3, in which the activated unit encodes /ada/
(v®44a = 1). The top—down driving input to the first level dy-
namic units (x; ;) is a weighted sum of the pattern values
over time and over identity (Eq. (6), Fig. 1B). The instantaneous
weights are given by the instantaneous activities of sequence
output units (U") and recognition output units (u®). During
generation, only one of the three recognition output units is
active and from the sequence output units one dominates
over the others most of the time; therefore the input to the
first level successively goes through the values encoded in the
pattern at the 18 sampled time points (corresponding to a
temporal precision of ~25msec) one after the other at the
natural rhythm of the sequence units (which we fixed so that
the whole 18 unit sequence would span 400 msec of AV
speech).

Fig. 3B shows the three lip and F2 profiles obtained for the
three congruent/aCa/ tokens by running the generative model
with the patterns of Fig. 2B. We considered these profiles as

the standard congruent sensory stimuli. During inference, the
model is driven by sensory stimuli. In the simulation illus-
trated in Fig. 3C the inference model is confronted with one of
the standard congruent sensory stimuli obtained with the
generative model, in this case /ada/. Since the three congruent
patterns (Fig. 2B) initially have the same values, at the very
beginning none of the top-level recognition units is favored.
However, as the separation of lip aperture and second formant
amongst the three profiles increases (Fig. 3B) the /ada/
encoding unit gets increasingly activated and eventually
dominates the output of the top level.

3.3. Predictive contributions to the processing of
incongruent AV speech tokens

Finally the model defined by the three congruent /aba/, /ada/
and /aga/ recognition units was presented with parametric
combinations of lip and F2 modulations. Synthetic stimuli
were constructed by varying independently the degree of lip
closure and peak F2 between their minimum and maximum
values. Lip closure is minimal for /aga/ and maximal for /aba/,
while the opposite is true of peak F2; maximal for /aga/ and
minimal for /aba/ (Fig. 3B). This family of stimuli contained
congruent-like stimuli, fusion-like stimuli and combination-
like stimuli and allowed us to illustrate the qualitative dif-
ference between fusion and combination stimuli. The syn-
thetic congruent stimuli captured the main features of lip and
F2 profiles of a set of AV productions from a single speaker. By
considering a two parametric family of lip and F2 pairings we
could qualitatively mimic the variability across speakers and
trial-to-trial productions.
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Fig. 4 shows the activity of the three recognition units at
Level 3 for 36 lip closure and F2 modulation pairs (Fig. A.1
shows the same simulation with a finer sampling of the lip
closure and F2 space). The pairs closest to the three congruent
AV tokens are marked with a black square. The response to a
fusion-like stimulus (lip profile from /aga/ presented together
with the F2 profile from /aba/) is surrounded by a solid grey
square and that to a combination-like stimulus (lip profile from
/aba/presented with the F2 from/aga/) by a dashed grey square.
Importantly, the position on the grid of the congruent AV
stimuli (black solid squares) illustrates that/aba/ and /ada/ are
closerin the acoustic modality and /aga/ and /ada/ are closerin
the visual modality. As a result, fusion stimuli are closer to a
congruent stimulus than combination stimuli and, as is the
case in the simulation of Fig. 4, the incongruence might not be
detected and the fusion stimuli can be perceived as /ada/.

As is typical in optimal inference, the relative precision (in-
verse covariance of fluctuations) of the variables in the model
plays a determinant role in the outcome of the inference pro-
cess; quantities with higher precision (lower amplitude fluctu-
ations) drive the inference process more strongly. In particular
the relative precision of the two sensory modalities determines
which modality is going to be weighed more, while relative
precisions across levels in the hierarchy determine the relative
weight of bottom—up sensory driven changes and of top—down
predictions from the prior/internalized categories. In the
simulation of Fig. 4 the relative precision of visual and acoustic
cues were chosen so that both modalities had a similar weight
on the inference process, as evidenced by the strong activation
of both /aba/ and/ada/ units for combination stimuli, which are
characterized by strongly informative acoustic and visual cues
(the top right corner of the figure). We assume that this situa-
tion leads to a maximum of combination and fusion responses
to combination-generating (top right region) and fusion-
generating (bottom left region) stimuli, respectively.

When the activity of one unit predominates over the
others, asis the case in the presence of strong evidence for one
of the three speech tokens, it is effectively making a prediction
about the identity of the stimulus. If the evidence comes pri-
marily from one of the two modalities (because of its salience
or timing) the top—down generative part of the model predicts
the sensory input on the other modality. If the actual sensory
input in the other modality is sufficiently close to the top—-
down predicted input, it reinforces the current estimate. This
is the case for congruent /aba/ or /aga/. The opposite is
observed for combination stimuli, for which both acoustic
/aga/ and visual /aba/ provide strong evidence (for /aga/ and
/aba/ respectively). The prediction from one modality is not
confirmed in the other modality and the model cannot provide
a single consonant solution. The activity in the top right panel
of Fig. 4 shows that both the /aba/ recognition unit (black) and
the /aga/ recognition unit (dashed) are strongly activated at
different times of the stimulus presentation.

Starting with the parameters used for the simulations
shown in Fig. 4, we varied the relative precision of visual and
acoustic streams at the lower level of the model and run the
recognition task on (12 lip closure x 13 F2) pairs. The central
panelin Fig. 5 corresponds to the same parameters as those in
Fig. 4. Therecognition unit most active at the end of the process
isnow represented by the color of the filled circle. Some plots in

Fig. 4 (diagonal region in the upper right quadrant) show strong
activation of /aba/ and /aga/ recognition units alternating in
time. This alternation reflects cross-modal conflict and is
represented in Fig. 5 by the size of the filled circles, with smaller
circles representing less congruence, i.e., more conflict. As an
example we may compare the size of the circle for the standard
combination in Fig. 5B, marked by the black circle on the upper
right quadrant, and the corresponding recognition unit acti-
vations for the same stimulus in Fig. 4 (gray dashed square).
Small size circles denote that the dominant recognition unit
varies (alternates), signaling conflicting stimuli. Larger circles
in Fig. 5B, indicate a steady ramp up of a single recognition unit
when stimuli are not conflicting.

When the strength of the visual cue was strengthened by
decreasing the amplitude of fluctuations corresponding to x;,
(the lip aperture variable) and increasing the amplitude of the
fluctuations for xr (the second formant variable), the pattern
of activity in the recognition units changed in the stimulus
region around the largest cross-modal conflict (upper right
quadrant). There was a shift from dominant /aga/ (light grey)
to dominant /aba/ (black) and the conflict region (smaller
sized circles) shifted downwards in the direction of /aga/
(Fig. SA). That is, some stimuli that were perceived as /aga/
(control, Fig. 5B) changed to /aba/ (Fig. 5A) and for other
stimuli conflict increased (reduction of circle size). The same
qualitative changes, but in the opposite direction (from /aba/
to /aga/) were obtained when the amplitude of the fluctua-
tions for xr was decreased and those for x; increased, leading
to a relative strengthening of the acoustic cue (Fig. 5C). The
winner-take-all dynamics in the model also suggests that
earlier arriving cues could have an advantage over later cues.
We found a subtle effect consistent with such an advantage
(Fig. A.2). When the model encoded AV patterns with later
arriving acoustic cues (Appendix 1, Fig. A.2A), the /aba/
recognition unit in the cross-modal conflict region (stimuli
close to a visual /aba/ and auditory /aga/) was favored, sug-
gesting a relative advantage of the visual cue. With patterns
with earlier acoustic cues (Fig. A.2C), it was the activity of the
/aga/ recognition unit that showed increased activity and
lower conflict in the visual /aba/, auditory /aga/ region of
stimulus space, thus pointing to a relative advantage of the
acoustic cues. The other regions of stimulus space, which are
closer to congruent and fusion stimuli, underwent only
modest changes (Appendix 1).

In summary, since the recognition units at the top level are
multimodal and send top—down connections to the individual
sensory modalities, early salient information about the stim-
ulus in one sensory modality is transferred to the other mo-
dality in the form of predictions of sensory input (through the
top—down generative component of the model). Our simula-
tions suggest that fusion occurs because cross-modal pre-
dictions are consistent, and the brain does not detect
incongruence. Conversely, combination percepts occur
because cross-modal predictions are violated.

4, Discussion

To investigate the role of predictions across modalities in the
early stages of audiovisual speech processing, we explored
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how a hierarchical predictive coding model with acoustic and
visual sensory input would process incongruent audiovisual
speech tokens. The model was designed to produce synthetic
versions of real congruent AV productions of /aba/, /ada/ and
/aga/from a single speaker. The model's performance was
subsequently tested on arbitrary incongruent combinations of
acoustic and visual cues.

Optimal probabilistic inference provides a principled and
useful framework to describe basic features of multisensory
cue integration (Pouget, Beck, Ma, & Latham, 2013) such as
reliability-based cue weighting and the brain's interpretation
of sensory stimuli based on prior knowledge. Predictive cod-
ing, in addition, considers the brain as a predictive machine,
with higher cortical areas trying to explain/predict activity in
lower areas (Clark, 2013; Rao & Ballard, 1999). It naturally in-
corporates top—down information and can deal with time
varying continuous inputs. In this work we used a predictive
coding framework based on Dynamic Expectation Maximiza-
tion (Friston et al., 2008) that has previously been used to
model acoustic speech processing (Yildiz et al., 2013). Yildiz
et al. modeled words or sentences individually with a single
module encoding a 6 band acoustic cochleogram of a spoken
word or sentence. Our predictive coding model included the
visual modality in addition to the acoustic modality and we
explicitly included several patterns (/aba/, /ada/, /aga/)
competing to explain the incoming input.

The generative model is a crucial element in predictive
coding; it approximates the statistical relationship between
an external cause and its sensory consequences, in the pre-
sent case between the identity of the audiovisual token, and
the acoustic and visual sensory cues. We represented the
identity of the audiovisual speech tokens with supramodal
recognition units at the top level of the hierarchy. There were
three recognition units, representing three possible congruent
AV speech tokens of the form /aCa/ with C one of the conso-
nants /b/, /d/ or /g/. The top—down generation process of the
model drove activity in the sensory units by a weighted sum of
memorized/internalized patterns; how much each pattern
contributed to the sensory units was determined by the
normalized activity of the supramodal recognition units at the
top. Such normalization is a candidate basic operation in brain
computations (Carandini & Heeger, 2012; Ohshiro, Angelaki, &
DeAngelis, 2011).

At the other end of the hierarchical model, there were two
sensory units, one per modality. We chose lip aperture as the
visual cue and the second formant transitions of the sound
spectrogram as the acoustic cue. Although there are other
available cues related to the AV speech tokens, lip aperture
and second formant were sufficient to distinguish between
the congruent productions in our data set. Formant transi-
tions are one of the important acoustic features for plosive
consonant classification (Soli & Arabie, 1979; Edwards, 1981;
Stevens, 2002) and the second formant transitions were
determinant for distinguishing between /b/ and /d/ in noise
(Varnet, Knoblauch, Meunier, & Hoen, 2013). The visual
contribution to speech is not well understood but it includes
both identity and timing information (Brancazio, 2014,
D'Ausilio, Bartoli, Maffongelli, Berry, & Fadiga, 2014; Ten
Oever, Sack, Wheat, Bien, & van Atteveldt, 2013). Lip aper-
ture is related to articulatory gestures (Browman & Goldstein,

1992) and provides place of articulation information that
complements manner of articulation, which is only available
acoustically. The internalized lip and second formant patterns
associated with the three phonemic segments /b/, /d/, /g/
within the context set by the initial and final vowel /a/ con-
sisted of appropriate target values in the two sensory modal-
ities sampled at approximately 40 Hz.

Amongst the parameters of the model, there were two time
scales of special significance, the detail in the pattern repre-
sentation and the integration time constant at the recognition
level. The temporal detail in the representation corresponded
to ~20msec (gamma range). The integration time constant, i.e.,
the time constant of evidence accumulation, was ~200 msec,
in the theta range. The integration time constant corresponds
to the temporal window of integration, the duration over
which features are integrated into a single speech token. This
window has been estimated to be about 200 msec in audio-
visual speech (Massaro & Cohen, 1993; Van Wassenhove et al.,
2007). However, even within the acoustic domain, consonants
are characterized by a collection of acoustic features spanning
a typical duration of the order of 100 msec (Luo & Poeppel,
2012). This reflects the hierarchy of time scales present in
the acoustic speech signal; which contains both fast events
~20 msec such as the onset and offset of vocalic voicing and
the broadband burst after the release of the oral cavity oc-
clusion, and slower ~100 msec modulations in the envelope of
the speech sound and smooth formant transitions. The online
continuous processing presented here opens up the possibil-
ity for exploring different temporal scales either nested
(Ghitza, 2011) or in parallel.

Precision is also an important parameter of the model, as
exemplified by the observation that changing the relative
precision of acoustic and visual cues biases the outcomes to-
ward the visual or the acoustic token in combination stimuli
(Fig. 5). If precision values, which could be related to pyrami-
dal cell excitability (Brown & Friston, 2012), varied across in-
dividuals and attentional state, they would be consistent with
the variability of fusion and combination responses across
individuals (Nath & Beauchamp, 2012) and under differing
attentional settings (Alsius, Navarra, Campbell, & Soto-
Faraco, 2005; Tiippana, Andersen, & Sams, 2004).

According to the classification by Schwartz, Robert-Ribes,
and Escudier (1998) the model presented here would fall into
the direct identification bimodal category; the recognition/
classification units being driven/driving audiovisual sensory
features without an intermediate unimodal classification
stage. Our model is agnostic about the nature of the top-level
amodal representations, which here are just abstract symbols
(Nearey, 1992). They are encoded as the temporal patterns of
sensory activity associated with each of the three phonemic
segments /bdg/ within the context provided by the initial and
final vowel /a/.

The fuzzy logical model of speech perception (FLMP) is a
reference model in audiovisual speech perception (Massaro,
1998) and is related to cue combination based on Bayes theo-
rem. It assumes that the two sensory modalities are processed
independently, each providing evidence for each speech
token. It has also been applied to fit McGurk perception data.
Although it can account for fusion percepts, it cannot account
for combination percepts because predictions for the
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audiovisual input result from a product of probabilities of re-
sponses for unimodal stimuli and combination percepts are
very rare for unimodal stimuli. The present model can be
viewed as a generalization into an online dynamic inference
process. Unlike FLMP, it can detect combinations, under the
assumption that the cross-modal conflict identified by the
model is occasionally resolved by combination percepts.
Another difference is our introduction of top—down predictive
signals that bias activity at the unimodal level towards pat-
terns compatible with existing representations at the top
level. Therefore, our model does not process modalities
independently; the processing in one modality influences the
processing in the other one, as suggested by electrophysio-
logical data (Arnal, Wyart, & Giraud, 2011; Van Wassenhove
et al., 2005, 2007).

The model is built at an abstract level and it does not
implement many features of auditory and visual processing.
We implemented the minimum amount of features that are
liable to illustrate our main hypothesis, namely, that there are
continuous cross-modal predictive signals in general audio-
visual processing. AV speech processing provides a useful
model to study such predictive signals, and incongruent AV
speech tokens illustrate cross-modal predictions that are
either easily confirmed, as in the case of fusion percepts, or
initially violated and requiring further processing, as in the
case of combination percepts. We did not model the process
by which cross-modal contradiction is resolved by a combi-
nation percept, but we believe that auditory echoic and visual
iconic memory could play a role; in the absence of a satis-
factory syllabic/coarse level match, the brain might resort to a
slower matching process involving more temporal details by
combining sub-syllabic features, and comparing the predicted
audiovisual features to the content of the sensory buffers,
which store about 1 sec of detailed acoustic and visual infor-
mation. We therefore propose that in the case of combination
percepts a match to the incongruent audiovisual stimulus is
also found. As Massaro and Cohen (1993) point out, combi-
nation percepts can only arise if the resulting percept is
“reasonably compatible with the physical properties of a
cluster articulation”. We suggest that this matching requires
processing at a more detailed level, which takes longer to be
achieved. This prediction still requires experimental
validation.

We did not explicitly implement transmission delays
either. Transmission delays are assumed to be larger for visual
than acoustic information and this can be implicitly imple-
mented in the model by the relative timing of the predicted
second formant and lip closure dynamics, which in the model
is encoded in the patterns represented in Fig. 2B. As shown in
additional simulations, changing the relative timing in the
encoded patterns did not change the main observations
(Fig. A.2).

4.1. Across-modality predictions, fusion versus
combination

Since our generative model was used to create congruent
audiovisual speech tokens, its predictive coding version
properly processed congruent stimuli by design. The model

was then tested on incongruent stimuli. Rather than restrict-
ing the model input to the two prototypical incongruent
pairings based on our synthetic congruent stimuli, taking the
lip aperture from /b/, or /g/ and the second formant from /g/ or
/b/, respectively, we explored the model behavior on the two
dimensional feature space spanned by lip aperture and sec-
ond formant. We hypothesize that stimuli represented in this
two-dimensional space include the natural variability in
speech productions across and within speakers. The location
of prototypical congruent and incongruent pairings in this
space represented a meaningful metric. Incongruent stimuli
evoking fusion responses fell relatively close to the congruent
/ada/, while combination evoking incongruent stimuli fell far
from congruent tokens, confirming what was noted by
Massaro and Cohen (1993) and quantified by Omata and Mogi
(2008). This resulted in a qualitative difference in the nature of
the predictions/expectations generated at the sensory level by
the recognition units. In fusion-generating stimuli the /ada/
token was activated and the ensuing predictions were not far
from the actual sensory inputs; sensory predictions were
hence confirmed. This contrasted with the combination
evoking stimuli. Since both acoustic /aga/ and visual /aba/
provided salient and conflicting information, the expectations
on the complementary modality were contradicted, and in our
simulations the recognition units representing /aga/ and /aba/
were both strongly activated, though at different times. The
activation sequence was determined by the modality depen-
dent timing of consonant specific information, maximal in the
intervocalic period for the visual modality and maximal just
before and after the intervocalic period for the acoustic mo-
dality. Jesse and Massaro (2010) also found differences in the
timing of available information from the visual and acoustic
modalities in English consonant-vowel-consonant words. Our
model also reproduces their finding that early evidence has a
relative advantage over later arriving evidence. In the model
this comes from the winner-take-all architecture at the
recognition level; the more one of the recognition units
dominates over the others, the larger the evidence/prediction
error needed to change the output at the recognition level
(Fig. A.2).

Neurophysiological data also suggest a qualitative differ-
ence between fusion and combination. Brain activity in early
auditory cortex in fusion trials in which participants do give
fused responses, is very similar to that observed upon
congruent token presentations (Kislyuk, Mottonen, & Sams,
2008) with differences appearing elsewhere (Erickson et al.,
2014). Arnal et al. (2011) compared congruent and incon-
gruent non-McGurk AV speech tokens, leading only to com-
bination percepts when incongruent, and found different
patterns of brain activation. The visual input showed two
kinds of effects on the perceptual process: an early non-
specific effect on auditory cortex and a token-specific effect
related to the informative content of the visual modality about
the consonant. That is, a prediction error signal, which
correlated with increased gamma activity in sensory areas,
was detected when the acoustic token invalidated the visual
prediction. The observed brain activity changes presumably
reflected intrinsically distinct processing for incongruent
stimuli that can or cannot be fused.
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4.2.  Timing and oscillations

In this modeling work, we focused on speech identity infor-
mation carried by the visual modality. However, the early
visually mediated enhancement of auditory cortex activity
does not seem to be content specific (Arnal, Morillon, Kell, &
Giraud, 2009; Van Wassenhove et al., 2005). It is possible that
early detection of lip motion predicts the timing of auditory
events and synchronizes the activity of auditory cortex neu-
rons (Arnal & Giraud, 2012; Lakatos, Chen, O'Connell, Mills, &
Schroeder, 2007; Schroeder, Lakatos, Kajikawa, Partan, &
Puce, 2008). The timing units of the model, which here were
initialized by hand so that the first sequence unit was in its
active state at the beginning of the simulation, could provide
an appropriate model for such an early resetting. The dynamic
equations at the sequence unit level yield two types of solu-
tions: a periodic mode in which the units get activated in
sequence, and an equilibrium mode in which all the units are
concurrently activated. We could relate the equilibrium mode
with asynchronous activity; a strong input to the unit encoding
the beginning of the audiovisual pattern could set the
sequence in motion and would be equivalent to resetting/
synchronization of oscillations. Future instantiations of the
model will be able to address these timing issues.

The sequence unit level of the model was used to extract the
right ordering of the stored audiovisual pattern associated with
each speech token. How sequences are stored and retrieved by
the brain is the subject of ongoing research but sequence rep-
resentations of the form used here are observed in the firing of
the songbird HVC neurons at specific times within a birdsong
(Hanhloser et al., 2002). Similarly, sequential activation is also
observed in the hippocampus, where itis associated to replay of
behavioral experience (Louie & Wilson, 2001) and stored
sequence retrieval and replay (Lisman et al., 2009).

4.3. Model extension

The present work should be seen as a proof of principle that
predictive coding is a useful framework for addressing the
computational bases of speech processing. Although we
focused here on the /bdg/ consonant family, lip aperture and F2
modulations in the /ptk/ family are very similar. Distinguishing
between /bdg/ and /ptk/ would require augmenting the number
of recognition units and the number of sensory features that
the model generates, adding a voicing dimension. Extending
the model to/ptk/ would also delay the time at which one of the
recognition units dominates, since the discriminant cues be-
tween /ptk/ and /bdg/ occur later than those needed to distin-
guish tokens within the /bdg/ family. However, the inclusion of
further recognition units would still preserve the qualitative
differences between fusion and combination, and we predict
that the model would give similar results on all classes of
phonemic families. Beyond such a straightforward extension,
an additional level of processing able to resolve the conflict
occurring in combination conditions by explicitly resorting to
phonemic-level recognition units could be added. This would
allow more precise predictions about the conflict resolution
mechanism and would therefore help interpreting the patterns
of brain activity in response to incongruent audiovisual speech
tokens (Arnal et al., 2011).

5. Conclusion

In this contribution to this special Cortex issue, we have pre-
sented a minimal predictive coding model of incongruent
audiovisual speech processing. The model architecture per-
mits the dynamic deployment of predictions across modal-
ities. We found that fusion happens because the
representation of fusion-evoking stimuli in the two-
dimension lip/F2 space fall close to the representation of a
congruent stimulus, hence meeting expectations for a
congruent stimulus. Therefore fusion percepts are not
accompanied by any mismatching sensation. In contrast,
combinations happen because each stimulus modality gen-
erates strong conflicting predictions about the other modality.
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Appendix

Two-dimensional visuo-acoustic stimulus space

Fig. A.1 shows the recognition process shown in Fig. 4buton a
finer scale, which allows a more precise representation of the
/ada/ congruent token. It also shows that with our parameters,
the /aba/-/ada/ transition is smoother than the /aga/-/ada/
transition. This is because /aba/ and /ada/ differ mostly in the
visual dimension, which has a lower precision (log P(x.) = log
P(vi) = 5; log P(xg) = log P(v§) = 8)./ada/ differs from /aga/
mostly in the acoustic dimension, which has a higher preci-
sion and therefore a more abrupt transition.

Relative cue timing

Fig. A.2 explores the role of relative cue timing across mo-
dalities. It shows three hypothetical lip and F2 patterns for
congruent /aba/, /ada/ and /aga/ tokens. The patterns differ in
the relative timing of peak lip closure and F2 onset and offset
times. For each pattern we generated congruent stimuli and
then combined them with the same (Ar and A;) combinations
to test performance for a wide range of lip closure and F2
pairings.

The recognition performance with all other parameters
unchanged shows a change in the activity of recognition units
presented with lip and F2 mixtures close to the diagonal of the
upper right quadrant. The recognition unit most activated at
the end of stimulus presentation changes from /aga/ to /aba/
when visual information, which is more salient for /aba/, ar-
rives earlier. Conversely, the most activated unit changes
from /aba/ to /aga/ when the visual information arrives later
(Fig. A.2).
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Recognition on 2D audiovisual feature space
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Fig. A.1 — Model performance on a two-dimensional family of lip closure and F2 paired stimuli. A more detailed sampling of
the space with the same parameters used in Fig. 4.
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A. Acoustic cue delayed

B. Control C. Acoustic cue advanced

O~ Lip, /aba/
O Lip, /ada/
0 Lip, /aga/
—@— F2, /aba/
—4— F2, /ada/

—— F2, /aga/

Lip and F2 (a. u.)

/aba/
/ada/

/aga/

Fig. A.2 — Performance of two additional versions of the model. Encoded patterns differ in the relative timing of acoustic and
visual information (top row). The bottom row shows the response to12 x 13 pairs of lip aperture and F2 (see Methods for a
detailed description). The position on the grid determines the relative distance from the /aba/ stimulus in the lip closure
dimension (Ay) and F2 modulation dimension (Ag). The positions of the standard /aba/ (Ay = 1, Ar = 1), /ada/ (Ay = .21,
Ar = .67) and /aga/ (Ay = 0, Ar = 0) are marked with a square, and those of the standard fusion (Ay = 0, A = 1) and
combination stimuli (Ay = 1, Ar = 0) by a circle. At each point of the grid, the color of the filled circles represents the identity
of the recognition unit with highest activity at the end of the process. The size of the filled circle is inversely related to the
fluctuations in recognition unit activity (smaller circles related to larger cross-modal conflict). As the acoustic cue is
progressively advanced with respect to the visual cue (left to right), some of the responses to stimuli in the visual /aba/ and
acoustic /aga/ region (close to the black circle in the upper right quadrant) become more like /aga/: 1) /aba/ activations show

more conflict (smaller circles) and /aga/ activations show less conflict (larger circles), and 2) some stimuli change from

maximally activated /aba/ to maximally activated /aga/.
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