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Abstract

This thesis concerns combinatorial and geometric group theory — the interplay between the
properties of groups and those of the geometric objects on which they act. More specifically,
we will be interested in the subgroup structure of finitely generated groups, in particular
of groups acting on trees, as well as in geometry of Schreier graphs associated with various
group actions. Every subgroup of a group is naturally associated with a Schreier graph, and
this correspondence is bijective as graphs are considered as labelled and rooted. This thesis
evolves around three distinct but related topics.

The first one is transitivity of Schreier graphs. Our main result here is an algebraic
characterization of transitive Schreier graphs in terms of associated subgroups. It is then
applied to Tarski monster groups for which we show that they are simple in a strong
“geometric” sense. This provides an answer to a question of Benjamini on coverings of
transitive graphs.

We then turn our attention to limits of sequences of graphs. Whereas it is easy to
understand convergence and limits of transitive graphs, the notion of limit of a sequence
of arbitrary graphs is more complicated — as defined by Benjamini and Schramm it is an
invariant measure on the space of rooted graphs. In the basis of this part of the thesis lies an
unexpected observation: the limit of the sequence of de Brujin graphs Bn,k (a family of highly
non-transitive graphs widely used in various branches of mathematics and in applications) is
the Cayley graph of the lamplighter group also known as the Diestel-Leader graph DL(k, k).
It can be described as the horospheric product of two (k + 1)-regular trees. An interesting
corollary of the connection of de Brujin graphs and the lamplighter group is that it allows us
to compute the Fuglede-Kadison determinant of the lamplighter Cayley graph.

We then look at two different generalizations of de Brujin graphs: the spider-web graphs
studied in statistical physics (this part of the thesis is based on a joint paper with Grigorchuk
and Nagnibeda); and the Rauzy graphs studied in symbolic dynamics.

Our main theorem shows that Benjamini-Schramm limit of Rauzy graphs associated to a
subshift of finite type over a finite alphabet is supported on horospheric products of trees.

Finally we study weakly maximal subgroups of branch groups. These are groups acting by
automorphisms on rooted trees, with rich subgroup structure. Since geometric group theory
is essentially interested in groups up to finite index subgroups, weakly maximal (i.e., maximal
among subgroups of infinite index) subgroups is a natural object of study. In branch groups,
they appear naturally as stabilizers of infinite rays in the rooted tree — such weakly maximal
subgroups are called parabolic. In collaboration with Bou-Rabee and Nagnibeda we showed
that in a regular branch group, every finite subgroup is contained in uncountably many
weakly maximal subgroups. In particular, there exist uncountably many weakly maximal
subgroups that are not parabolic. Branch actions give raise to weakly maximal subgroups.
On the other hand, weakly maximal subgroups give raise to faithful and spherically transitive
actions on rooted tree. These actions are in general not branch. We conjecture that stabilizer
of rays for these actions are two-by-two distincts, thus giving raise to new invariant random
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subgroups. We prove that this conjecture is true if we pass to the profinite completion and
give some partial results for the general case.
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Résumé

Le sujet de cette thèse est la théorie géométrique et combinatoire des groupes — le lien entre
les propriétés des groupes et celles des objets géométriques sur lesquels ils agissent. Plus
précisément, nous nous intéressons à la structure des sous-groupes des groupes de type fini, en
particulier des groupes agissant sur des arbres, ainsi qu’à la géométrie des graphes de Schreier
associés à diverses actions de groupes. Tout sous-groupe d’un groupe est naturellement
associé à un graphe de Schreier, et cette correspondance est bijective si l’on considère les
graphes comme étiquetés et enracinés. Cette thèse s’intéresse tout particulièrement à trois
sujets distincts mais reliés entre eux.

Le premier est la transitivité des graphes de Schreier. Notre principal résultat est une
caractérisation algébrique de la transitivité d’un graphe de Schreier en terme du sous-groupe
associé. Nous l’appliquons ensuite aux « monstres de Tarski » pour lesquels nous montrons
qu’ils sont simples dans un sens « géométrique » très fort. Cela nous permet de répondre à
une question de Benjamini sur les revêtements de graphes transitifs.

Nous tournons ensuite notre attention sur les limites de suites de graphes. Alors qu’il est
aisé de comprendre la convergence et la limite d’une suite de graphes transitifs, la notion
de limite pour une suite quelconque de graphes est plus compliquée — comme défini par
Benjamini et Schramm, c’est une mesure de probabilité sur l’espace des graphes enracinés. Le
point de départ de cette partie de la thèse provient d’une observation inattendue : la limite
de la suite des graphes de de Bruijn Bn,k (une famille de graphes hautement non transitifs
étudiés dans des domaines divers des mathématiques ainsi que dans d’autres sciences) est le
graphe de Cayley du groupe de l’allumeur de réverbères, aussi connu comme le graphe de
Diestel-Leader DL(k, k). Ce dernier graphe peut être décrit comme un produit horosphérique
de deux arbres k + 1 réguliers. Un corollaire intéressant de ce lien entre les graphes de
de Bruijn et le groupe de l’allumeur de réverbères est qu’il nous permet de calculer de
déterminant de Fuglede-Kadison du graphe de Cayley de ce groupe.

Nous nous intéressons ensuite à deux différentes généralisations des graphes de de Bruijn :
les graphes de toiles d’araignées étudiés en physique statistique (cette partie de la thèse est
un travail en commun avec R. Grigorchuk et T. Nagnibeda), et les graphes de Rauzy étudiés
en dynamique symbolique.

Notre théorème principal montre que la limite de Benjamini-Schramm des graphes de
Rauzy associés à un sous-décalage de type fini sur un alphabet fini est supportée sur des
produits horosphériques d’arbres.

Finalement, nous étudions les sous-groupes faiblement maximaux des groupes branchés.
Ces groupes agissent par automorphismes sur des arbres enracinés et possèdent une riche
structure de sous-groupes. Étant donné que la théorie géométrique des groupes s’intéresse
surtout aux groupes à indice fini près, il est naturel d’étudier les sous-groupes faiblement
maximaux (c’est-à-dire maximaux parmi les sous-groupes d’indice infini). Dans le cas des
groupes branchés, ces sous-groupes apparaissent naturellement comme les stabilisateurs des
rayons infinis dans l’arbre — de tels sous-groupes sont appelés paraboliques. En collaboration
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Résumé

avec K. Bou-Rabee et T. Nagnibeda nous avons montré que dans un groupe régulièrement
branché, tout sous-groupe fini est contenu dans un nombre non-dénombrable de sous-groupes
faiblement maximaux. En particulier, il existe un nombre non-dénombrable de sous-groupes
faiblement maximaux qui ne sont pas paraboliques. Les actions branchées donnent lieu à
des sous-groupes faiblement maximaux. D’autre part, les sous-groupes faiblement maximaux
donnent lieu a des actions fidèles et transitives sur des arbres enracinés. Ces actions ne sont
pas en général branchées. Nous conjecturons que les stabilisateurs des rayons pour ces actions
sont deux à deux distincts, donnant ainsi lieux à de nouveaux sous-groupes aléatoires. Nous
prouvons que cette conjecture est vraie si l’on passe à la complétion profinie et donnons
certains résultats partiels dans le cas général.
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Chapter 1
Introduction

This thesis evolves around two basic mathematical notions, that of a group and of a graph.
A group is a fundamental algebraic structure, and the modern group theory develops

in many very different directions. In this thesis we will focus on geometric, combinatorial
and asymptotic group theory that mainly studies infinite discrete groups as geometric
objects, up to quasi-isometries (maps that preserve large-scale geometry). One subject of
particular interest is groups that exhibit exotic geometrical properties, very different from
the classical Euclidean, spherical and hyperbolic ones. For examples, groups with volume
growth intermediate between polynomial and exponential. The existence of such geometries
in the highly ordered algebraic world of groups, first established by Grigorchuk in 1980’s, is
a surprising and not yet fully understood phenomenon that generates a lot of interesting
research.

A graph is a ubiquitous notion in mathematics and applications. Here, graphs will consist
of a (possible infinite) set of vertices and a set of edges, such that only finitely many edges
are incident with any given vertex. We will be interested in two classes of graphs that both
stem from the following most basic example. Given a group G generated by finitely many
elements (for example, a free group of finite rank Fd or a free abelian group of finite rank Zd,
or the fundamental group of a compact Riemannian manifold, or any finite group), and a
finite generating set S, one constructs the Cayley graph of the pair (G,S). It can be viewed
as a model space for the group: the group acts freely (without fixed point) and transitively
(with only one orbit) on the vertices of its Cayley graph. In the examples above, one gets
the Bethe lattice as a Cayley graph of the free group, the cubic lattice as a Cayley graph
for Zd, tesselations of the hyperbolic plane as Cayley graphs of the fundamental groups of
hyperbolic surfaces. On one hand, Cayley graphs are typical (but not only!) examples of
transitive graphs — a class of graphs widely studied in statistical physics as a reasonable
class for defining various probabilistic models. Informally speaking, a transitive graph locally
looks the same everywhere! On the other hand, whereas Cayley graphs correspond to free
actions of groups, one can also construct similar graphs out of any group action — in this
way one gets a much wider class of so-called Schreier graphs.

It is of great interest that the interplay between group theory and graph theory finds
applications in problems from other areas of research: statistical physics, theory of dynamical
systems, ergodic theory.

Some of the results of this thesis are joint work with other mathematicians and some of
the results are already published. Sections 3.3 to 3.5 essentially come from [83]. Sections
4.2 to 4.5 are joint work with R. Grigorchuk and T. Nagnibeda and were published in [86]
with slightly less details, while Section 4.6 is a joint work with T. Nagnibeda. Finally,
Sections 5.5 and 5.6 are a common work with Bou-Rabee and Nagnibeda and were published
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1. Introduction

in [24]. Precise information of collaborations and publication can be found at the end of the
introductory part of each chapter.

1.1 Products and limits of graphs

Graphs are simple objects with both geometric and combinatorial meaning. They appear in
many different areas as for example, topology, dynamics, discrete mathematics or group theory.
As graphs may be used to model relations between objects, they have a lot of applications in
different fields: physics, informatics, biology and chemistry (to study molecules) but also in
sociology. Nevertheless, graph theory turned out to be of a great intrinsic interest.

The main flaw of graph theory is probably the numerous definitions of graphs that do
not always agree. This is due to its versatility and long history going back to an Euler paper
in 1736. In Chapter 2 we set the main definitions of graph theory that we will use and state
some fundamental results that we will use later.

One important concept in graph theory is that the space G• of rooted (or marked) graphs
is a metric space. Moreover, for any d, the subspace G•,d of graphs with maximum degree
bounded by d is compact. This subspace contains in particular all Schreier graphs of group
G with generating system X such that |X| ≤ d. Therefore, the comprehension of limits in
this space is of great interest. This limit is called local limit.

Sometimes, the graphs that we are interested in are not rooted and there is no canonical
choice for the roots. If a graph Γ is finite, we can look at µΓ, the uniform probability
distribution on the set of vertices. The set of probability measure on G•,d is compact for
the weak convergence. In particular, any sequence of graphs of bounded degree admits a
subsequence converging to some µΓ. This limit is called the Benjamini-Schramm limit.

There is a natural notion of morphisms of graphs: namely, maps that preserve the
structure. This gives us a category Graph, or DiGraph if we are interested in directed
graphs. We may therefore asks for the existence of categorial notions as for example product,
coproduct, pushout or pullback. In turns out that in DiGraph all these notions exists (and
all finite limit and colimits, see Scholion 2.1.6), but that this is not necessarily the case in
Graph. Nevertheless, when these constructions exist, they are usually obvious, [115]. Where
a categorial construction in Graph (or in DiGraph) is obvious if it is obtain by taking the
same construction on Set for vertices and on Z/2Z−Set for edges.

In Section 2.3 we turn our attention to the categorial product of graphs: the so-called
tensor product. We prove that this product behaves well with coverings, the operation of
taking the line graph and with the distance in G•.

1.2 Coverings of transitive graphs and strong simplicity of groups

A continuous map p : X → Y between two topological spaces is a covering if for every point
y ∈ Y , there exists an open neighbourhood U such that p−1(U) is a disjoint union of open
sets of X. Coverings have always been a subject of great interest from a topological viewpoint
and proved to be a useful tool in various areas of mathematics. In the special case of graphs,
coverings admit a simple combinatorial description. In this context, it provides a powerful
tool to explore property of subgroups of free groups, see for example [115]. There is an easy
algorithm that takes a finite graph and an integer d and returns every covering of the graph
of degree d. But the inverse problem: given a graph, to find all graphs that are covered by it
— is harder to solve, especially for infinite graphs.

Motivated by the study of connectivity constants of transitive graphs, of utmost impor-
tance in the theory of self-avoiding walks in statistical physics and in probability theory,
Benjamini asked the following
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1.2. Coverings of transitive graphs and strong simplicity of groups

Conjecture 1.2.1 (Benjamini). There exists a constant M such that every infinite transitive
graph (not quasi-isometric to Z) covers an infinite vertex transitive graph of girth (that is
the length of the shortest cycle) bounded by M .

Where a transitive graph means a vertex-transitive graph: for every pair of vertices x
and y, there exists an automorphisms f that sends x onto y. Informally, this signify that
vertices are not distinguishable one from another. On the other hand, two spaces X and Y
are quasi-isometric means, informally, that they have the same large scale geometry. It is
easily seen that the only graphs covered by Z are itself and finite graphs (cycles). It is thus
natural to exclude it from the conjecture.

The initial question about monotonicity of the connectivity constant was later answered
by Grimmett and Li [61] by a different method. However, the conjecture is interesting in
itself and even the following weaker version is still an open problem:

Conjecture 1.2.2. Every infinite Cayley graph (not quasi-isometric to Z) properly covers
an infinite vertex transitive graph.

This version of the conjecture is in fact more natural from the algebraic prospective.
Indeed, if a Cayley graph of a group doesn’t cover any distinct Cayley graph, then this
exactly corresponds to the basic group property of being simple. The interest here lies in
the fact that transitive graphs are not necessarily Cayley graphs, even if the latter are the
most typical examples of the former. For example, the famous Diestel-Leader graphs —
horospheric products of a two regular trees of different degrees — are transitive, but not
even quasi-isometric to any Cayley graph [39].

In Chapter 3, we gave a partial negative answer to Conjecture 1.2.2: the conjecture is
false if we restrict ourselves to coverings compatible with the algebraic nature of the Cayley
graph, i.e., preserving the labelings of the edges by the generators of the group. The main
idea was to reformulate the problem in group-theoretic terms and then to find a group
with a suitable subgroup structure, in order to provide a negative answer to the conjecture.
Firstly, we extend some classical arguments about finite graphs to show that every transitive
graph is a Schreier graph over a (generalized) free group. Then we provide an algebraic
characterization of transitivity of a Schreier graph which involves studying length functions
defined by the choice of a generating set. To find a counterexample that would satisfy the
criterion, we use Ol’shanskii’s theory of Tarski monsters — groups in which every subgroup
is cyclic. Precisely, we have the following

Theorem 1.2.3 ([83]). Let G be a Tarski monster, S a generating set and Γ the corresponding
Cayley graph. Suppose that p : Γ → ∆ is a covering such that for every edges e and f if
p(e) = p(f) then e and f have the same label by a generator. Then either Γ = ∆, or ∆ has
only 1 vertex, or ∆ is infinite and the orbit of each vertex under Aut(∆) is finite (in which
case ∆ is not transitive).

Our criterion of transitivity of Schreier graphs and the Theorem above motivate the
following new
Definition 1.2.4. A group with a Cayley graph that does not cover any transitive graph, is
called strongly simple.

Such groups are obviously simple and Tarski monsters are so far the only known examples
of such groups.

Since the 19th century and the beginnings of group theory simple groups are viewed
as building blocks of the theory, and their classification is considered as one of the main
problems in group theory, formulated in Jordan-Hölder program in 1880’s. An impressive
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1. Introduction

collective endeavor that took a big part of the 20th century resulted in the classification
of finite simple groups including cyclic groups of prime order, alternating groups of even
permutations An, n ≥ 5, families of groups of Lie type and the sporadic ones. At present
there is no hope of a similar classification of infinite simple groups, but they are in the center
of an active area of research. Indeed, not so many sources of examples of infinite finitely
generated simple groups are known: the first ones, constructed by Higman in 1950’s, lattices
acting of products of trees constructed by Burger and Mozes [26], recent examples of simple
amenable groups by Juschenko and Monod [70]. Only few of them are finitely presented.
“Quantifying” simplicity of these groups by refining the notion is potentially interesting in
better understanding its nature.

In Section 3.5, we show that the alternating groups An are simple but not strongly simple
for odd n ≥ 5 and that Tarski monsters are strongly simple.

1.3 De Bruijn, spider-web and Rauzy graphs

The study of limits of finite graphs is in the center of attention of both graph theorists
and probabilists, with interest in statistical physics. One of the basic tools is the notion
of Benjamini-Schramm limit, introduced in [20]. It defines the limit of a sequence of finite
graphs as an invariant probability distribution on the set of all possible rooted graphs that
can be obtained as limits of our sequence with a random choice of root (once you choose
roots in your graphs, you can define the limit by considering stabilizing balls of bigger and
bigger radius around the root). If the graphs in the family were transitive, then in the limit
we would get a Dirac measure concentrated on a single transitive graph. However in general
it does not have to be the case.

One famous sequence of finite graphs is that of de Bruijn graphs — directed graphs
representing overlaps between sequences of symbols in a given alphabet. The vertices of
Bk,n are sequences of n letters on the alphabet {0, . . . , k − 1} and there is an oriented edge
labeled by x1 . . . xn+1 from x1 . . . xn to x2 . . . xn+1. They enjoy some nice graph-theoretic
properties and are used in many different scientific areas: mathematics, where they serve as
a discrete model of the Bernoulli map x 7→ kx (mod 1), but also in computer science and in
bio-informatics [105, 31].

As, for k fixed, they form an infinite family on a growing number of vertices, it is of
interest to find asymptotic properties of this family. In order to study asymptotic properties
of a family of graphs, the best we can hope is to describe the limit.

In Chapter 4 we describe this limit as a well-known graph:

Theorem 1.3.1 ([86]). The Benjamini-Schramm limit of de Bruijn graphs (Bk,N )N≥0 is
some (well-known) Cayley graph of the lamplighter group Lk, which is the Diestel-Leader
graph corresponding to the horospheric product of two regular trees of degree k + 1.

Interestingly, this theorem is obtained as a corollary of the fact, that we also prove, that
de Bruijn graphs are isomorphic to the Schreier graphs of the lamplighter group, realized as
an automorphism group of the infinite binary tree.

In fact, in Chapter 4, we study the more general class of the so-called “spider-web
networks” introduced in 1959 [67] in the context of systems of telephone exchange. Later
these networks were shown to enjoy extremely nice properties in percolation [102, 101, 103]
and also interesting spectral distributions [6]. One of the main problems acknowledged in
these papers was the absence of the infinite limit lattice associated to the family of these
networks. We show that the spider-web networks Sk,n,m are isomorphic to the tensor product
(also called categorial product) of the (oriented versions of) de Bruijn graph Bk,n and the
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Figure 1.1: De Bruijn digraphs B2,1, B2,2 and B2,3.

cycle Cm on m vertices, thus providing the limit (given in the Theorem above) and also
proving that spider-web networks are a natural two-parameter extension of the one-parameter
family of de Bruijn graphs, which opens new possibilities for applications. This also allowe
us to generalize many properties of de Bruijn graphs to spider-web graphs. For example, the
fact that these graphs are Eulerian (there exists a closed path that visits each edge exactly
once) and Hamiltonian (there exists a closed path that visits each vertex exactly once), the
fact that they form a covering tower as well as the computation of the limit.

We also study spectral properties, like complexity or spectral zeta function of these graphs.
In particular, this allows us to compute the Fuglede-Kadison determinant of the Laplacian
of the Diestel-Leader graph DL(k, k). Indeed, this determinant is equal to e−ζ

′
DL(k,k)(0) and

−ζ ′DL(k,k)(0) = log(k)− (k − 1)2 d
ds Lis

(
1
k

)∣∣∣
s=0

, where Lis(z) is the polylogarithm.
A natural generalization of de Bruijn graphs is the so called Rauzy graphs. In general

these graphs are not regular, it is hence not possible to use a group-theoretic approach.
However there is a more direct approach that leads to computation of the limit for the general
case. It also implies an explicit isomorphism between de Bruijn graphs and the graphs of the
action of the lamplighter group on a rooted tree.

In terms of symbolic dynamics, de Bruijn graphs are Rauzy graphs corresponding to the
full shift and are therefore the simplest example of the theory. For the general case, let F be a
set of words on the alphabet {0, . . . , k− 1}. We will consider F as a set of forbidden patterns
defining a subshift. The corresponding Rauzy graph is obtained from Bk,n by erasing all
edges and vertices containing subsequences in F . Hence Bk,n is simply the Rauzy graph
for F = ∅. When F is finite (the corresponding subshift is of finite type), and under some
additional technical assumptions, we compute the limit of the corresponding Rauzy graphs.
This is not anymore a graph, but an invariant probability measure on the space of rooted
graphs. This measure is concentrated on horospheric products of (not necessarily regular)
trees. In this case, vertices of the trees correspond to infinite sequences without subwords in
F Each tree appearing in the horospheric product can be seen as the tree of trajectories (of
the subshift associated to F ) that share a common “direction”.
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Figure 1.2: Rauzy graphs for k = 2, N = 1, 2, 3 and F = {11}.

1.4 Subgroups structure of branch groups

As mentioned above, infinite finitely generated simple groups are very far from being well
understood. From the large-scale geometric prospective, it is natural to relax the condition
of simplicity and to allow the group to have non-trivial quotients — but only finite ones.
Such groups are called just-infinite. In the world of infinite groups, they retain the role of
basic building blocks played by simple groups, in the sense that any finitely generated infinite
group has a just-infinite quotient. A major discovery by Wilson in 1970’s shows that the
class of just-infinite groups consists of groups of three distinct types: roughly speaking, the
simple groups, the hereditarily just-infinite groups (just-infinite groups whose finite index
subgroups are also just-infinite), and the so-called branch groups. These are characterized
by their rich subgroup structure, in spite of the fact that normal subgroups are all of finite
index.

One aim of mathematics is to study general concepts and to prove theorems not about a
singular object, but about many objects sharing the same properties. However, sometimes
a single object is important enough in itself to attract attention of many mathematicians.
People firstly study this particular object and then try to define a suitable generalization of it.
This is the case for the first Grigorchuk group G. Grigorchuk constructed it in [60] and proved
in [47] that G has intermediate growth between polynomial and exponential, thus providing
an answer to an open problem posed by John Milnor in 1968. Since then, this group continues
to be extensively studied and gave rise to the definition of two important classes of groups:
the branch groups (which naturally appear in the classification of just-infinite groups as
described above) and the self-similar groups (which appear naturally as iterated monodromy
groups of Julia sets in complex dynamics). All these groups appear as automorphism groups
of infinite rooted trees.

Branch groups admit an intrinsic definition in terms of stabilizers of points and of
stabilizers of rays (also called parabolic subgroups) for this action and a major open problem
about them is to describe their lattice of subgroups. In the case of the Grigorchuk group
or branch generalized multi-edge spinal groups, a deep result in this direction, see [97, 79],
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is the rigidity of maximal subgroups — a behavior which is completely different from the
linear case of, say SL(n,Z).

On the other hand, Grigorchuk [49] and Bartholdi and Grigorchuk [11, 10] showed that
in a branch group, all the parabolic subgroups are infinite, pairwise distinct and weakly
maximal; where a subgroup is said to be weakly maximal if it is of infinite index and maximal
for this property. In view of this result, Grigorchuk asked [49]

Question 1.4.1 (Grigorchuk, [49]). Does there exists a weakly maximal subgroup in G which
is not parabolic?

The main result of Chapter 5 is that there exist uncountably many such subgroups, and
not only in G but in an arbitrary regularly branch group.

This discovery can be used to study the subgroup structure of branch groups from the
statistical viewpoint. Namely, a very active area of research has lately developed around
the notion of IRS — invariant random subgroup in a locally compact group. An IRS is a
probability distribution on the space of all subgroups of the group which is required to be
invariant under the natural action of the group on its subgroups by conjugation. This is a
natural example of an invariant measure, but moreover it also has a nice algebraic meaning:
it generalizes the notion of a normal subgroup that corresponds to the Dirac delta measures.
It is very interesting and important to understand how the algebraic subgroup structure
of the group is related to the variety of IRSs on it. For example, recent new examples of
Juschenko and Monod [70] provide first examples of simple groups (i.e. groups that have
no non-trivial normal subgroups) with non-trivial IRS. Benli, Grigorchuk and Nagnibeda
[21] constructed first examples of groups of intermediate growth with uncountably many
distinct IRS. It is still an open question whether a just-infinite group, and in particular the
Grigorchuk group G, can have uncountably many IRS (observe that being just-infinite it can
only have countably many normal subgroups).

How is this problem connected to our result about variety of weakly maximal subgroups?
There is indeed a strategy that potentially allows to construct an IRS out of a weakly
maximal subgroup, as follows. Given a weakly maximal subgroups H in G, it is possible to
construct a binary rooted tree TH on which G acts and such that H is the stabilizer of the
leftmost ray. If H is not parabolic for the original action, then the action of G on TH is not
branched, but we can ask the following

Question 1.4.2. Given the action of G on TH , is it true that all parabolic subgroups for
this action are

1. weakly maximal?

2. pairwise distinct?

Positive answer to these questions will imply the construction of new non-trivial invariant
random subgroups of G.

In Section 5.7, we prove that both questions admit a positive answers if we pass to Ĝ,
the profinite completion of G. In this case, weakly maximal subgroups are replaced by closed
subgroups of infinite that are maximal for this property and called wmc. The rigidity of
maximal subgroups in G implies that weakly maximal subgroups are closed for the profinite
topology. In Section 5.7, we also prove that there is a lattice isomorphism between finite
index subgroups of G and finite index subgroups of Ĝ, given by H 7→ H̄ for H ≤ G, and
M 7→ M ∩ G for M ≤ Ĝ. There are good reasons to believe that these maps sends wmc
subgroups to wmc subgroups, see Lemma 5.7.11 and Proposition 5.7.7. If this is the case,
then in Question 1.4.2, both answers are positive.
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1.5 Weakly maximal subgroups of the Grigorchuk group

As advocated in the previous section, the first Grigorchuk group G is an important and
heavily studied example in geometric group theory. For example, it has intermediate growth
between polynomial and exponential and it is amenable but not elementary amenable.

Its subgroup structure is widely studied and presents some interesting properties. For
example, all non-trivial normal subgroups and all maximal subgroups are of finite index.
Moreover, all normal subgroups are characteristic and the number bn of normal subgroup of
index 2n is odd and there exists asymptotic bounds on it, [8]. It also has the congruence
subgroup property: every finite index subgroup contains the stabilizer of a level for the
(unique) branch action of G. This implies that its completion in Aut(T ) is the same as its
profinite completion. A detailed study of the top of the lattice of normal subgroups can be
found in [28] and [8].

Among other results, there is a description of finitely generated subgroups of G in [54]
and a study of maximal locally finite subgroups in [108].

The geometrical properties of subgroups of G were also studied, via their Schreier graphs
[118, 52]. In particular, Schreier graphs of parabolic subgroups of the original action are
(after erasing loops and multiple edges) all isomorphic to Z or to N. More precisely, after
erasing loops and multiple edges, Sch(G,StabG(ξ), {a, b, c, d}±) is isomorphic to N if ξ is
in the G-orbit of 1̄, and isomorphic to Z otherwise. All the Sch(G,StabG(ξ), {a, b, c, d}±)
are two-by-two non strongly isomorphic, but if we forget the labeling, there is only two
isomorphism classes (corresponding to the cases Z and N).

In Chapter 6, we show that there exists weakly maximal subgroups of G such that the
corresponding Schreier graph is not linear, i.e. not isomorphic to Z or N after we had erased
loops and multiple edges. We also prove results on the number of distinct classes of weakly
maximal subgroups and give a detailed discussion of an example (due to Pervova) of a finitely
generated weakly maximal subgroup and some generalization of it.
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Chapter 2
Preliminaries on graphs

Graphs are simple objects with both geometric and combinatorial meaning. They were first
studied by Leonhard Euler in 1736 in order to solve the problem of the Seven Bridges of
Königsberg. The notion of graphs turned out to be of a great intrinsic interest, but also
related to other branch of mathematics, as for example topology and group theory. In
particular, many classical theorem about free groups admits graph theoretic proof that are
usually simpler and more illuminating that their historical and combinatorial counterparts.

In this chapter we give all the basic definitions and some preliminaries results. In Section
2.1 we recall the main definitions. The next Section is about the space of marked graph and
its metric. Section 2.3 is about tensor product of graphs and how it interacts with the limit;
this was published as part of [86]. Finally, Section 2.4 presents the basics of Schreier graphs .

2.1 Definitions

The original sin of graph theory is the multiple and sometimes contradictory definitions of
what is a graph; this is why we will write the definition of all notions used, even for the
classical one. We will work with a generalization of the categorial definition of a graph coined
by Serre [112]. Serre’s definition turned out to be fruitful and was used with great success
by Stalling [115] and others. This definition comes with two limitations: it is intended only
for graphs and says nothing about digraphs (also called oriented graphs or quiver) and it
does not allows “degenerate loops” which naturally arise in the context of Schreier graphs.
Nevertheless, small modifications of the original definition of Serre allow to take in account
both these cases.

Graphs and Digraphs For us, a graph is simply a digraph where every edge admits an
inverse. This is the content of the following two definitions.
Definition 2.1.1. A digraph (for directed graph, also called a quiver) ~Γ = (V, ~E) consists of
two sets ~E (edges) and V (vertices), and two functions ι, τ : E → V with no restrictions on
it.

The vertices ι(e) and τ(e) are respectively the initial and final vertex of the edge e.
Observe that for us, digraphs may have loops (edge with the same initial and final vertex)

and multiple edges (two (or more) edges that shares their initial vertex and their final vertex).
In the literature they are sometimes called multidigraphs or quivers.
Definition 2.1.2. A graph Γ = (V,E) is a digraph with a function ¯: E → E such that ¯̄e = e
and τ(e) = ι(ē).

The edge ē is called the inverse edge of e. An unoriented edge is a pair {e, ē}.
9
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Observe that our definitions of graphs allow loops, multiple edges and also degenerate
edges — edge e with e = ē. If an edge e is degenerate, then we have τ(e) = ι(ē) = ι(e) which
means that e is a loop. Graphs without degenerate loops correspond to graphs as defined by
Serre. Many results about such graphs from [115] can be extended easily to the general case.

Digraphs will be graphically represented by small circles for vertices and arrows between
circles for edges. On the other hand, non-degenerate unoriented edges in graphs will be
graphically represented by plain line while degenerate edges will be represented by dashed
lines.
Definition 2.1.3. The underlying graph of a digraph ~Γ = (V, ~E) is the graph ~Γ = (V,E), with
E := ~E t{ē | e ∈ ~E}, where ē is a formal inverse of e. For every e ∈ ~E, we define ι(ē) := τ(e),
τ(ē) := ι(e) and ¯̄e := e.

An orientation O on a graph Γ is the choice of an edge in each of the pairs {e, ē}. For
each choice of an orientation O on Γ = (V,E), we define the digraph ~Γ = (V, ~E) where
~E = O and ι and τ are restrictions on ~E of the original functions.

Observe that if Γ is an underlying graph of a digraph, then it has no degenerate loop.
The operations of choosing an orientation on a graph and of taking the underlying graph
of a digraph are mutually inverse in the following sense. Given a digraph ~Γ, there exists
an orientation on the underlying graph such that the resulting digraph is ~Γ itself. On the
other hand, given a graph Γ without degenerate loops, the underlying graph of the digraph
obtained by choosing an orientation on Γ, is Γ itself.

Let Γ = (V,E) be a graph or a digraph. The in-degree, respectively the out-degree, of a
vertex v is the number of edges e with initial vertex v, respectively end vertex v. If Γ is a
graph, then both notions coincide and are simply called degree. Γ is said to be locally finite
if every vertex has both finite in-degree and finite out-degree. Note that if e is a loop in a
graph, it contributes 1 to the in-degree, but its inverse edge ē also contributes 1. Therefore,
the non-oriented loop {e, ē} contributes 2 to the degree if and only if it is non-degenerate,
otherwise it contributes to 1.

If Γ is a graph or a digraph, its adjacency matrix is the matrix AΓ = (aij)i,j∈V with aij
the number of edges from i to j. Adjacency matrix of graphs are symmetric but this not
necessarily the case for digraphs. If ~Γ is a digraph, we have A~Γ = A~Γ +AT~Γ .

Let Γ be a graph or a digraph. A path p in Γ from v to w of length n is an ordered
sequence of edges (e1, e2, . . . , en) such that ι(e1) = v, τ(en) = w and for all 1 ≤ i < n we
have τ(ei) = ι(ei+1). In particular, for any v there is a unique path of length 0 from v to v :
the empty path. The inverse of the path p = (e1, e2, . . . , en) is the path p̄ = (ēn, . . . , ē1). A
path p in a graph is said to be reduced if it does not contain subsequences of the form eē. A
cycle is a reduced path of length at least 1 with the same initial and final vertex.

A graph is connected if for all choices of two vertices v and w there exists a path from v
to w. A digraph is strongly connected if for all choices of two vertices v and w there exists
a path from v to w It is weakly connected (or simply connected) if its underlying graph
is connected. The smallest example of a connected but not strongly connected digraph is

since there is no path from the right vertex to the left one.
Important examples of connected graphs are tree. A tree is a connected graph such there

is no cycle. In other words, between any two vertex there is exactly one reduced path. A
directed tree is a digraph such that the underlying graph is a tree.

Another important connected graph is the rose with n petals. This is a graph with one
vertex and d loops. Formally, we should speak of a (k, d)-rose: the only graph with one
vertex, d non-degenerate loops and k degenerate loops.

10



2.1. Definitions

Morphisms Following Serre, we want to look at graphs from a categorical viewpoint and
therefore we need a notion of morphisms.
Definition 2.1.4. A morphism of digraphs ϕ : ~Γ1 → ~Γ2 consist of a pair of functions ϕV : V1 →
V2 and ϕE : ~E1 → ~E2 that preserves the structure. This mean that ιΓ2 ◦ ϕE = ϕv ◦ ιΓ1 and
τΓ2 ◦ ϕE = ϕv ◦ τΓ1 . A morphism of graphs is defined in the same way, with the additional
requirement that ϕE(ē) = ϕE(e).
Remark 2.1.5. Since in a graph we have τ(e) = ι(ē) and ι(e) = τ(ē), in order to show that ϕ
is a morphism of graphs, it is sufficient to check that ϕE(ē) = ϕE(e) and any one of the two
other conditions.

We hence have two categories: DiGraph and Graph. We also have two forgetful functors
FV : DiGraph→ Set and FE : DiGraph→ Set defined by FV (V, ~E) = V while FE(V, ~E) = ~E.
We can similarly define two functors FV and FE for Graph, but this time FE has value in
Z/2Z-Set (the category of sets with an Z/2Z-action and equivariant maps as morphisms). If
we restrict ourself to the full subcategory of Graph consisting of graphs without degenerate
loops, then FE has values in free-Z/2Z-sets. See [115] for more on categorial aspects of
graphs with no degenerate loops (most of the results and constructions admit easy analogues
in Graph and in DiGraph).
Scholion 2.1.6. The category DiGraph is the category of functors from the category E ⇒ V
(two object and two non-trivial morphsims) to Set. In particular it is the category of
presheaves on the opposite category: E ⇔ V . This turn out DiGraph into an elementary
topos and guaranty many good properties, as for example the existence of all finite limits
and all finite colimits.

Let Γ be a graph or a digraph and let v any vertex of Γ. The star of v is the set
{e ∈ E | ι(e) = v}. Any morphism ϕ : Γ1 → Γ2 induces, for any vertex v of Γ1, a map:
ϕv : Starv → Starϕ(v).
Definition 2.1.7. A morphism ϕ : Γ1 → Γ2 is a covering if all the induced maps ϕv are
bijections. In this case, we say that Γ1 covers Γ2.

It follows immediately from the definition that a covering is onto as soon as Γ2 is
connected.

Every connected graph is covered by a tree; its universal cover. On the other hand,
every 2d-regular graph without degenerate loops covers the (d, 0)-rose, while a 2d+ 1-regular
graph without degenerate loops covers the (d, 1)-rose if and only if it admits a 1-factor (see
Subsection 2.4 and Proposition 3.2.8 on page 23).

Graphs with decorations Given a graph or digraph Γ, there is multiple way to “decorate”
it. We will be interested in two of them.

A labeled digraph (~Γ, f) is a digraph ~Γ = (V, ~E) with a map f : ~E → X called the labeling.
A graphical representation of (~Γ, f) is a graphical representations of ~Γ where the label f(e)
is written over the arrow representing e. A labeled graph (Γ, f) is a graph Γ = (V,E) with
a map f : ~E → X, where X is a set with an involution x 7→ x−1 (i.e. a Z/2Z-set) such
that f(ē) = f(e)−1. A graphical representation of (Γ = (V,E), f) is given by a choice of an
orientation O on Γ. Vertices are represented by small circles, degenerate edge e by dashed
loop labeled by f(e) and for each e 6= ē ∈ O an arrow labeled by f(e) from i(e) to τ(e) if
f(e) 6= f(e)−1 and a line labeled by f(e) between i(e) and τ(e) otherwise.

If (Γ1, f1) and (Γ2, f2) are two graphs (respectively two) digraphs labeled by the same set
X, a X-morphism (or strong morphism) is an equivariant morphism of graph (respectively of
digraph), that is a morphism ϕ such that f2 = ϕ ◦ f1. We hence have two categories GraphX

11



2. Preliminaries on graphs

and DiGraphX with obvious forgetful functors to Graph and DiGraph. These functors are
faithful. Therefore, any concept that can be expressed in Graph (respectively in DiGraph)
by using only morphisms admits an “X-analogue” in GraphX (respectively in DiGraphX).
For example, we can look at X-coverings and we can ask if a graph is X-transitive.

A rooted digraph (~Γ, v), is a digraph with a distinguished vertex v, called the root. A
rooted graph is defined similarly. The definitions of rooted labeled digraph and rooted labeled
graph are obvious. For a rooted (di)graph (Γ, v) we will denote by (Γ, v)0 the connected
component containing v. Note that even for digraphs, we look at the connected component,
and not at the srongly connected component. A rooted morphism of graphs or digraphs
(labeled or not) is simply a morphism (in the appropriated category) that preserves the root.

2.2 Limits of graphs

We denote G• (respectively ~G•) the set of connected marked (di)graphs, up to rooted
isomorphisms of (di)graphs. Observe that graphs in ~G• are connected, but not necessarily
strongly connected.

The set G• (respectively ~G•) can be topologized by considering for example the following
distance: d

(
(Γ, v), (∆, w)

)
= 1

1+r , where r is the biggest integer such that the ball of radius
r centered at v in Γ and the ball of the same radius centered at w in ∆ are isomorphic as
marked graphs (respectively digraphs). If the two graphs are isomorphic as rooted graphs,
then the distance is defined to be 0. For a rooted digraph (~Γ, v), the ball of radius r centered
at v is the subdigraph of ~Γ such that its underlying graph is the ball of radius r centered at
v in ~Γ. For any integer d, the subspaces G•,d of G• and ~G•,d of ~G• consisting of graphs with
both maximal in-degree and out-degree bounded by d are compact.

If (~Γ, v) is an element of ~G•, then its underlying rooted graph ~Γ is an element of G•. It is
easy to check that, if (~Γ, v) and (~∆, w) are two rooted digraphs, then

d ~G•
(
(~Γ, v), (~∆, w)

)
≥ dG•

(
(~Γ, v), (~∆, w)

)
.

It immediately implies the following proposition.

Proposition 2.2.1. If a sequence of rooted digraphs (~Γn, vn) converges to (~Γ, v), then the
sequence (~Γn, vn) converges to (~Γ, v).

Since G• and ~G• are metric spaces, we have a notion of limit for rooted graphs. It is of
interest to have a notion of limits for non-rooted (di)graphs. For a sequence of finite graphs,
this is done via the Benjamini-Schramm limit.

Since G•,d is a compact metric space, the space of Borel probability measures on it is
compact in the weak topology1 — this follows from Riesz Representation Theorem. There is
a natural way to attach a Borel probability measure to a finite graph Γ: by choosing the
root uniformly at random. More formally, the measure associated to Γ is 1

|V |
∑
v∈V δ(Γ,v)0 ,

where δ is a Dirac measure.
Definition 2.2.2 ([20]). Let Γn be a sequence of finite graphs and let λΓn be the Borel
probability measures associated. We say that Γn is Benjamini-Schramm convergent with
limit λ if λΓn converges to λ in the weak topology in the space of Borel probability measures
on G•.

In the particular case where λ is a Dirac measure concentrated on one transitive graph Γ,
we say that Γn converges to Γ in the sense of Benjamini-Schramm.

1The weak topology on the space of measures is in fact the weak* topology from the point of view of
functional analysis.
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2.3. Tensor product of graphs

It is also possible to describe Benjamini-Schramm convergence by convergence in neigh-
borhood sampling statistics, see [20]. That is, a sequence (λn)n converges to λ, if and only if
for all finite graph α and all r ∈ N we have

P(Ballλn(r) ' α) n→∞−−−−→ P(Ballλ(r) ' α)

The same definitions hold in ~G•.

2.3 Tensor product of graphs

Given two (di)graphs Γ and ∆, there are multiple ways to define a “product”: cartesian
product, tensor product and many others. The one which will interests us is the tensor
product. This is exactly the categorical product in the category of (di)graphs (or labeled
(di)graphs, rooted (di)graphs, ...) and interacts nicely with respect to adjacency matrices.
Definition 2.3.1. Let Γ = (V,E) and ∆ = (W,F ) be two (di)graphs. Their tensor product is
the (di)graph Γ⊗∆, with vertex set V ×W , where there is an edge (e, f) from (v1, w1) to
(v2, w2) if e is an edge from v1 to v2 in ~Γ and f is an edge from w1 to w2 in ~∆. If Γ = (V,E)
and ∆ = (W,F ) are graphs, then the inverse of the edge (e, f) is the edge (ē, f̄).

If Γ = (V,E) has labeling l : E → X and ∆ = (W,F ) has labeling l′ : F → Y , the tensor
product has labeling l × l′ : E × F → X × Y .

If Γ is rooted at v and ∆ rooted at w, then Γ⊗∆ is rooted at (v, w).

a

b

⊗
1

2

3

= (a, 1)

(b, 2)(a, 3)

(b, 1)

(a, 2) (b, 3)

a

b

⊗
1

2

3

=

(a, 2)

(b, 1)

(a, 3)

(b, 2)

(a, 1)

(b, 3)

Figure 2.1: Two examples of tensor products of digraphs.

On the level of adjacency matrices, the tensor product correspond to the Kronecker
product, where the Kronecker product of two matrices A⊗B is given by the block matrix
with blocks aijB.

It directly follows from the categorial description of the tensor product that it is commu-
tative and associative (up to isomorphisms). On the other hand, since the empty graph ∅ is
the zero object in Graph and in DiGraph, we have ∆⊗ ∅ ' ∅ for any (di)graph ∆.

Since the tensor product is the categorical product, for any pair of morphisms ϕ : ~Γ→ ~∆
and ϕ′ : ~Γ′ → ~∆′, ϕ ⊗ ϕ′ is a morphism from ~Γ ⊗ ~Γ′ to ~∆ ⊗ ~∆′. Moreover, ϕ ⊗ ϕ′ is an
isomorphism if and only if ϕ and ϕ′ are isomorphisms.
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2. Preliminaries on graphs

We will now prove that the tensor product behaves well with respect to coverings and
line digraphs.

Lemma 2.3.2. For i = 1, 2, let ϕi : Γi → ∆i be a covering. Then, ϕ1⊗ϕ2 : Γ1⊗Γ2 → ∆1⊗∆2
is a covering. The same result is true for digraphs.

Proof. Let (v1, v2) be any vertex in Γ1 ⊗ Γ2. Since the ϕi’s are coverings, the induced
morphisms (ϕi)vi : Starvi → Starϕi(vi) are bijections. On the other hand, by definition of the
tensor product, there is a natural bijection between Starv1 ×Starv2 and Star(v1,v2). Under
this bijection, the map (ϕ1 ⊗ ϕ2)(v1,v2) corresponds to (ϕ1)v1 × (ϕ2)v2 and is therefore a
bijection.

Definition 2.3.3. Let ~Γ = (V, ~E) be a digraph. The line digraph of ~Γ is the digraph L(~Γ)
with vertex set ~E (the edge set of ~Γ) and with an edge from e to f if we have τ(e) = ι(f)
(that is f “directly follows” e) in ~Γ .

Lemma 2.3.4. For i = 1, 2, let ~Γi = (Vi, ~Ei) be a digraph. Then the graphs L(~Γ1)⊗ L(~Γ2)
and L(~Γ1 ⊗ ~Γ2) are isomorphic.

Proof. Vertices of L(~Γ1⊗~Γ2) are in 1-to-1 correspondence with edges of ~Γ1⊗~Γ2 and therefore
in 1-to-1 correspondence with pairs of edges in ~E1 × ~E2. On the other hand, vertices of
L(~Γ1)⊗ L(~Γ2) are in 1-to-1 correspondence with {(v1, v2) | vi a vertex in L(~Γi)}. Therefore,
vertices of L(~Γ1)⊗ L(~Γ2) are also in 1-to-1 correspondence with pairs of edges in ~E1 × ~E2.

Now, in L(~Γ1 ⊗ ~Γ2) there is an edge from (e1, e2) to (f1, f2) if and only if, for i = 1, 2,
fi directly follows ei in Γi. The same relation holds in L(~Γ1) ⊗ L(~Γ2), which proves the
isomorphism.

Tensor product and convergence
Recall that for a rooted labeled digraph (~Γ, v), we denote by (~Γ, v)0 the connected component
of ~Γ containing the root.

Since we are interested in connected components of digraphs, we have to look at paths in
the corresponding underlying graph ~Γ. For such paths, it may be useful to describe how far
they are to be actually in ~Γ.
Definition 2.3.5. Let Γ be a graph, p = (e1, . . . , en) a path of length n in Γ and O an
orientation on Γ. The signature σ(p) of p with respect to O is an ordered sequence of ±1
of length n, where there is a 1 in the position i if and only if ei belongs to O and a −1
otherwise.

The derangement of p with respect to O, der(p), is the sum of the ±1 in the signature
of p. The derangement of a path of length 0 is 0. It follows from the definition that
der(p̄) = −der(p) and that σ(p̄) is the sequence −σ(p) read backward.

The derangement of Γ with respect to O is

der(Γ) := min{|der(p)| | p is a closed path in Γ and der(p) 6= 0},

where this minimum is defined to be 0 if there is no closed path in Γ with non-zero
derangement.

If ~Γ is a digraph a p a path in ~Γ, we take its signature and derangement with respect to
the orientation coming from Γ.
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2.3. Tensor product of graphs

Theorem 2.3.6. If (~Γn, vn)n converges (in ~G∗) to (~Γ, v) and (~Θm, ym)m converges to (~Θ, y)
then the following diagram is commutative

(
~Γn ⊗ ~Θm, (vn, ym)

)0 (
~Γ⊗ ~Θm, (v, ym)

)0

(
~Γn ⊗ ~Θ, (vn, y)

)0 (
~Γ⊗ ~Θ, (v, y)

)0

n −→∞

n −→∞

n, m −→∞
m

∞

y
m

∞

y

Proof. Take any ε > 0. By convergence, there exists n0 and m0 such that for every n ≥ n0
the graphs (~Γn, vn) and (~Γ, v) are at distance lesser than ε and such that for every m ≥ m0
the graphs (~Θm, vm) and (~Θ, v) are too at distance lesser than ε.

Let (~∆1, v), (~∆2, w), (~Π1, x) and (~Π2, y) be four elements of ~G∗. We affirm that the
distance between

(
~∆1⊗ ~Π1, (v, x)

)0 and
(
~∆2⊗ ~Π2, (w, y)

)0 is lesser or equal to the maximum
of d

(
(~∆1, v), (~∆2, w)

)
and d

(
(~Π1, x), (~Π2, y)

)
. Lemma 2.3.7 below implies in turn that(

~Γn ⊗ ~Θm, (vn, ym)
)0 and

(
~Γ ⊗ ~Θ, (v, y)

)0 are at distance less than ε, which proves the
convergence when both n and m grow together.

Now, if we take first the limit on n we can use this result with ~Θm constant to find

lim
n→∞

((
~Γn ⊗ ~Θm, (vn, ym)

)0) =
(
~Γ⊗ ~Θm, (v, ym)

)0
.

Taking then the limit on m (with ~Γ constant) we have that the upper right triangle is
commutative. A similar argument proves the commutativity of the downer left triangle.

Note that Theorem 2.3.6 holds also for rooted graphs as well as for labeled rooted
(di)graphs with strong morphisms.

We will now prove the technical result used in the proof of Theorem 2.3.6.

Lemma 2.3.7. Let ~Γ and ~∆ be two digraphs and p be a path in ~Γ⊗ ~∆ from (x, v) to (y, w).
Then there exists paths q in ~Γ from x to y and r in ~∆ from v to w with same signature as p.

More precisely, given a non-negative integer n and a sequence σ of ±1 of length n, there
is a bijection between the set of paths p from (x, v) to (y, w) in ~Γ⊗ ~∆ of signature σ and the
set of couples (q, r) where q is a path in ~Γ from x to y and r a path in ~∆ from v to w, both
of signature σ.

Proof. It is obvious that the second statement implies the first one. By definition of the
tensor product, we have a function ϕ from the set of paths from (x, v) to (y, w) to the set of
couples (q, r) where q is a path in ~Γ from x to y and r a path in ~∆ from v to w. Indeed, ϕ is
the product of the left projection and the right projection. This function naturally preserves
the signature and is injective. Now, if q = (e1, . . . , en) and r = (e′1, . . . , e′n) have the same
signature σ then either e1 belongs to ~Γ and e′1 belongs to ~∆, in which case we have an edge
(e1, e

′
1) in ~Γ ⊗ ~∆, or ē1 belongs to ~Γ and ē′1 belongs to ~∆, in which case we have an edge

(ē1, ē
′
1) in ~Γ⊗ ~∆. By induction, it is possible to construct a path p in ~Γ⊗ ~∆ from (x, v) to

(y, w) with signature σ.
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2.4 Schreier graphs

Some of the most important examples of graphs come from algebra as Cayley graphs. Cayley
graphs are rigid in the sense that a locally finite graph Γ is isomorphic to a Cayley graph
of a finitely generated group G if and only there exists a free and transitive action of G on
Γ. Moreover, given a locally finite graph Γ with a free and transitive action of a finitely
generated group G, Sabidussi showed in [110] an explicit way to put labels on edges of Γ so
as to make it a Cayley graph of G.

There are two natural generalizations of Cayley graphs of finitely generated groups. The
first one is geometric and consists to look at all locally finite vertex-transitive graphs. The
second one is algebraic and consists of Schreier graphs of locally finite groups.

In 1977, Gross showed [62] that every finite regular graph of degree 2d without degenerate
loop is a Schreier graph over Fd, the free group of rank d. On the other hand, Godsil and
Royl showed in [45] that every finite transitive graph without degenerate loop admits a
1-factor (a perfect matching). This fact can be used to show that every finite transitive
graph without degenerate loop of degree 2d+ 1 is a Schreier graph over Fd ∗ (Z/2Z). We
are going to extend these results to all 2d regular graphs and all transitive graphs of degree
2d+ 1. In particular, we will allow our graph to be infinite and to have degenerate loops.
After that we will give an algebraic characterization (in term of the generating set and of
the subgroup) of transitivity of a Schreier graph.

Definitions
Usually, Cayley and Schreier graphs of a group G are defined with respect to a generating
set. For a lot of applications this is sufficient, but it is sometimes useful to allow to count
the same generator more than once. One can imagine to replace the generating set by a
generating multiset X of G which corresponds to see G as a quotient of F|X|, the free group
on X. This solution is not totally satisfactory since edges labeled by element of order 2 will
play a special role. This motivates the following definition.
Definition 2.4.1. A generating system X of a group G is a set X = Z t Y such that there
exists a surjective homomorphism π : FZ ∗ (Z/2Z)∗Y → G, where FZ is the free group on Z
and (Z/2Z)∗Y is a free product of |Y | copy of Z/2Z.
Definition 2.4.2. The (right) Cayley digraph of G with respect to a generating system X is
the labeled digraph ~Cay(G,X) with vertex set G, and for every x ∈ X, an edge from g to h
labeled by x if and only if h = gπ(x).

The (right) Cayley graph is the labeled graph Cay(G,X±) with vertex set G, and for
every x ∈ X± := {x | x ∈ X or x−1 ∈ X}, an edge from g to h labeled by x if and only if
h = gπ(x).
Definition 2.4.3. The (right) Schreier digraph of G with respect to a generating system
X and a subgroup H is the labeled digraph ~Sch(G,H,X) with vertex set the set of right
cosets Hg, and for every x with x ∈ X, an edge from Hg to Hh labeled by x if and only if
Hh = Hgx.

The (right) Schreier graph Sch(G,H,X±) has vertex set the set of right cosets Hg, and
for every x with x ∈ X or x ∈ X−1, an edge from Hg to Hh labeled by x if and only if
Hh = Hgx.

If G acts on the right on a set V , we can define the digraph of the action with respect
to the generating set X as the labeled digraph with vertex set V and an edge from v to w
labeled by x for every generator x ∈ X such that v.x = w.
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With these definitions, if X ∩X−1 is empty, the underlying graph of ~Cay(G,X) is exactly
Cay(G,X±) and similarly for Schreier graphs.

For every vertex v in V , the connected component of the digraph of the action with root v
is strongly isomorphic (as rooted labeled digraph) to the Schreier graph ~Sch(G,StabG(v), X).

Observe that Cayley and Schreier graphs (respectively digraphs) are labeled rooted graphs
(respectively digraphs) with root 1 for Cayley graphs and with root H for Schreier graphs.

The graphical representations of Cayley and Schreier graphs will be as follows. Unoriented
edges {e, ē} labeled by elements in Y (elements of order 2) are represented by plain lines,
while each unoriented edges {e, ē} such that the label of e is in Z is represented by an arrow
representing e. When we want to specify the label, we will either write it on the edges, or
use colored edges. See Figure 2.2 on page 17 for concrete examples.

Basic facts about Schreier graphs
There is a well-know algorithm that given a subgroup H of G allows to read generators of
H on the Schreier graph. The algorithm is the following. Note v0 the root of the Schreier
graph of H and choose a spanning tree T . For each pair of edges {e, ē} not in T choose one
of them, let say e. There is a unique path in T from v0 to the initial vertex of e and a unique
path in T from the final vertex of e to v0. The set of labels of path [v0, ι(e)]T e[τ(e), v0]T
form a generating system for H. Note that this generating system need not to be minimal.

Another well-known fact is that changing the root in the Schreier graph corresponds to
conjugating the subgroup. In particular, there is a 1− 1 correspondence between conjugacy
class of subgroups of G and Schreier graphs of G, where two graphs are considered to be the
same if they are strongly isomorphic.

Lemma 2.4.4. If H is a normal subgroup of G, then Sch(G,H,X±) ' Cay(H\G,X±) and
~Sch(G,H,X) ' ~Cay(H\G,X) as labeled rooted (di)graphs, where H\G is the right quotient

of G by H and H\X is the image of the multiset X in this quotient.

This result justifies the particular definition of a Cayley graph that we use (allowing
loops and multiples edges).
Remark 2.4.5. While the lemma above is useful in practice, we want to draw attention to the
fact that this point of view leads to some unusual description of Cayley graphs. See Figure
2.2 for an example of two Cayley graphs of Z2Z.

a x

Figure 2.2: Two Cayley graphs of Z/2Z. On the left with the usual generating system ∅t{a}
(1 generator of order 2), on the right with generating system {x} t ∅ (when we see Z/2Z as
a quotient of Z).

All Cayley and Schreier graphs are connected by definition.
It is well known that a graph Γ is a Cayley graph of a group G if and only if there exists

a simply transitive action (that is: a free and transitive action) of G on Γ. Moreover, given a
graph Γ with a simply transitive action of a group G, Sabidussi shows in [110] an explicit
way to put labels on edges of Γ so as to make it a Cayley graph of G. Namely, choose any
vertex v0 as the root and for any neighbor wi of v0, label the edge from v0 to wi by the
unique element xi of G that sends v0 on wi. Then, use xi to label the remaining edges. For
example, the edge from wi to some vertex u is labeled by xj if and only if xjxi sends v0 to
u. It is then easy to check that the action of G is (in fact) also X-transitive.
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The above characterization of Schreier graphs implies that Γ is a Schreier graph of some
group if and only if it is a Schreier graph of a free product of the form

FX := FZtY = ( ∗
|Z|

Z) ∗ ( ∗
|Y |

Z/2Z) = 〈yi ∈ Y, zj ∈ Z | y2
i 〉,(?)

with generating system X = Z t Y . Observe that the generating system X of FX is an
actual subset of FX . Groups of the form FX are exactly the groups that admit a Cayley
graph isomorphic to a tree.
Scholion 2.4.6. Groups FX look similar to free groups. The reason is that they come from
the same categorial construction. Indeed, free groups are free Set-objects in the category of
groups, Gr, for the usual forgetful functor Gr→ Set. But Gr is also a category over Set2,
where objects in Set2 are pairs (Z, Y ) of sets and morphisms are functions f : ZtY → Z ′tY ′
such that f(Y ) ⊆ Y ′. Indeed, we have a faithful functor S : Gr → Set2 that sends G to
({g | g2 6= 2}, {g | g2 = 2}). Then, groups FX are free Set2-objects in Gr. More precisely,
the functor F : Set2 → Gr, (Y,Z) 7→ FZtY is a left adjoint to the functor S.

Hence, groups of the form FX arise naturally when we want to distinguish elements of
order 2.

In fact, a graph is a Schreier graph if and only if it admits a decomposition into disjoint 1
and 2-factors, where an n-factor of a graph Γ is a subgraph ∆ of Γ such that every vertex of
Γ has degree n in ∆. Here, the 1-factors correspond to subgraphs consisting of edges labeled
by a generator of order 2 and the 2-factors to subgraphs with edges labeled by a generator of
infinite order in the group FX . Observe that 1-factor are often called perfect matching in
the literature.

This fact had been used to show that every finite graph of even degree without degenerate
loops is a Schreier graph over a free group [62]. On the other side, Godsil and Royl showed
that every finite transitive graph admits a matching (a regular subgraph of degree 1) that is
maximal (and thus misses at most one vertex), see [45]. In particular, every finite transitive
graph of odd degree admits a 1-factor and is therefore a Schreier graph. This implies that all
finite transitive graphs are Schreier graphs, while all finite Cayley graphs are transitive. In
Chapter 3 we will, among other things, extends these results to infinite graphs and provide a
characterization of Schreier graphs that are transitive.

18



Chapter 3
Schreier graphs and transitivity

Itai Benjamini asked the following question. Is there a Cayley graph of an infinite finitely
generated group other than Z that does not cover any infinite transitive graph other than
itself? If we ask the same question with replacing “transitive graph” by “Cayley graph”
then the answer is yes — it is enough to take any Cayley graph of a simple group (or more
generally of a just infinite group). For the general case, any transitive graph is a Schreier
graph of a free group, but the converse is not true. In this chapter we will prove that every
transitive graph is a Schreier graph and give a characterization of transitivity for Schreier
graphs of free group and then apply it to the question of Benjamini.

We first extend some results about finite graphs to all locally finite graphs. Namely,
the facts that 2d regular graphs and transitive graphs are isomorphic to Schreier graphs.
Then we give a characterization of isomorphisms between Schreier graphs in terms of the
groups, subgroups and generating systems. In the case of regular graphs of even degree,
this characterization may be formulated in purely graph theoretic terms, without prior
realization of graphs as Schreier graphs, and thought of as a rigidity result “a la Mostow”. As
a corollary, we have a characterization of vertex-transitive Schreier graphs (by automorphisms
that may not preserve the labeling) in terms of the subgroup H. Such subgroups will be
called length-transitive. They generalize the notion of normal subgroups. We investigate the
comportment of length-transitive subgroup and in particular prove that the intersection of
two such subgroups is still length-transitive. We also give a new characterization of normal
subgroups in term of Schreier graphs. This leads to a strengthening of the notion of simple
group. We prove that this notion is not equivalent to simplicity, by showing that for odd
n ≥ 5 alternating groups An are not strongly simple in this sense. We also exhibit non-trivial
examples of strongly simple groups, namely Tarski groups. These infinite strongly simple
groups allow us to give a partial answer to the question of Benjamini: Tarski monsters
can not X-cover an infinite transitive graph (distinct from itself). The result is only about
X-coverings and not about all coverings, but de la Salle and Tessera showed that in the
context of finitely presented Tarski monsters Tp, if a graph ∆ has balls of radius big enough
X-isomorphic to the balls in the Cayley graph Γ of Tp, then Γ X-covers ∆.

This chapter is organized as follows. In Section 3.2, we prove that locally finite transitive
graphs and locally finite 2d-regular graphs are isomorphic to Schreier graphs. In Section
3.3, we prove Theorem 3.3.4 on isomorphisms between Schreier graphs. One direction is
straightforward, but for the other direction we have to prove that the isomorphism between
the subgroups can be extended to a bijection of the whole groups with good properties. This
is showed in Lemmas 3.3.8 and 3.3.9 and in Proposition 3.3.10. Observe that in Theorem
3.3.4 we do not ask that the Schreier graphs are over the same group. We then give a
reformulation (Theorem 3.3.5) of Theorem 3.3.4 to make the relation with Mostow’s rigidity
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theorem more apparent. In the next section, we investigate coverings and label-preserving
coverings (also called X-coverings) of Schreier graphs. We also prove small extension of the
fact that if N ≤ A is a normal subgroup of finite index, then the Cayley graphs of A and
A/N are quasi-isometric. In Section 3.5, we define a stronger notion of simplicity for groups
and prove that this definition is not equivalent to simplicity. We use this to show in Theorem
3.5.10 that for any proper subgroup of a Tarski monster, the orbits under the automorphism
group in the corresponding Schreier graph are finite. Therefore, Tarski monsters are potential
counterexamples to the question of Benjamini. Finally, Section 3.6 contains all the open
questions appearing in this chapter as well as ideas for further research.

Definitions and basic facts about Schreier graphs can be found in Section 2.4.
Apart for Sections 3.1, 3.2 and 3.6 and Proposition 3.5.1, material of this chapter was

published in [83].

3.1 Preliminaries

All Cayley and Schreier graphs are connected by definition. Thus, from now on and unless
otherwise specified, we will assume all graphs in this chapter to be connected.

Recall from Section 2.4, page 18, that a graph Γ is a Schreier graph of some group if and
only if it is a Schreier graph of a free product of the form

FX := FZtY = ( ∗
|Z|

Z) ∗ ( ∗
|Y |

Z/2Z) = 〈yi ∈ Y, zj ∈ Z | y2
i 〉,(?)

with generating system X = Z t Y . This is in turn equivalent to the fact that Γ admits a
decomposition into disjoint 1 and 2-factors.

From now on, the letter F will always denote a group of the form (?). In such a group,
the only cancellations that can occur are of the form ww−1 where w is one of the generators.

For such a group F , we have the easy but useful following lemma (see proposition 1.3 in
[50] for the special case of free groups).

Lemma 3.1.1. Let H be any subgroup of F = FX and Γ := Sch(F , H,X±) be the corre-
sponding Schreier graph. Then, for every vertex v in Γ, there is a bijection between reduced
paths starting at v and elements of F . This bijection restricts to a bijection between closed
reduced paths starting at v = Hg and elements of g−1Hg.

Proof. Observe that the presentation of F is chosen such that a word w is reduced if and
only if it doesn’t contain a subword of the form xx−1 or of the form x−1x, where x is any
generator, and a path in Γ is reduced if and only if it does not contains a subpath of the form
eē or ēe. Moreover, at each vertex of Γ, for each generator x ∈ X ∪X−1, there is exactly
one outgoing edge labeled by x. The bijection therefore consists of reading the label of the
path.

In order to pass from the finite world to the infinite one, we will use on two occasions the
compactness theorem from logic. See [32] for a detailed exposition of its history and link
with the axiom of choice and [36] for its use in infinite graph theory.

Theorem 3.1.2 (Gödel, 1930). A set of first-order sentences has a model if and only if
every finite subset of it has a model.
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3.2. Transitive graphs as Schreier graphs

3.2 Transitive graphs as Schreier graphs

In this section, we will prove that every connected locally finite transitive graph is isomorphic
to a Schreier graph. For finite graphs, this result goes back to Gross [62] (for even degree) and
Godsil and Royl [45] (for the general case). In this subsection and unless staten otherwise,
all our graphs will be locally finite. In particular, every loop adds 2 to the degree of a vertex.
The local finiteness condition is here because some of the proof use induction on the degree
of a vertex.

Regular graphs
Firstly, we recall some classical results on finite regular graphs of even degree. In particular,
every such graphs always admit a 2-factorization; a decomposition in 2-factors. This implies
that every connected 2-regular graph without degenerate loop is isomorphic to a Schreier
graph. Then, in Theorem 3.2.5 we extend this result to locally finite infinite graphs. Finally,
we discuss in Proposition 3.2.8 the case of regular graphs of odd degree. Observe that
the only non-empty connected graph that is 0-regular is the graph with one vertex and
no edge. This graph is isomorphic to Sch({Id}, {Id}, ∅±). We can therefore restrict our
attention to 2d-regular graphs with d ≥ 1. In order to sho that every 2-regular graph admits
a 2-factorization we will firstly show it for finite graph and then extend it to infinite, locally
finite, graphs.

If Γ is a finite graph, we will use the following well-known relation |E| = ∑v∈V babel(v).
In particular, if Γ is 2d regular, then |E| = 2d.
Remark 3.2.1. Recall that for us, in a graph Γ = (V,E), the set E consist of oriented edges.
Therefore, if there is no degenerate loops, then the number of unoriented edges is |E|2 .

We will use the following classical results.

Lemma 3.2.2 (Euler). Let Γ be a connected graph, without degenerate loop. Then Γ has an
Eulerian cycle. That is a cycle that goes trough every unoriented edge {eē} exactly once.

Proposition 3.2.3 (Petersen [99]). Every 2d-regular finite graph without degenerate loop
has a 2-factorization.

We now turn our attention to infinite graphs.

Theorem 3.2.4. Every 2d-regular graph without degenerate loop admits a 2-factorization.

Proof. It is enough to show that every 2d-regular graph Γ has a 2-factor ∆. Indeed, in this
case, Γ− E(∆) is a 2(d− 1) regular graph and we can conclude by induction.

If d = 1, then Γ is a 2-factorization and there is nothing to do.
If d ≥ 2, we will use the compactness theorem in the following way. For each unoriented

edge {e, ē} of Γ we introduced a logical variable we. An assignment of truth value to the we
corresponds bijectively to the choice of a subgraph of Γ that contains all vertices of Γ. Such
a subgraph is given by all unoriented edges {e, ē} such that we is true.

For each vertex v of Γ we also introduce a sentence Pv saying that v has degree 2 in the
chosen subgraph. Since Pv depends only on a finite number (2d) of variables we, it is a first
order sentence. The existence of a 2-factor in Γ = (V,E) is then equivalent to the existence
of a model for the set {Pv}v∈V . By compactness (Theorem 3.1.2), this is in turn equivalent
to the existence of a model for every finite subset of {Pv}v∈V . This last statement is itself
equivalent to the fact that for every finite subset W of V , there exists a subgraph Θ of Γ
such that every w ∈W has degree 2 in Θ.
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3. Schreier graphs and transitivity

Let W be a finite subset of V and Θ the subgraph of Γ consisting of all edges such
that at least one vertex is in W . Let i be the number of unoriented edges of Θ with both
extremities in W and j the number of unoriented edges of Θ with exactly one vertex in W .
Then 2i + j =

∑
w∈W deg(w) = 2d|W |, which implies that j is even. Since j is even, we

can replace these j unoriented edges by j/2 new unoriented edges between vertices in W to
obtain Θ̃ a 2d-regular graph. By Proposition 3.2.3, Θ̃ admits a 2-factor ∆̃. This induces a
subgraph ∆ of Θ, by saying that an unoriented edge is in ∆ if and only if the corresponding
unoriented edge is in ∆̃. It is clear that the vertex set of ∆ contains W and that for each
w ∈W , the degree of w in ∆ is 2.

Θ :

∆ :

Θ̃ :

∆̃ :

Figure 3.1: From Θ to Θ̃ and from ∆̃ to ∆. Vertices outside W are in black.

We can now prove the following generalization of Petersen’s theorem.

Theorem 3.2.5. Every 2d-regular connected graph without degenerate loop is isomorphic to
a Schreier graph of the free group of rank d.

Proof. The graph Γ has a 2-factorization in d 2-factors. Let ∆i be one of those factor; this
is a 2-regular graph. Then ∆i is a disjoint union of circles and of biinfinite lines. On each
component of ∆i, we choose an orientation O and label edges in O with xi and edges outside
O with x−1

i .
Therefore, every vertex of Γ has exactly one outgoing and one ingoing edges labeled by

xi. Since Γ is connected, we have Γ = Sch(Fd, H, {x1, . . . , xd}±) where H is the image of
the fundamental group of Γ by the covering π : Γ→ Rd onto the rose with d petals

Remark 3.2.6. An independent proof of this theorem can be found in [27]. It uses König’s
lemma, which implies the compactness theorem.
Remark 3.2.7. In Theorem 3.2.5, the assumption that Γ has no degenerate loops is necessary.
A counter-example is given in Figure 3.2. Indeed, if the graph in Figure 3.2 were a Schreier
graph, then all degenerate loops would be labeled by generators of order 2, and would therefore
be in one (or more) 1-factor. On the other hand, non-degenerate loops are necessarily in a
2-factor. Therefore, our graph would decompose into two 1-factors and one 2-factor which
would contain all non-degenerate loops. This is clearly not possible.

We proved that 2d regular, connected regular graphs without degenerate loops are
isomorphic to Schreier graphs. What happens if we replace 2d-regular by (2d+ 1)-regular?
Then, it is not true in general that these graphs will be isomorphic to Schreier graphs, but we
have the following criterion, which for the finite case belongs to the folklore of graph theory.
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3.2. Transitive graphs as Schreier graphs

Figure 3.2: A 4-regular graph which is not isomorphic to a Schreier graph; dashed loops
represent degenerate loops.

Proposition 3.2.8. Let Γ be a connected graph of degree 2d+ 1 without degenerate loops.
Then Γ is isomorphic to a Schreier graph if and only if it admits a 1-factor.

Proof. Since the degree of Γ is odd, if it is isomorphic to a Schreier graph, there is at least
one generator a of order 2. Then edges labeled by a = a−1 are a 1-factor of Γ.

On the other hand, if Γ has a 1-factor M , then the graph Γ minus the edges of M is
2d-regular. Therefore, it admits a 2-factorization and Γ is isomorphic to a Schreier graph of
Fd ∗ Z/2Z.

Using this characterization, we can exhibit an example of a 3-regular graph which is not
isomorphic to a Schreier graph, see Figure 3.3.

Figure 3.3: A 3-regular graph that does not admit a 1-factor.

Transitive graphs are isomorphic to Schreier graphs
We have seen in the last subsection that some regular graphs are isomorphic to Schreier
graphs. The aim of this subsection is to prove that all locally finite connected transitive
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graphs are isomorphic to Schreier graphs, this is Theorem 3.2.18. In order to prove this
theorem, we will first show in Proposition 3.2.17 that every transitive graph of odd degree
admits a 1-factor. Our prove of this proposition is based on the one from Godsil and Royle
from [45] which deals with the finite case.

It will be convenient to, in a first time, concentrate our attention on simple graphs, that
is graphs without loops and without multiple edges (for any pair of vertices v and w, there
is at most one edge from v to w).
Definition 3.2.9. A graph Γ = (V,E) is transitive (or vertex-transitive) if for every pair of
vertices v and w, there exists an automorphism of Γ sending v onto w — that is, if Aut(Γ)
acts transitively on V . The graph Γ = (V,E) is almost transitive if the number of orbits for
the action of Aut(Γ) on V is finite.

Similarly, we can define X-transitivity for labeled graphs.
Recall that 1-factor are also called perfect matching. In order to show the existence of a

perfect matching, we will need some notions on general matchings.
Definition 3.2.10. A matching M in a graph Γ = (V,E) is a subgraph of the form (V,E′)
such that every v ∈ V has degree at most 1 in M . A vertex v ∈ V is covered by M if it has
degree 1 in M . Vertices that are not covered by M are missed by it. A perfect matching is a
matching that covers all vertices. This is what we called a 1-factor.

Since a matching M = (V,E′) is a subgraph of Γ = (V,E) containing all vertices, we
will sometimes identify M with its edges set E′. In particular, we will write |M | = (V,E′)
instead of |E|′ and M −N for the matching (V,E(M) \ E(N).
Definition 3.2.11. A matching M of Γ is strongly maximal if there exists no matching N
such that |N −M | > |M − N |. A vertex v of Γ is critical if it is covered by all strongly
maximal matchings.

An alternating path for a matching M is a path in Γ that alternates between edges in M
and edges not in M . An augmenting path is an alternating path that begins and ends on
vertices that are not covered by M .

We now give a characterization of strongly maximal matchings in term of augmenting
paths.

Lemma 3.2.12. Let Γ be a simple connected locally finite graph. A matching M of Γ is
strongly maximal if and only if there is no augmenting path in Γ. Moreover, if Γ is finite,
then M is strongly maximal if and only if the number of vertices covered by M is maximal.

Proof. Let P be an augmenting path for M et N := M 4 P be the matching given by the
symmetric difference of M and P . Then N −M = P −M and M −N = M ∩ P . Since P is
augmenting we have |P −M | = |P ∩M |+ 1 which implies that M is not strongly maximal.

On the other hand, suppose that there exists a matching N such that |N−M | > |M−N |.
Since N and M are 1-regular, in N 4M every vertex has degree at most 2. Therefore,
connected components of N 4M are isolated vertices, cycles or (possibly infinite) paths.
Every such component is an alternating path for N and for M . In particular, each cycle is
of even length. Since Γ is connected and locally finite, it has at most countably many edges
and the relation |N −M | > |M − N | implies that |M − N | is finite. Therefore, paths in
N 4M are finite. Since all cycles in N 4M are of even length and |N −M | > |M −N |,
there exists a finite path P in N 4M with more edges in N −M than in M −N . This path
is an augmenting path for M .

Finally, look at the case where Γ is finite. If M is not strongly maximal there exists an
augmenting path P , then the matching M 4P is such that |M 4P | = |M |+ 1 > |M |, which
implies that the number of vertices covered by M is not maximal. On the other hand, if the
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number of vertices covered by M is not maximal, there exists a matching N with |N | > |M |.
But then we have

|N −M | = |N | − |N ∩M | > |M | − |N ∩M | = |M −N |

which implies that M is not strongly maximal.

An immediate corollary of this lemma is that every finite graph admits a maximal
matching. On the other hand, Aharoni showed in [3] that every simple connected locally
finite graph admits a strongly maximal matching.
Remark 3.2.13. It is possible to partially order matching by inclusion. It is important to
observe that for finite graphs, strongly maximal matchings are maximal for this order, but
that the converse is not true as showed in Figure 3.4.

Figure 3.4: On left, in orange: a maximal matching of a graph Γ, which is not strongly
maximal. On right, in orange: the unique strongly maximal of Γ; this is also a perfect
matching.

Corollary 3.2.14. Let M and N be two strongly maximal matching of Γ. Then every
connected component of M 4N is finite and is either a single vertex, a cycle of even length,
or a path of even length.

Proof. We already know that connected components are isolated vertices, cycle of even length
or finite paths. If there was one path of odd length, then it would be augmenting for M or
for N , which is absurd.

We will show that for every transitive graph, there exists a matching that misses at most
one vertex. In order to do that we first prove two preliminary lemmas.

Lemma 3.2.15. Let u and v be two distinct vertices of Γ such that there is no strongly
maximal matching missing both u and v. Let Mu, respectively Mv, be a strongly maximal
matching that misses u, respectively v. Then there is a connected component of Mu 4Mv

which is a path with u and v has initial and final vertex.

Proof. By hypothesis, u and v both have degree 1 in Mu 4Mv, therefore u is the initial
vertex of a path Pu and v the final vertex of a path Pv. If Pu = Pv there is nothing to prove.

Suppose now that Pu 6= Pv. The path Pu is alternating for Mv and Mv 4 Pu is a
matching that misses both u and v. We will show that Mv 4 Pu is strongly maximal which
will contradicts the hypothesis that Pu 6= Pv.

Suppose by contradiction that Mv 4 Pu is not strongly maximal. That is, there exists
a matching N such that |N − (Mv 4 Pu)| > |(Mv 4 Pu)−N |. Figure 3.5 shows the Venn
diagram corresponding to Pu, Mv and N . In order to simplify notation, we will write a for
the cardinal of A and so on for the other sets appearing in Figure 3.5. The choice of N
implies that g + e > a+ c. We want to show that N contradicts the strong maximality of
Mv, that is that g + f > a+ b.
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A

G

C

D

B

F
E

Mv Pu

H

Figure 3.5: Venn diagram for N , Mv et Pu in the proof of Lemma 3.2.15.

Since Pu is finite, we have that b, c, e and f are finite. On the other hand, we know
that Pu is of even length, which is equivalent to say that b + e = c + f . Therefore,
g + f = g + e+ (f − e) > a+ c+ f − e = a+ b and we obtain the desired contradiction.

Lemma 3.2.16. Let u 6= v be two vertices of Γ and P a path from u to v. If there is no
critical vertex in V (P ) \ {u, v}, then every strongly maximal matching covers u or v.

Proof. The proof is done by induction on the length l of P . If l = 1, then P = e an edge
between u and v. If M is a matching that misses u and v, then N := M ∪ {e} is a matching
such that |N −M | = 1 > 0 = |M −N |. In particular, M is not strongly maximal.

If l ≥ 2, then there exists a vertex x on P which is distinct from u and from v. But
then, P induced a path from u to x, of length strictly smaller than l and (except maybe
for u) with no critical vertex on it. By induction hypothesis, there is no strongly maximal
matching missing both u and x. The same holds for x and v. But the vertex x is not critical.
Therefore, there exists a strongly maximal matching Mx missing x. Such an Mx has to cover
both u and v. Suppose now by contradiction that there exists a strongly maximal matching
N that misses both u and v. In this case, lemma 3.2.15 implies that u and x are the two
extremities of a connected component in N 4Mx, and the same is true for x and v. But
this is possible if and only if u = v which is absurd.

It is obvious that if Γ is transitive and has a critical vertex, then all its vertices are critical
and therefore any strongly maximal matching of Γ is a perfect matching. On the other hand,
Lemma 3.2.16 implies that if Γ has no critical vertex, then every strongly maximal matching
misses at most one vertex. We are going to show that if Γ is a transitive graph of odd degree,
then every strongly maximal matching is a perfect matching, that is a 1-factor.

Proposition 3.2.17. Every simple connected locally finite transitive graph of odd degree
admits a 1-factor.

Proof. Firstly look at finite Γ. We have that E = (2d+ 1)|V |. But since Γ is simple, it has
no degenerate loops and thus |E| is even. In particular, the number of vertices is even. In a
simple graph, every matching covers an even number of vertices; therefore it cannot miss
only one vertex.

Now, for infinite Γ we will use compactness (Theorem 3.1.2). For such a Γ, there always
exists a strongly maximal matching that misses at most one vertex of Γ. Let T be a finite
subset of vertices of Γ. By transitivity, there exists a strongly regular matching M that
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covers all vertices of T . By compactness (we use here the fact that Γ is locally finite), there
exists a matching that covers all vertices of Γ.

We are now ready to prove the principal theorem of this subsection.

Theorem 3.2.18. Every connected locally finite transitive graph is isomorphic to a Schreier
graph.

Proof. As for Theorem 3.2.5 and Proposition 3.2.8, it is enough to show that Γ admits a
decomposition into disjoint 2-factors and 1-factors. Indeed, if such a decomposition exists,
with d 2-factors and n 1-factors, then by labeling 2-factors with generator of infinite order
and 1-factors by generator of order 2 we have that Γ is isomorphic to a Schreier graph of
Fd ∗ (∗nZ/2Z).

Since Γ is transitive, the number d1 of non-degenerate loops and the number n1 of
degenerate loops at some vertex v do not depends on v. Therefore they give rises to d1
2-factors and n1 1-factors. We can thus suppose that Γ has no loops.

Suppose for a moment that Γ is simple. If Γ is of odd degree, then by Proposition 3.2.17
it has a 1-factor. Hence we can suppose that Γ is of even degree. In this case, by Theorem
3.1.2, it admits a 2-factorization.

Now, if Γ has multiple edges we do an induction on n ≥ 1, the maximal number of edges
between two vertices. If n = 1, then Γ is simple and we are done. If n > 1, then we can look
at SΓ the simple graph obtained from Γ be gluing together multiple edges. The graph SΓ is
simple, connected and transitive. Therefore, it admits a decomposition into 2-factors and
1-factors. Its complement MΓ := Γ − SΓ is transitive but not necessarily connected. All
connected components have the same degree, and the maximal number of edges between two
vertices in it is now n− 1. By induction, all connected component of MΓ (and therefore MΓ
itself) admit a decomposition into 2-factors and 1-factors. The union of this decomposition
together with the decomposition for SΓ gives a decomposition into 2-factors and 1-factors
for Γ.

3.3 A criterion for transitivity

In Theorem 3.2.18 we have proven that locally finite transitive graphs are all (isomorphic
to) Schreier graphs. On the other hand, it is easy to exhibit Schreier graphs that are
not transitive, see for example Figure 3.7 on page 33. In this section we will provide a
characterization of transitivity for Schreier graphs.

As said in Section 2.4 and repeated in Section 3.1, any Schreier graphs is isomorphic to s
Schreier graph over

FX := FY tZ = ( ∗
|Y |

Z) ∗ ( ∗
|Z|

Z/2Z) = 〈yi ∈ Y, zj ∈ Z | z2
j 〉,(?)

with generating system X = Y t Z. Therefore, we can restrict our attention to groups of
this form. In the following, we will use the notation F = FX for such groups.

Let A be any group with generating system X. The degree of A (with respect to X) is
the degree of any vertex in the graph Cay(A,X±).

Observe that the degree of A depends on the choice of the generating system and could
be infinite. The degree of A with respect to X = Y t Z, where Z is the subset of generators
of order 2, is equal to 2 · |Y |+ |Z|.
Definition 3.3.1. Let H1 = 〈X1 | R1〉 and H2 = 〈X2 | R2〉 be two arbitrary groups. A
morphism α : H1 → H2 preserves lengths (with respect to X1 and X2) if for every h in H1 we
have |α(h)|X2

= |h|X1
. If α is an isomorphism, we say that H1 and H2 are length-isomorphic.
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Definition 3.3.2. Let F be as in (?). A subgroup H of F is length-transitive if it is length-
isomorphic to all its conjugates. That is, if for every g in F , there exists a group isomorphism
αg : H → g−1Hg that preserves lengths.
Remark 3.3.3. In this definition, αg is only defined on H, not on F itself.

In general, we have H ∼= g−1Hg, but the conjugation homomorphism does not preserve
lengths unless F = Z or F = Z/2Z.

We are now able to state the main result of this chapter.

Theorem 3.3.4. Let F1 = FX1 and F2 = FX2 be two groups of the type (?). Suppose that
Γi := Sch(Fi, Hi, X

±
i ) for i = 1, 2. Then, there exists a graph isomorphism from Γ1 to Γ2

that respects roots (the image of the vertex H1 is the vertex H2) if and only if F1 and F2
have same degree and H1 and H2 are length-isomorphic.

Moreover, there exists an X-isomorphism from Γ1 to Γ2 that respects roots if and only if
F1 = F2 and H1 = H2.

Observe that it is possible that F1 and F2 are not isomorphic, for example if F1 =
Z ∗ Z/2Z ∗ Z/2Z and F2 = Z ∗ Z = F2

It is possible to reformulate this theorem in order to have a rigidity theorem “a la Mostow”.
Let Γ1 and Γ2 be two 2d-regular graphs without degenerate loop. If they are isomorphic,
then their fondamental groups π1(Γ1) and π1(Γ2) are isomorphic as abstract groups, but the
converse is not necessarily true. On the other hand, since the graphs are 2d-regular without
degenerate loop, we have two coverings pi : Γi → Rd, where Rd is the unique graph with
one vertex and d loops — see section 3.4 for more on coverings. These two coverings induce
two injections pi∗ : π1(Γi)→ π1(Rd) = 〈X〉, where loops of Rd are in bijection with elements
of X. The situation for odd regular graphs is more complex since the projections pi may
not exist. More precisely, if Γ is a 2d+ 1-regular graph without degenerate loop and Rd,1
denotes the graph with one vertex, d loops and 1 degenerate loop, then there exists a covering
p : Γ→ Rd,1 if and only if Γ admits a perfect matching, if and only if Γ is isomorphic to a
Schreier graph. This gives us the alternative formulation (for regular graphs) of Theorem
3.3.4.

Theorem 3.3.5 (Rigidity theorem for regular graphs). Let Γ1 and Γ2 be two locally finite
regular graphs without degenerate loop.

If Γ1 and Γ2 are 2d-regular, then they are isomorphic as graphs if and only if p1∗
(
π1(Γ1)

)

is length-isomorphic to p2∗
(
π1(Γ2)

)
.

If Γ1 and Γ2 are (2d + 1)-regular and both admit a perfect matching, then they are
isomorphic as graphs if and only if p1∗

(
π1(Γ1)

)
is length-isomorphic to p2∗

(
π1(Γ2)

)
.

Moreover, these statements are independent of the choice of the coverings p1 and p2.

To prove Theorem 3.3.4, we need to prove two implications. The first one is easy and
proven in the next proposition. The second one is a little harder and is the subject of
Proposition 3.3.10.

Proposition 3.3.6. Let Fi, Hi, Xi and Γi be as in Theorem 3.3.4, for i = 1, 2. Recall that
the graph Γi is naturally a rooted graph, with root (the vertex) Hi. Suppose that there exists
an isomorphism β : Γ1 → Γ2 such that β(H1) = H2, then H1 and H2 are length-isomorphic
and F1 and F2 have same degree.

Moreover, if β preserves labeling, then F1 = F2 and H1 = H2.
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3.3. A criterion for transitivity

Proof. The graphs Γ1 and Γ2 being isomorphic, they have same degree. Hence, the groups
F1 and F2 have same degree too.

Now, pick an element h of H1. By Lemma 3.1.1, h is represented by a closed path p with
base-point H1. If we apply β we have a closed path β(p) with base-point H2. Define a map
from H1 to F2 by

α(h) := label in Γ2 of β(p).
Since β induces a bijection between closed paths with base-point H1 and closed paths with
base-point H2, α is a bijection between H1 and H2. Moreover, α(1) = 1 and α(h−1) = α(h)−1

(the path is read backward). We also have α(h1h2) = α(h1)α(h2) (the paths are read one
after the other). This proves that α is a group isomorphism between H1 and H2. The fact
that α preserves lengths is trivial.

Now, suppose that β preserves labelings. In this case, we immediately have F1 = F2 and
α = Id.

Example 3.3.7. The Petersen graph is 3-regular and hence can be seen has a Schreier graph:
Γ = Sch(Z ∗ Z/2Z, H,X±), see Figure 3.6. It is a well-known fact that it is transitive, but
not a Cayley graph. Now, let us denote by H (resp. M) the group of labels of closed reduced
paths based at v1 (resp. w1) in Figure 3.6. We have M = aHa. The element xax−2a
belongs to H but not to M , therefore H and M are not equal and both are not normal.
This means that there exists no X-automorphism of Γ sending v1 to w1. But there exists an
automorphism β that does the job. And therefore there exists an isomorphism α : H →M
that preserves lengths. We want to compute α(xax−2a). The automorphism β is given by:

v1 7→ w1 w1 7→ v1

v2 7→ w3 w2 7→ v3

v3 7→ w5 w3 7→ v5

v4 7→ w2 w4 7→ v2

v5 7→ w4 w5 7→ v4.

For two adjacent edges a and b in Γ, let us denote the unique edge from a to b by [ab]. Then
xax−2a ∈ H corresponds to the path [v1v3][v3w3][w3w2][w2w1][w1v1]. This path is sent by
β to the path [w1w5][w5v5][v5v3][v3v1][v111], which has label x−1ax−2a ∈ M . Therefore,
α(xax−2a) = x−1ax−2a.

We are going to prove the converse of Proposition 3.3.6. Namely, that if H1 and H2 are
length-isomorphic by an isomorphism α, then there exists an isomorphism between their
Schreier graphs that preserves roots. For that, we first extend α to a bijection (not a group
homomorphism) from F1 to F2 and see that it is possible to find such an extension with
good properties. Then we will use such an extension to find an isomorphism β from Γ1 to Γ2
such that β(H1) = H2 (as vertices).

Lemma 3.3.8. Let F1 and F2 be two groups with the same degree, and Hi be any subgroup
of Fi for i = 1, 2. Then, every isomorphism α : H1 → H2 which preserves lengths can be
extended to a bijection γ : F1 → F2 such that γ preserves lengths and initial segments. That
is: for every f , g ∈ F1 such that fg is reduced (i.e. |fg|X1

= |f |X1
+ |g|X1

), there exists w
such that γ(fg) = γ(f)w with |w|X2

= |γ(g)|X2
.

Proof. Clearly, α preserves lengths and initial segments if we restrict it to f, g ∈ H1. So let
γ|H1 := α. We are now going to look at the set of initial segments of H1:

C := {f ∈ F | ∃w ∈ F : fw ∈ H1 and fw is reduced}.
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Figure 3.6: The Petersen graph viewed as a Schreier graph on 〈x, a | a2〉 ∼= Z ∗ Z/2Z.

Let c ∈ C be an initial segment of length n of h ∈ H1. Define γ(c) as the initial segment of
length n of γ(h) = α(h). We need to check that γ(c) is well defined. Firstly, cw is reduced
and h and γ(h) are of length at least n, so it is possible to choose an initial segment of length
n of γ(h). Secondly, we need to check that γ(c) does not depend on the particular choice
of h. Let h1 and h2 be elements of H1 and let c be their maximal common initial segment.
Then, if c is of length n:

|h1|1 + |h2|1 − 2n = |h−1
1 h2|1 c is maximal

= |α(h−1
1 h2)|2 α preserves lengths

= |α(h1)−1α(h2)|2 α is a homomorphism
= |α(h1)−1|2 + |α(h2)|2 − 2n′

= |h1|1 + |h2|1 − 2n′,

where n′ is the length of the maximal initial segment common to α(h1) and α(h2), and |·|i is
short for |·|Xi . So n = n′, hence γ(c) does not depend on the choice of h = cw. Moreover, it
is trivial that for c1, c2 ∈ C, if c1 is an initial segment of c2, then γ(c1) is an initial segment
of γ(c2). We have thus a bijection between C and γ(C) which preserves lengths and initial
segments. The groups F1 and F2 having same degree, they are length-isomorphic. This
induces a bijection which preserves lengths:

γ′ : D := F1 \ C −→ F2 \ γ(C).

We now need to define γ on D. The set C being closed under the operation “initial segment”,
no elements of D are initial segments of elements of C. We can thus define γ on D from
the “bottom”. Let Dn be the set of elements of D of length n and let n0 be the smallest
integer such that Dn0 is non-empty — it is also the smallest integer such that γ′(Dn0) is
non-empty. Let d ∈ Dn0 . By minimality of n0, there exists c ∈ C and x ∈ X±1 such that
d = cx is reduced. Similarly, for d′ ∈ γ′(Dn0) there exists c′ ∈ C and y ∈ X±2 such that
d′ = γ′(c′)y is reduced.

We are now going to prove that the following two sets are in bijection:

E := {x ∈ X±1 | cx ∈ Dn0}
F := {y ∈ X±2 | γ(c)y ∈ γ′(Dn0)}.
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3.3. A criterion for transitivity

To show that, we are going to prove that their complements Ē ⊂ X1
± and F̄ ⊂ X2

± are in
bijection. These complements are exactly

Ē = {x ∈ X±1 | cx ∈ C}
F̄ = {y ∈ X±2 | γ(c)y ∈ γ(C)}.

For x ∈ Ē, we have γ(cx) = γ(c)y for a unique y ∈ X±2 . This defines a map θ : Ē → F̄ by
θ(x) = y. This map is injective because θ(x) = θ(x′) if and only if γ(cx) = γ(cx′) and so if
and only if x = x′. On the other hand, θ is also surjective. Indeed, if y is in F̄ , then γ(c)y
is an element of γ(C). Hence, there exists c′ ∈ C such that γ(c′) = γ(c)y. But γ preserves
initial segments on C, thus c is an initial segment of c′, hence c′ = cx for some x. This
finishes the proof of the existence of a bijection between Ē and F̄ and therefore between E
and F .

This bijection allows us to define γ(d) = γ(cx) := γ(c)y for d ∈ Dn0 . We have thus
extended γ to C ∪Dn0 such that γ is a bijection which preserves lengths and initial segments.
Finally, we put C0 := C and conclude by induction on Ci := Ci−1 ∪Dni and Dni where ni is
the smallest integer greater than ni−1 such that Dni is non-empty.

Lemma 3.3.9. The bijection γ : F1 → F2 of the preceding lemma has the following properties:

1. For all fg−1 ∈ H1 reduced, γ(fg−1) = γ(f)γ(g)−1;

2. γ−1 preserves lengths and initial segments;

3. For all fg−1 ∈ γ(H1) = H2 reduced, γ−1(fg−1) = γ−1(f)γ−1(g)−1.

Proof. If fg−1 is reduced and is an element of H1, the same is true for its inverse gf−1. But
then, there exists w and w′ in H2 such that γ(fg−1) = γ(f)w and γ(gf−1) = γ(g)w′ are
reduced. The bijection γ being a group homomorphism on H1, we have:

e = γ(e) = γ(fg−1gf−1) = γ(fg−1)γ(gf−1) = γ(f)w · γ(g)w′.

The only reductions possible are between w and γ(g), which are of the same length. Hence
w = γ(g)−1, which is what we wanted to prove.

For the second part, it is trivial that γ−1 preserves lengths. For the initial segments part,
let fg ∈ H2 be reduced. Then γ−1(fg) = f ′g′ is reduced, where |f ′|1 = |γ−1(f)|1 = |f |2
(and analogously for |g′|1). If we apply γ to both sides of the equality, we have fg =
γ(f ′g′) = γ(f ′)w reduced, for some w ∈ H2. We conclude that f = γ(f ′). Therefore,
γ−1(fg) = γ−1(f)g′ is reduced.

The last point can be proved in the same way as for γ, using the fact that the restriction
of γ−1 to γ(H1) is a group homomorphism.

Proposition 3.3.10. Let Fi, Hi, Xi and Γi be as in Theorem 3.3.4. If F1 and F2 have
same degree and H1 and H2 are length-isomorphic, then there exists a graph isomorphism
β : Γ1 → Γ2 that respects roots (i.e. β maps the vertex H1 to the vertex H2).

Proof. Let α : H1 → H2 be an isomorphism which preserves lengths. We extend α to
γ : F1 → F2 as in Lemma 3.3.8. We define β on vertices by β(H1f) := H2γ(f). It is
trivial that β(H1) = H2. Moreover, β is well defined and injective. Indeed, H1f = H1g
if and only if fg−1 is an element of H1. In the same way, H2γ(f) = H2γ(g) if and
only if γ(f)γ(g)−1 = γ(fg−1) is an element of H2 = γ(H1). Hence, H1f = H1g if and
only if H2γ(f) = H2γ(g). Finally, for every vertex H2h of Γ2 (h an element of F2),
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3. Schreier graphs and transitivity

H2h = H2γ(γ−1(h)) with γ−1(h) ∈ F1. Hence, H2h = β(H1γ
−1(h)) and β is surjective on

vertices.
Instead of describing β explicitly on edges, we are going to show that for every pair

of vertices H1f and H1g, the edges between H1f and H1g are in bijection with the edges
between β(H1f) and β(H1g). Taking this bijection as a definition of β on edges makes β an
isomorphism from Γ1 to Γ2. Firstly, suppose that H1f and H1g are joined by at least one
edge, labeled by x0 ∈ X±1 , such that H1fx0 = H1g. Then the set of all edges from H1f to
H1g is

A := {x ∈ X±1 | H1fx = H1fx0} = {x ∈ X±1 | fx0x
−1f−1 ∈ H1}.

On the other hand, we have β(H1fx0) = H2γ(fx0) = H2γ(f)y0 = β(H1f)y0 for a unique
y0 ∈ X±2 . Thus, there is at least one edge from β(H1f) to β(H1g), labeled by y0. The set of
all edges from β(H1f) to β(H1g) is

B := {y ∈ X±2 | γ(f)y0y
−1γ(f)−1 ∈ H2}

= {y ∈ X±2 | γ(fx0)y−1γ(f)−1 ∈ H2}.

Take any x in A. By Lemma 3.3.9 we have γ(fx0x
−1f−1) = γ(fx0x

−1)γ(f)−1 and that
there exists a unique y ∈ X±2 such that γ(fx0x

−1) = γ(fx0)y−1. Moreover, this particular
y belongs to B, thus we have a map from A to B and we need to show that this map is
bijective. The map is injective. Indeed, if y = y′, then γ(fx0x

−1) = γ(fx0x
′−1) and (γ is a

bijection) thus x = x′. For the surjectivity, we know that for every y ∈ X±2 there is a unique
x ∈ X±1 such that γ(fx0x

−1) = γ(fx0)y−1, so we only need to show that if y belongs to
B then x belongs to A. If y is in B, we have that γ(fx0)y−1γ(f)−1 belongs to H2. Then
by Lemma 3.3.9 we have γ(fx0)y−1γ(f)−1 = γ(fx0x

−1f−1). This implies that fx0x
−1f−1

belongs to H1 and finally that x is in A.
We now need to show that if H1f and H1g are not connected by any edge, then neither

are β(H1f) and β(H1g). But the same argument as before shows that if β(H1f) and β(H1g)
are connected by at least one edge, then H1f and H1g are connected by an edge.

This concludes the existence of a bijection between edges from β(H1f) to β(H1g) and
edges from H1f to H1g. Since this bijection preserves initial and final vertices, we can take
it as the definition of β on edges. Defining β in such a way makes it an isomorphism from Γ1
to Γ2 that sends H1 on H2.

Now, if F1 = F2 and H1 = H2, the existence of an X-automorphism between the two
Schreier graphs is trivial.

This finishes the prove of Theorem 3.3.4.
Here are two easy applications of this theorem.

Corollary 3.3.11. Suppose that Γ := Sch(F , H,X±). Then the graph Γ is transitive if and
only if the subgroup H is length-transitive.

Proof. The graph Γ is transitive if and only if for all g ∈ F there exists an automorphism
of the graph that sends the vertex H to the vertex Hg. But the graph Γ rooted in Hg is
exactly the graph Sch(F , g−1Hg,X±).

Corollary 3.3.12. For A a group with generating system X, K a subgroup and Γ the
corresponding Schreier graph, the number of X-orbits is [A : NA(K)], each X-orbit has
[NA(K) : K] elements and each orbit is a union of X-orbits.
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3.3. A criterion for transitivity

Proof. We have A = F/N for some normal subgroup of F and K corresponds to a N ≤
H ≤ F . Two vertices Hf and Hg are in the same X-orbit if and only if f−1Hf = g−1Hg.
Therefore, the number of vertices in one orbit is [NF (H) : H] = [NA(K) : K] and the number
of orbits is [A : NA(K)]. Since an X-automorphism is an automorphism of the graph, the
orbits are unions of X-orbits.

The following lemma comes to simplify the application of the transitivity criterion of
Corollary 3.3.11.

Lemma 3.3.13. Let F , H and X be as before. Then H is length-transitive if and only if
for every x ∈ X± = X ∪X−1 the group H is length-isomorphic to x−1Hx.

Proof. The proofs of Theorem 3.3.4 and Corollary 3.3.11 show in fact that for every g in
F , the existence of a length-preserving isomorphism αg : H → g−1Hg is equivalent to the
existence of an automorphism of Γ = Sch(F , H,X±) that sends the vertex H to the vertex
Hg. On the other hand, αx exists for every x ∈ X± if and only if it is possible to send the
vertex H to each of its neighbours by an automorphism of Γ. Since Γ is connected, this last
condition is equivalent to the transitivity of Γ, and hence to the length-transitivity of H.

Remark 3.3.14. It is important to notice that, in order to ensure the length-transitivity of
H, we need to check the existence of αx for all generators x ∈ X and their inverses. For
example, the graph in Figure 3.7 is non-transitive, even if αa and αx exist. Indeed, αx−1

does not exist.

x
x

xaxa
x

x

xaxa
x x

a

Figure 3.7: A non-transitive Schreier graph over 〈a, x | a2〉. The root is marked in black.

Observe that if Γ is X-transitive, then H is normal and therefore Γ is a Cayley graph.
However, the converse does not hold. More precisely, let Γ := Sch(A,H,X±) be a Schreier
graph that is isomorphic to a Cayley graph. Then it is in general not true that Γ is X-
transitive (and that H is normal). All we can say is the following, which characterizes Cayley
graphs among Schreier graphs.

Theorem 3.3.15. Let Γ = Sch(F , H,X±) be any Schreier graph over a group F . Then Γ
is (isomorphic to) a Cayley graph if and only if there exists a group F1 = 〈X1〉 that has the
same degree as F and a normal subgroup N E F1 which is length-isomorphic to H.

Proof. If there exists such F1 and N , then the graph Γ is isomorphic to Sch(F1, N,X
±
1 ),

which is a Cayley graph.
On the other hand, if Γ is isomorphic to a Cayley graph Γ1, then Γ1 is a Schreier

graph Sch(F1, N,X
±
1 ) over some group F1 which has the same degree as F , and for some

normal subgroup N . Moreover, the isomorphism between Γ and Γ1 implies that H is
length-isomorphic to a conjugate of N .

33



3. Schreier graphs and transitivity

3.4 Coverings

In this section, we give a criterion for the existence of coverings and of X-coverings of Schreier
graphs. We also give some relations between X-coverings and quasi-isometries.

See Definition 2.1.7 on page 11 for the definition of covering.
If Γ1 is a labeled graph, a morphism ϕ : Γ1 → Γ2 is consistent with the labeling if for any

two edges e and f , the fact that ϕ(e) = ϕ(f) implies that e and f have same label. Every
X-covering is consistent with the labeling. Moreover, every covering ϕ : Γ1 → Γ2 consistent
with labeling induces a labeling on Γ2 such that ϕ is an X-morphism for this labeling. On
the other hand, if Γ2 is labeled by X, then every covering ϕ : Γ1 → Γ2 induces a labeling on
Γ1 such that ϕ is an X-covering.

Lemma 3.4.1. Let Γi := Sch(A,Hi, X
±) for i = 1, 2 be two Schreier graphs over the same

group. Then there exists an X-covering from Γ1 to Γ2 if and only if H1 is a subgroup of a
conjugate of H2.

Proof. We have A = FX/N . Since the correspondence between subgroups of A and subgroups
of FX containing N preserves inclusions and conjugations and induces an isomorphism
Sch(FX ,M,X±) ' Sch(A,M/N,X±), it is sufficient to prove the result for FX .

Let ϕ : Γ1 → Γ2 be an X-covering and let v0 := ϕ(H1) be the image of the base-vertex of
Γ1. The group H1 is isomorphic (see Lemma 3.1.1) to the group of closed paths based at the
vertex H1. This group is itself isomorphic to its image under ϕ, which is a subgroup of the
group of closed paths based at the vertex v0. This last group is isomorphic to gHg−1, where
g is the label of the path between v0 and H2.

For the converse, let H1 ≤ H = gH2g
−1, and Γ := Sch(FX , H,X±). It is obvious that Γ

and Γ2 are X-isomorphic; indeed, we only changed the root. Hence, to conclude the proof,
we only need to show that there exists an X-covering from Γ1 to Γ. Define ϕ : Γ1 → Γ on
the vertices by ϕ(H1g) := Hg. We need to check that ϕ is well defined. But H1g = H1f
if and only if gf−1 ∈ H1 ≤ H, which implies that Hg = Hf . Now, define ϕ on edges by
sending the unique edge leaving H1g and labeled by x to the unique edge leaving Hg and
labeled by x. With this definition, all the ϕv are bijections and ϕ preserves the labeling. All
that remains to check is that ϕ is a morphism of graphs. It is immediate from the definition
that ϕ preserves initial vertices. Now, let e be an edge in Γ1 with initial vertex H1g and
label x. The inverse edge ē has initial vertex H1gx and label x−1. Therefore, ϕ(e) has
initial vertex Hg and label x, and its inverse has initial vertex Hgx and label x−1. That is
ϕ(e) = ϕ(ē).

At this point, an obvious but important remark is the fact that if one of the Hi is normal,
the existence of an X-covering is equivalent to the fact that H1 ≤ H2. This is also true if we
ask that the covering preserves roots. As an immediate corollary we have:

Proposition 3.4.2. Let A be a group with generating system X. Then for any X±-labeled
graph Γ, there is an X-covering from Cay(A,X±) to Γ if and only if Γ is a Schreier graph
over A.

Proof. We have A = F/N with N normal and Cay(A,X±) ' Sch(F , N,X±). There is an
X-covering if and only if, up to a choice of base point, Γ is a Schreier graph of F for some
subgroups H containing N . Therefore, Γ is a Schreier graph of H/N in A = F/N .

Proposition 3.4.3. Let Γi := Sch(Fi, Hi, X
±
i ) for i = 1, 2 be two Schreier graphs. Then

there exists a covering from Γ1 to Γ2 if and only if F1 and F2 are of the same degree and H1
is length-isomorphic to a subgroup of a conjugate of H2.
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Proof. Suppose that there exists a covering. Then both graphs (and therefore groups) have
the same degree. Moreover, we can pullback by ϕ the labeling of Γ2 onto Γ1. Let us denote by
Γ = Sch(F2, H,X

±
2 ) the graph obtained in this way. Apart from the labeling, it is the graph

Γ1. Therefore, H is length-transitive to H1. Moreover, due to this new labeling, ϕ : Γ→ Γ2
preserves the labels. Hence we can use the last lemma to prove that H is a subgroup of H2.

The converse is quite obvious. Let H be the subgroup of F2 which is length-transitive to
H1. By Lemma 3.4.1, there exists an X-covering from Γ to Γ2. The graph Γ being isomorphic
to Γ1 (only the labeling changes), we have the desired covering.

The following lemma is an easy adaptation of a well-known fact about coverings of
topological spaces.

Lemma 3.4.4. For a covering ϕ : Γ1 → Γ2 and two vertices w and u in the same connected
component of Γ2, fibers over w and over u have same cardinality.

Definition 3.4.5. If ϕ : Γ1 → Γ2 is a covering with Γ2 connected, the cardinality of the fibers
is called the degree of the covering.

Lemma 3.4.6. Let H1 ≤ H2 be two subgroups of a group A. Then the index of H1 in H2 is
equal to the degree of the X-covering Sch(A,H1, X

±)→ Sch(A,H2, X
±).

Proof. Let us look at the fiber F over the vertex H2. It is exactly the set {H1g | H2g =
H2} = {H1g | g ∈ H2}. This corresponds to the decomposition of H2 into right H1-coset.

This lemma will allow us to make a link between X-covering and quasi-isometries.
Definition 3.4.7. Let (M1, d1) and (M2, d2) be two metric spaces. A quasi-isometry from
(M1, d1) to (M2, d2) is a function f : M1 →M2 such that there exists constants A ≤ 1, B ≤ 0
and C ≤ 0 for which

1. For every two points x and y in M1 we have

A−1d1(x, y)−B ≤ d2(f(x), f(y)) ≤ Ad1(x, y) +B.

2. For every point z in M2, d2(z, f(M1)) ≤ C.

The spaces M1 and M2 are called quasi-isometric if there exists a quasi-isometry from
M1 to M2.

The first point means that even if the function f does not necessarily preserve distances,
it does not change them too much. The second point says that f is close to being surjective:
every point in M2 is at a bounded distance from the image. This notion naturally arises in
the study of Cayley graphs, since two different finite generating systems for the same group
give quasi-isometric Cayley graphs. Note that every two finite graphs are quasi-isometric.

For a covering ϕ : Γ1 → Γ2 and a vertex v ∈ Γ2, the diameter of the fiber of v,
diam(ϕ−1(v)), is the maximal distance in Γ1 between two preimages of v. For coverings of
finite degree, the quasi-isometry of the two graphs follows from one simple condition.

Lemma 3.4.8. Let ϕ : Γ1 → Γ2 be a covering of finite degree, with Γ2 connected. Suppose
that there exists a constant B such that for every vertex v in Γ2, the diameter diam(ϕ−1(v))
is at most B. Then ϕ is a quasi-isometry with A = 1 and C = 0.
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Proof. Since ϕ is surjective, we have C = 0 and we only need to check the first condition in
the definition of quasi-isometry. Moreover, since ϕ maps paths from v to w to paths from
ϕ(v) to ϕ(w) we always have

d2(ϕ(v), ϕ(w)) ≤ d1(v, w).

For the other inequality, take a path p in Γ2 that realizes the distance between ϕ(v) and
ϕ(w). This path lifts to a path p̃ in Γ1 from v to z with z in the same fiber as w. This give
us the desired inequality:

d1(v, w) ≤ d1(v, z) + d1(z, w) ≤ d2(ϕ(v), ϕ(z)) +B = d2(ϕ(v), ϕ(w)) +B.

Lemma 3.4.9. Let L ≤ H ≤ A be two subgroups of A such that L has finite index in H.
This induces an X-covering of finite degree ϕ : Sch(A,L,X±)→ Sch(A,H,X±). Then, for
all l ∈ A, the supremum

sup{diam(ϕ−1(Hf)) | f ∈ A, fl−1 ∈ NA(H) ∩NA(L)}

is finite.

Proof. Firstly, note that fl−1 ∈ NA(H) ∩ NA(L) if and only if f−1Hf = l−1Hl and
f−1Lf = l−1Ll.

Let k be the degree of the covering ϕ. Therefore, we have H = Lg1 t · · · t Lgk for some
gi ∈ H. The fiber over the vertex Hl is

{Llg | Hlg = Hl} = {Llg | g ∈ l−1Hl}
= {Lgl | g ∈ H}
= {Lg1l, . . . , Lgkl}
= {Llg′1, . . . , Llg′k},

for g′i = l−1gil. Therefore, the distance between two vertices in the fiber is at most 2·max{|g′i|}.
Indeed, the distance between Llg′i and Llg′j is by the triangular inequality less than or equal
to d(Llg′i, L) + d(Llg′j , L). On the other side, the fiber over the vertex Hf is

{Lfg | Hf = Hfg} = {Lfg | g ∈ f−1Hf = l−1Hl}
= {Lfl−1gl | g ∈ H}
= {Lfg′1, . . . , Lfg′k}.

Indeed, we have Lfg = Lfh if and only if fgh−1f−1 belongs to L, if and only if gh−1 belongs
to f−1Lf = l−1Ll if and only if Llg = Llh. Therefore, the Lfg′i’s consists of k distinct
points, and they are all the fiber over Hf . Hence the distance between two vertices in the
fiber over Hf is also at most 2 ·max{|g′i|}.

We are now going to use these two lemmas to prove a classical result about Cayley
graphs and small extensions of it. Recall that a subgroup is almost normal if it has only
finitely many conjugates and nearly normal if it has finite index in its normal closure. Let
us call an automorphism ϕ of Γ2 compatible with the covering π : Γ1 � Γ2 if there exists an
automorphism ϕ̃ of Γ1 such that ϕπ = πϕ̃.
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Theorem 3.4.10. Let A be a group with generating system X. Let N ≤ H ≤ A be
two subgroups such that N has finite index in H. Then the graphs Sch(A,N,X±) and
Sch(A,H,X±) are quasi-isometric if one of the following assumptions holds:

1. N is almost normal and H is nearly normal;

2. N and H are almost normal;

3. Sch(A,H,X±) is almost transitive by automorphisms compatible with the covering;

4. N is normal, H/N is cyclic of prime order and Sch(A,H,X±) is almost transitive.

For the proofs, we have A = FX/L and, using the correspondence theorem, it is therefore
sufficient to prove the assertion when A = FX is a free product of copies of Z and of Z/2Z.
See Lemmas 3.4.12 to 3.4.14 for the proofs in this case. As an immediate corollary of the
theorem, we obtain

Proposition 3.4.11. Let A be a group with generating system X and B a quotient by a finite
normal subgroup. Then, Cayley graphs Cay(A,X±) and Cay(B,X±) are quasi-isometric.

Proof. Simply apply part 2 of the theorem with N = {1} and H normal such that B =
A/H.

Lemma 3.4.12. Let N ≤ H ≤ F with N of finite index in H, N almost normal and H
almost normal or nearly normal. Then, Schreier graphs Sch(F , N,X±) and Sch(F , H,X±)
are quasi-isometric.

Proof. By Lemma 3.4.9, for all l ∈ F ,

Bl = sup{diam(ϕ−1(Hf)) | f ∈ F , f−1Hf = l−1Hl, f−1Nf = l−1Nl}

is finite. If H is almost normal, and since N is almost normal too, there is only finitely
many couples of the form (l−1Hl, l−1Nl). Therefore, in B := sup{Bl | l ∈ F}, we only have
finitely many different terms and B is finite. We conclude using Lemma 3.4.8.

If H is nearly normal, let M denote its normalizer. We have a sequence of subgroups
with finite index inclusion

N ↪→ H ↪→M

with N almost normal and M normal. By Lemmas 3.4.1 and 3.4.6, this is equivalent to the
following sequence of coverings of finite degree

Sch(G,N,X±) ψ−→ Sch(G,H,X±) ϕ−→ Sch(G,M,X±).

Therefore, the first part of this lemma gives us

dN (v, w)−B ≤ dM (ϕ ◦ ψ(v), ϕ ◦ ψ(w)) ≤ dH(ψ(v), ψ(w)) ≤ dN (v, w),

where dN (v, w) is the distance in Sch(G,N,X±).

Lemma 3.4.13. Let N ≤ H ≤ F with N normal and H/N cyclic of prime order in F/N .
If the graph Sch(F , H,X±) is almost transitive, then it is quasi-isometric to Sch(F , N,X±).
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Proof. By Lemma 3.4.8, it is sufficient to find a universal bound B on the distance between
vertices in the same fiber. The graph being almost transitive, there is a finite number of
classes of vertices under the action of its automorphism group. It is thus enough to find
bounds for fibers over vertices in the same class, the bound B being the maximum over all
these bounds.

Choose a vertex Hh in Sch(F , H,X±) and let g be an element of minimal length in
h−1Hh−N . Due to the structure of H, we have that h−1Hh = N〈g〉 and that the fiber over
the vertex Hh is {Nh,Nhg, . . . , Nhgp−1}. Hence the distance between two of its elements
is at most (p− 1)|g|. Indeed, the distance between Nhgi and Nhgj is at most |i− j||g|. If
Hf is in the same transitivity class as Hh, then there is a bijection that preserves lengths
between h−1Hh and f−1Hf . Hence, we can choose g′ in f−1Hf −N of same length as g.
Since H/N is cyclic of prime order, we have f−1Hf = N〈g′〉 and, as before, the distance
between two elements of the fiber is at most (p− 1)|g′| = (p− 1)|g|.

Lemma 3.4.14. Let N ≤ H ≤ F be as in Theorem 3.4.10. If the graph Sch(G,H,X±) is
almost transitive by automorphisms compatible with the covering, then it is quasi-isometric
to Sch(G,N,X±).

Proof. Thinking in terms of subgroups, the automorphism ϕ of Sch(G,H,X±) corresponds
to a length-preserving isomorphism α : H → f−1Hf . The compatibility with the covering is
then equivalent to α(N) = N . Fibers over vertices H and Hf are respectively {Ng | g ∈ H}
and {Nfα(g) | g ∈ H}.

We have

N = Ng ⇔ g ∈ N
⇔ α(g) ∈ α(N) = N

⇔ Nf = Nfα(g).

Hence, the application Ng 7→ Nfα(g) is a well defined bijection between the fibers. There-
fore, if the fiber over H is given by {Ng1, . . . , Ngk}, the fiber over f−1Hf is the set
{Nfα(g1), . . . , Nfα(gk)} with |gi| = |α(gi)|.

Once again, we conclude using Lemma 3.4.8.

It is natural to ask if Theorem 3.4.10 can be extended. It may be possible, but not in
full generality. Indeed, there are examples of subgroups N ≤ H with N of finite index in H
but such that Sch(FX , N,X±) and Sch(FX , H,X±) are not quasi-isometric. There are even
such examples with N or H normal.

In order to show that some graphs are not quasi-isometric, we will use the notion of ends.
There are different equivalent definitions for the ends of a graph, but for our purpose it is
sufficient to know that the number of ends of a locally finite graph Γ is the maximal number
of infinite connected components of Γ − ∆ where ∆ is a finite subgraph (not necessarily
connected). The number of ends is invariant under quasi-isometries. For a Cayley graph, the
number of ends is either 0 (if and only if the graph is finite), 1 (Zd with d ≥ 2 for example),
2 (if and only if the group is virtually Z) or uncountable (Fn for n ≥ 2 for example).

We now exhibit two examples of N ≤ H such that N is of finite index in H but the
graphs Sch(FX , N,X±) and Sch(FX , H,X±) are not quasi-isometric. Instead of describing
the subgroups H and N explicitly, we will simply describe their Schreier graphs and show
that there exists an X-covering of finite degree between them. Indeed, by Lemmas 3.4.1 and
3.4.6, this implies that N is a subgroup of finite index of H.
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Example 3.4.15. The graphs of Figure 3.8 correspond to subgroups N ≤ H ≤ 〈x, y〉 = F2
with N of index two in H. Since Sch(F2, H, {x, y}±) is X-transitive, the subgroup H is
normal. But Sch(F2, N, {x, y}±) has four ends while the graph Sch(F2, H, {x, y}±) has only
two ends. Therefore, the two graphs are not quasi-isometric.

x x x x
y y y y

x x x x
y y y y

x x x x
y y y yy

yy

Figure 3.8: An X-covering between two Schreier graphs over the free group of rank two. The
root of the base graph and its two preimages are marked in black.

Example 3.4.16. The graphs of Figure 3.9 correspond to subgroups N ≤ H ≤ 〈x, a | a2〉 = Z∗
Z/2Z withN of index two inH. The covering is given by the central inversion in respect to the
middle point between the two black vertices. Since Sch(Z ∗Z/2Z, N, {x, a}±) is X-transitive,
the subgroup N is normal and Sch(Z ∗ Z/2Z, N, {x, a}±) ' Cay((Z ∗ Z/2Z)/N, {x, a}±).
But Sch(F2, N, {x, y}±) has two ends while Sch(F2, H, {x, y}±) has only one end. Therefore,
the two graphs are not quasi-isometric.

Graphs of Figure 3.10 shows a similar example, with N ≤ H ≤ 〈x, y〉 = F2. Since
Sch(F2, N, {x, y}±) is almost X-transitive, the subgroup N is this time almost normal. In
fact, N has only two conjugates: itself (corresponding to the black vertex in Figure 3.10)
and y−1Ny (corresponding to the dark gray vertex in Figure 3.10).

x x x x

x x x x

a a a a a

x x

x x

a a ax

Figure 3.9: An X-covering between two Schreier graphs over 〈x, a | a2〉. The root of the base
graph and its two preimages are marked in black.

Since people are usually interested in Schreier graphs over free groups and Cayley graphs
without loops or multiple edges, it is natural to ask the following question.
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Figure 3.10: An X-covering between two Schreier graphs over the free group of rank two.
The root of the base graph and its two preimages are marked in black.

Question 3.4.17. Is it possible to find N ≤ H ≤ Fn such that N has finite index in H,
the Schreier graphs Sch(Fn, N,X±) and Sch(Fn, H,X±) are both simple (without loop or
multiple edges) and non quasi-isometric and such that at least one of N or H is normal?

The second part of Example 3.4.16 shows that this is possible if we replace normality by
almost normality and Example 3.4.15 shows that this is possible if we do not ask the graphs
to be simple.

3.5 Applications to groups

We have seen that for a subgroup H of F , length-transitivity is a weak version of normality.
More generally, for any group A and subgroup H, asking for the transitivity of Sch(A,H,X±)
is a weak version of the normality. Since the normality does not depend on the generating
system, it is natural to ask if the same is true for the transitivity of the Schreier graph. It
turns out that this is not the case. We will prove in Proposition 3.5.3 that for all subgroups,
there exists a (big) generating system such that the corresponding Schreier graph is transitive.
Moreover, even if we restrict ourselves to “reasonable” generating systems, the only subgroups
such that all Schreier graphs are transitive are the normal subgroups (Proposition 3.5.5).

Normal subgroups are now to be a modular sublattice of the lattice of subgroups. In
particular, intersection and join of normal subgroups are still normal. This partially extends
to length-transitive subgroups.

Proposition 3.5.1. Let A,B ≤ G be length-transitive subgroups for a given generating
system X. Then A ∩B is length-transitive for X.

Proof. By the correspondence theorem, it is enough to prove the assertion for G = FX . In
[115], Stallings showed that for free groups, intersection of subgroups correspond to (any
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connected component of) pullback of immersions for the Schreier graphs. This result extends
to all group of the form FX . Therefore, A ∩B is represented by any connected component
of the pullback of Sch(F , A,X±) and Sch(F , B,X±) over Sch(F ,F , X±). But this last
graph is a rose: which is the terminal object in the category of Schreier graphs of FX with
X-morphisms. Therefore, the pullback is simply the categorial product of Sch(F , A,X±)
and Sch(F , B,X±), that is the tensor product.

Now, if A and B are length-transitive, their Schreier graphs are transitive. This implies
that their tensor product is also transitive. Indeed, for any (v1, w1) and (v2, w2) in the
tensor product, there exists ψ an automorphism of Sch(F , A,X±) sending v1 to v2 and ϕ
an automorphism of Sch(F , B,X±) sending w1 to w2. In particular, ψ ⊗ ϕ sends (v1, w1)
to (v2, w2). Finally, since Sch(F , A ∩ B,X±) is transitive, then by definition A ∩ B is
length-transitive.

Remark 3.5.2. Similar arguments show that the graph Sch(F , 〈A,B〉, X±) is the pushout of
Sch(F , A,X±) and Sch(F , B,X±) with respect to Sch(F , {1}, X±). In this case, the graph
Sch(F , {1}, X±) is a tree and hence the initial object in the category of Schreier graphs of FX
with X-morphisms that preserves the root. Therefore, Sch(F , 〈A,B〉, X±) is the coproduct
Sch(F , A,X±)

∐
Sch(F , B,X±) in the category of X-labeled graphs with X-morphisms that

preserves the root. Observe that since we ask our morphisms to preserves the root, the
coproduct is not the disjoint union. In general it is unclear if such a graph is transitive.

For a group A, denote by d(A) the number of elements of order 2 plus half of the number
of elements of order at least 3, if A is infinite, then d(A) = |A|.

Proposition 3.5.3. Let A be a group (not necessarily finitely generated) and H any subgroup.
Then there exists a generating system X of size d(A) such that Sch(A,H,X±) is transitive.

Proof. Any group A can be decomposed as A = {1} t S t T t T−, where S consists of
elements of order 2, T of half of elements of order at least 3 and T− of inverses of elements
in T . Let X := S ∪ T . Then, X± = A \ {1} and |X| = d(A).

Let A =
⊔
Hgi be the decomposition into right cosets. For each i and j, there is an edge

labeled by g from Hgi to Hgj if and only if g ∈ g−1
i Hgj . Since |g−1

i Hgj | = |H|, for any
two vertices in Sch(A,H,A), there is exactly |H| edges going from v to w and this graph
is transitive (it is a thick complete graph). The edges labeled by 1 being always loop, the
graph Sch(A,H,X±) is also transitive.

We will prove that even if we restrict ourselves to generating systems of size at most
rank(A) + 1, the fact that Sch(A,H,X±) is transitive does depend on X if H is not normal.
Before that we prove the following technical lemma.

Lemma 3.5.4. Let A be a group (not necessarily finitely generated) and let H be a proper
subgroup. Then there exists a generating system X of A such that X ∩ H is empty and
|X| = rank(A).

Proof. Let X be a generating system of A such that |X| = rank(A). If X ∩ H is empty,
the assertion is true. Therefore, we can suppose that X ∩ H is not empty. Since H
is a proper subgroup, we have X ∩ H 6= X. Thus, we can order the elements of X
and find an x0 ∈ X such that x ∈ X belongs to H if and only if x < x0. Now, take
Y := {x | x ∈ X,x ≥ x0} t {xx0 | x ∈ X,x < x0}. This is trivially a generating system of
the same cardinality as X, and Y ∩H is empty. Indeed, if x ≥ x0 then x /∈ H. But if x < x0
and xx0 belongs to H, we have x0 = x−1xx0 ∈ H, which is absurd.
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Proposition 3.5.5. Let A be a group and H a subgroup of A. If, for all generating systems
X of size at most rank(A) + 1, the graph Sch(A,H,X±) is transitive, then H is a normal
subgroup of A.

Proof. If H = A, there is nothing to prove. Therefore, we can suppose that H is a proper
subgroup and find, by the preceding lemma, a generating system X such that |X| = rank(A)
and X ∩H = ∅. The Schreier graph Sch(A,H,X±) is transitive by assumption and does not
have loops since X ∩H = ∅. For any h ∈ H, let Xh := X t {h}; a generating system of size
rank(A) + 1. The graph Sch(A,H,X±h ) is transitive and has a unique loop (labeled by h) at
the vertex H. Therefore, for all g ∈ A, the vertex Hg as a unique loop. The label of this
loop is h since the graph Sch(A,H,X±) has no loops at the vertex Hg. But this implies
that for all g ∈ A, Hgh = Hg. Therefore, for all h ∈ H and g ∈ A, ghg−1 belongs to H and
we have just proven that H is normal.

In the following, we will only take in account locally finite graphs and finite generating
systems of groups. This is justified by the fact that if A is not finitely generated, then
|A| = d(A) = rank(A), but has other important consequences for the study of Schreier
graphs. For example, every connected, locally finite transitive graph is a Schreier graph, see
Section 3.1.

Due to Proposition 3.5.5, we know that the transitivity of Sch(A,H,X±) does not only
depends on H, but on X too if H is non-normal. This and Proposition 3.5.3 motivate the
following definition.
Definition 3.5.6. A finitely generated A is strongly simple if for any generating system X of
size at most rank(A) + 1, and any proper subgroup {1} < H < A, the graph Sch(A,H,X±)
is not transitive.

It is immediate that strong simplicity implies simplicity and that cyclic groups of prime
order Cp are strongly simple. Indeed, such groups do not have proper subgroups.

Theorem 3.5.10 shows the existence of infinite strongly simple groups, proving that the
class of strong simple groups is not reduced to cyclic groups. On the other hand, the following
proposition shows that there exists (finite) simple groups which are not strongly simple.

Proposition 3.5.7. For odd n ≥ 7, let Hn be the subgroup of An consisting of elements
fixing n and let an := (1, 3, 4, 5, . . . n, 2) and bn := (2, 4, 6, . . . n− 1, 1, n, n− 2, . . . , 5, 3). Then
{an, bn} generates An and the graph Sch(An, Hn, {an, bn}±) is transitive.

In particular, An is simple but not strongly simple.

Proof. We have that Hn is isomorphic to An−1 and has index n. Moreover, the right cosets for
Hn depend only on the preimage of n. Therefore, the action of An on An/Hn is isomorphic
to the action of An on {1, . . . , n}. It is then easy to see that Sch(An, Hn, {an, bn}±) is
isomorphic to the circulent graph C1,2

n (see Figure 3.11 for an example): each vertex i has
4 neighborhood: i ± 1, i ± 2. Such a graph is obviously transitive. In order to finish the
proof, we need to show that an and bn generate An. For n ≥ 7, a direct computation gives
bna
−2
n b−1

n a2
n = (4, 3, n− 1). We conclude using the fact that (4, 3, n− 1) and an generates

An for odd n ≥ 5 (see [100]).

The above proof does not work in the case where n = 5 or n is even. For n = 5, the graph
is still transitive, but b25 = a5 and therefore {a5, b5} does not generate A5. A careful check
shows that if Sch(A5, H5, X

±) is transitive, then X has at least 3 elements and 3 is possible
(take a5, b5 and (1, 2, 3, 4, 5)). For n = 6, we even have that if Sch(A6, H6, X

±) is transitive,
then X has at least 4 elements. More generally, for even n, let ci = (1, 2, 3, . . . , î, . . . , n) (the
cycle (1, 2, . . . , n) without i). Then the ci’s generate An and Sch(An, Hn, {ci}±) is transitive.
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b7a7

Figure 3.11: The graph Sch(A7, H7, {a7, b7}±). The root (the vertex Hn) is marked in black.

In this case, we have a generating set of size n, which is small if we compare it to d(An) > n!
4

but big if we compare it to rank(An) = 2.
We now turn our attention on the cyclic subgroups of prime order.

Proposition 3.5.8. Let A be finitely generated group, X a finite generating system, and K
a cyclic subgroup of prime order. Then, in the graph Sch(A,K,X±), each orbit is a finite
union of X-orbits.

Proof. We have A = F/N , with F finitely generated. The subgroup K corresponds to a sub-
groupH of F containingN . For any vertexHg in the graph Sch(F , H,X±) ' Sch(A,K,X±),
its orbit [Hg] is the set of all vertices Hf such that there exists an automorphism mapping Hg
to Hf . Since K is cyclic of prime order, we have g−1Hg = N〈h〉 for every h in g−1Hg −N .
We can choose h to have minimal length among elements of g−1Hg −N . For any vertex Hf
in [Hg], there exists a bijection from g−1Hg to f−1Hf that preserves lengths. Hence, there
exists h′ in f−1Hf −N which has same length as h; and we have f−1Hf = N〈h′〉. Since F
is finitely generated, its set of elements of length |h| is finite. Thus, we have that the set of
subgroups {f−1Hf | Hf ∈ [Hg]} is finite. We conclude the proof using the fact that the
X-orbit of Hg consists exactly of vertices Hf such that f−1Hf = g−1Hg.

Corollary 3.5.9. Let A be a infinite simple group, X a finite generating system, K a proper
non-trivial subgroup and Γ := Sch(A,K,X±). Then AutX(Γ) has an infinite number of
orbits. Moreover, if K is cyclic of prime order, then Aut(Γ) has an infinite number of orbits
and therefore, Γ is not almost transitive.

Proof. Since A is infinite simple, it does not have any finite index subgroups. Therefore, the
number of X-orbits, which is [A : NA(K)], is infinite. The last proposition implies that if K
is cyclic of prime order, then the number of orbits is also infinite.

Recall that a Tarski monster Tp is an infinite group such that every proper subgroup
is isomorphic to a cyclic group of order p, for p a fixed prime. It follows directly from the
definition that every such group has rank 2 and is simple. Ol’shanskii proved in [96] that
there exists uncountably many non-isomorphic Tarski monsters for every p greater that 1075.

Theorem 3.5.10. Let Tp be a Tarski monster, X a finite generating system, K a proper
non-trivial subgroup and Γ the corresponding Schreier graph. Then AutX(Γ) = {1} and each
orbit of Aut(Γ) is finite. In particular, Γ is not almost transitive and Tarski monsters are
strongly simple.
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Proof. Due to the particular structure of subgroups in Tp, we have NTp(K) = K, which
implies that all X-orbits are singletons. Thus, AutX(Γ) = {1}. Since K is cyclic of prime
order, each orbit is a finite union of X-orbits and therefore finite.

The existence of strongly simple infinite groups partially answer a question of Benjamini:

Question 3.5.11. Does there exists a constant M such that every infinite transitive (Cayley)
graph Γ, not quasi-isometric to Z, covers an infinite transitive graph ∆ of girth at most M
and such that ∆ is non quasi-isometric to Γ?

The original motivation for this question was a conjecture off Benjamini and Duminil-
Copin about the connective constant of transitive graphs. This conjecture was solved by
Grimmet and Li in [61], but the question of Benjamini remains and the following weak form
is still an open problem:

Conjecture 3.5.12. Every infinite Caley graph Γ, not quasi-isometric to Z, covers an
infinite transitive graph ∆ 6' Γ.

If we ask for X-coverings, the conjecture is false, with Cayley graph of infinite strongly y
simple groups as counter-examples.

On the other hand, de la Salle and Tessera showed in [33] that for p large enough, every
Tarski monster Tp admits a Cayley graph whith a discrete group of automorphisms. Moreover,
if the Tarski monster in question is finitely presented, then there exists a finite generating
set X and a constant R = R(Tp, X) such that if ∆ is a graph with R-balls X-isomorphic
to R-balls in Cay(Tp, X±), then ∆ is X-covered by Cay(Tp, X±). More generally, both
statements remain true for any finitely presented group with an element of sufficiently big
order (depending on the size of the generating set).

This is a reason to believe that the Conjecture 3.5.12 itself is false, with Cayley graph of
finitely presented strongly simple groups as possible counter-examples. Nevertheless, it is
important to note that the existence of finitely presented Tarski monsters is still an open
problem. A possibility to circumvent this problem would be to look at finitely presented
extensions of Tp and ensure that they do not have too many subgroups.

Finally, it is possible to translate Question 3.5.11 in a group theoretic question. Indeed,
suppose A = F/N and ϕ : Γ = Cay(A,X±) → ∆ is a covering with ∆ 6' Γ an infinite
transitive graph. Then ∆ being transitive, is a Schreier graph of some infinite index and
length-transitive H < F ′. This endows ∆ with a labeling that can be pullback by ϕ to Γ.
Therefore ϕ is a X-covering and the new labeling of Γ correspond to a subgroup M < H
which is length isomorphic to N (but not necessarily normal). We just showed

Lemma 3.5.13. Let A = F/N . Then Γ = Cay(A,X±) covers an infinite transitive graph
∆ 6' Γ if and only if there exists M < H < F ′ with F ′ of same degree as F , M length-
isomorphic to N and H length-transitive and of infinite index.

3.6 Open questions and further research directions

In this section, we list the open questions that appeared during this chapter and propose
further direction of research.

The original question that motivated this work is still open. Solving the easy version
presented in Conjecture 3.5.12 would lead to a better understanding of covering between
transitive graphs and thus would be of great interest. We conjecture that the answer to this
question is no.
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Question 3.6.1. Does every infinite Caley graph Γ, not quasi-isometric to Z, covers an
infinite transitive graph ∆ 6' Γ?

Another question about quasi-isometry is Question 3.4.17 which is motivated by Theorem
3.4.10.

Question 3.6.2. Is it possible to find N ≤ H ≤ Fn such that N has finite index in H,
the Schreier graphs Sch(Fn, N,X±) and Sch(Fn, H,X±) are both simple (without loop or
multiple edges) and non quasi-isometric and such that at least one of N or H is normal?

Another direction of research would be the better understanding of length-transitive
subgroup and strongly simple groups. The following is motivated by Proposition 3.5.1

Question 3.6.3. Given two length-transitive subgroups A and B of FX . Is it true that
〈A,B〉 is length-transitive?

If yes, then length-transitive subgroups are a sublattice of the lattice of subgroups. Is this
lattice modular?

Proposition 3.5.5 says that for G a group and H a non-normal subgroup there exists
a generating system X of G of size at most rank(G) + 1 such that Sch(G,H,X±) is not
transitive. In particular, length-transitivity does depend on the generating set.

Question 3.6.4. For H non-normal, is it always possible to find such a generating system
X of size rank(G) such that the corresponding Schreier graph is not transitive?

What happens in the case where H is length-transitive?

Propositions 3.5.7 and Theorem 3.5.10 give example of strongly simple groups (non cyclic
of prime order) and of simple but not strongly simple groups. A complete classification of
strongly simple groups (non cyclic of prime order) is probably impossible at the time, but
we may ask the following

Question 3.6.5. 1. Does there exist infinite finitely presented strongly simple groups?

2. Does there exist finite strongly simple groups (non cyclic of prime order)?

3. Does there exist infinite simple groups that are not strongly simple?
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Chapter 4
De Bruijn graphs and generalizations

4.1 Introduction

Spider-web networks were introduced by Ikeno in 1959 [67] in order to study systems of
telephone exchanges. They were later shown to enjoy interesting properties in percolation,
see [102], [101] and [103]. This work stems from the paper [6] by Balram and Dhar where they
are interested in the asymptotic properties of the sequence of spider-web graphs {Sk,N,M},
for k = 2. In particular, they find, using an interesting approach based on symmetries, the
spectra of graphs S2,N,M and observe that they converge to a discrete limiting distribution
as M,N →∞.

Here, we develop a method that leads to the full understanding of this infinite discrete
model, including its spectral characteristics, via finite approximations, using the notion of
Benjamini-Schramm limit of graphs that has lately become very important in probability
theory. A remarkable feature of the model that we discover is that it is related to one of the
most interesting and important test-cases in combinatorial group theory, both algebraically
and from the spectral and probabilistic viewpoints, the lamplighter groups.

The aim of the present chapter is to provide a unified rigorous framework for studying
spider-web graphs S2,N,M , for any k ≥ 2, and their spectra, and to identify their limit, as
M,N → ∞, as a particular Cayley graph of the lamplighter group Lk = Z/kZ o Z (see
Subsection 4.2 for the definition) known (see [121]) as the Diestel-Leader graph .

Convergence of spider-web graphs to this graph comes from the following structural result
that we prove. For any k ≥ 2, the spider-web digraph ~Sk,N,M decomposes into the tensor
product of the digraph ~Sk,N,1 and the oriented cycle ~CM of lengthM . It is then useful to note
that the sequence ~Sk,N,1 is nothing else than the well-studied sequence of de Bruijn digraphs,
see Subsection 4.3. De Bruijn graphs are famous for their useful connectivity properties and,
being both Hamiltonian and Eulerian, are used both in mathematics, where they represent
word overlaps in symbolic dynamical systems, and in applications, as for example for the
discrete model for the Bernoulli map or for genome assembly in bioinformatics [31]. Our
results imply that, for each k ≥ 2, the two-parameter family of spider-web graphs Sk,N,M is
in fact a natural extension of the family of de Bruijn graphs Bk,N .

We then prove a result of independent interest, that de Bruijn graphs are isomorphic
to another well known sequence of finite graphs provided by a self-similar action of the
lamplighter group Lk by automorphisms on the k-regular rooted tree, see [59]. Our main result
then follows: the sequence of spider-web digraphs ~Sk,N,M (respectively Sk,N,M ) converges, as
M,N →∞ to the Cayley graph of the lamplighter group Lk, see Theorem 4.3.17 (respectively
Corollary 4.3.18).
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4. De Bruijn graphs and generalizations

The spectra of de Bruijn graphs have been computed by Delorme and Tillich in [34]. We
extend this computation to all spider-web graphs by using their tensor product structure.
The spectral approximation in the context of Benjamini-Schramm limits (see Definition 2.2.2)
then ensures that the spectra of finite spider-web graphs converge to the spectral distribution
corresponding to the limit graph. As mentioned above, this spectral distribution coincides
with one of those associated with the lamplighter group.

The spectral theory of discrete Laplacians on lattices and on Cayley graphs is a very
popular topic related to the theory of random walks on groups initiated by Kesten, Atiyah’s
theory of L2-invariants, Kadison-Kaplansky Conjecture and many more. The lamplighter
group is a very interesting object from the viewpoint of spectral theory. It was open for a
longtime whether the Laplacian spectrum on a Cayley graph can have a discrete component.
This was answered in [59] where it was shown that the spectrum of a certain Cayley graph
of the lamplighter group is pure point.

On the other hand, it follows from [38] by Elek that for the “standard” generating set
(the one that corresponds to the algebraic structure of the lamplighter group), the spectrum
contains no eigenvalue. This is illustrated on Figure 4.1, where the left column corresponds
to the Diestel-Leader graph ~DL(2, 2) which, as we have already mentioned, is isomorphic to
a specific Cayley graph of L2, see (‡) on page 54, whereas the right column corresponds to
the Cayley graph of L2 with respect to the standard generating set (see (†) on page 54).

This is the first example of a dramatic change that the Laplacian spectrum can undergo
under local perturbations, even in the presence of a large underlying group of symmetries.
Recently other examples of this type were discovered by Grigorchuk, Lenz and Nagnibeda,
[53, 52], in the context of group actions with aperiodic order.

The first two lines of Figure 4.1 are the histograms of the spectral measure (respectively for
linear and logarithmic y-axes) and the last line shows the corresponding density functions. In
both cases the graphics correspond to approximations of the infinite graph by graphs with 2N
vertices (provided by the action of L2 on the infinite full binary tree, see Subsection 4.3). On
the left, the Diestel-Leader graph is approximated by de Bruijn (and equivalently spider-web
S2,N,M for any M) graphs (see Remark 4.4.4); in this case the exact spectral measure is
known ([59], see also (#) on page 67). It is not known for the Cayley graph of Lk with
respect to the standard generators.

We also briefly study the complexity (the number of covering tree) of spider-web (di)graphs
and compute the spectral zeta function of Sk,N,M . We then show that the spectral zeta
functions of spider-web graphs converge to the spectral zeta function of DL(k, k). This allows
us to compute the Fuglede-Kadison determinant of DL(k, k).

Rauzy digraphs appear in dynamics and are a natural generalization of de Bruijn
digraphs. They are obtained as subdigraphs of de Bruijn graphs by looking only at vertices
v ∈ {0, . . . , k − 1}N not containing “forbidden subwords”. Therefore, they are finite models
of the subshift given by the set of forbidden subwords, where de Bruijn graphs correspond
to the full shift. Using totally different methods that for the case of de Bruijn graphs,
we show that for Rauzy digraphs corresponding to subshift of finite type, their limit is a
horospheric product of two trees; a generalization of Diestel-Leader digraphs. Moreover,
the trees appearing in the description of the limits are also related to the subshift: they
corresponds to “directions” of the trajectories.

The chapter is organized as follows. In Section 4.2 we turn our attention to tensor
product when one of the factor is an oriented cycle or a line. We then specialize to the
case of graphs defined by a group action and further to the case of the lamplighter group.
The structure of spider-web graphs is analysed in Section 4.3. In particular we establishe a
connection between spider-web graphs and lamplighter groups. Section 4.4 contains spectral
computations on spider-web graphs. In Section 4.5 we provide some further results about
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Figure 4.1: Approximations of the spectral measure and of the density function of two Cayley
graphs of the lamplighter group L2. The standard one on the right (see Subsection 4.2), and
the Diestel-Leader graph ~DL(2, 2) approximated by de Bruijn (and spider-web S2,N,M , any
M) graphs on the left. The histograms correspond to graphs with 2N , N = 10, vertices.
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spider-web graphs and their relation to lamplighters. It turns out that all ~Sk,N,M are Schreier
graphs of the lamplighter group Lk (Theorem 4.3.14) and we identify the subgroups to which
they correspond (Theorems 4.3.14 and 4.5.3). It is then shown in Theorem 4.5.10 that for all
k, the graph ~Sk,N,M is transitive if and only if M ≥ N . In Theorem 4.5.8, we show that if
moreover N divides M , it is a Cayley graph of a finite quotient of the lamplighter group Lk.
In Section 4.6 we study the complexity and spectral zeta function of spider-web graphs. This
implies the computation of the Fuglede-Kadison determinant of Cay(Lk, X±k ). In Section 4.7
we turn our attention on Rauzy digraphs on subshifts of finite type and prove that in general
there limit is supported on horospheric product of trees. Finally, Section 4.8 contains all the
open questions appearing in this chapter as well as ideas for further research.

Sections 4.2 to 4.5 are joint work with R. Grigorchuk and T. Nagnibeda and were published
in [86] with slightly less details. Section 4.6 is a joint work with T. Nagnibeda.

4.2 More on tensor product of graphs

In Section 2.3 we defined the tensor product of (di)graphs as the categorial product and
showed some preliminaries results on it. In this section, we will investigate more on the
tensor product, when one of the factors is a cycle or line.

Tensor product with an oriented cycle and the oriented line
Let us now consider the special case when one of the factors in the tensor product is ~C∞ or
~CM , where ~C∞ is the “oriented line” with V~C∞ = Z (the set of integers) and for each vertex
i there is a unique oriented edge from i to i + 1, and ~CM is the “oriented cycle of length
M”: V~CM = Z/MZ and for each i there is a unique oriented edge from i to i+ 1 modulo M .
Below, we will write M ∈ N = {1, 2, . . . ,∞} and i ≡ j (mod ∞) will mean i = j.

Figure 4.2: The digraphs ~C∞ (on top) and ~C5 (on bottom).

In this subsection we will only consider oriented connected graphs ~Γ. Recall the notion
of derangement of a path from Definition 2.3.5 that we will need here.

Proposition 4.2.1. For any connected digraph ~Γ and any M ∈ N, all connected components
of ~Γ⊗ ~CM are isomorphic.

Proof. Fix a vertex v of ~Γ. Since ~Γ is connected, for any vertex w there is a path q from v
to w in ~Γ, with signature σ(q). For any integer i, there exists a path r from i to i+ der(q)
(mod M) in ~CM with signature σ(q) = σ(r). Therefore, there is a path p in ~Γ⊗ ~CM from
(v, i) to

(
w, i + der(q)

)
. Hence, for any vertex (w, j) in ~Γ⊗ ~CM , there exists an integer i

such that (w, j) is in the connected component of (v, i).
On the other hand, since for any integers i and j, the rooted graphs (~CM , i) and (~CM , j)

are isomorphic, say by an isomorphism ϕi,j , we have connected components
(
~Γ⊗ ~CM , (v, i)

)0
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4.2. More on tensor product of graphs

and
(
~Γ⊗ ~CM , (v, j)

)0 are isomorphic by Id⊗ϕi,j . This implies that all connected components
are isomorphic.

Theorem 4.2.2. Let ~Γ be a connected locally finite digraph. For any M ∈ N and any vertex
v in ~Γ, the rooted digraph (~Γ, v) is isomorphic (as rooted digraph) to

(
~Γ⊗ ~CM , (v, 0)

)0 if and
only if der(~Γ) ≡ 0 (mod M).

Proof. Suppose that der(~Γ) ≡ 0 (mod M). For any vertex w of ~Γ define rk(w), the rank
of w, to be the derangement of any path in ~Γ from v to w taken modulo M . This is well
defined since for two such paths p and q, the concatenated path pq̄ is a closed path based
at v with derangement 0 (mod M). We define a morphism from (~Γ, v) to

(
~Γ⊗ ~CM , (v, 0)

)0
by w 7→

(
w, rk(w)

)
for vertices. For the edges, it maps an edge e from w to x to an edge

from
(
w, rk(w)

)
to
(
x, rk(x)

)
. Note that the vertices

(
w, rk(w)

)
and

(
x, rk(x)

)
are indeed

connected by an edge in the tensor product since rk(x) = rk(w) + 1. It is easy to see that
this morphism is surjective and injective, and hence is an isomorphism.

Suppose now that der(~Γ) 6≡ 0 (mod M). This implies the existence of a closed path q0 in
~Γ from v to v with non-zero (mod M) derangement and length n. By the second part of
Lemma 2.3.7, the set of closed paths q based at v and of length n is in bijection with the set
of (non necessarily closed) paths p from (v, 0) to

(
v,der(q)

)
, where we used the fact that for

every signature σ, there is a unique path in CM with initial vertex 0 and signature σ. Hence,
the number of closed paths in ~Γ⊗ ~CM of length n based at (v, 0) is at most the number of
closed paths of length n based at v, minus one (namely the path q0). If ~Γ is locally finite
(note that local finiteness of ~Γ is used only in this direction of the proof), there is only a
finite number of such paths. In this case, (~Γ, v) and

(
~Γ⊗ ~CM , (v, 0)

)0 cannot be isomorphic
(as rooted digraphs).

Remark 4.2.3. Proposition 4.2.1 and Theorem 4.2.2 (and their proofs) are still true in the
category of labeled digraphs (with strong morphisms) if we identify the labeling (l × l′) of
the tensor product with its first coordinate l, which is the labeling of ~Γ. In the following, we
will always use this identification for tensor product of the form ~Γ⊗ ~CM .

We know by Proposition 4.2.1 and Theorem 4.2.2 that all connected components of
~Γ⊗ ~CM are isomorphic and we are able, in the locally finite case, to decide when they are
isomorphic (as rooted graphs) to ~Γ. To complete the description of ~Γ⊗ ~CM it remains to
count the number of connected components. This is the subject of the next proposition.

Proposition 4.2.4. For any connected digraph ~Γ, and any M ∈ N and any i ∈ Z, let [i]
denotes the unique representative of i modulo M such that −M/2 < [i] ≤M/2. For M =∞,
we define [i] := i. For any connected graph ~Γ, the number of connected components of ~Γ⊗ ~CM
is M if and only if der(~Γ) ≡ 0 (mod M). Otherwise it is equal to the absolute value of
[der(~Γ)].

In particular, the number of connected component of ~Γ⊗ ~Z is infinite if der(~Γ) = 0 and
der(~Γ) otherwise.

Proof. Choose a vertex v0 in ~Γ. For every vertex w of ~Γ there is a path q in ~Γ from w to
v0, of length n and signature σ. For any i there is obviously a path r in ~CM of length n
and signature σ with initial vertex [i] and final vertex

[
i+ der(r)

]
. Hence, for every vertex

(w, [i]) of the tensor product, there is a path p from (w, [i]) to
(
v0, [i+ der(r)

)
] in ~Γ⊗ ~CM .

Therefore, to count the number of connected components of ~Γ⊗ ~CM it is sufficient to know
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when two vertices (v0, [i]) and (v0, [k]) are connected. But they are connected if and only if
(v0, [0]) and (v0, [k − i]) are connected.

Let i0 be the non-zero integer with the smallest absolute value such that (v0, 0) and (v0, [i0])
are connected by a path in ~Γ⊗ ~CM . If such an integer does not exist, put i0 = M . The
previous discussion implies that i0 = M if and only if the number of connected components
of ~Γ ⊗ ~CM is M . On the other hand, i0 = M if and only if every path p in ~Γ⊗ ~CM with
initial vertex (v0, 0) and final vertex (v0, j) satisfies j = 0, in which case der(p) ≡ 0 (mod M).
But this is equivalent (by Lemma 2.3.7 and by the existence in ~CM of a path with arbitrary
signature) to every closed path q in ~Γ with initial vertex v0 having der(q) ≡ 0 (mod M),
which is equivalent to der(~Γ) ≡ 0 (mod M).

If i0 6= M , we have either M =∞ or M/2 < i0 ≤M/2. In both cases i0 = [i0]. For every
integer j, since (v0, 0) and (v0, i0) are connected, their images (v0, [j]) and (v0,

[
[j] + i0

]
) by

the automorphism Id⊗ϕ0,[j] are connected, where ϕ0,[j] is the automorphism of ~CM sending
i on i+ [j]. Hence the vertices (v0,

[
[j]− i0

]
) and (v0,

[
[j]− i0 + i0

]
) are also connected. As a

special case we have that (v0, 0) and (v0, [−i0]) are connected. Therefore we can suppose that
i0 is strictly positive and 0 < i0 ≤ M/2. We also have by induction that for all j, (v0, [j])
is connected to (v0, k) for some 0 ≤ k ≤ i0. On the other hand, (v0, 0), (v0, 1), . . . and
(v0, i0 − 1) are in different connected components by minimality of i0. Hence, the number of
connected components of ~Γ⊗ ~CM is i0.

Let us now show that i0 is equal to the absolute value of [der(~Γ)]. Take a path q in ~Γ
with initial vertex v0 and such that |der(q)| = der(~Γ). By Lemma 2.3.7 this gives a path p
in ~Γ⊗ ~CM with der(p) = der(~Γ), initial vertex (v0, 0) and final vertex (v0, [der(p)]). This
implies (by minimality of i0) that the absolute value of [der(~Γ)] is bigger or equal to i0, which
is the number of connected components of ~Γ.

It remains to show that i0 is bigger or equal to the absolute value of [der(~Γ)]. Now, if
(v0, 0) is connected by p to (v0, i0), the derangement of p is equal to i0 modulo M . This
gives us a closed path q (from v0 to v0) in ~Γ with derangement i0 + aM for some integer
a. Since [i0 + aM ] = [i0] = i0, we have found a path q in ~Γ such that [der(q)] = i0. On the
other hand, we have der(~Γ) ≥ |der(q)|. We still have to show that |der(q)| ≥ [der(q)]. But
the stronger inequality |i| ≥ |[i]| is true for every integer i. Indeed, if −M/2 < i ≤M/2 we
have i = [i] and therefore |i| = |[i]|. Otherwise, |i| > M/2 ≥ |[i]|.

An analogous proposition holds for graphs, where the derangement is replaced by the
length of a path and minimum is replaced by greatest common divisor. This gives a refinement
of the following proposition: Γ⊗∆ is connected if and only if Γ and ∆ are connected and at
least one factor is non-bipartite ([68], Theorem 5.29).

Tensor product of a Schreier graph and an oriented cycle
Here we keep ~CM , M ∈ N = {1, 2, . . . ,∞}, as one factor of the tensor product and take the
other one to be a Schreier graph. In the following, we will always assume that generating
system of a groups do not contain element of order one or two. Under this assumption,
Schreier and Cayley graphs do not contain degenerate loop and if e is an edge with label x,
then ē has label x−1 6= x.
Definition 4.2.5. Let w be a word in the alphabet X tX−1. For x ∈ X, the exponent of x in
w, expx(w) is the number of times x appears in w minus the number of times x−1 appears
in w. We also define the exponent of X as the sum of exponents:

expX(w) :=
∑

x∈X
expx(w).
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The definition immediately implies

Lemma 4.2.6. Let G = 〈X | R〉 be a group presentation. Then the derangement of a path
in ~Cay(G,X) is exactly the exponent of its label.

Proposition 4.2.7. Fix M ∈ N and let G = 〈X | R〉 be a group presentation such that
expX(r) ≡ 0 (mod M) for every relator r ∈ R. Then ~Cay(G,X) is strongly isomorphic to
any connected component of ~Cay(G,X)⊗ ~CM .

Proof. Let p be a path with initial vertex 1 in Cay(G,X±) and let w be its label. Then
w = 1 in G if and only if p is closed. But w = 1 in G if and only if w =

∏
hirih

−1
i , where

the ri are relators and the hi are words in X tX−1.
On the other hand, by the previous lemma the derangement of p is equal to

expX(w) = expX(
∏

hirih
−1
i )

=
∑(

expX(hi) + expX(ri)− expX(hi)
)

≡ 0 (mod M).

We conclude using Theorem 4.2.2 and Remark 4.2.3.

Lemma 4.2.8. Fix M ∈ N and let G = 〈X | R〉 be a group presentation such that
expX(r) ≡ 0 (mod M) for every relator r ∈ R. A labeled digraph ~Γ is the digraph of an
action of G if and only if ~Γ⊗ ~CM is also the digraph of an action of G.

Proof. Let ~Θ be any X-labeled graph such that for each x ∈ X and each vertex v, there
is exactly one outgoing and one ingoing edge with label x. It is clear that ~Θ is (strongly
isomorphic to) a digraph of an action of G = 〈X | R〉 if and only if for every r ∈ R, and for
every vertex v, the unique path with initial vertex v and label r is closed.

Now, fix v a vertex in ~Γ, r a word on X tX−1 and 0 ≤ i < M . There is a unique path p
with initial vertex v and label r in ~Γ and a unique path q with initial vertex (v, i) and label
r in ~Γ ⊗ ~CM . We have that τ(q) =

(
τ(p), i + der(p)

)
. Therefore, if r is a relator we have

τ(q) = (τ(p), i) and p is closed if and only if q is closed.

Using this lemma and Proposition 4.2.1 we have the following.

Proposition 4.2.9. Fix M ∈ N and let G = 〈X | R〉 be a group presentation such
that expX(r) ≡ 0 (mod M) for every relator r ∈ R. Let H be a subgroup of G and let
~Γ := ~Sch(G,H,X) be the corresponding Schreier graph. Then, every connected component of
~Γ⊗ ~CM is the Schreier graph of G with respect to X and to the subgroup HM := {h ∈ H |
expX(h) ≡ 0 (mod M)}.

Proof. First, note that since expX(r) ≡ 0 (mod M) for every relator r, the exponent of
g ∈ G is well defined modulo M . By Proposition 4.2.1 and Remark 4.2.3, all connected
components of ~Γ⊗ ~CM are strongly isomorphic. By the previous lemma, ~Γ⊗ ~CM is a digraph
of an action of G and therefore all its connected components are Schreier graphs of G.

Now, let v be a vertex in ~Γ corresponding to the subgroup H. The subgroup HM consists
of labels of paths from (v, 0) to (v, 0) in ~Γ⊗ ~CM . By Lemma 2.3.7, for any signature σ,
there is a bijection between the set of closed paths p with initial vertex (v, 0) and signature
σ and the set of couples (q, r) where q is a closed path with initial vertex v, r a closed path
with initial vertex 0, both of signature σ. But there is a path r from 0 to 0 with signature
σ in ~CM if and only if der(r) ≡ 0 (mod M), and in this case there is a unique such path.
Finally, we conclude using the fact that the labeling of ~Γ⊗ ~CM is inherited from the labeling
of ~Γ.
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Observe that if in Proposition 4.2.9, Γ = ~Cay(G,X) then it corresponds to a Schreier
graph with H = {1} and thus HM = {1} and every connected component of ~Γ ⊗ ~CM is
isomorphic to ~Γ itself.
Remark 4.2.10. Lemma 4.2.8 and Proposition 4.2.9 have a geometrical meaning. If for
every relator r, expX(r) ≡ 0 (mod M), then G naturally acts on ~CM by i.g := i+ expX(g).
Therefore, the action of G on ~Γ ⊗ ~CM is the product of the actions. In term of Schreier
graphs, that exactly means that HM = H ∩ LM , where LM is the subgroup of G which
stabilizes the vertex i ∈ ~CM .

The case of lamplighter groups
In this subsection, we will look at tensor product where on of the factor is ~CM , M ∈ N, and
the other one a Schreier digraph of the Lamplighter groups. We turn our attention on this
particular example because it will be of great interest later.

By the lamplighter group Lk, for k ≥ 2, we mean the restricted wreath product Z/kZoZ ∼=(⊕
Z Z/kZ

)
oZ where Z acts on the normal subgroup Ak :=

⊕
Z Z/kZ by shifting the

coordinates. It is easy to see that it is given by the presentation

(†) Lk := 〈b, c | ck, [c, bncb−n];n ∈ N〉,

where [x, y] = x−1y−1xy is the commutator of x and y. Observe that this in particular
implies [bmcb−m, bncb−n] = 1 in Lk for all m and n in Z.

The subgroup Ak = ⊕ZZ/kZ, called the base of the wreath product, is generated
by {bicb−i}i∈Z, while Z is generated by b. The (right) action of b on Ak is by shift,
bicb−i.b = bi−1cb−i+1.

Following [59], instead of the “classical” presentation (†) of Lk, we will use the automaton
presentation. Consider the set Xk = {b, c̄1, . . . , c̄k−1}, where c̄i = bci. Note that c = b−1c̄1,
so Xk does generate Lk. It will be convenient to write c̄0 for b = bc0, so that Xk = {c̄i}k−1

i=0 .

(‡) Lk = 〈Xk | (b−1c̄1)k, b(b−1c̄1)ic̄−1
i , [b−1c̄1, b

n−1c̄1b
−n];n ∈ N, 2 ≤ i ≤ k − 1〉.

It is possible to check that 1 does not belong to Xk and that x ∈ Xk implies that x−1 /∈ Xk

and that the generators are two by two distincts. In particular, the graph Cay(Lk, X±k ) is
strongly isomorphic to ~Cay(Lk, Xk).

Remark 4.2.11. With this particular choice of generators, the graph Cay(Lk, X±k ) is weakly
isomorphic to the Diestel-Leader graph DL(k, k) (see [121]).
Remark 4.2.12. It is easy to see that, if G is any finite group of order k and we consider the
restricted wreath product G o Z, where Z = 〈b〉 and choose the generating set {bg}g∈G, then
the corresponding Cayley graph will be also weakly isomorphic to Cay(Lk, X±k ) and thus to
the Diestel-Leader graph DL(k, k). For the following, we will focus on the lamplighter group
Lk.

We immediately have

expX(b−1c̄1)k = expX b(b−1c̄1)ic̄−1
i = expX([b−1c̄1, b

n−1c̄1b
−n]) = 0.

Hence, the presentation (‡) of Lk satisfies the hypothesis of Proposition 4.2.7 and we have
the following special case of Proposition 4.2.9.

Proposition 4.2.13. For all k ≥ 2 and M ∈ N, every connected component of the digraph
~Cay(Lk, Xk)⊗ ~CM is strongly isomorphic to ~Cay(Lk, Xk).
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4.3. Limit of de Bruijn and Spider-web graphs

4.3 Limit of de Bruijn and Spider-web graphs

A slightly different version of spider-web graphs, called spider-web networks, was first
introduced by Ikeno in [67]. The 2-parameter family {Sk,N,M} that we will presently define
is a natural extension of the well known 1-parameter family of the de Bruijn graphs {Bk,N},
k ≥ 2. In [6], Balram and Dhar observed, in the special case k = 2, some link between
spider-web graphs and the Cayley graph of the lamplighter group L2.

The aim of this section is to discuss the definition of spider-web graphs Sk,N,M and to show
that they converge to the Cayley graph of the lamplighter group Lk. This is Theorem 4.3.17
for the oriented case and Corollary 4.3.18 for the non-oriented case. In order to do that,
we first prove Theorem 4.3.14 which shows that de Bruijn graphs are weakly isomorphic to
Schreier graphs of the lamplighter group.

From now on, we fix a k ≥ 2 and omit to write it when it is not necessary. We will use
the notations N = {1, 2, . . .}, N0 = N ∪ {0} and N = N ∪ {∞}.

De Bruijn Graphs
Definition 4.3.1. For every N ∈ N0 and ∈ N≥2, the de Bruijn digraph ~Bk,N on k symbols
is the labeled digraph with vertex set {0, . . . , k − 1}N and, for every vertex x1 . . . xN , k
outgoing edges labeled by 0 to k − 1. The edge labeled by y has x2 . . . xNy as final vertex.
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000
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100

010 101

011

110

111

Figure 4.3: De Bruijn digraphs for k = 2 and N ∈ {1, 2, 3}. Black edges are labeled by 0
and cyan edges are labeled by 1.

Sometimes de Bruijn digraphs are defined as graphs. In the following, we will write
~BN = ~Bk,N for the oriented version and BN = Bk,N for the non-oriented one. Note that in
our formalism, the graph BN is ~BN .

De Bruijn digraphs are widely seen as representing overlaps between strings of symbols
and are also combinatorial models of the Bernoulli map x 7→ kx (mod 1) and therefore are
of interest in the theory of dynamical systems.

It is shown in [123] that each de Bruijn digraph ~BN is the line digraph (see Definition 2.3.3)
of the previous one, ~BN−1. For the sake of completeness we include here a proof of this fact,
which is crucial for our purposes.
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4. De Bruijn graphs and generalizations

Lemma 4.3.2 ([123]). For every N ∈ N0, the de Bruijn digraph ~BN+1 is (weakly) isomorphic
to the line digraph of ~BN .

Proof. It is clear from the definition that ~B1 is weakly isomorphic to the complete digraph
on k vertices, with loops. That is, ~B1 has k vertices and for each pair (v, w) of vertices, there
is exactly one edge from v to w. In particular, for every v there is a unique edge from v to
itself. It is then obvious that ~B1 is weakly isomorphic to the line digraph of ~B0 (the rose).

Observe that, for any N , for each vertex v in ~BN and each label y, there is exactly one edge
e with initial vertex v and label y. Therefore, there is a natural bijection between the vertex
set of the line digraph of ~BN and the set of couples {(v, y) | v a vertex in ~BN , 0 ≤ y < k}.
Let v = (x1 . . . xN ) be a vertex in ~BN . If N ≥ 1, there is an edge in the line digraph from
(v, y) to (w, z) if and only if w = (x2 . . . xNy).

We construct now an explicit weak isomorphism ϕ from the line digraph of ~BN to ~BN+1.
We define ϕ on the vertices by ϕ(v, y) := (x1 . . . xNy) if v = (x1 . . . xN ). This is obviously
a bijection. If N ≥ 1, there is a unique edge in the line digraph from

(
(x1 . . . xN ), y

)
to(

(x2 . . . xNy), z
)
(and all edges are of this form). Let the image of this edge by ϕ be the

unique edge in ~BN+1 with initial vertex (x1 . . . xNy) and label z — see Figure 4.4. It is
straightforward to see that ϕ is injective on the set of edges. Since the two graphs have the
same finite number of edges (k · kN+1), ϕ is also bijective on the set of edges. Moreover, by
definition, ϕ

(
ι(e)

)
= ι
(
ϕ(e)

)
for any edge e in the line digraph. Hence, to show that ϕ is

a weak isomorphism it only remains to check that ϕ
(
τ(e)

)
= τ

(
ϕ(e)

)
. If e is an edge from(

(x1 . . . xN ), y
)
to
(
(x2 . . . xNy), z

)
, we have

ϕ
(
τ(e)

)
= (x2x3 . . . xNyz).

On the other hand, ϕ(e) has initial vertex (x1 . . . xNy) and label z. Therefore,

τ
(
ϕ(e)

)
= (x2x3 . . . xNyz) = ϕ

(
τ(e)

)
.

(x2 . . . xN y)

(x1 . . . xN )

(x3 . . . xN yz)

ϕ7−→

y

z

e

(x1 . . . xN y)

(x2 . . . xN yz)

z

Figure 4.4: The edge e in the line digraph of ~BN and its image by ϕ.

Spider-web graphs
Definition 4.3.3. Let k ≥ 2. For all M ∈ N and N ∈ N0, the spider-web digraph is the
labeled digraph ~SN,M = ~Sk,N,M with vertex set {0, . . . , k−1}N ×{1, 2, . . . ,M} and for every
vertex v = (x1 . . . xN , i) with k outgoing edges labeled by 0 to k − 1. The edge labeled by y
has (x2 . . . xNy, i+ 1) as final vertex, where i+ 1 is taken modulo M . See figure 4.5 for an
example.
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i
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Figure 4.5: The digraph ~S2,3,6, where vertices in the slice i = 0 are identified with vertices
in the slice i = M = 6. Black edges correspond to edges with label 0 and cyan edges to edges
with label 1.

As with de Bruijn digraphs, we write ~SN,M for the oriented version and SN,M for the
non-oriented one. The vertices of SN,M are partitioned into slices 1, . . . ,M and edges connect
vertices in slice i to vertices in slice i + 1 (mod M). Note that in our definition (unlike
papers that talk about spider-web networks), the vertices of the slice M are connected to
the vertices of the slice 1. Note also that it is possible to similarly define ~Sk,N,∞ for all N
(with vertex set {0, . . . , k − 1}N × Z).

Observe that the graph ~Sk,0,M is a “thick” oriented circle (or line if M =∞): the vertex
set is M and for every vertex i there are k edges from i to i+ 1. The graph ~S1,0,M is the
usual oriented circle ~CM . Therefore, ~Sk,0,1 is the rose with one vertex and k oriented edges.

Lemma 4.3.4. For all M ∈ N and N ∈ N0 there is a strong isomorphism between ~SN,M
and ~SN,1 ⊗ ~CM .

Remark 4.3.5. Observe that this lemma is not true if we consider the non-oriented spider-
web graphs. This is the main reason why we are brought to work with digraphs in this
chapter, even though the final result that we aim at and that we get are about graphs
(Corollary 4.3.18).

Lemma 4.3.4 together with Theorem 2.3.6 ensures that in order to identify the limit of
spider-web graphs when M,N →∞ it is enough to study the limit of spider-web digraphs
with M = 1. It turns out that the spider-web digraphs with M = 1 are exactly de Bruijn
digraphs.

Indeed the identification given by (x1 . . . xN , 1) 7→ (x1 . . . xN ) induces a strong isomor-
phism between ~SN,1 and ~BN . The isomorphism between non-oriented versions follows. Hence
we have the following.

Lemma 4.3.6. For all N ∈ N0, the digraph ~SN,1 is strongly isomorphic to ~BN and the
graph SN,1 is strongly isomorphic to BN .
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4. De Bruijn graphs and generalizations

Lemma 4.3.4 directly implies the following.

Corollary 4.3.7. For all M ∈ N and N ∈ N0, ~SN,M is strongly isomorphic to ~BN ⊗ ~CM .

Lemma 4.3.8. For all M ∈ N and N ∈ N0, the graph SN,M is connected.

Proof. By the previous corollary, ~SN,M ' ~BN ⊗ ~CM . On the other side, der( ~BN ) = 1 since
there is a loop (labeled by 0) at the vertex (0 . . . 0). Therefore, by Proposition 4.2.4, the
number of connected components of ~SN,M is 1.

The group Lk and its action on the k-regular rooted tree
We will use the language of actions on rooted trees, see for instance [55] and [93].

Fix k ≥ 2. The strings over the alphabet A = {0, 1, . . . , k − 1} are in one-to-one
correspondence with the vertices of the k-regular rooted tree Tk where the root vertex
corresponds to the empty string. Under this correspondence, the nth level of Tk is the set of
strings over A of length n. The boundary ∂Tk of Tk is the set of right infinite strings over A.
We write T k := Tk ∪ ∂Tk.

We also have a one-to-one correspondence between Tk and the ring of polynomials Z/kZ[t]
given by

(x0 . . . xn) 7→ x0 + x1t · · ·+ xnt
n

and a one-to-one correspondence between ∂Tk and the ring of formal series Z/kZ[[t]] given
by

(?) (x0x1x2 . . . ) 7→
∑

i≥0
xit

i.

Let G ≤ Aut(Tk) be a group acting on Tk by automorphisms. The action is said to be
spherically transitive if it is transitive on each level.

Extending a result from Grigorchuk and Żuk [59] for k = 2, Silva and Steinberg showed
in [114] that the lamplighter group Lk introduced in Subsection 4.2 above acts on T k.
They showed that this action is faithful and spherically transitive and described some other
interesting properties of this action. Here, we will look at the action given by

(x1x2x3 . . . ).c̄r =
(
(x1 + r)(x2 + x1)(x3 + x2) . . .

)

where additions are taken modulo k. This action is slightly different from the one in [114],
but remains faithful and spherically transitive.

Since the action of L on T is spherically transitive, for any generating set Y , for all
N , the graph of the action on the N th level are connected. Thus, they can be viewed as
Schreier graphs ~Sch(L, HN , Y ), where HN = StabL(vN ), with vN any vertex of the N th

level of T . On the other hand, it is obvious that the graph of the action on ∂T is not
connected. Its connected components correspond to the orbits of the (countable) group
L on the (uncountable) set ∂T . They can be viewed as Schreier graphs of the subgroups
StabL(ξ), ξ ∈ ∂T . If v, w are two vertices of T , with w lying on an infinite ray emanating
from v, then StabL(w) is a subgroup of StabL(v). This implies that for every N , the graph
~Sch(L, HN+1, Y ) covers ~Sch(L, HN , Y ), and we deduce the following.

Proposition 4.3.9 ([51],[74]). For any generating set Y and any ξ = (x1x2 . . . ) ray in ∂T ,
the sequence of rooted graphs

(
~Sch(L, HN , Y ), (x1 . . . xn)

)
converges (as labeled graphs) to

(
~Sch(L,StabL(ξ), Y ), ξ

)
.
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4.3. Limit of de Bruijn and Spider-web graphs

We also have

Proposition 4.3.10 ([51],[74]). For all but countably many rays ξ ∈ ∂T , the digraph
~Sch(L,StabL(ξ), Y ) is strongly isomorphic to ~Cay(L, Y ).

Proof. the labeled digraph
(
~Sch(L,StabL(ξ), Y ), ξ

)
is strongly isomorphic to ~Cay(L, Y ) if

and only if StabL(ξ) = {1}. We will show that StabL(ξ) 6= {1} for only countably many ξ.
In order to prove that, we look at the equivalent action of L on Z/kZ[[t]]. Applying formula
(?) we set for any F ∈ Z/kZ[[t]]

F.c = F + 1
F.b = (1 + t)F.

Hence for any i we have
F.b−icbi = F + (1 + t)i.

Let 1 6= g be an element in L. Then g admits a unique decomposition as g = bih for some
i ∈ Z and h ∈ A = 〈{bjcb−j}j∈Z〉. Therefore, there exists P a finite sum of (1 + t)j ’s, j ∈ Z,
such that for any F ∈ Z/kZ[[t]],

F.g = (1 + t)iF + P and
F.g−1 = (1 + t)−iF − (1 + t)−iP.

Since the action is faithful (and g 6= 1), it is not possible that i = 0 and P = 0 together. Now,
suppose F has non-trivial stabilizer. Then there exists 1 6= g ∈ L such that F = F.g = F.g−1

and therefore F is a solution to the equations
(
(1 + t)i − 1

)
x = −P

(
(1 + t)−i − 1

)
x = (1 + t)−iP.

We have i 6= 0, otherwise we would have P = 0, which is absurd. Hence, F is a solution of

(∗)
(
(1 + t)i − 1

)
x = Q,

with i > 0 and Q belonging to L := Z/kZ[(1+t), (1+t)−1], the subring of Z/kZ[[t]] consisting
of Laurent polynomials in 1 + t. Note that (1 + t)i − 1 is not invertible and thus we cannot
write x = Q/

(
(1 + t)i − 1

)
.

Suppose for a moment that k is prime. This is equivalent to Z/kZ[[t]] being an integral
domain. In this case, given a 6= 0 and b in Z/kZ[[t]], the equation ax = b has at most one
solution. Now, if F has a non-trivial stabilizer, we had just proved that it satisfies equation
(∗). Since L is countable, there are only countably many equations of this form and, by
unicity of solution, countably many solutions of such equation and hence countably many F
with non-trivial stabilizer.

If k is not prime, we do not have the unicity of solution of equations in Z/kZ[[t]]. For
example, for k = 6 the equation 2t · x = 0 admits uncountably many different solutions (all
series x where all coefficients belongs to {0, 3}). But, in our special case, we claim that (∗)
has only finitely many solutions. Using that, we have again that the number of series F with
non-trivial stabilizer is countable.

We now prove the claim. If equation (∗) has no solution, then the claim is true. If there
is as at least one solution, the solutions of (∗) are in one-to-one correspondence with the
solutions of (

(1 + t)i − 1
)
x = 0.

But such an equation has only finitely many solutions by the following lemma.
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4. De Bruijn graphs and generalizations

Lemma 4.3.11. Let R be a finite ring and P =
∑d
j=0 pjt

j ∈ R[t] a polynomial. Then, in
R[[t]], the equation Px = 0 has

1. only one solution (x = 0) if the first non-zero coefficient of P does not divide 0;

2. at most |R|d solutions if pd is invertible.

Proof. The first statement is trivially true.
The proof of the second statement is by contradiction. Observe that if x =

∑
n≥0 xnt

n is
a solution, we have for all n

xn = −p−1
d

d∑

k=1
pd−kxn+k.

Now, suppose that the equation Px = 0 has more than |R|d solutions. Choose |R|d+1 different
solutions yi. There exists an integer l such that all the ȳi differ, where x̄ =

∑l
n=0 xnt

n is
the series x up to degree l. We hence have |R|d + 1 distinct polynomials of degree at most l,
all satisfying the identities above. But this is not possible. Indeed, we have at most |R|d
different choices for the coefficients of tl to tl−d+1 and all other coefficients are uniquely
determined by these ones.

Until here, all the results of this subsection were true for any generating set Y of Lk. In
the following, we will work with our usual generating set Xk = {c̄i}k−1

i=0 .
Notation 4.3.12. Denote by ~Γk the labeled digraph of the action of Lk on T k, with respect
to the generating set Xk. If we restrict this action to the N th level of Tk, the corresponding
labeled digraph of the action will be denoted by ~Γk,N . The graph corresponding to the
restriction of the action to ∂Tk will be denoted by ~Γk,∞.
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Figure 4.6: The digraphs ~Γ2,N for N ∈ {1, 2, 3}. Black edges are labeled by c̄0 and cyan
edges are labeled by c̄1.

As with spider-web digraphs and de Bruijn digraphs, from now on we omit k from our
notation and write simply L, T , X, ~Γ, ~ΓN and ~Γ∞.
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4.3. Limit of de Bruijn and Spider-web graphs

The following proposition will, together with Lemma 4.3.2, help to establish a connection
between the lamplighter group and the de Bruijn digraphs.

Proposition 4.3.13. For every N ∈ N0, the digraph ~ΓN+1 is (weakly) isomorphic to the
line digraph of ~ΓN .

Proof. First, we have that ~Γ0 is the rose with k loops and ~Γ1 is the complete digraph (with
loops) on k vertices. Therefore ~Γ1 is weakly isomorphic to the line digraph of ~Γ0.

We have that the set of vertices in the line digraph of ~ΓN is in bijection with the set of
couples

{(v, c̄i) | v a vertex in ~ΓN , 0 ≤ i < k}.
Let v = (x1 . . . xN ) be a vertex in ~ΓN . If N ≥ 1, there is an edge in the line digraph from
(v, c̄i) to (w, c̄j) if and only if w = v.c̄i =

(
(x1 + i)(x2 + x1) . . . (xN + xN−1)

)
.

We construct now an explicit weak isomorphism ϕ from the line digraph of ~ΓN to ~ΓN+1,
see Figure 4.7. We define ϕ on the vertices by ϕ

(
(x1 . . . xN , c̄i)

)
:= (ix1 . . . xN ). It is easy to

see that ϕ is injective (and hence bijective) on vertices. If N ≥ 1, there is a unique edge in
the line digraph from

(
(x1 . . . xN ), c̄i

)
to
(
(x1 + i)(x2 +x1) . . . (xN +xN−1), c̄j

)
(and all edges

are of this form). Let the image of this edge by ϕ be the unique edge in ~ΓN+1 with initial
vertex (ix1 . . . xN ) and label c̄j−i — see Figure 4.7. It is straightforward to see that ϕ is
injective (and thus bijective) on the set of edges. Moreover, by definition, ϕ

(
ι(e)

)
= ι
(
ϕ(e)

)

for any edge e in the line digraph. Hence, to show that ϕ is a weak isomorphism it
only remains to check that ϕ

(
τ(e)

)
= τ

(
ϕ(e)

)
. If e is an edge from

(
(x1 . . . xN ), c̄i

)
to(

(x1 + i)(x2 + x1) . . . (xN + xN−1), c̄j
)
, we have

ϕ
(
τ(e)

)
=
(
j(x1 + i)(x2 + x1) . . . (xN + xN−1)

)
.

On the other hand, ϕ(e) has initial vertex (ix1 . . . xN ) and label c̄j−i. Therefore,

τ
(
ϕ(e)

)
=
(
(i+ j − i)(x1 + i)(x2 + x1) . . . (xN + xN−1)

)
= ϕ

(
τ(e)

)
.

(
(x1 + i)(x2 + x1) . . . (xN + xN−1)

)

(x1 . . . xN )

w

ϕ7−→

c̄i

c̄j

e

(ix1 . . . xN )

(
j(x1 + i)(x2 + x1) . . . (xN + xN−1)

)

c̄j−i

Figure 4.7: The edge e in the line digraph of ~ΓN and its image by ϕ.

Convergence of the spider-web graphs to the Cayley graph of the
lamplighter group
In this subsection, we use results of the last two subsections to finally establish a link between
the spider-web digraphs ~Sk,N,M and the digraph ~Γk of the action of the lamplighter group
Lk on the k-regular tree T k and to prove our main results.
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Theorem 4.3.14. Let k ≥ 2. For all N ∈ N0, the de Bruijn digraph ~Bk,N is weakly
isomorphic to ~Γk,N , the digraph of the action of Lk on the N th level of Tk, with respect to
the generating set Xk = {c̄r}k−1

r=0 (see (‡) on page 54).

Proof. The proof goes by induction on N . For N = 0, both graphs are weakly isomorphic to
the rose with k loops. For N ≥ 1 we have by Lemma 4.3.2 that ~Bk,N is weakly isomorphic to
the line digraph of ~Bk,N−1. Since ~Bk,N−1 is (by induction) weakly isomorphic to ~Γk,N−1 and
that the line digraph does not depend on the labeling we have a weak isomorphism between
~Bk,N and the line digraph of (~Γk)N−1. By Proposition 4.3.13, this graph is itself weakly
isomorphic to (~Γk)N .

Remark 4.3.15. These graphs are not strongly isomorphic. Indeed, in ~Bk,N for every vertex
v, all edges ending at v have the same label, but in a Schreier graph two edges having the
same end-vertex have distinct labels. (See Figures 4.3 and 4.6.)

Theorem 4.3.14 and the fact that ~Γk,N covers ~Γk,N−1 (see the discussion before Proposi-
tion 4.3.9), imply the following property of de Bruijn digraphs that, as far we know, was not
observed before.

Corollary 4.3.16. For all N ∈ N the graph ~BN (weakly) covers ~BN−1.

We are now able to prove the main theorem of this chapter.

Theorem 4.3.17. Let k ≥ 2. Recall that Lk denotes the lamplighter group (Z/kZ) o Z and
Xk = {c̄r}k−1

r=0 is the generating system given by (‡), see page 54.

1. The unlabeled de Bruijn digraphs ~Bk,N converge to ~Cay(Lk, Xk) in the sense of
Benjamini-Schramm convergence (see Definition 2.2.2).

2. The following diagram commutes, where the arrows stand for Benjamini-Schramm
convergence of unlabeled digraphs.

~Sk,N,M
~Cay(Lk, Xk)

~Sk,N,∞ ~Cay(Lk, Xk)

N −→∞

N −→∞

N, M −→∞
M

∞

y

Proof. By Proposition 4.3.10, for all but countably many ξ = (x1x2 . . . ) in ∂Tk, the digraph
(~Γk,∞, ξ)0 is strongly isomorphic to the Cayley digraph ~Cay(Lk, Xk). On the other hand,
by Proposition 4.3.9, the graphs

(
~Γk,N , (x1 . . . xN )

)
strongly converge to (~Γk,∞, ξ)0. Theo-

rem 4.3.14 gives us a weak isomorphism between ~Bk,N and ~Γk,N . Therefore, ~Bk,N converge
to ~Cay(Lk, Xk). This ends the proof of the first part of the theorem.

In order to prove the second part of the theorem, we should consider an auxiliary diagram,
see Figure 4.8. First note that we already know that when N → ∞ de Bruijn digraphs
( ~Bk,N , vN ) weakly converge to the Cayley digraph ( ~Cay(Lk, Xk), 1Lk) for nearly all choices of
the vN and that it is obvious that (~CM , 0) weakly converge to (~Z, 0) whenM →∞. Hence, by
Theorem 2.3.6, the diagram in Figure 4.8 is commutative. Finally, since this statement is true
for nearly all choices of roots, we have the convergence in the sense of Benjamini-Schramm
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(
~Bk,N ⊗ ~CM , (vk,N , 0)

)0 (
~Cay(Lk, Xk)⊗ ~CM , (1Lk

, 0)
)0

(
~Bk,N ⊗ ~Z, (vk,N , 0)

)0 (
~Cay(Lk, Xk)⊗ ~Z, (1Lk

, 0)
)0

n −→∞

n −→∞

n, m −→∞
M

∞

y
M

∞

y

Figure 4.8: Limit of ~Bk,N ⊗ ~CM .

when we choose the roots uniformly. By Proposition 4.2.13, for every M ∈ N, any connected
component of ~Cay(Lk, Xk)⊗ ~CM is strongly isomorphic to ~Cay(Lk, Xk); in particular, this
does not depend on M . On the other hand, for all M ∈ N, ~Bk,N ⊗ ~CM is strongly isomorphic
to ~Sk,N,M by Corollary 4.3.7, and therefore is connected.

Using Proposition 2.2.1, we obtain the same result for non-oriented versions of de Bruijn
and spider-web graphs as an immediate corollary.

Corollary 4.3.18.

1. The unlabeled de Bruijn graphs Bk,N converge to Cay(Lk, X±k ) in the sense of Benjamini-
Schramm convergence (see Definition 2.2.2).

2. The following diagram commutes, where the arrows stand for Benjamini-Schramm
convergence of unlabeled graphs.

Sk,N,M Cay(Lk, X±k )

Sk,N,∞ Cay(Lk, X±k )

N −→∞

N −→∞

N, M −→∞
M

∞

y

Remark 4.3.19. Remark 4.2.12 implies that in Theorem 4.3.17 and its Corollary 4.3.18, Lk
can be replaced by any wreath product G o Z, where G is a finite group of cardinality k.
However, Theorem 4.3.14 does not hold necessarily if G is not abelian.

4.4 Computation of spectra

In this section we compute the characteristic polynomial and the spectrum of the adjacency
matrix of SN,M for all M,N ∈ N. The spectra of the graphs {ΓN} of the action of L2 on the
levels of the binary rooted tree were first computed by Grigorchuk and Żuk in [59] using the
fact that they form a tower of coverings, see the discussion just before Proposition 4.3.9. (Note
that the multiplicity in their formula is not completely correct – compare with Theorem 4.4.3
below.) These computations were extended to any wreath product G o Z, with G 6= {1}
finite, by Kambites, Silva and Steinberg in [74], using automata theory. Dicks and Schick [35]
computed the spectral measures for random walks on G o Z using entirely different methods
(see also [17]).
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On the other hand, Delorme and Tillich computed the spectra of ~BN in [34] using simple
matrix transformations. It is well known that for any pair of square matrices A and B with
respective eigenvalues (λi)ni=1 and (µj)mj=1, the spectrum of A⊗B is {λiµj | 1 ≤ i ≤ n, 1 ≤
j ≤ m}. However, this formula cannot be applied in our case since we want to compute
the spectrum of ~BN ⊗ ~CM and there is no formula relating eigenvalues of a matrix A (the
adjacency matrix of a digraph) and of its symmetrized matrix A+A∗ (the adjacency matrix
of the underlying graph). Instead we generalize Delorme and Tillich method directly to all
SN,M .

For A a matrix, we denote its characteristic polynomial by χ(A). For a (di)graph Γ, the
characteristic polynomial χ(Γ) of Γ is the characteristic polynomial of its adjacency matrix.
The following lemma summarizes discussions 2.(1), 2.(2) and 2.(3) from [34].

Lemma 4.4.1. Let ~Γ be a digraph, ~Γ the underlying graph and ~A and A their respective
adjacency matrices. Suppose that there exist complex matrices D and U with U unitary such
that ~A = U∗DU . Then χ(~Γ) = χ(D). Moreover, A = U∗(D +D∗)U and χ(~Γ) = χ(D +D∗).

Proof. We have A = ~A+ ( ~A)∗ = U∗DU + U∗D∗U = U∗(D +D∗)U . On the other hand, A
and D are equivalent matrices and therefore have the same characteristic polynomial.

Observe that for a given complex matrix D we can construct a weighted digraph ~Θ with
adjacency matrix D, where a weighted graph is a (di)graph Γ = (V,E) (labeled or not, etc.)
with a map w : E → C which assign to each edge a complex number (a weight) such that
w(ē) is the complex conjugate of w(e). In this case, D +D∗ is the adjacency matrix of ~Θ.

In their article, Delorme and Tillich use this to compute the spectrum of de Bruijn graphs
BN and prove the following.

Proposition 4.4.2 (Dellorme-Tillich). For all N ∈ N0, let ~Θk,N be the weighted digraph
which is the disjoint union of

1. one oriented loop,

2. for all 0 ≤ i ≤ N − 2, (k − 1)2kN−i−2 disjoint oriented paths of length i,

3. k − 1 disjoint oriented paths of length N − 1;

where all edges have weight k and an oriented path of length i is the digraph with vertex set
V := {0, . . . , i} and for every vertex j ∈ V a unique edge from j to j + 1 (see Figure 4.9).
Let ~DN be the adjacency matrix of this graph and ~BN be the adjacency matrix of ~BN . Then
there exists U = UN unitary with ~BN = U∗ ~DNU .

k k k k k

Figure 4.9: An oriented weighted path of length 5, where all edges have weight k.

See Figure 4.10 for the example of ~Θ2,3.
The only thing remaining to do in order to compute the characteristic polynomial of

~SN,M is to express the adjacency matrix ~SN,M of ~SN,M using ~BN . But it is well known that,
for graphs, the adjacency matrix of a tensor product is the tensor (or Kronecker) product of
adjacency matrices. This is also trivially true for digraphs. Therefore, we have

~SN,M = ~BN ⊗ ~AM ,
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2 2 2

2

Figure 4.10: The weighted digraph ~Θ2,3.

where ~AM , the adjacency matrix of the oriented cycle ~CM , has a 1 in position (i, j) if and
only if j ≡ i+ 1 (mod M). Denoting ~DN,M := ~DN ⊗ ~AM , a simple computation gives us

~SN,M = ~BN ⊗ ~AM

= (U∗ ~DNU)⊗ (Id∗ ~AM Id)
= (U∗ ⊗ Id∗)( ~DN ⊗ ~AM )(U ⊗ Id)
= (U ⊗ Id)∗( ~DN,M )(U ⊗ Id),

where Id is the identity matrix of size M . Since U and the identity matrix are both unitary,
their tensor product U ⊗ Id is also unitary. Thus, by Lemma 4.4.1, the characteristic
polynomial of SN,M is equal to χ( ~DN,M + ~D∗N,M ).

On the other hand, ~DN,M is the adjacency matrix of the weighted graph ~Θk,N,M :=
~Θk,N ⊗ ~CM . Computing this tensor product we have that the weighted graph ~Θk,N,M is the
disjoint union of

1. one oriented cycle of length M ,

2. for all 0 ≤ i ≤ N − 2, M(k − 1)2kN−i−2 disjoint oriented paths of length i,

3. M(k − 1) disjoint oriented paths of length N − 1;

where all edges have weight k — see Figure 4.11 for an example. Hence, ~DN,M + ~D∗N,M is
the adjacency matrix of ~Θk,N,M . Therefore

χ(SN,M ) = χ( ~DN,M + ~D∗N,M )

= Q(x) · PN (x)M(k−1)
N−1∏

i=1
Pi(x)M(k−1)2kN−i−1

,

where Q(x) = Qk,M (x) is the characteristic polynomial of the non-oriented cycle of length
M with all edges of weight k and Pi(x) = Pi,k(x) is the characteristic polynomial of the
non-oriented path of length i− 1 with all edges of weight k. We now want to have an explicit
form for the Pi’s and Q. In [34], Delorme and Tillich showed that Pi(x) = kiVi(x/k) with Vi
the Chebyshev polynomial of the second kind of degree i. The set of roots of Pi(x) is exactly

{2k cos
( tπ

i+ 1

)
| 1 ≤ t ≤ i}

and all roots are simple. On the other hand, Q(x) is the characteristic polynomial of the
adjacency matrix of a non-oriented cycle of length M with edges of weight k. If M 6= 1, all
the non-zero entries of this matrix have value k and are in position (i, j) with |i − j| = 1.
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22 2 2 2

2

2

2

Figure 4.11: The weighted digraph ~Θ2,3,2.

If M = 1, the cycle is a loop of length k and the adjacency matrix consists of a unique
entry: 2k. In both cases, the adjacency matrix is a circulant matrix of size M and it has
characteristic polynomial

Q(x) =
M∏

l=1
(x− 2k cos

(2πl
M

)
).

That is, the root 2k has multiplicity 1, the root −2k has multiplicity 1 if M is even and
multiplicity 0 otherwise and for all 1 ≤ l < M/2 the root 2k cos( 2πl

M ) has multiplicity 2.
Therefore we have just proved the following.

For every k ≥ 2, N ∈ N0, and M ∈ N, the spectrum of SN,M consist of 2k with
multiplicity 1, of

{2k cos
(p
q
π
)
| 1 ≤ p < q ≤ N + 1; p and q relatively prime},

with multiplicity not specified yet and, if M is even, also of −2k with multiplicity 1.
The computation of the multiplicity of 2k cos

(
p
qπ
)
for a given p and q is done in four

steps. Step one: compute its multiplicity in eigenvalues (interpreted as roots) of Q(x); it is
either 0 or 2. Step two: compute its multiplicity in PN (x)M(k−1); it is either 0 or M(k − 1).
Step three: for all 1 ≤ i ≤ N − 1, compute its multiplicity in Pi(x)M(k−1)2kN−i−1 ; it is either
0 or M(k − 1)2kN−i−1. Step four: add the results of the three previous steps.

In step one, the multiplicity is non-zero if and only if there exists 1 ≤ l < M
2 such that

cos(2πl/M) = cos(pπ/q). But this is possible if and only if l = Mp/2q ≥ 1. Since l is an
integer and p and q are relatively prime, the multiplicity is 2 if and only if 2q divides Mp.

In step two, the multiplicity is non-zero if and only if t = p(N + 1)/q, if and only if q
divides N + 1.

In step three, the multiplicity is non-zero if and only if t = p(i+ 1)/q, if and only if q
divides i+ 1.

Summing up all these quantities we conclude that for 1 ≤ p < q ≤ N + 1, the multiplicity
of 2k cos

(
p
qπ
)
in the spectrum of SN,M is

M(k − 1)2 ·
(bNq c∑

j=1
kN−jq

)
+M(k − 1)r1 + 2r2,

with

r1 = r1(q,N) =
{

1 if q divides N + 1
0 otherwise

and

r2 = r2(p, q,M) =
{

1 2q divides Mp

0 otherwise.
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Observe that in the above sum, the first summand is equal to

M(k − 1)2 ·
(bNq c∑

j=1
kN−jq

)
= M(k − 1)2kN ·

bNq c∑

j=1
k−jq

= M(k − 1)2kN

(
1− k−q(bNq c+1)

1− k−q − 1
)
.

In the case where q = N + 1, the multiplicity of 2k cos( p
N+1π) is M(k − 1) + 2r2. If M = 1,

q cannot divide M (q is at least 2), thus in this case r2 is always equal to 0.
If Γ is a finite graph with m vertices and with eigenvalues of the adjacency matrix

λ1 ≥ · · · ≥ λm, we write

µΓ = 1
m

m∑

i=1
δλi

for the spectral measure on Γ, where δx denotes the Dirac mass on x. Then we have the
following.

Theorem 4.4.3. The spectral measure µSN,M of SN,M is, if M is odd,

1
MkN

δ2k

+
∑

δ2k cos( pq π)

(
(k − 1)2

(
1− k−q(bNq c+1)

1− k−q − 1
)

+ k − 1
kN

r1 + 2
MkN

r2

)

where the sum is over all 1 ≤ p < q ≤ N + 1 with (p, q) = 1.
If M is even, there is one more summand: 1

MkN
δ−2k.

Remark 4.4.4. It directly follows from the formula in the above theorem that for k and N
fixed, SN,M and SN,M ′ have the same spectrum, except maybe for the value −2k, and that
the total variation distance between µSN,M and µSN,M′ is bounded by 2

kN
, independently

from M and M ′.
Since spider-web graphs converge, in the sense of Benjamini-Schramm, to the Cayley

graph Cay(Lk, X±k ) we retrieve the Kesten spectral measure of the graph Cay(Lk, X±k ). This
measure was first computed by Grigorchuk and Żuk in [59] for k = 2 and then by Dicks and
Schick in [35] and by Kambites, Silva and Steinberg in [74] for the more general case G o Z,
with G 6= {1} a finite group.

(#) µCay(Lk,X±k ) = (k − 1)2
∑

q≥2

1
kq − 1

( ∑

1≤p<q
(p,q)=1

δ2k cos( pq π)

)
.

4.5 General results on spider-web graphs

In 4.3.14 we proved that ~SN,1 are weakly isomorphic to Schreier graphs of the lamplighter
group L. Other spider-web digraphs are so far described as ~SN,M ' ~SN,1 ⊗ ~CM . In this
section we will show that ~SN,M is also a Schreier graph of L for each M,N . Then we
characterize which of the ~SN,M are transitive and give bound on the number of orbits in
~SN,M and in SN,M . Finally, we generalize to spider-web digraphs some statements that are
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known for de Bruijn digraphs: existence of Eulerian and Hamiltonian paths, the property of
being a line digraph and some facts about covering.

As before we fix a k ≥ 2 and omit to write it when it is not necessary. We will write N0
for {0, 1, 2, . . .} and N for {1, 2, . . . ,∞}. We also take X = {c̄i}k−1

i=0 (see (‡) on page 54) as
generating set for the lamplighter group L.

Spider-web graphs as Schreier graphs of lamplighter groups
In Theorem 4.3.14 we proved that the de Bruijn digraph ~BN is weakly isomorphic to a
Schreier graph of L by using line digraphs. Let us denote WN,1 := StabL(0N ). Then we have
the following.

Theorem 4.5.1. For all M ∈ N and N ∈ N0, the spider-web digraph ~SN,M is weakly
isomorphic to

~Sch(L,WN,M , X)
where WN,M = {g ∈WN,1 | expX(g) ≡ 0 (mod M)}.

Proof. Since ~BN is weakly isomorphic to ~ΓN , the spider-web digraph ~SN,M ' ~BN ⊗ ~CM is
weakly isomorphic to ~ΓN ⊗ ~CM which is a Schreier graph of L by Proposition 4.2.9 and the
description of WN,M follows.

Remark 4.5.2. Geometrically, we are here in the situation described in Remark 4.2.10, where
the action of L on ~CM is given by j.(

∏j
t=1(bitcb−it)rt · brb) = j + rb (mod M). Indeed,

bitcb−it = c̄it−1
0 c̄1c̄

−it
0 and therefore we have expX(

∏j
t=1(bitcb−it)rt · brb) = rb.

Given a graph, a group and a generating set, there could be a priori many different ways
to represent the graph as a Schreier graph of the group. It is easy to check that every g 6= 1
in L, can be written in a unique way as

∏j
t=1(bitcb−it)rt · brb , where j, rb, rt, it ∈ Z with

j ≥ 0 and 0 < rt < k for all 1 ≤ t ≤ j. This allows us to define a subgroup HN,M of L as
the following set:

HN,M :=




g =

j∏

t=1
(bitcb−it)rt · brb ∈ L

∣∣∣∣∣∣∣

rb ≡ 0 (mod M)

∀i, 1 ≤ i ≤ N,
∑

it
N≡i

rt ≡ 0 (mod k)




,

where the second sum is over all it ≡ i (mod N).

Theorem 4.5.3. For every M ∈ N, and every N ∈ N0, the spider-web digraph ~SN,M is
weakly isomorphic to

~Sch(L, HN,M , X
−1)

where X−1 = {x−1 | x ∈ X}.

Proof. Define the following permutations on the vertex set V of ~SN,M :

(x1 . . . xN , j).b := (xNx1 . . . xN−1, j − 1)
(x1 . . . xN , j).c :=

(
(x1 − 1)x2 . . . xN , j

)

where x1 − 1 is taken modulo k and j − 1 modulo M . The group G generated by b and c
acts on V .

An straightforward check shows that b and c satisfies the relations in the presentation
(†) (page 54) of L. Therefore G is a quotient of L, which implies that L acts too on V .
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Moreover, for the generating set X−1 = {c̄−1
i } there are exactly k edges in the digraph

of the action with initial vertex (x1 . . . xN , j): the one labeled by (c̄r)−1 = c−rb−1 having
(x2 . . . xN (x1 + r), j + 1) as final vertex. On other hand, in ~SN,M there are also exactly k
edges with initial vertex (x1 . . . xN , j): the one labeled by y having (x2 . . . xNy, j + 1) as
final vertex. Since vertex sets and adjacency relations (if we forget about labeling) are the
same, ~SN,M is weakly isomorphic to the digraph of the action of L on V with respect to the
generating set X−1. Moreover, this graph being connected, it is also weakly isomorphic to
the Schreier graph ~Sch(L, HN,M , X

−1), with HN,M = StabL(0 . . . 0, 0). A straightforward
calculation gives us HN,M .

This theorem directly implies its unoriented version: SN,M ' Sch(L, HN,M , X
±).

In [51] Grigorchuk and Kravchenko classified subgroups of L and gave a criterion for
normality.

We now recall these two results and identify HN,M and WN,M according to this clas-
sification. We then are able to see which of the subgroups are normal (in which case the
corresponding Schreier graphs are in fact Cayley graphs).

Recall that A = ⊕ZZ/kZ is the abelian part of L and that b acts on A by shift.

Lemma 4.5.4 ([51], Lemma 3.1). Let H be a subgroup of L. Then it defines the triple
(s,H0, v) where s ∈ N is such that sZ is the image of the projection of H on Z, H0 = H ∩A,
satisfying H0.bs = H0, and v ∈ A is such that vbs ∈ H. The v is uniquely defined up to
addition of elements from H0. For s = 0 one can choose v = 1L.

Conversely any triple (s,H0, v) with such properties gives rise to a subgroup of Lk. Two
triples (s,H0, v) and (s′, G0, v′) define the same subgroup if and only if s = s′, H0 = G0

and vH0 = v′G0. Moreover, H ⊆ G if and only if s′|s, H0 ⊆ G0 and v ≡ ∏s/s′

i=0 (v′.bis′)
(mod G0).

Lemma 4.5.5 ([51], Lemma 3.2). Let H be a subgroup of L. Then H is normal if and
only if the corresponding triple (s,H0, v), satisfies the additional properties that H0.b = H0,
v(v.b)−1 ∈ H0 and g(g.bs)−1 ∈ H0 for all g ∈ A.

Note that in [51] only the case of k prime is treated. However both lemmas remain true
for all k.

Proposition 4.5.6.

1. For all M ∈ N and N ∈ N0 the subgroup HN,M corresponds to the triple (M,H0, 1L),
where H0 = HN,M

0 is the following subgroup of A

H0 =





j∏

t=1
(bitcb−it)rt ∈ L

∣∣∣∣∣∣∣
∀i, 1 ≤ i ≤ N,

∑

it
N≡i

rt ≡ 0 (mod k)




.

For all N ∈ N0 the subgroup HN,∞, corresponds to the triple (0, H0, 1L).

2. For all M ∈ N and N ∈ N0 the subgroup WN,M corresponds to the triple (M,W 0, 1L),
with W 0 = WN,M

0 = WN,1 ∩ A. In particular, W 0 does not depend on M . For all
N ∈ N0 the subgroup WN,∞ corresponds to the triple (0,W 0, 1L).
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Proof. We first prove the proposition for HN,M . It is obvious that H ∩A = H0.
Take g =

∏j
t=1(bitcb−it)rt · brb in HN,M . The projection of g onto Z is rb, which is equal

to 0 (mod M). If M is finite, since bM belongs to HN,M , the projection of HN,M onto Z is
MZ. If M =∞, then the projection of HN,M onto Z is 0. Finally, 1LbM belongs to HN,M

as asked.
Now, for WN,M we first look at the case M = 1. Since b stabilizes (0 . . . 0), it belongs

to WN,M , the stabilizer of (0 . . . 0). Therefore, WN,1 corresponds to the triple (1,W 0, 1L).
For an arbitrary M , WN,M is the subgroup of WN,1 consisting of elements with total
exponent equal to 0 modulo M . Since bicb−i = bi−1c̄1b

−i, we have expXk(bicb−i) = 0 and
for any g =

∏j
t=1(bitcb−it)rt · brb ∈W1,M the total exponent of g is precisely rb. Therefore,

WN,M corresponds to the triple (M,W 0, 1L) if M is finite and to the triple (0,W 0, 1L) if
M =∞.

Corollary 4.5.7.

1. For all M ∈ N and N ∈ N0, the subgroup HN,M is normal if and only if N divides
M . In particular HN,∞ is normal for every N .

2. For all M ∈ N and N ∈ N0, the subgroup WN,M is normal if and only if N = 1.

Proof. First, we prove that H0
N,M .b is always equal to H0

N,M . Indeed, for all g ∈ A,
g =

∏j
t=1(bitcb−it)rt and we have g.b =

∏j
t=1(bit−1cb−it+1)rt . Hence, g belongs to H0

N,M if
and only if g.b belongs to H0

N,M . We also trivially have that 1(b1b−1)−1 = 1 always belongs
to H0

N,M . Therefore, HN,M is normal if and only if g(g.bM )−1 ∈ H0 for all g ∈ A.
Suppose that N does not divide M . Take g = c ∈ A. Then c(c.bM )−1 = c(bMcb−M )−1.

The sum
∑
it≡0 rt = 1 6≡ 0 (mod k) since k ≥ 2. Therefore c(c.bM )−1 /∈ H0

N,M , which implies
that HN,M is not normal.

On the other hand, suppose now that N dividesM . Then for all g =
∏j
t=1(bitcb−it)rt ∈ A,

we have

g(g.bM )−1 =
j∏

t=1
(bitcb−it)rt ·

j∏

t=1
(bit−Mcb−it+M )−rt

belongs to H0
N,M .

Now, in the case of WN,M , we have (0 . . . 0, 0).cbc−1b−1 = (01−11 · · · ± 1, 0). Therefore,
as soon as N ≥ 2, cbc−1b−1 does not belongs to W 0 and WN,M is not normal. For N = 1,
we have (x, i).b = (x, i+ 1) and (x, i).c = (x+ 1, i). Therefore,

W1,M =




g =

j∏

t=1
(bitcb−it)rtbrb

∣∣∣∣∣∣∣∣

rb ≡ 0 (mod M)
j∑

t=1
rt ≡ 0 (mod k)





is a normal subgroup.

In particular, this implies that for N > 1 dividing M , the subgroups HN,M and WN,M

are not conjugate (equivalently the Schreier graphs are not strongly isomorphic). On the
other hand, an easy check shows that HN,1 = WN,1. A careful look at the order of the
image of c in the corresponding action on the vertex set of ~SN,M shows that for M <∞ and
N > 1, HN,M and WN,M are nearly never conjugate (this can happen only if k divides all
the

(lcm(M,N)
j

)
for 1 ≤ j ≤ N − 1).

Proposition 4.5.6 (Part 1) and Corollary 4.5.7 imply the following.
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Theorem 4.5.8. For M = Nl, the spider-web digraph ~SN,Nl is weakly isomorphic to the
Cayley digraph of (

⊕Ni=1Z/kZ
)
o Z/NlZ

where the action of Z/NlZ on ⊕Ni=1Z/kZ is by shift, and with respect to the generating set
{bci}k−1

i=0 where b is a generator of Z/NlZ and c a generator of Z/kZ.
In particular, if we write Lk,N = Z/kZ o Z/NZ for the finite lamplighter group, we have

for N and l coprime,
~Sk,N,Nl ' ~Cay(Lk,N ×

(
Z/lZ

)
, {(c̄−1

r ,−1)}k−1
r=0)

which, for l = 1, gives
~Sk,M,M ' ~Cay(Lk,M , X−1)

and for N = 1
~Sk,1,M ' ~Cay(Z/kZ× Z/MZ, {(−r,−1)}k−1

r=0).
We also have

~Sk,1,∞ ' ~Cay(Z/kZ× Z, {(−r,−1)}k−1
r=0).

Proof. The graph ~SN,Nl is weakly isomorphic to the graph ~Sch(L, HN,Nl, X). Since HN,Nl

is normal, this graph is strongly isomorphic to the Cayley digraph of G = L/HN,Nl. We
know that G = 〈b, c〉 and that ck = 1 in G. Moreover, bNl and cbNc−1b−N belong to HN,Nl

and thus in G the relations bNl = 1 and cbN = bNc are true. Therefore, G is a quotient of

L = 〈b, c | ck, cbNc−1b−N , bNl, [c, bjcb−j ]; j ∈ N〉 ∼=
(
⊕Ni=1Z/kZ

)
o Z/NlZ

where the action of Z/NlZ is by shift. We have |L| = kN · N · l and |G| = kN · Nl (the
number of vertices of ~SN,Nl). This implies G = L.

If l and N are coprime, Z/NlZ ∼= Z/NZ× Z/lZ acts on ⊕Ni=1Z/kZ, with Z/NZ acting
by shift and Z/lZ acting trivially. Hence, L ∼= Lk,N × Z/lZ.

Generating sets are images of {c̄r} in L.
Finally, ~S1,∞ and ~Cay(Z/kZ×Z, {(−r,−1)}k−1

r=0) have the same vertex set: {1, . . . , k}×Z.
Moreover, in both graphs, there is an edge from (i, s) to (j, t) if and only if t = s+ 1.

Remark 4.5.9. It is interesting to observe that the family of spider-web digraphs ~Sk,N,M
interpolates between Cayley digraphs of direct products of finite cyclic groups and Cayley
digraphs of wreath products of finite cyclic groups, with the corresponding generating sets.

Observe however that more graphs Sk,N,M can a priori be weakly isomorphic to Cayley
graphs of some finite groups than those given in Theorem 4.5.8. For example, one can check
by hand that this is the case of S2,2,3, thought H2,2,3 is not normal.

Transitivity of spider-web graphs
We now investigate the vertex-transitivity of spider-web graphs. We already know from
the last subsection that if N divides M the spider-web graphs are weakly isomorphic to
Cayley graphs and therefore are weakly transitive. We will give a complete characterization
of transitivity for spider-web graphs, but before that we need a technical lemma.

Theorem 4.5.10. For every N ∈ N0 and every M ∈ N, the graphs ~SN,M and SN,M are
weakly transitive (i.e. is transitive by weak automorphisms) if and only if M ≥ N .

More precisely, the number of orbits of ~Sk,N,M under its group of automorphisms is
bounded from below by N

M and from above by max(1, kN−M ). On the other hand, if M < N ,
the number of orbits of Sk,N,M under its group of automorphisms is bounded from below by
max(2, N

2M ) and from above by kN−M .
71



4. De Bruijn graphs and generalizations

In particular, for M fixed the number of orbits of Sk,N,M is unbounded.
The upper bound for ~SN,M is sharp. This is the case for example for ~S2,2,1, ~S2,3,1 (see

Figure 4.3) and for ~S3,2,1 (see figure 4.12). Observe that any automorphism of ~SN,M induces
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Figure 4.12: The digraph ~S3,2,1. The vertex 01 cannot be send on the vertex 10 by an
automorphism of the digraph.

an automorphism of SN,M , but that an automorphism of SN,M does not necessarily come
from an automorphism of ~SN,M . Therefore, in order to prove the theorem we will successively
show that ~SN,M is transitive if M ≥ N , that if M < N the number of orbits of ~SN,M is at
most kN−M and then we will prove the two lower bounds for the number of orbits.

Lemma 4.5.11. If M ≥ N , then ~SN,M is transitive.

Proof. It is easy to check that for every M the function η on ~CM defined by η(i) := i + 1
(where the addition is taken modulo M) is an automorphism. Therefore, T := Id⊗η is an
automorphism of ~SN,1⊗ ~CM ' ~SN,M . It is even a strong automorphism for every M — even
for M smaller than N — since the labeling of ~SN,M comes from the labeling of ~SN,1 and the
fact that Id is a strong automorphism.

We now define an other function ψ on ~SN,M by the following formula on vertices:

ψ(x1 . . . xN , t) :=
{

(x1 . . . (xN−t + 1) . . . xN , t) if 0 ≤ t ≤ N − 1
(x1 . . . xN , t) else.
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4.5. General results on spider-web graphs

We define ψ on edges in the following way: the unique edge with initial vertex (x, t) and
label i is sent on the unique edge with initial vertex ψ(x, t) and label i if t 6≡ −1 (mod M),
or on the edge with label i+ 1 if t ≡ −1 (mod M). We claim that with this definition, ψ
is a weak isomorphism if M ≥ N . To prove that, it remains to check that for any edge e,
τ
(
ψ(e)

)
= ψ

(
τ(e)

)
. Since the definition of ψ depends on t, we have four different cases. The

first is when 0 ≤ t ≤ N − 2. The second is for t = N − 1. The third when N − 1 < t < M − 1
and the last one when t = M − 1. The first, second and fourth cases are easy computations
left to the reader. In the third case, ψ acts as the identity and there is nothing to prove.
Note that the only case where ψ does not preserve labeling is the fourth one and if M = N ,
then the third case does not exist and the second and the fourth cases are the same. We have

T−iψxiT i(0 . . . 0, 0) = T−iψxi(0 . . . 0, i)
= (0 . . . xi . . . 0, i)
= (0 . . . xi . . . 0, 0).

Therefore, for any vertex (x1 . . . xN , t) we have
(
T i ·

n∏

j=0
T−jψxjT j

)
(0 . . . 0, 0) = (x1 . . . xN , t),

which proves the transitivity when M ≥ N .

Lemma 4.5.12. The number of orbits of ~SN,M is at most max(1, kN−M ).

Proof. If M ≥ N , this follows from transitivity. For N > M , we will show that every vertex
of ~SN,M can be send by automorphisms on a vertex of the form (0 . . . 0yM+1 . . . yN , 0). In
order to do that we will use three different kind of automorphisms: translations, additions
and switches. Translations are power of T (strong automorphisms), additions are power of A
(weak automorphisms) and switches are power of Ut (weak automorphisms) with T = Id⊗η
as in the last lemma,

A(x1 . . . xN , i) :=
(
(x1 + 1) . . . (xN + 1), i

)

on vertices and A sends edges with label y to edges with label y + 1. For all 0 ≤ t ≤M − 1,
we define

Ut(x1 . . . xN , i) := (y1 . . . yN , i), yj =
{
xj + 1 if N − j + t ≡ i (mod M)
xj otherwise

on vertices and Ut sends the only edge with label y and initial vertex v = (x1 . . . xN , i) to
the edge with initial vertex Ut(v) and label y if t 6≡ i+ 1 (mod M) and y + 1 otherwise. It
is trivial that T and A are automorphisms of ~SN,M and it is an easy verification for Ut.

Every vertex of ~SN,M can be send on a vertex of the form (0x2 . . . xN , 0) by 〈T,A〉. Now,
if x2 6= 0, then U−x2

t (0x2 . . . xN , 0) = (00y3 . . . yN , 0) if and only if

N − 1 + t 6≡ 0 (mod M)
N − 2 + t ≡ 0 (mod M).

There exists a t satisfying these equations if and only if M ≥ 2. Repeating this argument we
obtain that if M < N , every vertex of ~SN,M can be send by 〈T,A, {Ut}M−1

t=0 〉 on a vertex of
the form (0 . . . 0yM+1 . . . yN , 0).
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4. De Bruijn graphs and generalizations

For the non-oriented case we may define one more automorphism: the flip F (x1 . . . xN , i) :=
(xN . . . x1, i). It is not an automorphism of ~SN,M if N ≥ 2 as it changes the orientation of
edges. Therefore, the number of orbits of SN,M may be strictly smaller than the number of
orbits of ~SN,M (it is the case for ~S2,3,1) but it may also be the same (it is the case for ~S2,2,1);
see Figure 4.3 for examples.

Lemma 4.5.13. The number of orbits of ~SN,M is at least N
M .

Proof. If N ≥ jM , then a path of length jM and derangement jM with initial vertex
(x1 . . . xN , 0) has final vertex (xjM+1 . . . xNy1 . . . yjM , 0), where yt are some integers modulo
k. Therefore, there exists a closed path of length jM with initial vertex (x1 . . . xN , 0)
consisting of edges of ~SN,M if and only if x1 . . . xN is jM periodic. In particular, for the vertex
v = (0jM−110jM−11 . . . , 0) there is a reduced closed path of length jM and derangement
jM with initial vertex v, but no reduced closed path of length iM and derangement iM for
0 < i < j. This implies that the vertices

(0M−110M−11 . . . , 0)
(02M−1102M−11 . . . , 0)

. . .

are not in the same orbits. But there is only bNM c such vertices. If M < N does not divide
N , then we had the vertex (0 . . . 01, 0) which is not jM periodic for every j. Therefore we
have dNM e vertices in distinct orbits and this gives us the wanted lower bound.

Lemma 4.5.14. For any d ∈ N0 and any vertices v and w in SN,M , there is a bijection
between closed reduced path of derangement 0 of length d with initial vertex v and the ones
with initial vertex w.

Proof. The bijection is easily seen on Sch(L, HN,M , X
±). Recall that we have

(x1 . . . xN , i).c̄r =
(
(xN − r)x1 . . . xN−1, i− 1

)
.

For any reduced path p with initial vertex (x1 . . . xN , i), there is a unique path q with initial
vertex (y1 . . . yN , j) with the same label l ∈ L. Since the derangement is 0, we have that

(z1 . . . zN , i).l = ((z1 + a1) . . . (zN + aN ), i)

for some integers ai. In particular, the final vertex of p is ((x1 + a1) . . . (xN + aN ), i), while
the final vertex of q is ((y1 + a1) . . . (yN + aN ), j). Therefore, p is closed if and only if all the
ai’s are equal to 0, if and only if q is closed.

Lemma 4.5.15. If M < N , the number of orbits of SN,M is at least max(2, N
2M ).

Proof. For j > 0 such that N ≥ jM + 1, let us denote by vj the vertex

(0jM−110jM−11 . . . , 0)

and, if M does not divides N , by v0 the vertex (0 . . . 01, 0). Hence, the vertex vj is jM
periodic, but not iM periodic if 0 < i < j and v0 is never iM periodic. We will show that
if 0 < i < j ≤ N

2M the number of closed reduced path of size iM with initial vertex vi is
strictly bigger than the number of such paths with initial vertex vj . This will implies that vi
and vj are not in the same orbit if i 6= j.
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A closed path of length iM in SN,M has derangement lM for some −i ≤ l ≤ i. Let us
denote by nl(v) the number of closed paths with initial vertex v and derangement lM . Since
there is an obvious bijection between paths with derangement l and paths with derangement
−l (taking the inverse path), we have nl(v) = n−l(v). By the previous lemma, n0(v) = n0(w)
for all v and w. We will show that for 0 < l < i ≤ N

2M we have nl(vi) = 0 and ni(vi) ≥ 1.
Hence, nl(vi) = nl(vj) = 0 if N

2M ≥ j > i. This implies that the total number of closed paths
of size iM with initial vertex vi is n0(vi) + ni(vi) which is strictly bigger than n0(vj), the
number of such paths with initial vertex vj .

Let p be a path of length iM and derangement lM with initial vertex (x1 . . . xN , 0).
Therefore, in p there is i+l

2 M “positive edges” (edges in SN,M ) and i−l
2 M “negative edges”.

Thus, p ends at a vertex of the form

(ylM+1 . . . y i+l
2 Mx i+l2 M+1 . . . xN− i−l2 MyN− i−l2 M+1 . . . ylM , 0)

Hence, the digits in position between i+l
2 M + 1 and N − i−l

2 M are translated, but their
value is not altered. There is N − i−l

2 M − ( i+l2 M + 1) + 1 = N − iM such digits. Therefore,
if i ≤ N

2M , there is at least one of this digit which has value 1 (the digit xd such that
d ∈ [ i+l2 M + 1, N − i−l

2 M ] is a multiple of iM). But that means that p ends on a vertex
with a 1 in position d− lM , therefore this vertex is not vi and p is not closed.

On the other hand, we have

vi.c̄r1 . . . c̄riM = (0iM−110iM−11 . . . r1r2 . . . riM , 0) = vi

for a suitable choice of c̄rj ’s. This implies that ni(vi) ≥ 1.
Finally, vi and v0 are never in the same orbit since n0(vi) = n0(v0) by the previous lemma

and ni(vi) ≥ 1 > 0 = ni(v0).

Line graphs, Eulerian and Hamiltonian cycles and coverings
The family of de Bruijn digraphs is well known to enjoy some nice graph-theoretic properties.
The aim of this subsection is to verify that the family of spider-web graphs share many of
them and can thus be indeed viewed as a natural extension of de Bruijn digraphs.

Proposition 4.5.16. For all M ∈ N and N ∈ N0, the spider-web digraph ~SN+1,M is
(weakly) isomorphic to the line digraph of ~SN,M .

Proof. This follows from the same result for de Bruijn digraphs (Lemma 4.3.2), the fact that
~SN,M is the tensor product ~BN ⊗ ~CM , Lemma 2.3.4 and the fact that ~CM is its own line
digraph.

Proposition 4.5.17. For all M ∈ N and N ∈ N0, the spider-web digraph ~SN,M is Eulerian
(there exists a closed path p consisting of edges of ~SN,M that visits each edge exactly once)
and Hamiltonian (there exists a closed path that visits each vertex exactly once)

Proof. The directed graph ~SN,M is finite, connected and for every vertex v in ~SN,M the
number of outgoing edges is equal to the number of ingoing edges. Therefore, ~SN,M is
Eulerian.

For N ≥ 1, the graph ~SN,M is isomorphic to the line digraph of ~SN−1,M . This line
digraph is Hamiltonian since ~SN−1,M is Eulerian. Finally, ~S0,M is a “thick” oriented circle:
the vertex set is M and for every vertex i there is k edges from i to i + 1. This graph is
obviously Hamiltonian.
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4. De Bruijn graphs and generalizations

We proved that ~SN,M is Eulerian and Hamiltonian as a digraph. That is, the closed path
in question consists only of edges of ~SN,M . This trivially implies that SN,M is Eulerian and
Hamiltonian. Indeed, for a digraph ~Θ, being Eulerian (or Hamiltonian) as a digraph is a
stronger property that ~Θ being Eulerian (or Hamiltonian) as a graph. Finally, we generalize
Corollary 4.3.16 and show that spider-web digraphs form towers of graphs coverings, both in
N and, in a certain sense, in M .

Proposition 4.5.18. For all M ∈ N and N ∈ N, the digraph ~SN,M (weakly) covers
~SN−1,M .

For every i ∈ N, the digraph ~SN,iM (weakly) covers ~SN,M .

Proof. By Corollary 4.3.16, we know that ~BN+1 covers ~BN and it is easily seen that ~CiM
covers ~CM . A simple application of Lemma 2.3.2 gives the desired result.

Note that any covering of digraphs ϕ : ~∆1 → ~∆2 naturally induces a covering between
the underlying graphs.

4.6 Complexity and spectral zeta function

In this section we compute the complexity (the number of covering trees) of both spider-web
digraphs and spider-web graphs. For spider-web graphs we also show the convergence of the
spectral zeta functions. After that, we turn our attention to spectral zeta function of spider-
web graphs. We compute them and show that they converge to the spectral zeta function of
Cay(Lk, X±k ) ' DL(k, k). This allows us to compute the Fuglede-Kadison determinant of
DL(k, k). Finally, we make a breve comment on the Green function of DL(k, k).

Complexity of spider-web digraphs
Definition 4.6.1. An oriented rooted spanning tree of ~Γ is a subdigraph containing all of the
vertices of ~Γ, having no directed cycles, in which one vertex, the root, has outdegree 0, and
every other vertex has outdegree 1. The number of such trees is called the complexity of ~Γ
and is written κ(~G). The number of such trees rooted at v a particular vertex of Γ is κ(~G, v).

The asymptotical complexity of a family of digraphs ~Γn is defined by κas := lim log
(
κ(~Γn)

)

|V (~Γn)| .

We know that the digraph ~SM,N is (weakly) isomorphic to the oriented line graph
L( ~SM,N−1) and therefore to LN ( ~SM,0) (the iterated oriented line graph). On the other hand,
~S1,0 is isomorphic to ~Rk the rose with k petals and, for M ≥ 2, ~SM,0 is isomorphic to a thick
oriented circle: the vertices are {1, . . . ,M} and for each i there is k edges from i to i + 1
(mod M).

Since in ~SM,0 every vertex has k-outgoing edges and k-ingoing edges, by Levine’s formula
for the complexity of line digraphs [87], we have κ( ~SM,N ) = κ( ~SM,0)k(kN−1)M . We also have
κ( ~S1,0) = 1 and for M ≥ 2, κ( ~SM,0) = M · kM−1 (we choose the starting point and for each
segment of the circle one of the k edges). Since ~SM,N is Eulerian, κ(~G, v) does not depend
on v [87]. Therefore, direct computations give us the following

Proposition 4.6.2. For spider-web digraphs and for k fixed, we have

κ( ~SM,N ) = M · kkNM−1 κ( ~SM,N , v) = kMkN−(N+1)

κas( ~SM,N ) = log(k)

where the limit does not depend on the way we choose to take the limit MkN →∞.
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For ~Γ = (V, ~E) a strongly connected finite digraph a v a vertex, define ∆v by
∑
ι(e)=v(τ(e)−

v) ∈ Z[V ], and let Lw ≤ Z[V ] be the subgroup generated by w and {∆v}v 6=w. The critical
group (or sandpile group) of ~Γ at v is Z[V ]/LV . If ~Γ is Eulerian, then this group does not
depends on v and is noted Crit(~Γ). Observe that the cardinality of Crit(~Γ) is exactly κ(~Γ).

The following proposition generalizes [87] for every prime k and every M .

Proposition 4.6.3. For every k we have Crit( ~SM,0) ∼= (Z/kZ)M−1. If moreover k is prime,
then

Crit( ~SM,N ) ∼=
N−1⊕

j=1
(Z/kjZ)M(kN−j+1−2kN−j+kN−j−1) ⊕ (Z/kNZ)M(k−2) ⊕ (Z/kN+1Z)M−1

Proof. The formula for M = 1 and N = 0 directly follows from the definition. For M ≥ 2
and N = 0, we have

Lv = 〈v, k(v1 − v), . . . , k(vM−1 − vM−2), k(v − vM−1)〉
= 〈v, kv1, . . . , kvM−1)〉

which gives us Crit( ~SM,0) ∼= (Z/kZ)M−1.
Suppose now that k is prime. Then Crit( ~SM,N ) =

⊕l
j=1(Z/kjZ)aj for some nonnegative

integers l and a1, . . . , al satisfying
∑l
j=1 jaj = MkN − (N + 1). Moreover, by [87], we have

k

l⊕

j=1
(Z/kjZ)aj =

l−1⊕

j=1
(Z/kjZ)aj+1 ∼= kCrit( ~SM,N ) ∼= Crit( ~SM,N−1)

That is, for j ≥ 2, we have aj(N) = aj−1(N−1). For N = 1, this gives a2 = M−1, and using
the relation on the aj we have a1 = Mk− 2− 2(M − 1) = M(k− 2). Similarly, for N = 2, we
have a3 = M − 1, a2 = M(k − 2) and a1 = M(k2 − 2k + 1). Finally, by induction we obtain
aN+1 = M −1, aN = M(k−2) and for 1 ≤ j < N , aj = M(kN−j+1−2kN−j +kN−j−1).

Complexity of spider-web graphs
If Γ is a graph (i.e. a non-oriented graph), then we define its complexity κ(Γ) to be the
number of its non-rooted spanning trees. The asymptotical complexity of a family of graphs

is κas := lim log
(
κ(Γn)

)
|V (Γn)| .

Levine criterion on line graphs can a priori be used for the unoriented case SM,N . But
the graph SM,N is not isomorphic to the line graph of SM,N−1, we therefore need another
approach.

Let Lis(z) :=
∑
j≥1

zj

js be the polylogarithm. Note that, for all s with Re(s) > 1, we have
Lis(1) = ζ(s) the Riemann zeta function.

Proposition 4.6.4. For spider-web graphs and for k fixed, we have

κ(SM,N ) = MkM−1(N + 1)M(k−1)
N−1∏

i=1

(
ki(i+ 1)

)M(k−1)2kN−1−i

κas(SM,N ) = log(k) + (k − 1)2
∑

i≥2

log(i)
ki

= log(k)− (k − 1)2 d

ds
Lis
(1
k

)∣∣∣
s=0

where the limit does not depend on the way we choose to take the limit MkN →∞.
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Proof. We will us the Hutschenreuther statement who says that for any r-regular graph Γ
with n vertices, we have

κ(Γ) = 1
n

n∏

i=2
(r − λi) = 1

n
χ′Γ(r)

where the r = λ1 > λ2 ≥ · · · ≥ λn are the eigenvalues of the adjacency matrix and χΓ is the
characteristic polynomial. The left equality is well-known in the following form :

κ(Γ) = 1
n

n∏

i=2
µi

where 0 = µ1 < µ2 ≤ · · · ≤ µn are the eigenvalues of the Laplacian ∆. Since Γ is r-regular,
we have µi = r − λi for all i. Therefore, χ′Γ(r) = χ′∆Γ

(0) =
∏n
i=2(µi) where χ∆Γ is the

characteristic polynomial of the Laplacian.
The case M = 1 is treated in [116] and gives

κ(Bk,N ) = (N + 1)k−1
N−1∏

i=1

(
ki(i+ 1)

)(k−1)2kN−1−i

By Section 4.4, we have

χSM,N (x) = P (x)MQM (x), QM (x) =
M∏

l=1
(x− 2k cos

(
2πl
M

)
)

where P (x) does not depend onM and Q1(x) = x−2k. Therefore, κ(SM,N ) = κ(BN )Mκ(CM )
where CM is the “thick cycle” of length M with k edges between two consecutive vertices. A
direct computation gives the formulas for κ(SM,N ) and κas(SM,N ).

Spectral zeta function and Fuglede-Kadison determinant
For a graph (finite or infinite) Γ with spectral measure µ according to the (non-normalized)
Laplace operator ∆,the spectral zeta function of G is define as the integral

ζΓ(s) :=
∫

Spec(∆)\{0}

λ−sdµ(λ)

Spectral zeta functions are related to complexity. For a finite connected graph Γ = (V,E),
the Kirchhoff’s formula (also known as matrix-tree theorem) says that

κ(Γ) · |V | = 1
n

n∏

i=2
µi = d̃et(∆Γ) = e−|V |·ζ

′
Γ(0)

where the µi are the eigenvalues of the Laplacian. For infinite graph Γ, e−ζ′Γ(0) can be
understood in terms of the so-called Fuglede-Kadison determinant of the Laplacian, see [88].

If Γ is r regular, then µ(A) = ν(r −A) where ν is the spectral measure according to the
adjacency operator. If (Γn)n is a sequence of finite graphs converging to a vertex-transitive
graph Γ, then the νn’s weakly converge to ν and for all x ∈ R, νn({x}) tend to ν({x}), see [1].
Thus, if the Γn are r-regular, the µn’s weakly converge to µ and for all x ∈ R, µn({x}) tend
to µ({x}). Moreover, in this case, the support of µn and µ are in [0, 2r]. This implies that∫ 2r

0 f(x)dµn(x) converge to
∫ 2r

0 f(x)dµ(x) for all function f : [0, 2r] → R continuous and
bounded. For all ε > 0, the function λ−s is continuous and bounded on [ε, 2r]. If moreover,
s < 0, then it is bounded and continuous on [0, 2r]. We therefore have the following lemma
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Lemma 4.6.5. Let (Γn)n∈N be a family of regular finite graphs with limit a transitive graph
Γ. Suppose that s ∈ R is such that we have

∫ ε
0 λ
−sdµΓ(λ) ε→0−−−→ 0 and

lim sup
n

( ε∫

0

λ−sdµΓn(λ)
)

ε→0−−−→ 0.

Then
ζΓn(s) −→ ζΓ(s) and κas(Γn) = −ζ ′Γ(0)

The second equality was obtained in a more general context by Lyons in [88].

Corollary 4.6.6. The spectral zeta functions of Sk,M,N converges to the spectral zeta function
of the Cayley graph of Lk and

κas(Sk,M,N ) = log(2k) + (k − 1)2
∑

q≥2

1
kq − 1

( ∑

1≤p<q
(p,q)=1

log(1− 1 cos(p
q
π))
)

= log(k)− (k − 1)2 d

ds
Lis
(1
k

)∣∣∣
s=0

Corollary 4.6.7. The Fuglede-Kadison determinant of the Laplacian of ~Cay(Lk, Xk) '
DL(k, k) is equal to

k · e
−(k−1)2 d

ds Lis
(

1
k

)∣∣∣
s=0

Finally, we obtain following strange formula

−
∑

j≥1

log(j)
kj

=
∑

q≥2

2
kq − 1

( ∑

1≤p<q
(p,q)=1

∑

j≥1

cos(pq jπ)
j

)

where we used the following facts: log(1 − cos(x)) = log(2 sin2(x/2)) and log(sin(x)) =
−∑t≥1

cos(2tx)
t − log(2). Let Γ be a graph. We define pt(v; Γ) as the probability that the

simple random walk on Γ starting at v ends at v after t steps and the return probability
generating function as

G (z; Γ) =
∑

t≥0
pt(v;G)zt

It follows from definitions that
1∫

0

G(z)− 1
z

dz =
∑

t≥1

pt(v)
t

Moreover, in [88], Lyons proved that for (Γn)n a sequence of graphs with limit Γ a vertex-
transitive locally finite graph, the following holds

lim
n→∞

log(κ(GN ))
|VN |

= κas = log(degG(v0))−
∑

t≥1

pt(v0)
t

for all v0 in G.
For spider-web graphs, this gives

1∫

0

G(z; Cay(Lk))− 1
z

dz = log(2) + (k − 1)2 d

ds
Lis
(1
k

)∣∣∣
s=0
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4.7 Rauzy graphs

De Bruijn (di)graphs represent overlaps between strings of symbols and are therefore related
to the full shift on Z. A natural generalization of de Bruijn digraphs that is related to
subshifts on Z is the Rauzy digraphs corresponding to subshifts of finite type.

The aim of this section is to compute the limit of sequences of Rauzy graphs. Theorem
4.7.15 deals with local limit while Theorem 4.7.18 gives a description of the Benjamini-
Schramm limit when it exists. Theorem 4.7.21 gives sufficient conditions for the existence of
a Benjamini-Schramm limit. We also study in Proposition 4.7.33 the spider-web version of
Rauzy graphs.

The main tools are Theorem 4.7.9 which makes a link between horospheric product of
trees and infinite version of Rauzy graphs, and the definition of a (non-regular) rooted tree
(see Definition 4.7.10) which serves as an analogue of the k-regular rooted tree on which Lk
acts.

Let A∗ be the set of finite words over the alphabet A = {0, . . . , k − 1} (that is the free
monoid on A) and AN, respectively A−N, be the set of right, respectively left, infinite
sequences on A. Let F be a subset of A∗, we think of F as forbidden words. Then ANF is the
set of words of length N that do not contain elements of F as subwords. Similar definitions
hold for A∗F , AN

F and A−N
F .

Definition 4.7.1. For F in A∗ and N an integer, the corresponding labeled Rauzy digraph
is ~RF,k,N := (ANF ,AN+1

F ), where an edge (x1 . . . xN+1) has initial vertex (x1 . . . xN ), final
vertex (x2 . . . xN+1) and label xN+1.

0 1 00

01

10

000

001

100

010 101

Figure 4.13: Rauzy digraphs for k = 2, N ∈ {1, 2, 3} and F = {11}. Black edges are labeled
by 0 and cyan edges are labeled by 1.

It directly follows from the definition that ~RF,k,N is a subgraph of ~Bk,N , with equality if
and only if F = ∅.

If F is finite, then the corresponding subshift is said to be of finite type. If F is a subshift
of finite type over a finite alphabet A on k letter and n is the biggest length of a word in
F , for all N ≥ n, the digraph ~RF,k,N is the line digraph of ~RF,k,N−1 — see Lemma 4.3.2
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and Proposition 4.7.30. Therefore, if we take A′ as the vertex set of ~RF,k,n−1 and F ′ as the
missing vertices in ~RF,k,n−1, we have for all N ≥ n+ 1 that the digraphs ~RF,k,N+n−2 and
~RF ′,k′,N are isomorphic. In the following, we will always assume that F ⊆ A2 is fixed, and
will omit to write k when it is not necessary. In this case, ~RF,N is a complete subdigraph of
~BN ; i.e. if v and w are two vertices of ~RF,N , then the number of edges from v to w is the
same in ~RF,N and in ~BN .
Definition 4.7.2. Let F ⊆ A2. The associated matrix AF = (aij)i,j is defined by aij = 1
if ij /∈ F and aij = 0 otherwise. The digraph associated to F is the ~ΓF , the digraph with
adjacency matrix BF := AF ⊗AT

F .
Observe that there is a bijection between F ⊆ A2 and k-by-k matrices with coefficients

in {0, 1}.
By definition, the matrix BF is non-negative. This matrix will turn out to be very useful

in the study of the limit of Rauzy digraphs. Recall that such a matrix is said irreducible if the
corresponding digraph is strongly connected and of period p if in the corresponding digraph,
the gcd of length of closed paths is equal to p. If the period is equal to 1, then the digraph
is said to be aperiodic We say that such a matrix is weakly irreducible if the corresponding
digraph is connected and the decomposition into strongly connected component is as follow.
One “big” connected component and small connected components consisting of a vertex v
such that there is a path from v to the big connected component.

Weakly irreducible and aperiodic finite digraphs are example of digraphs that admits
an equilibrium distribution. That is, an eigenvector vector v0 of norm 1 such that every
positive vectors converge to v0. For irreducible and aperiodic finite digraphs, this is a
well-known result that follows from Perron-Frobenius Theorem. For weakly irreducible,
aperiodic digraph, this is a consequence of the fact that after a finite number of steps we are
in the irreducible part (the “big” connected component). The corresponding eigenvalue is
called the Perron-Frobenius eigenvalue.

We showed that the limit of de Bruijn digraphs is the Cayley digraph of the Lamplighter
group. This graph is also isomorphic to the horospheric product of two regular oriented trees.
We will show that in general, the limit of ~RF,N is a probability measure concentrated on
horospheric product of two (non-necessarily regular) oriented trees.

In order to do that, we define “infinite Rauzy graphs” and we will show that they are
isomorphic to horospheric product of two oriented trees.
Definition 4.7.3. For F ⊆ A2, we define an infinite labeled (non connected) digraph ~RF,∞
with vertex set AN

F × A−N
F and with an edge labeled by i from (x1x2 . . . ; . . . x−2x−1) to

(x2x3 . . . ; . . . x−1i). We also define the subdigraph ~R′F,∞ ⊆ ~RF,∞ as the complete subdigraph
on the vertex set consisting of paires (ξ, η) such that at least one of the sequence is not
eventually periodic.

We have that ~R′F,∞ is a disjoint union of some connected components of ~RF,∞. We will
show that, under some mild assumptions, any connected component of ~R′F,∞ is a limit of
the sequence (~RF,n)n≥1. Before doing that, we show that connected components of ~RF,∞
are horospheric products of tree.
Definition 4.7.4. Let F ⊆ A2 be such that AN

F is non empty and let ξ = (x1x2 . . . ) be an
element of AN

F . Then ~TF,ξ is the cofinal tree of ξ: i.e. the directed tree of elements of AN
F

that are cofinals with ξ.
If η = . . . x−2x−1 is an element of A−N

F , the tree ~TF,η is the coinitial tree of η: i.e. the
directed tree of elements of A−N

F that are coinitial with η.
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From the point of view of symbolic dynamics, the tree ~TF,ξ consists of all trajectories of
the shift AZ that share a “common direction”.

The tree ~TF,ξ can be construct explicitly as follow. Start with an infinite ray, directed
upstair, where vertices are labeled by x1, x2, . . . . Under each vertex v already constructed
and labeled by x, for each i ∈ A such that ix /∈ F , if there is not already a vertex with label
i under v, attach a new vertex with label i. Repeat this construction infinitely many time to
obtain a tree. Finally, we put an orientation on TF,ξ such that each edge is going up and we
label each edge by its initial vertex. For ~TF,η, start with an infinite ray, directed upstair,
where vertices are labeled by x−1, x−2, . . . . Under each vertex v already constructed and
labeled by x, for each i ∈ A such that xi /∈ F , if there is not already a vertex with label i
under v, attach a new vertex with label i. Repeat this construction infinitely many time to
obtain a tree. Finally, we put an orientation on TF,η such that each edge is going down and
we label each edge by its terminal vertex. See Figure 4.14 for an example.

An important but rather obvious property of ~TF,ξ is that all paths consisting of positive
edges are labeled by elements in A∗F . Similarly, infinite rays are labeled by elements in AN

F

and biinfinite rays are labeled by elements in AZ
F .

1

1

21

2

2

20

0

1

21

0

10

0

0

20

2

2

21

1

1

10

0

20

Figure 4.14: Part of the tree ~T{01,12,20},021... and ~T{01,12,20},...021 on the alphabet {0, 1, 2}.
Labeling of the edges are not shown. In blue, the image of w = (11 . . . ; . . . 0211).

For an infinite tree T , and a right infinite ray ξ, it is possible to define the Busemann
rank function h : V (T )→ Z by h(v) := d(pξ(v), ξ1)−d(pξ(v), v), where pξ(v) is the projection
of v onto ξ. This naturally endows T with an orientation: the initial vertex of an edge
between v and w is the vertex with the lower Busemann rank. Observe that if T = ~TF,ξ, then
the orientation coming from the Busemann rank function with respect to ξ is the original
orientation of ~TF,ξ. If η is a left infinite ray, we define h by h(v) := −d(pη(v), η1)+d(pη(v), v).
Definition 4.7.5. Let (T1, ξ) be a pair consisting of a infinite tree with a right infinite ray
and (T2, η) be a pair consisting of a infinite tree with a left infinite ray. The horospheric
product (also called horocyclic product) (T1, ξ) hO (T2, η) of (T1, ξ) and (T2, η) is digraph with
vertex set {(v, w) ∈ V (T1)× V (T2) | h(v) = h(w)}. There is an edge from (v, w) to (x, z) if
and only if there is an edge from v to x and an edge from w to z, for the orientation coming
from the Busemann rank function. This digraph is naturally rooted at (ξ1, η1).

If T2 is a labeled graph, then the horospheric product is a labeled digraph where the label
of (e, f) is the label of f .
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4.7. Rauzy graphs

A direct consequence of the definition is that (T1, ξ) hO (T2, η) is a connected component
of the digraph (T1, ξ)⊗ (T2, η). Observe that if T1 and T2 are labeled, we may define a label
on (T1, ξ) hO (T2, η) either by the label of T1, or by the label of T2 or by the product of the
labels. Labeling by T1 is related to the initial vertex, while labeling by T2 is related to final
vertex, hence our choice by analogy with the labeling of Rauzy digraphs.

Horospheric product of regular trees of degree n+ 1 and m+ 1 are usually studied under
the name of Diestel-Leader graphs and noted ~DL(n,m). In [37], Diestel and Leader showed
that for all n and m these graphs are vertex-transitive, that ~DL(n, n) is isomorphic to the
Cayley digraph of Ln with generating set {c̄r}k−1

r=0 and conjectured that for n 6= m, DL(n,m)
is not quasi-isometric to any Cayley graph. This was proven by Eskin, Fisher and Whyte in
[39]. Since ~DL(k, k) is isomorphic to the Cayley graph of Lk, it is the limit of the sequence
( ~Bk,N )k. Therefore, horospheric products may provide the right framework to study limit of
Rauzy graphs.

Lemma 4.7.6. Let (ξ, η) = (x1x2 . . . ; . . . x−2x−1) be a vertex in ~R′F,∞. Let p and q be two
paths with initial vertex v and with same final vertex. Then, der(p) = der(q).

Proof. Observe that positive edges shift both sequences x1x2 . . . and . . . x−2x−1 to the left
(and change a finite number of digits), while negative edges shift the sequence to the right.

Therefore, if τ(p) = τ(q) but der(p) 6= der(q), both sequences ξ and η are eventually
periodic, which is absurd.

Definition 4.7.7. Let v be a vertex in ~R′F,∞. We define the associated rank function:
rkv : (~R′F,∞, v)0 → Z by rkv(w) = der(p) where p is any path from v to w.

By the last lemma, this is well defined. The following formula directly follows from
definitions and will be useful later.

Lemma 4.7.8. Let w be a vertex in (~R′F,∞, v)0. If rkv(w) ≥ 0, we have

w = (y1+rkv(w) . . . ynvn+1 . . . ; . . . v−my−m+1 . . . y−1z1 . . . zrkv(w))

for some yj’s and zj’s in A, while if rkv(w) ≤ 0 we have

w = (z1 . . . z− rkv(w)y1 . . . ynvn+1 . . . ; . . . v−my−m+1 . . . y−1+rkv(w)).

We are now able to show the link between Rauzy graphs and horospheric products.

Theorem 4.7.9. For each vertex v = (ξ, η) in ~R′F,∞, there is a rooted strong isomorphism
between (~R′F,∞, v)0 and the horospheric product TF,ξ hO TF,η.

Proof. For a vertex x in TF,ξ, the projection of x on ξ is noted by pξ(x).
Let w be a vertex in (~R′F,∞, v)0. By the last lemma, if rkv(w) ≥ 0, then w determines a

vertex in TF,ξ: the unique vertex x such that pξ(x) = vn+1 and the label of vertices between
x and vn+1 is given by y1+rkv(w) . . . yn. This also determines a vertex in TF,η: the unique
vertex y such that pη(y) = v−m and the label of vertices between x and vn+1 is given by
y−m+1 . . . y−1z1 . . . zrkv(w). Under this correspondence, we have

h(x) = n− (n− rkv(w)) = rkv(w)
h(y) = −(m− 1) + (rkv(w) +m− 1) = rkv(w)

A similar argument takes care of the case rkv(w) ≤ 0.
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4. De Bruijn graphs and generalizations

Hence, we have a function ϕ from vertices of (~R′F,∞, v)0 to vertices of TF,ξ hO TF,η. By
definition, ϕ preserves root and is injective.

In ~R′F,∞, there is an outgoing edge e from w with label i if and only if w−1i does not
belongs to F , if and only if in TF,ξ hO TF,η there is an outgoing edge f from ϕ(w) with label
i. Moreover, in this case, the terminal vertex of e is (w2 . . . ; . . . w−1i) which is sent by ϕ to
the terminal vertex of f . Therefore, the function ϕ naturally extends to a labeled graph
homomorphism, which is thus locally bijective on outgoing edges. The injectivity of ϕ implies
that it is locally injective and thus locally injective on ingoing edges.

It remains to show that ϕ is locally surjective on ingoing edges. Indeed, in this case ϕ is
locally bijective and hence surjective. If w is a vertex in ~R′F,∞, then the number of ingoing
edges is |{i | iw1 /∈ F}|, which is exactly the number of ingoing edges for ϕ(w). Since ϕ is
locally injective on ingoing edges, it is also locally bijective on ingoing edges.

For an illustration of the proof, see Figure 4.14. It shows the two oriented tree correspond-
ing to v = (021 . . . , . . . 021) and in blue the vertices corresponding to w = (1v3 . . . ; . . . v−11).
This w is connected to v by at least two paths in the underlying graph, given by

v
1−→ (v2 . . . ; . . . v−11) j−→ (v3 . . . ; . . . v−11j) j←− w

for j ∈ 0, 1.
Now that we have a description of connected components of ~R′F,∞ as horospheric products,

we are going to investigate the relations between the ~RF,n’s and ~R′F,∞. In order to do that,
we are going to construct a labeled rooted tree where (some of the) vertices of level n will
correspond to vertices of ~RF,n.
Definition 4.7.10. Let F ⊆ A2 be a set of forbidden words. The associated infinite rooted
tree TF is constructed by “insertion in the middle”. More precisely, it is defined inductively
on level as follows. The root is the empty set. Every vertex x1 . . . x2n of level 2n has as
children all the x1 . . . xnixn+1 . . . x2n such that xni /∈ F . On the other hand, every vertex
vertex x1 . . . x2n+1 of level 2n+ 1 has as children all the x1 . . . xn+1ixn+2 . . . x2n+1 such that
ixn+1 /∈ F . The vertices in A∗F are called good vertices and the ones not in A∗F the bad
vertices.

Observe that in a bad vertex x1 . . . xn, the only forbidden word that appears is in the
middle, i.e. is xdn2 exdn2 e+1. See Figures 4.15 and 4.16 for examples.
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Figure 4.15: The top of the tree T{11} on the alphabet {0, 1}. Bad vertices are parenthesized.
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By construction, good vertices of level n are in one-to-one correspondence with vertices of
~RF,n. On the other hand, infinite rays in TF are parametrized by a pair of infinite sequences
(x1x2 . . . ; . . . x−2x−1) and are in one-to-one correspondence with vertices (ξ, η) in ~RF,∞.
Definition 4.7.11. Let v be a vertex in ~R′F,∞ and r ∈ N an integer. For all n ≥ 2r+ 2, define
a function on vertices

πn = πn,r : Ball~R′
F,∞

(v, r)→ ~R∅,n

w = (w1 . . . ; . . . w−1) 7→ (w1 . . . wdn2 e−rkv(w)w−bn2 c−rkv(w) . . . w−1)

Lemma 4.7.12. Let v ∈ ~R′F,∞. For all n ≥ 2r + 2, the function πn

1. Is well defined and has values in Ball~R∅,n(πn(v), r);

2. Naturally extends to a strong digraph homomorphism;

3. Is locally injective;

4. Is locally bijective if vdn2 ev−bn2 c /∈ F ;

5. We have Im(πn) = Ball~RF,n(πn(v), r) if and only if vdn2 ev−bn2 c /∈ F .

Proof. We will prove the assertions for 2n, in this case n = d 2n
2 e = b 2n

2 c ≥ r+ 1. The proofs
for 2n+ 1 are similar.

Since w is at distance at most r from v, it has rank between −r and r. Hence, π2n is
well defined.

If there is an edge labeled by i with initial vertex w = (w1 . . . ; . . . w−1), then it has final ver-
tex u = (w2 . . . ; . . . w−1i) and der(u) = der(w) + 1. Therefore, these vertices are send respec-
tively onto (w1 . . . wn−rkv(w)w−n−rkv(w) . . . w−1) and (w2 . . . wn−rkv(w)w−n−rkv(w) . . . w−1i).
Hence, there is a natural extension of π2n to a strong digraph homomorphism. This directly
implies that it has values in Ball~R∅,2n(π2n(v), r).

The local injectivity for outgoing edges follow from the fact that π2n preserves the labeling
and that for each vertex there is at most one outgoing edge with label i. On the other
hand, for any vertex w ∈ ~R′F,∞, the set of incoming edges (they all have label w−1) is
{(jw1 . . . ; . . . w−2 | jw1 /∈ F}. Since 2n ≥ 2r + 2, these edges are sent onto j . . . w−2 which
are pairwise distinct.

If vnv−n is in F , then π2n(v) is not in A∗F . On the other hand, if vnv−n is not in
F , we have Im(π2n) ⊆ ~RF,2n. Indeed, in this case, a vertex w in Ball~RF,∞(v, r) is of
the form (∗ · · · ∗ vr+1 . . . vn . . . ; . . . v−n . . . v−r−1 ∗ · · · ∗) and is therefore send onto ∗ · · · ∗
vr+1 . . . vnv−n . . . v−r−1 ∗ · · · ∗. Since w belongs to ~RF,∞, there is no forbidden words in
∗ · · · ∗ vr+1 . . . vn and in v−n . . . v−r−1 ∗ · · · ∗ and vnv−n is not forbidden by assumption.

It remains to show that if vnv−n is not in F , then π2n is locally surjective. Indeed, in
this case π2n is locally bijective and hence surjective. If w is a vertex in ~RF,∞, then the
number of outgoing edges is |{i | w−1i /∈ F}|, which is exactly the number of outgoing edges
for π2n(w). The same kind of relation holds for ingoing edges. Since π2n is locally injective,
it is therefore locally bijective.

We want to prove that the sequence of
(
~RF,n, πn(v)

)0’s (or at least a subsequence of it)
locally converges to

(
~RF,∞, v

)0 for n going to infinity. Therefore, we want to prove that for
all r, there exists n big enough such that πn is an isomorphism onto Ball~RF,n(πn(v), r). That
is, πn injective and, by the last lemma, vdn2 ev−bn2 c is not in F .
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Lemma 4.7.13. For all vertex v of ~R′F,∞ and all r, there exists n0 such that for all n ≥ n0,
the function πn is injective.

Proof. Let w and u be two distinct vertices in the ball or radius r around v. Suppose that
rkv(w) = rkv(u) = i ≥ 0. In this case we have

w = (y1+i . . . yrvr+1 . . . ; . . . v−r−1y−r . . . y−1z1 . . . zi)

and a similar formula for u. This implies that wj = uj for all j ≥ r − i and all j ≤ −r − i,
and therefore that there exists −r− i ≤ j ≤ r− i such that wj 6= uj . By definition of πn, we
have πn(w) 6= πn(u) as soon as bn2 c ≥ r, i.e. as soon as n ≥ 2r. If rkv(w) = rkv(u) = i ≤ 0,
a similar proof gives the same result.

Suppose now that rkv(u)− rkv(w) = i 6= 0. By Lemma 4.7.8, if πn(u) = πn(w), then for
all r < j ≤ bn2 c − i we have vj = vj+i and v−j = v−j−i. That is, between the r + 1th and
the bn2 cth digit, both sequences (v1v2 . . . ) and (v−1v−2 . . . ) are periodic of period i. Since
at least one of this sequence is not eventually periodic, there exists ni(v) such that for all
n ≥ ni(v), we have πn(u) 6= πn(w).

Finally, for n0 = 2 ·max−r≤i≤r{r + 1, ni} we have that πn0 is injective and so is πn for
n ≥ n0.

Observe that in the proof we can chose n0 = 2j, where j is the smallest integer j ≥ r + 1
such that at least one of the sequences (vr+1vr+2 . . . vj) or (v−r−1v−r−2 . . . v−j) is not r!
periodic. In order to obtain a better, but less useful in practice, estimate, one can replace
the r! periodicity by lcml≤r{l} periodicity.

Corollary 4.7.14. Let v = (v1 . . . ; . . . v−1) be a vertex of ~R′F,∞ such that infinitely many
viv−i are not in F . Then, for all r, there exists n such that for every vertex w =
(v1 . . . vnwn+1 . . . ; . . . w−n−1v−n . . . v−1), Ball~RF,∞(v, r) and Ball~RF,∞(w, r) are strongly iso-
morphic.

Proof. Let n ≥ n0 be such that vnv−n /∈ F , where n0 is given by Lemma 4.7.13. Then, since
the proof of Lemmas 4.7.12 and 4.7.13 only look at (v1 . . . vnv−n . . . v−1), we have that both
Ball~RF,∞(v, r) and Ball~RF,∞(w, r) are strongly isomorphic to Ball~RF,n(πn(v), r).

Theorem 4.7.15. Let v = (ξ, η) be a ray in TF such that at least one of ξ or η is not
eventually periodic. Let w1 = ∅, w2, ... denotes its successive vertices. Suppose that
infinitely many wi are good and let wmj be the corresponding subsequence. Then the sequence(
~RF,mj , wmj

)0 locally converges to (~RF,∞, v)0 ' TF,ξ hO TF,η as j goes to infinity.

Proof. The ray v = (v1 . . . ; . . . v−1) correspond to the vertex (v1 . . . ; . . . v−1) ∈ ~RF,∞). If at
least one of the sequence (v1v2 . . . ) or (v−1v−2 . . . ) is not eventually periodic, then (ξ, η) is
in ~R′F,∞. Under this correspondence, wm = πm(v) = (v1 . . . vdn2 ev−bn2 c . . . v−1). It is bad if
and only if vdn2 ev−bn2 c belongs to F . An application of Lemmas 4.7.12 and 4.7.13 show the
convergence to (~RF,∞, v)0. Theorem 4.7.9 implies the isomorphism with the horospheric
product.

We have just proved local convergence of some sequence of rooted Rauzy digraphs. By
the discussion after Definition 4.7.10, points of ∂TF are in bijection with vertices of ~RF,∞.
Therefore, we have a map f : ∂TF → ~G•, where f(v) is the equivalence class of (~RF,∞, v)0. In
order to show Benjamini-Schramm convergence of Rauzy digraphs, we are going to associated
to every digraph ~RF,N a measure µN on ∂TF , show that these measures weakly converge to
a measure µ and show that the Benjamini-Schramm limit of ~RF,N is the pushforward f∗(µ).
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Definition 4.7.16. We note ∂T ′ the subset of ∂T consisting of rays v = (v1 . . . ; . . . v−1) with
at least one of the sequence non-periodic. We note ∂T̃ the subset of ∂T ′ consisting of rays
passing trough infinitely many good vertices.

Lemma 4.7.17. When restricted to ∂T̃ ∪ {isolated points of ∂T}, the function f is contin-
uous.

Proof. Let v = (v1 . . . ; . . . v−1) be an element of ∂T̃ . By Corollary 4.7.14 for any η ∈ ∂T̃ at
distance at most 2−2n of ξ, the graphs f(η) and f(ξ) have isomorphic balls of radius r and
are therefore at distance less than 2−r, which proves the continuity on ∂T̃ . The continuity
on the set of isolated points is trivial.

Since the function f is continuous on ∂T̃ , it is measurable: for any measure µ on ∂TF
such that µ(∂T̃ ) = 1, the pushforward f∗(µ) of µ gives a measure on G•. Since good vertices
of level N in TF are identified with vertices of ~RF,N , the uniform measure µN on the vertices
of ~RF,N transpose the a measure (also noted µN ) on the N th level of T . This induces a
measure on ∂TF , also noted µn, by µn(Cv) := µn(v) for any vertex v of level N , where
Cv = {w | w ≤ v} is a cylinder set, and by putting the uniform measure on vertices below
level N . That is, if w is of level at most n, then µn(Cw) simply counts the percentage of
good vertices of level n which are under w. On the other hand, for w ≤ v with v of level n,
then µn is µn(Cv) times the uniform measure on (TF )v (the subtree of TF of vertices under
v).

µn(Cw) :=





|{i|vi≤w}|
m if w is of level at most n

1
m

1
|{v≤vi|v of same level as w}| if w ≤ vi for some i

0 otherwise (i.e. w ≤ ui for some i)

Since ∂TF is a metric space which is separable, compact and complete, by Prokhorov’s
Theorem [104] the space of Borel probability measures on it is compact in the weak topology.
In particular, since the cylinder sets are clopen, for any converging sequence νn → ν, the
Portmanteau theorem implies that for any v ∈ TF , the lim νm(Cv) exists and is equal to
ν(Cv). On the other hand, if a sequence of cylindrical measure converges on all (more
generally on a dense subset of) cylinders, then this sequence is convergent. Recall that ∂T ′
is the subset of ∂T consisting of rays (ξ, η) with at least on of the sequence not eventually
periodic and that ∂T̃ is the subset of ∂T ′ consisting of rays passing through infinitely many
goof vertices.

Theorem 4.7.18. Let ∂T = I t J be the decomposition into isolated points (I) and non-
isolated points (J) of ∂T . Suppose that (µNj )j is a subsequence weakly converging to a
measure µ on ∂TF . Then,

1. the Benjamini-Schramm limit of the ~RF,Nj is f∗(µ);

2. µ(∂T̃ ) = µ(∂T ′) = µ(J);

3. Supp
(
f∗(µ)

)
= f

(
Suppµ)

)
.

4. the support of f∗(µ) is contained in {TF,ξ hO TF,η | (ξ, η) ∈ ∂T ′} ∪ f(I).

Proof. Firstly, if v = (v1 . . . ; . . . v−1) is in I, then both sequences are eventually periodic, of
the same period. Indeed, since v is in I, it means that there exists some n such that there is
a unique way to continue the sequence (v1 . . . vn; v−n . . . v−1). Since our alphabet is finite,
there exist m and m′ bigger than n such that vm = vm′ and v−m = v−m′ . Both sequences
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(v1 . . . vm; v−m . . . v−1) and (v1 . . . vm′ ; v−m′ . . . v−1) can be extended in the same unique way.
This implies that vm+1 = vm′+1 and so on. Therefore, both sequences are eventually periodic
of period m′ −m. Therefore, J ⊆ ∂T ′.

By definition of the µN , for all ray ω in J , we have µN (ω) = 0 and thus µ(ω) = 0. This
implies that µ(∂T ′) = µ(J) since J \ ∂T ′ is a countable union of rays. On the other hand,
∂T ′ \ ∂T̃ is contained in

⋃

m≥0
{ω1ω2 . . . | ωm is good,∀i > m,ωi is bad}

which is a countable union of countable sets of rays, and hence of measure 0. In particular,
µ(∂T̃ ) = µ(∂T ′). This implies that the set of discontinuity points of f : ∂T → ~G• has measure
0, with respect to µ and any µN .

For any finite rooted subgraph α and any positive radius r, let B := Bα = {ω ∈ ∂T =
~RF,∞ | Ball(ω, r) ' α}. By definition, we have µ(B∩∂T ′)+µ(B∩I) = µ(B) = P(f∗(µ), α, r)
and µN (B ∩ ∂T ′) + µN (B ∩ I) = µN (B) = P(f∗(µn), α, r). On the other hand, f∗(µNj ) is
exactly the measure on ~G• given by choosing a vertex of ~RF,Nj at random. It follows from
Corollary 4.7.14 and Lemmas 4.7.12 and 4.7.13, that B ∩ ∂T ′ is clopen in ∂T ′. On the other
hand, B ∩ I is a countable union if isolated points that are clopen. It is therefore clopen in
∂T . Hence, by the Portmanteau theorem we have

P(f∗(µNj ), α, r)
j→∞−−−→ P(f∗(µ), α, r)

which is the neighborhood sampling statistics convergence, which is equivalent to the
Benjamini-Schramm convergence of the f∗(µnj ).

Let v be in ∂T . If v is in J , for each n, there is uncountably many w in ∂T that agree with
v up to level n. Since ∂T \ ∂T̃ is countable, there is at least one such w in ∂T̃ . We have just
proven that ∂T̃ is dense in J , hence ∂T̃ ∪I is dense in ∂T . Let us denote by µ̃ the restriction of
µ to ∂T̃ ∪I. By continuity of f on ∂T̃ ∪I, we have Supp(f∗(µ)) ⊇ f

(
Supp(µ̃)

)
= f

(
Supp(µ)

)
.

On the other hand, we have

f∗(µ)(~G• \ f(Supp(µ̃)) = µ
(
f−1(~G• \ f(Supp(µ̃))

)

= µ
(
∂T \ f−1(f(Supp(µ̃))

)

≤ µ
(
∂T \ Supp(µ)

)
= 0.

Since every set and every measure that we considered are living in ~G•,2k which is second-
countable, we can conclude that the support of f∗(µ) is contained in f(Supp(µ̃), and thus
equal to it.

Finally, it is trivial that Supp(f∗(µ)) ⊆ f(∂T ). Since ∂T ′ ∪ I is dense in ∂T , we have
that ∂T = {TF,ξ hO TF,η | (ξ, η) ∈ ∂T ′} ∪ f(I).

Corollary 4.7.19. Let F ⊆ A2. Suppose that in AF , for each row the sum of coefficients is
equal to d and that for each column the sum of coefficients is equal to d′. Then d = d′, each
vertex in the Rauzy digraphs has d ingoing and d outgoing edges. Moreover, the Benjamini-
Schramm limit of the Rauzy digraphs ~RF,n exists and is a Dirac measure concentrated on
~DL(d, d), where d = |A| − ia.

Proof. Let k = |A|. Then |F | = k · d = d′ · k and the first assertion is proven.
It is clear that for any ray (ξ, η) in ~RF,∞, the trees TF,ξ and TF,η are both d+ 1 regular.

Therefore, TF,ξ hO TF,η ' ~DL(d, d). The sequence (µN )N can be decomposed into a disjoint
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union of countably many converging subsequences. Each of this subsequence converges to
some µj . By regularity of the tree, µj(Cv) > 0 for all cylinder. Therefore, Supp(µj) = ∂T

and f∗(µj) = δ ~DL(d,d), where δ is the Dirac measure. Finally, the sequence ~RF,n is convergent,
with limit δ ~DL(d,d).

As a special corollary, we have another proof of

Theorem 4.3.17. 1. The unlabeled de Bruijn digraphs ~Bk,N converge to ~DL(d, d) in the
sense of Benjamini-Schramm convergence.

2. The following diagram commutes, where the arrows stand for Benjamini-Schramm
convergence of unlabeled digraphs.

~Sk,N,M
~DL(k, k)

~Sk,N,∞ ~DL(k, k)

N −→∞

N −→∞

N, M −→∞
M

∞

y

Remark 4.7.20. Corollary 4.7.19 gives new approximations of ~DL(d, d) that are not coming
from spider-web digraphs. Indeed, there are examples of F satisfying the hypothesis such
that for all N , the graph RF,k,N is not isomorphic to any spider-web graph Sk′,N ′,M . For
example, for A = {0, 1, 2} and F = {01, 12, 20}. In this case, ia = 1 = oa, the hypothesis of
Theorem 4.7.18 is satisfied and the limit is ~DL(2, 2). On the other hand, RF,n are 4 regular
graphs with exactly 3 loops (on 0 . . . 0, 1 . . . 1 and 2 . . . 2). But the only spider-web graphs
Sk′,N ′,M with 3 loops are the ~B3,N ′ which are 6 regular.

We now show that, under some technical assumptions, the sequence (µ2N )N is indeed
convergent. Recall that that the graph ~ΓF is the graph with adjacency matrix BF = AF ⊗AT

F ,
where (AF )ij = 1 if and only if ij 6= F .

Theorem 4.7.21. Let F ⊂ A2. Suppose that ~ΓF is weakly irreducible and of period p. Then
the for all 0 ≤ l < p, the sequences (~RF,2(pN+l))N and (~RF,2(pN+l)+1)N are convergent.

For the proof, see page 90.
Remark 4.7.22. In general, it is possible that limµ2N and limµ2N+1 exists, are distinct,
but that both sequences (~RF,2N )N and (~RF,2N+1)N have the same limit and therefore the
sequence (~RF,N )N converges.

An example of this behavior is given by F := {00, 11} ⊆ {0, 1}2. All the ~RF,N (for
N ≥ 2) are isomorphic and therefore the limit exists, see Lemma 4.7.26. On the other hand,
limµ2N and limµ2N+1 have disjoint supports. Indeed, the tree TF is depicted in Figure
4.16 and has only four rays: ω1, . . . , ω4. It is immediate that limµ2N = 1

2 (δω2 + δω4), while
limµ2N+1 = 1

2 (δω1 + δω3), where δ is the Kronecker measure.
Observe that F := {00, 11} ⊆ {0, 1}2 is an example where ~ΓF is of period two, but

nevertheless the limit limµ2N exists.
It is then natural to ask the following.

Question 4.7.23. What is a necessary and sufficient condition to have the existence of the
limit for (~RF,2N )N? and for (~RF,N )N?
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∅

1

(11)

101

(1001)

10

(100)

1010

0

01

(011)

0101

(00)

010

(0110)

Figure 4.16: The top of the tree T{00,11} on the alphabet {0, 1}. Bad vertices are parenthesized.

Definition 4.7.24. For any vertex v = (v1 . . . vn) of T = TF , define its type to be vdn2 evdn2 e+1
if v is of even level and vdn2 evdn2 e+1 if v is of odd level, with the convention that the type of
the root is ∅ and the type of a vertex a of the first level is a.

By construction of T , the types of children of v depend only on the type of v. Indeed, if
v has type ab, then it has one descendant of each type ac such that cb does not belongs to F .
Therefore, a type t is said to be good if it corresponds to a good vertex. If v has type ab,
then it has one descendant of each type cb such that ac does not belongs to F . Therefore,
The matrix AF encodes the transition from level 2N ≥ 2 to level 2N + 1. Indeed, there is a
vertex of type j̄k under ik̄, if and only if ij /∈ F , if and only if (AF )ij = 1. Similarly, the
matrix AT

F encodes the transition from level 2N + 1 to level 2N + 2. Therefore, the matrix
BF := AF ⊗ AT

F encodes the transition from level 2N to level 2N + 2. In particular, the
matrix AF ⊗ AT

F is the adjacency matrix of the digraph where vertices are types of even
non-zero levels, and there is an edge from t to t′ if and only if in T , a vertex of type t has a
grand-children of type t′.

Proof of Theorem 4.7.21. Our matrix BF does not say anything about what happen to the
root. We are going to change BF a little bit to take them in account. Add a vertex t∅ to
~ΓF and an edge from t∅ to tv for each v of level 2. The digraph that we obtain with this
construction is still weakly irreducible. Let B̃F be the adjacency matrix of this digraph, it
has the same period as B.

Let ~b = (b1, . . . , bk)T be the column vector of good types, i.e. bi = 1 if and only if ti is
good, otherwise bi = 0. Let ~v = (0, . . . , 1, . . . 0)T be the column vector corresponding to v,
i.e. there is a 1 in position i, where ti is the type of v, and 0 otherwhere. By definition of
the µN , if M ≤ N and v is of level 2M , we have

µ2N (Cv) = 〈
~b; (B̃(N−M)

F ~v)〉
〈~b; (B̃NF ~v∅)〉

Indeed, the coordinate i of B̃(N−M)
F ~v is exactly the number of vertices of type ti and of level

2N that are under v. The scalar product with ~b gives the number of all good vertices of level
2N that are under v.

By assumption, we have ~v0 such that ‖v0‖ = 1 and B̃pF~v0 = h~v0, where p is the period of
BF and h is the unique Perron-Frobenius eigenvalue of B̃pF .
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∅, {0, 1}2
{11}, {01}, {00, 01, 10}, {00, 01, 11}
{00, 11}, {00, 10}, {00, 01}, {01, 10}

Table 4.1: Classification of F ⊆ {0, 1}2 up to strong isomorphisms of Rauzy digraphs.

Therefore, we have that for all 0 ≤ l < p, the following limit exists

µ2(pN+l)(Cv)
N→∞−−−−→ 1

hM
〈~v0; (B̃pF )(N−M)~v〉
〈~v0; (B̃pF )N~v∅〉

This implies that the µ2(pN+l) converge to a measure µ on ∂T .
The proof for the odd case is similar, except that this time we look at AT

F ⊗AF ; but the
corresponding graph is isomorphic to the one that corresponds to AF ⊗AT

F .

Remark 4.7.25. The above proof gives in fact an algorithm which allows to explicitly compute
the measure µ := limN µ2(pN+l).

Let ~∆F be the finite digraph corresponding to B̃pF in the above proof, that is ~∆F is the
p-power of the graph obtained from ~ΓF by adding a new vertex t∅ an an edge from t∅ to
any vertex of ~ΓF . This graph is weakly irreducible. The value of µ(Cv) depends only on the
level of v and its type. Therefore, for all v of level 2pN and w of level 2p(N + 1), the value
µ(Cw)
µ(Cv) depends only on the type of v and w. This implies that all the information about µ is
contained in the finite labeled digraph ~∆F , where the label is given by

l(tv → tw) := 1
h

〈~v0; B̃NF ~w〉
〈~v0; B̃NF ~v〉

Indeed, we can pullback the labelling of ~∆F to a “labelling” of TF . Formally speaking, we
label paths of length 2p between vertex of level 2pN and 2p(N + 1). Then we have that for
all v of level 2pN in TF the measure µ(Cv) is exactly the product of the labels along the
unique path from the root to v. See Proposition 4.7.29 and its proof for a concrete example.

Nevertheless, this algorithme is not necessarily sufficient to obtain informations on
f∗(µ) = lim ~R(F, 2(pN + l)).

Examples for k = 2
In this subsection we will compute all the limit for F ⊆ A2 = {0, 1}2. Some of these limits
will follows from the theorems, and some will be obtained by hand.

Let σ be a bijection on A. Then we can extend σ to a bijection on A2 by σ(ab) = σ(a)σ(b).
Under this correspondence, it is clear that ~RF,N ' ~Rσ(F ),N .

Therefore, up to strong isomorphism of the Rauzy digraphs, there is 10 F ⊆ {0, 1}2. See
Table 4.1 for a list.

Lemma 4.7.26. Let F ⊆ {0, 1}2 be different from {11} (or {00}). Then the limit of
(~RF,2,N )N exists and is given in Table 4.2.
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F limit

∅ ~DL(2, 2)

{01} ~Z ' ~DL(1, 1)

{00, 11}

{00, 10}

{00, 01}

{01, 10}

{00, 01, 10}

{00, 01, 11}

{0, 1}2 ∅

Table 4.2: Limits of (~RF,2,N )N for {00} 6= F ⊆ {0, 1}2, where ~Z is an infinite directed path.

Proof. We have ~R∅,2,N ' ~B2,N , and thus it has limit ~DL(2, 2). In the following, we will
always suppose that N ≥ 2. The digraph ~R{01,10},2,2 is a disjoint union of two loops. This
digraph is isomorphic to its line digraph, and therefore, all ~R{01,10},2,N are isomorphic. Since
the two connected component are isomorphic, the limit consists of only one vertex with one
loop. The digraph ~R{01},2,N is

and the limit is obvious.
Finally, for all the remaining F ’s, the digraph ~RF,2,2 is connected and isomorphic to its

own line digraph. Therefore, for a given F , all ~RF,2,N are isomorphic and therefore the limit
is ~RF,2,2.

It remains to analyse the case F = {11}, see Figure 4.13. This is the only example of
F ⊆ {0, 1}2 which is neither trivial, nor follows from Theorem 4.3.17. The subshift of {0, 1}Z

associated to F ⊆ {0, 1}2 is known is symbolic dynamic as the golden-mean shift. We will
see that the the golden ratio and the Fibonacci sequence also plays an important role in the
study of ~R{11},2,N . For example, if FN denotes the N th Fibonacci number, then

AN{11} =
(

1 1
1 0

)N
=
(

FN+1 FN

FN FN−1

)

and the matrix AF corresponds to the graph 0 1 On the other hand, we have

B := B{11} = A{11} ⊗AT
{11} =




1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0




which corresponds to the graph
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11 10

00 01

Figure 4.17: The graph of BF = AF ⊗AT
F for F = {11}, the golden-mean shift.

Lemma 4.7.27. Let FN be the Fibonacci numbers. Then, the number of vertices of ~R{11},2,N
is FN+2, while its number of edges is FN+3.

Proof. The proof is by induction. The formulas are true for N = 0 and N = 1. Recall that
if N ≥ 1, then ~R{11},2,N+1 is the line digraph of ~R{11},2,N .

Let aN , respectively bN be the number of edges, respectively of ~R{11},2,N labelled by
0, respectively by 1. Then the number of edges of ~R{11},2,N is aN + bN . When passing to
the line digraph, the edges labeled by 0 give vertices where the final digit is 0. Every such
vertex has two outgoing edges, one labeled by 0 and one labeled by 1. On the other hand,
the edges labeled by 1 give in the line digraph vertices where the final digit is 1. Every such
vertex has only one outgoing edge, labeled by 0. This implies that aN+1 = aN + bN and
bN+1 = aN , that is an+1 = an + an−1. Since a1 = 2 and a3 = 3, we have an = FN+2 and
an + bn = FN+3. This concludes the proof for the number of edges. The number of vertices
follows by the line digraph structure.

We say that an element (v1 . . . ; . . . v−1) in AN ×A−N is a palindrome if for all i we have
vi = v−i.

Lemma 4.7.28. The function f : T{11} → ~G• is injective, while the function f̂ : T{11} → G•
is injective on palindromes and 2− 1 otherwise.

Proof. For any k and F , we always have that
(
Rk,F,∞, (v1v2 . . . ; . . . v−1)

)0 is isomorphic to(
Rk,F,∞, (v−1 . . . ; . . . v2v1)

)0. Therefore, the function f̂ is at least 2− 1 on non palindromes.
It remains to prove that there is no other identifications. The proof is done by looking at

small balls around v = (v1v2 . . . ; . . . v−2v−1) in R′{11},∞. We explicitly draw all the possible
balls and see what happens if the ball around v and w are isomorphic. Observe that in general
the ball around v = (v1v2 . . . ; . . . v−2v−1) is exactly the ball around v = (v−1v−2 . . . ; . . . v2v1)
where all the edges are inverted. But the corresponding graphs are naturally isomorphic
via the switch (v1 . . . ; . . . v−1) 7→ (v−1 . . . ; . . . v11). Therefore, if we want to analyse all balls
around v = (v1v2 . . . ; . . . v−2v−1), it is sufficient to draw 6 of the 12 possible balls. See
Figures 4.18 to 4.20. If we choose two sequences that differ in the first two or the lat two
digits, then the corresponding balls are not isomorphic.

Now, for (10 . . . ; . . . 00), (00 . . . ; . . . 01) and (01 . . . ; . . . 01) we can see on balls of radius 2
(see Figure 4.18) that if we fix the root, then we fix the ball of radius 1 around the root. We
details here the case of the ball around v = (01 . . . ; . . . 00), other cases are left to the reader.
In this case, fixing the root fixes the ball of radius one. Indeed, there is only one vertex at
distance one from the root with degree 2: the vertex (1 . . . ; . . . 001). Therefore, this vertex
is fixed. Similarly, there is only one vertex u of degree 4 at distance 1 of the root ans this
vertex is fixed. Finally, there is two vertex of degree 3 at distance 1 of the root. But for one
of them there is exactly one path of length 2 to u and the other one has two paths of length
2 to u. This implies that both these vertices are fixed.
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For (00 . . . ; . . . 00), (10 . . . ; . . . 01) and (01 . . . ; . . . 10) if we fix the root, then the action
on the ball of radius 1 around the root is determined by the image of any vertex at distance
1 from the root. Moreover, in this case, any vertex at distance 1 is either send onto itself, in
which case the isomorphism is the identity when restricted on the ball of radius 1, or send to
its switch version, in which case the isomorphism is the switch when restricted the the ball
of radius 1. This is obvious for (00 . . . ; . . . 00) and (10 . . . ; . . . 01), but not for (01 . . . ; . . . 10).
Indeed, in this case, each of the four vertices at distance 1 from the root as at most 2 image,
but this a priori unclear if we can make the choices independently. By looking at the ball of
radius 4, it is possible to see that these choices are not independent.

Suppose now that the graph
(
Rk,F,∞, (v1v2 . . . ; . . . v−1)

)0 is isomorphic to the graph(
Rk,F,∞, (v−1 . . . ; . . . v2v1)

)0. Then the isomorphism send the root the the root. It acts
on the ball of radius 1 either as the identity or as the switch. If it acts as the identity
(respectively as the switch), then by induction it acts as the identity (respectively as the
switch) on all the graphs. This conclude the proof for f̂ . The conclusion for f follows from
the fact that the flip is not an isomorphism of the digraphs.

(01 . . . ; . . . 00) (00 . . . ; . . . 01) (01 . . . ; . . . 01)

Figure 4.18: Ball of radius 2 around (10 . . . ; . . . 00), (00 . . . ; . . . 01) and (01 . . . ; . . . 01). Black
edges are labeled by 0, while cyan edges are labeled by 1.

(00 . . . ; . . . 00) (10 . . . ; . . . 01)

Figure 4.19: Ball of radius 2 around (00 . . . ; . . . 00) and (10 . . . ; . . . 01). Black edges are
labeled by 0, while cyan edges are labeled by 1.

The following proposition finishes the study of the golden-mean shift.

Proposition 4.7.29. The graphs ~R{11},2,N converge to a continuous measure. The measure
µ is continuous and showed in Figure 4.22.

94



4.7. Rauzy graphs

(010 . . . ; . . . 010)

Figure 4.20: Ball of radius 3 around (01 . . . ; . . . 10) with some edges from the ball of radius 4.
Black edges are labeled by 0, while cyan edges are labeled by 1.

Proof. As we can see on Figure 4.17, F satisfies the hypothesis of Theorem 4.7.21. By the
Theorem, both (µ2N )N and (µ2N+1)N are convergent. We know the graph ~∆F of Theorem
4.7.21 and Remark Rauzy:Remark:Algo. We can therefore explicitly compute the Perron-
Froebenuis eigenvalue and eigenvector. This gives us the labeling of ~∆F depicted in Figure
4.21. This label can be pullback on T{11}. Note that for each node in Figure 4.21 we have
that the sum of weight of outgoing edges is indeed equal to 1.

A simple check shows that the labeling corresponding to limµ2N and limµ2N+1 are the
same and gives the weighted tree of Figure 4.22. This measure is continuous, as is the
measure f∗(µ) by Lemma 4.7.28.

11 10

00 01

∅

Figure 4.21: The graph ~∆F for F = {11} ⊆ {0, 1}2, the golden-mean shift. The black edge
has weight 1, red edges have weight 1/ϕ, cyan edges weight 1/ϕ2, green edges weight 1/ϕ3

and yellow edges weight 1/ϕ4.
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∅
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Figure 4.22: The limit measure µ on T{11}. Black edges have weight 1, cyan edges have
weight 1/ϕ2 and red edges have weight 1/ϕ. For example, µ(C1010) = 1/ϕ5.

Spider-web version of Rauzy digraphs
For any M , it is possible to construct the tensor product ~RF,N ⊗ ~CM . This is an obvious
generalization of spider-web digraphs and we denote it by ~SF,N,M . These generalized
spider-web digraphs retain some nice properties.

The following proposition is a generalization of Proposition 4.5.16. Since the proof is
similar it is not repeated here.

Proposition 4.7.30. Let F ⊆ A2. For allM ∈ N, N ∈ N, we have ~SF,N+1,M ' L( ~SF,N,M ),
the line graph of ~SF,N,M .

Remark 4.7.31. For all F , the digraph ~SF,0,M is a thick oriented circle. Therefore, the above
proposition holds for N = 0 if and only if F = ∅.

We also have a generalization of Lemma 4.3.8.

Lemma 4.7.32. For all M ∈ N and N ∈ N0, all connected components of ~SF,N,M are
isomorphic. Moreover, if ~RF,N is connected and has derangement ±1 (mod M) , then
~SF,N,M is connected.

Proposition 4.7.33. Let F ⊆ A2 be such that in AF there is at least one 1 on the diagonal.
Suppose that ~RF,N are connected and convergent with Benjamini-Schramm limit µ. Then,
the following diagram is commutative.

~Sk,F,Ni,M
µ

~Sk,F,Ni,∞ µ

Ni −→∞

Ni −→∞

N
i ,M −→∞

M

∞

y

Proof. The condition on F ensures that der(~RF,N ) = 1 for all N . Therefore, the digraphs
~SF,N,M are connected and

(
~SF,N,M , (v, 0)

)
and

(
~SF,N,M , (v, i)

)
are isomorphic as rooted

digraphs. This implies that they have the same limit as ~RF,N .
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4.8 Open questions and further research directions

In this section, we list the open questions that appeared during this chapter and propose
further direction of research.

For de Bruijn graphs, the main open question is raised by Corollary 4.6.6 and Lemma
4.6.5 which together imply:

ζ ′DL(k,k)(0) = (k − 1)2 d

ds
Lis
(1
k

)∣∣∣
s=0
− log(k)

Since for all s with Re(s) > 1, we have Lis(1) = ζ(s) the Riemann zeta function it is natural
to ask

Question 4.8.1. What is the exact relation between ζDL(k,k) and Lis
(

1
k

)
?

For Rauzy graphs, the first thing to do is, if possible, to remove all the technical
assumptions on F needed in the theorems. This includes for example Proposition 4.7.33.
This also concerns Theorem 4.7.21. It would be nice to show that the limit of Rauzy digraphs
always exists, or the fact that the µ2N and µ2N+1 always converge.

Another interesting result would be the computation of the spectral measure or Rauzy
graphs. For Rauzy digraphs, this is easy and follows from the fact that they are all line
digraphs, but for the unoriented Rauzy graphs this remains open.

We proved that if the Rauzy graphs are k in-regular and k out-regular, then they converge
to DL(k, k). Recall that DL(k, l) is unimodular if and only if k = l and that Benjamini-
Schramm limit are always unimodular. In particular, for k 6= l, the graph DL(k, l) cannot
be obtained as a limit of Rauzy graphs. Moreover there are only countably many subshifts,
while they are a continuum of unimodular measures supported on horospheric product of
trees, see [72]. Nevertheless, we can ask

Question 4.8.2. Describe which unimodular measure supported on horospheric product of
trees arise as limit of Rauzy graphs.

We may also want to analyse all F for |A| = 3 and see if there is any new behavior in
comparison with the case |A| = 2. Another interesting computation would be to compute
the spectrum of ~R{00,11,22},n and compare with ~B2,n since these families have the same limit
DL(2, 2).

Another interesting direction of research is the following conjecture which was suggested
by Kaimanovich

Conjecture 4.8.3. Let F ⊆ A2. Then the Benjamini-Schramm limit of the Rauzy graphs
is the unimodular measure (supported on ~R′F,∞) which is the image of the shift-invariant
measure on AF of maximal entropy.

Here the entropy of a shift-invariant measure is its topological entropy. If the subshift is
irreducible, then there exists a unique shift-invariant measure of maximal entropy, [78] for a
detailed exposition. Such a measure µ gives raise to a measure Φ∗(µ) on G• supported on
horospheric product of trees, where Φ(ξη) = Tξ hO Tη.

Finally, we may want to generalize our results to subshifts of finite type defined over
other groups than Z, for example on free groups.
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Chapter 5
Weakly maximal subgroups of branch

groups

In 1980, Grigorchuk constructed in [60] a group G, which is known as the (first) Grigorchuk
group, and proved in [47] that G has intermediate growth between polynomial and exponential,
thus providing an answer to an open problem posed by John Milnor in 1968.

Since then, this group continues to be extensively studied and gave rise to the definition
of branch groups (which naturally appear in the classification of just-infinite groups). All
these groups appear as automorphism groups of infinite rooted trees. Branch groups admit
a definition in terms of stabilizers of points and of stabilizers of rays (also called parabolic
subgroups) for this action and a major open problem about them is to describe their lattice
of subgroups. In the case of the Grigorchuk group, a deep result in this direction, see [97],
is the rigidity of maximal subgroups — a behavior which is completely different from the
linear case of, say SL(n,Z).

If G acts on T in a weakly branched way, then all parabolic subgroups are infinite
and pairwise distinct [49]. Moreover, if the action of G is branched, then all parabolic
subgroups are weakly maximal [12]. In particular, a finitely generated branch group has
uncountably many weakly maximal subgroups, and thus uncountably many automorphism
equivalence classes of weakly maximal subgroups. In the Grigorchuk group G, the class of
weakly maximal subgroups is not reduced to the class of parabolic subgroups: some sporadic
examples were constructed [48, 49]. There are however no classification results for weakly
maximal subgroups of G or other (weakly) branch groups (Problem 6.3 in [48]).

5.1 Overview of the results

One of the main results (Corollary 5.1.2) of this chapter is to show that a finitely generated
regular branch group (subject to a minor technical condition) contains uncountably many
non parabolic weakly maximal subgroups up to automorphism equivalence. More precisely,
we show that any finite subgroup Q ≤ G is contained in uncountably many weakly maximal
subgroups.

Theorem 5.1.1. Let T be a regular rooted tree and G ≤ Aut(T ) be a finitely generated
regular branch group. Then, for any finite subgroup Q ≤ G there exist uncountably many
automorphism equivalence classes of weakly maximal subgroups of G containing Q.

As an immediate corollary of the theorem, we have the following result. It indicates
that a full classification of weakly maximal subgroups must involve, in a significant way,
subgroups that are not parabolic.
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5. Weakly maximal subgroups of branch groups

Corollary 5.1.2. Let T be a regular rooted tree and G ≤ Aut(T ) be a finitely generated
regular branch group. Suppose that G contains a finite subgroup Q that does not fix any
point in ∂T . Then there exist uncountably many automorphism equivalence classes of weakly
maximal subgroups of G, all distinct from classes of parabolic subgroups associated with the
action of G on T .

These results hold in a large class of groups. Indeed, all known examples of fractal branch
groups are regular branch. In fact, these results hold for the first Grigorchuk group G as
well as for groups in C \ G (“non-trivial” generalized multi-edge spinal groups, see Definition
5.3.2). Such groups include Gupta-Sidki groups [12] and many of the GGS groups.

Moreover, all these examples essentially admit a unique branch action on a spherically
homogeneous tree [57, 79]. (An infinite rooted tree is spherically homogeneous if the degree of
a vertex depends only on its distance from the root.) The unicity of branch action, together
with our Theorem 5.1.1 allow us to deduce the following.

Theorem 5.1.3. Let G be either the first Grigorchuk group, or a group in C \ G . Then
G has uncountably many automorphism equivalence classes of weakly maximal subgroups,
all distinct from classes of parabolic subgroups of any branch action of G on a spherically
regular tree.

We also demonstrate that, loosely speaking, weakly maximal subgroups of G and groups
in C \ G live as deep in the tree as one desires.

Theorem 5.1.4. Let T be a regular rooted tree and G ≤ Aut(T ) be a finitely generated
regular branch group. Suppose that G contains an infinite index subgroup Q that does not fix
any point in ∂T . Then there exists an integer l such that for any k ∈ N and any vertex v of
level k, there exists a weakly maximal subgroup of G which stabilizes v and does not stabilizes
any vertex of the (k + l)th level.

More precisely, we can choose l to be the minimal integer such that there exists an infinite
index subgroup Q that does not stabilize any vertex of the lth level.

If G is the first Grigorchuk group or a group in C \ G , then it is possible to take l = 1.

The rich structure of weakly maximal subgroups can be used to study the subgroup
structure of branch groups from the statistical viewpoint. Namely, a very active area of
research has lately developed around the notion of IRS – invariant random subgroup in a
locally compact group. An IRS is a probability distribution on the space of all subgroups
of the group which is required to be invariant under the natural action of the group on its
subgroups by conjugation. This is a natural example of an invariant measure, but moreover
it also has a nice algebraic meaning: it generalizes the notion of a normal subgroup that
corresponds to the Dirac delta measures. It is very interesting and important to understand
how the algebraic subgroup structure of the group is related to the variety of IRSs on
it. Recent new examples of Juschenko and Monod [70] provide first examples of simple
groups (i.e. groups that have no non-trivial normal subgroups) with non-trivial IRS. Benli,
Grigorchuk and Nagnibeda [21] constructed first examples of groups of intermediate growth
with uncountably many distinct IRS. It is still an open question whether a just-infinite group,
and in particular the Grigorchuk group G can have uncountably many IRS (observe that
being just-infinite it can only have countably many normal subgroups).

This problem is connected with the above results about variety of weakly maximal
subgroups. There is indeed a strategy that potentially allows to construct an IRS out of
a weakly maximal subgroup, as follows. Given a finitely generated group G and a weakly
maximal subgroup H which is closed for the profinite topology (such an H is said to be
wmc), it is possible to construct a binary rooted tree TH on which G acts and such that H
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is the stabilizer of the leftmost ray. If H is not parabolic for the original action, then the
action of G on TH is not necessarily branched, but we can ask the following.

Question 5.1.5. Let G be a finitely generated group, H a wmc subgroup. Is it true that for
the action of G on TH

1. All parabolic subgroups are pairwise distinct?

2. All parabolic subgroups are wmc?

Positive answer to these questions will imply the construction of new non-trivial invariant
random subgroups of G.

These questions are deeply related with the profinite completion Ĝ of G. One important
remark is that for the Grigorchuk group as for groups in C \ G (and other groups where
all maximal subgroups are of finite index), wmc subgroups coincide with weakly maximal
subgroups. If we denote by H̄ the closure of H ≤ G in Ĝ, we have the following results.

Proposition 5.1.6. Let T be a spherically homogeneous rooted tree and G ≤ Aut(T ) be
a finitely generated subgroup which is torsion. Suppose that the action of G is spherically
transitive and there exists a ray ξ such that H = StabG(ξ) is wmc and H̄ ≤ Ĝ is wmc. Then

1. All Ĝ-parabolic subgroups are pairwise distinct and wmc;

2. All G-parabolic subgroups are distinct from H;

3. Suppose moreover that for all g ∈ Ĝ we have H̄ ∩Gg = H̄. Then all G-parabolic
subgroups are pairwise distinct.

The following theorem does not make any assumption on the weak maximality of H̄.

Theorem 5.1.7. Le G be a residually finite just-infinite p-group and H be a wmc subgroup.
Then there exists a coset tree TH such that the action of G on TH is spherically transitive,
StabG(0̄) = H and

1. All Ĝ-parabolic subgroups are wmc and pairwise distinct.

2. Any two rays in the NĜ(G)-orbit of 0̄ have distinct stabilizers.

These results are mainly results on Ĝ, while we would like results on G. A way to go from
Ĝ to G is by the two applications H 7→ H̄, respectively M 7→M ∩G, from closed subgroups
of G to closed subgroups of Ĝ, respectively, from closed subgroups of Ĝ to closed subgroups
of G. These functions are lattice isomorphisms whose preserve indices when restricted on
finite index subgroups (Corollary 5.7.8). It is thus natural to

Conjecture 5.1.8. The two functions H 7→ H̄ and M 7→ M ∩ G send wmc subgroups to
wmc subgroups.

Lemma 5.7.11 is the first step in proving this conjecture. This conjecture is of great
interest. Indeed, if it is true, then Proposition 5.1.6 directly implies

Proposition 5.1.9. Le G be a residually finite just-infinite p-group and H be a wmc subgroup.
Suppose that Conjecture 5.1.8 is true. Then there exists a coset tree TH such that the action
of G on TH is spherically transitive, StabG(0̄) = H and all G-parabolic subgroups are wmc
and pairwise distinct.
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5. Weakly maximal subgroups of branch groups

Finally, the following proposition, gives some sufficient criterion to have uncountably
many distinct parabolic subgroups. For every vertex v, Cv ⊆ ∂T is the cylinder under w and
StabG(Cv) denotes the pointwise stabilizer of Cv. That is, StabG(Cv) =

⋂
ξ:v∈ξ StabG(ξ).

Proposition 5.1.10. Let G, H and T be as in Theorem 5.1.7. For A ≤ G, let SA := {ξ ∈
∂T | StabG(ξ) = A}. The implications between the following assumptions are resumed in the
diagram below.

1. All parabolic subgroups are wmc;

2. For all ξ and η in ∂T , if StabG(ξ) ≤ StabG(η), then they are equal;

3. For all A ≤ G, the subset SA is closed;

4. The group G is hereditarily just-infinite and there is no ray with trivial stabilizer;

5. For all ξ ∈ ∂T and all v ∈ ξ, we have StabG(Cv) � StabG(ξ);

6. For all A and all v in T , there exists w ≤ v, such that Cw ⊂ ∂T \ SA;

7. There is an uncountable number of pairwise distinct parabolic subgroups.

1 2 3 6 7

4 5

An important remark is that this proposition does not guaranty the existence of a subset
X of ∂T of positive measure such that any two rays in X have distinct stabilizers. On the
other hand, we do not know yet any examples of H ≤ G that is not a parabolic subgroup of
a branch action but that still satisfy any assumption of the proposition.

Throughout this chapter and unless specified otherwise, G will denote a finitely generated
group, T a locally finite rooted tree and G the first Grigorchuk group.

Section 5.2 contains miscellaneous results that will be use later. Section 5.3 introduces
the definition of branch groups as well as examples. In Section 5.4 we prove various results
on weakly maximal subgroups. Sections 5.5 and 5.6 are devoted to the proofs of Theorems
5.1.1, 5.1.3 and 5.1.4 and of Corollary 5.1.2. This is a common work with Bou-Rabee and
Nagnibeda and was published in [24]. Section 5.7 is consecrated to the study of coset trees
and of the proof of Theorem 5.1.7 and of Propositions 5.1.6 and 5.1.10. Finally, Section 5.8
contains all the open questions appearing in this chapter as well as ideas for further research.

5.2 Preliminaries results

This section contains miscellaneous definitions and results that will be useful later.
A group G is residually finite, if the intersection of all its finite index subgroups (equiva-

lently all its normal finite index subgroups) is trivial. This is equivalent to be a subgroup of
the automorphism group of a rooted tree.

A group G is just-infinite if all its proper normal subgroups are of finite index (equivalently
if all its non-trivial quotient are finite).

Lemma 5.2.1. Let G be a just-infinite group, A be an infinite index subgroup of G and
γ ∈ G be any nontrivial element. Then there is a conjugate of γ that is not in A.
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5.3. Groups acting on rooted trees

Lemma 5.2.2. Let G be a p-group. And S ≥ T two subgroups of index pi and pj . Then for
all i ≤ s ≤ j, there exists a subgroup L of index ps and with S ≥ L ≥ T .

Proof. Observe that since G is a p-group, every finite index subgroup has index a power of
p. Let N = CoreS(T ) the normal core of T in S. The normal subgroup N has finite index
in S, and therefore the group S/N is a finite p-group, and hence nilpotent. This implies
that T̄ , the image of T in S/N is subnormal. Therefore, there exists a composition series
S0 = S ≥ S1 ≥ · · · ≥ Sj−i = T̄ ≥ · · · ≥ {1}. The image of this series in S gives the wanted
subgroups.

The following lemma is a well-known result on topological group.

Lemma 5.2.3. If G is a topological group group, then for all closed subgroups H, the
normalizer NG(H) is a closed subgroup.

Proof. For any h ∈ G, let ϕh be the continuous function ϕh(g) = ghg−1. Then

NG(H) = {g | gHg−1 ≤ H and g−1Hg ≤ H}
=
⋂

g∈H
ϕ−1
g (H) ∩ (

⋂

g∈H
ϕ−1
g (H))−1

is closed.

The profinite topology on a group G is the topology generated by cosets of finite index
subgroups. In such a topology, a subgroup is open if and only if it is of finite index. Any
group is a topological group for the profinite topology.

Lemma 5.2.4. In a group G with the profinite topology, finite index subgroups are exactly
clopen subgroups.

Proof. First, suppose that H is of finite index, then it is open.
Since H is of finite index, we have a finite system of transversal: g1 = 1, . . . , gn. Therefore

H = G−⋃ni=2 giH is also closed.
On the other hand, if H is clopen, it is open and thus of finite index.

5.3 Groups acting on rooted trees

Let T be an infinite rooted tree — we will always assume that T is locally finite. We can
divide T in level: Ln consists of all vertices at distance n from the root. We also have a
natural order on the vertices: w ≤ v if and only if there is “descending path” from v to w —
i.e. a path v = v0, v1, . . . , vn = w with the level of vi being 1 plus the level of vi−1. For any
vertex v, let Tv denotes the subtree (rooted at v) consisting of all vertices below v. If the
degree of a vertex depends only on its level (that is if Aut(T ) acts transitively on level), we
say that T is spherically homogeneous.

Let G be a group acting on a infinite rooted tree T . If the action of G is transitive on
each level, we say that the action is spherically transitive. Recall that for any vertex v of
T , the stabilizer StabG(v) is the subgroup of elements fixing v. The stabilizer of a level,
StabG(n) is equal to the intersection of stabilizer of vertices on this level, this is a normal
subgroup.

StabG(n) :=
⋂

v∈Ln

StabG(v)
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5. Weakly maximal subgroups of branch groups

The rigid stabilizer RistG(v) of a vertex v consist of elements g of G fixing all vertices outside
Tv. This is a normal subgroup of StabG(v). The rigid stabilizer of level n is

RistG(n) = 〈RistG(v) | v ∈ Ln〉 =
∏

v∈Ln

RistG(v)

this is a normal subgroup of G.

Branch groups
An action of G on T is weakly branch, if G acts level transitively and RistG(v) is infinite
for all v (equivalently, RistG(v) is never trivial). The action is said to be branch if G acts
level transitively and RistG(n) is a finite index subgroup of G for all n. A group is (weakly)
branch if it admits a faithful (weakly) branch action

For a group G acting on some infinite rooted tree, stabilizers of rays are called parabolic
subgroups. Hence, parabolic subgroup depends on the action on not only on the group.

If T is a d-regular rooted tree and G a subgroup of Aut(T ), we have injective maps

ψv : StabG(v)→ Aut(T ) ψ1 : StabG(1)→ Aut(T )d

ϕ→ ϕ|Tv ϕ 7→ (ϕ|Tv1 , . . . , ϕ|Tvd )

where v is any vertex of T , v1, . . . , vd are the vertices of the first level. For a d-regular rooted
tree T , a group G ≤ Aut(T ) is said to be fractal if for any v, ψv(StabG(v)) is equal to G,
after an identification of T with Tv.
Definition 5.3.1. For a d-regular rooted tree T , a group G ≤ Aut(T ) is said to be regular
branch (over K) if it satisfies the following conditions:

• G is spherically transitive;

• G is fractal;

• there exists a finite index subgroupK ofG such thatKd is contained in ψ1(K∩StabG(1))
as a subgroup of finite index.

Since G is fractal, the image of ψ1 is included in Gd and we can therefore iterate ψ1 to
have a sequence

ψn : StabG(n) ↪→ Gd
n

It follows from the definition that Kdn is contained in ψn(StabG(n)) as a subgroup of finite
index and therefore that for all level n, RistG(n) is of finite index in G [49]. This proves
that a regular branch group is a branch group, and it follows directly from definitions that a
branch group is weakly branch. Since Kdn ≤ ψn(StabG(n)) ≤ Gd

n , the image of ψn is of
finite index in Gdn .

Grigorchuk group and generalized multi-edge spinal groups
An important example of a finitely generated regular branch group is the first Grigorchuk
group G. It is a 2-group and it has word growth strictly between polynomial and exponential
[60]. A detailed introduction to the group G and for proofs of the properties of G mentioned
in this section can be found in [65, Chapter VIII].
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5.3. Groups acting on rooted trees

The group G can be defined as a subgroup of the group of automorphisms of the infinite
binary tree, G := 〈a, b, c, d〉, generated by four automorphisms a, b, c, d defined recursively, as
follows

a(xw) = (xw)
b(0w) = 0a(w) b(1w) = 1c(w)
c(0w) = 0a(w) c(1w) = 1d(w)
d(0w) = 0w (1w) = 1b(w)

where x ∈ {0, 1}; w denotes an arbitrary binary word; 1 = 0 and 0 = 1.
Let T be a d-regular rooted tree, and let A := {0, . . . , d− 1}. For a vertex u, represented

by a word over A, and a letter x ∈ A, we have f(ux) = f(u)x′ where x′ ∈ A is uniquely
determined by u and f . This induces a permutation fu of X so that f(ux) = f(u)fu(x).
The automorphism f is rooted if fu = 1 for u 6= ∅. It is directed, with directing path ξ ∈ ∂T ,
if the support {u | fu 6= 1} of its labelling is infinite and contains only vertices at distance 1
from ξ.

For the Grigorchuk group, a is rooted and f∅ = (01) the permutation of the first level.
On the other hands, b, c and d are directed, with directing path 1∞. See Figures 5.1 and 5.2.

a = b =

a

a

a

a

Figure 5.1: The rooted automorphism a and the directed automorphism b.

In the case when g ∈ Aut(T ) fixes the first k levels of the tree, we will say that g has
level k and we will write g = (γ1, . . . , γ2k)k in order to record the action beyond level k only.
For example, b = (a, c)1, c = (a, d)1, and d = (1, b)1 all have level 1.

The action of G on the infinite binary tree is branched, and it can be shown moreover
that G is regular branch over the subgroup K, the normal closure of the element (ab)2, see
[12]. This can be used to prove that G is just-infinite.

Grigorchuk and Wilson proved in [57] that G admits a unique branch action on a tree.
Other interesting examples of groups acting on a regular tree, like the second Grigorchuk

group [60], (extended) Gupta-Sidki groups or GGS groups (Grigorchuk-Gupta-Sidki groups,
the terminology comes from [18]) arise as generalized multi-edge spinal groups. For a general
treatment and more examples, see [79].
Definition 5.3.2 ([79]). A generalised multi-edge spinal group

G = 〈{a} ∪ {b(j)i | 1 ≤ j ≤ p, 1 ≤ i ≤ rj}〉
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c =

a

a

a

a

d =

a

a

a

a

Figure 5.2: The directed automorphisms c and d.

is an infinite subgroup of (a Sylow-pro-p subgroup of) the profinite group Aut(T) that is
generated by

• a rooted automorphism a of order p permuting cyclically the vertices of the first level
of T, and

• families b(j) = {b(j)1 , ..., b
(j)
rj }, j ∈ {1, ..., p}, of directed automorphisms sharing a

common directed path ξj in T .

The paths ξ1, . . . , ξp are required to be mutually disjoint.
The class C is the class of subgroups of Aut(T ) conjugated (in Aut(T )) to a generalized

multi-edge spinal group. By construction such a group is a finitely generated, residually-(finite
p) infinite group. Regarded as a subgroup of Aut(T ) it is fractal.

The subclass G of C consists of all groups conjugated to a group 〈a, b(1), . . . , b(p)〉 in C ,
where for at least one superscript j ∈ {1, . . . , p} the generator family b(j) = (b(j)1 ) consists of
a single directed automorphism with ‘constant’ defining vector e(j)

1 = (1, . . . , 1). For more
details and a rigorous definition, see [79].

Klopsch and Thillaisundaram showed in [79] that if G is a torsion groups in C , then it
is just-infinite, branch, has all maximal subgroups of finite index (and the same holds for
groups commensurable with G). If moreover G is in C \ G , then G is regular branch. They
also proved that if G is in C and is branch (for example, G in C \ G ), then it admits a
unique branch action.

5.4 Maximal and weakly maximal subgroups

Maximal subgroups (that is maximal proper subgroups) are of great interest in group theory
and have been widely studied.

In [92] Margulis and Sŏıfer proved that a linear group has a maximal subgroup of infinite
index if and only if it is not virtually solvable. The also proved that linear group that are not
virtually solvable admit uncountably many, non-conjugated, maximal subgroups. For free
groups, a simple construction using Schreier graphs even shows the existence of a continuum
of such subgroups.

Lemma 5.4.1. Let F := FZtY = (∗|Z| Z) ∗ (∗|Y | Z/2Z) = 〈yi ∈ Y, zj ∈ Z | y2
i 〉, with Y

and Z are any sets (not necessary finite). Suppose that |Z| ≥ 1 and |Z|+ |Y | ≥ 2. The F
has a continuum of non-conjugated maximal subgroups of infinite index and of infinite rank.
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Proof. The proof is done by looking at Schreier graphs.
Let H be a subgroup and Γ its Schreier graphs. Then H is of infinite index if and only

if Γ has infinitely many vertices. By Subsection 2.4 and Section 3.4, a Schreier graph Γ of
F correspond to a maximal subgroup if and only if the only graph strongly covered by Γ
is a (|Z|, |Y |)-rose. Finally, H and H ′ are conjugated if and only if Γ and Γ′ are strongly
isomorphic.

In view of this, we want to construct infinite graphs that do not strongly covers other
graphs (except for the rose) and that are not strongly isomorphic. Since |Z| ≥ 1, we have at
least one generator of infinite order, call it z. Since |Z|+ |Y | ≥ 2, we have a second generator,
call it x. We now construct Γ a Schreier graph of F(ZtY )\{x}. Start with the Cayley graph
of Z = 〈z〉 and for each b in (Z t Y ) \ {z, x} add to each vertex a loop labeled by b. This
loop is degenerate if and only if b ∈ Y . Since we started with the Cayley graph of Z, the only
graph covered by Γ are itself, the rose, and cycle (Cayley graph of Z/nZ = 〈z〉) with loops.

We now want to add edges labeled by x to Γ in order to have a Schreier graph of F
corresponding to a maximal subgroup of infinite index. Let (ri){i≥0} be an infinite sequence
of 0 and 1. Since Γ is the usual Cayley graph of Z with some loops, its vertices are labeled
by Z. For every vertex smaller than 0, add a loop labeled by x. Now, if ri = 0 add a loop
labeled by x to the vertex 2i and the vertex 2i+ 1. If ri = 1 and x is of order 2 add an edge
from 2i to 2i+ 1. If ri = 1 and x is of infinite order, add a pair of edges from 2i to 2i+ 1.
The new graph ∆ obtained like this is by construction a Schreier graph of F corresponding
to a subgroup of infinite index and of infinite rank, see Figure 5.3 for an example. Moreover,
if (ri){i≥0} is not the zero sequence, then the only graphs covered by ∆ are ∆ and the rose.
This directly follows from the fact that there loops labeled by x on negative vertices and
at least one edge labeled by x that is not a loop. Therefore, the corresponding subgroup is
maximal. Since there is a continuum of sequences (ri){i≥0} we have a continuum of such
graphs.

Finally, the only possibility for ∆ and ∆′ to be strongly isomorphic is that the sequence
(ri){i≥0} and (r′i){i ≥ 0} have finitely many non-zero terms and that there exists j such that
ri = r′j−i. We therefore have a continuum of non-strongly isomorphic such graphs and a
continuum of non-conjugated maximal subgroups of infinite index and of infinite rank.

−2 −1 0 1 2 3 4 5 6 7

Figure 5.3: Fragment of the Schreier graph of the maximal subgroup of F2 = 〈z, x〉 associated
to the sequence 1001 . . . . Edges in black are labeled by z and edges in red labeled by x. For
the construction, see the proof of 5.4.1.

On the other hand, Pervova showed [97] that all maximal subgroups of G are of finite
index (there are seven of them, all of index 2). Pervova’s result extends to groups abstractly
commensurable with G [56], as well as to torsion generalized multi-edge spinal groups and
group commensurable with them [79]; but not to all branch groups (see [22]).

All these results are related to the profinite topology. Indeed, a group G has an infinite
index maximal subgroup if and only if it has a proper subgroup which is dense in the profinite
topology.

The next step in understanding the subgroup structure of a group G is the study of
weakly maximal subgroups.
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Definition 5.4.2. Let G be a group. A subgroup A is weakly maximal if it is of infinite index
and maximal among such subgroups.

If G is a topological group, then a subgroup A is weakly maximal closed, or wmc for
short, if it is closed, of infinite index and maximal for these properties.

If G is endowed with the discrete topology, then weakly maximal and wmc subgroups
coincide.

In the following, when not specified otherwise, all our topological groups will have the
profinite topology. In particular, wmc will stand for wmc in the profinite topology.

If G is finitely generated, then by Zorn Lemma, every infinite index subgroup is contained
in a weakly maximal subgroup. On the other hand, it is false that in a (topologically) finitely
generated profinite group every closed subgroup of infinite index is contained in a wmc
subgroup. Nevertheless, this becomes true if G is virtually pro-p, [106].

The rigidity of maximal subgroups in torsion generalized multi-edge spinal groups implies
that in such a group G, the class of weakly maximal subgroups and the class of wmc subgroups
coincide, as shown in the next lemma.

Lemma 5.4.3. Let G be a group. Assume that for each finite index subgroup H ≤ G,
maximal subgroups of H are of finite index. Then weakly maximal subgroups of G coincide
with wmc subgroups for the profinite topology on G.

Proof. Since every wmc subgroup is contained in a weakly maximal subgroup, it is sufficient
to prove that every weakly maximal subgroup is closed in the profinite topology.

If W is a weakly maximal subgroup, it is contained in a maximal subgroup M1 of G. By
assumption this subgroup is of finite index in G, therefore W < M1. This implies that W is
contains in a maximal subgroup M2 of M1, which is by assumption of finite index. Thus we
have that W ≤ ⋂Mi with G > M1 > M2 > . . . with all indices finite. But then

⋂
Mi is an

infinite index subgroup of G containing W . By maximality we have W =
⋂
Mi is closed in

the profinite topology.

Proposition 5.4.4 ([49, 11, 10]). If G acts on T in a weakly branched way, then all parabolic
subgroups are infinite and pairwise distinct.

Moreover, if the action of G is branched, then all parabolic subgroups are weakly maximal.

A measure preserving action of a group G on a Lebesgue space (X,Σ, µ) is called
extremely nonfree if there exists A ⊆ X, µ(A) = 1 such that for each x, y ∈ A, x 6= y one has
StabG(x) 6= StabG(y). Weakly branch actions are extremely nonfree.

Question 5.4.5. Suppose that G ≤ Aut(T ) is such that all parabolic subgroups are infinite,
pairwise distinct and wmc. Does it imply that the action of G is (weakly) branched?

This question is of a particular interest in the case of branch generalized multi-edge spinal
groups (and other groups considered in [57]) since there exists only one weakly branched
action, [57, 79].

Since parabolic subgroups are weakly maximal and pairwise disjoint, finitely generated
branch groups have uncountably many automorphism equivalence classes of weakly maximal
subgroups. In the Grigorchuk group G, the class of weakly maximal subgroups is not reduced
to the class of parabolic subgroups: some sporadic examples were constructed [48, 49], see
Section 6.4. There are however no classification results for weakly maximal subgroups of G
or other (weakly) branch groups (Problem 6.3 in [48]).

The following lemmas and corollaries generalize results from [24]. They are particularly
useful for torsion groups.
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5.4. Maximal and weakly maximal subgroups

Lemma 5.4.6. Let G be a topological group, and A a wmc subgroup, g /∈ A with gk ∈ A for
some k (for example, g with finite order). Then gAg−1 6= A.

Proof. If it was the case, then A < 〈A, g〉 = A t gA t · · · t gk−1A would be closed and thus
of finite index in G. We have A < 〈A, g〉 of index k > 1, therefore A is of finite index in G.
This is the desired contradiction.

Corollary 5.4.7. Let G be a topological group and A a wmc subgroup such that for all
g ∈ G, there exists k with gk ∈ A. Then A is self-normalizing.

Observe that this deeply contrast with the situation of proper subgroups in finite p-groups.
Indeed, finite p-groups do not have any self-normalizing proper subgroups.

Corollary 5.4.8. Let G be a topological group acting on a infinite rooted tree and ξ ∈ ∂T . If
A = Stab(ξ) is wmc and g ∈ G \A is such that gk ∈ A for some k, then Stab(gξ) is distinct
from Stab(ξ). In particular, if G is torsion, in each orbit of ∂T with a wmc stabilizer, all
stabilizers are pairwise distinct.

Proof. The proof is by contradiction. If there were not distinct, then we have

Stab(ξ) = Stab(gξ) = g Stab(ξ)g−1

and therefore g ∈ NG
(
A) \A. But this is not possible by last corollary.

Proof. Suppose that A contains all the conjugates of γ. Then A contains 〈γ〉G, the normal
closure of γ in G. This subgroup is normal and therefore of finite index since G is just-infinite.
But this contradicts the fact that A is of infinite index.

Proposition 5.4.9. Let G be a just-infinite group and let s = sup{pn | p prime, n ∈ N,∃γ ∈
G of order pn}. Then every weakly maximal subgroup of G has at least s conjugates. The
same holds for wmc subgroups.

Proof. If s = 0, the conclusion is trivially true. If s > 0, take γ a non-trivial element of order
pn. If n = 1, by Lemma 5.2.1, given a weakly maximal subgroup A, there exists fγf−1 a
conjugate of γ which is outside H. Since p is prime, for all 0 < i < p, the element fγif−1 is
not in A. If n ≥ 2, we apply Lemma 5.2.1 to γpn−1 to find f ∈ G such that h = fγp

n−1
f−1

is outside A. Since for all 1 < i < pn, h belongs to the subgroup generated by fγif−1, none
of the fγif−1 are in A.

By Lemma 5.4.6, for each fγif−1 6= fγjf−1, we have

fγif−1Afγ−if−1 6= fγjf−1Afγ−jf−1.

Thus the conjugacy class of A contains at least ord(γ) elements.

If we have a faithful action of a group G, we may try to classify subgroups of G by their
fix points. If G is a branch group, this will fail. Indeed, we have the following lemma.

Lemma 5.4.10. Let G ≤ Aut(T ) be a spherically transitive group and A a weakly maximal
subgroup. Then either A is parabolic, or it fixes only a finite number of vertices of T .

Proof. If A fixes infinitely many vertices of T , then by König’s lemma it fixes a ray. But
then A ≤ StabG(ξ) <∞ G by spherical transitivity of G. The weak maximality of A implies
then that A = StabG(ξ).

We will show in Section 5.6 that for G ∈ C \ G , there is uncountably many non-parabolic
weakly maximal subgroups. In particular, there are uncountably many weakly maximal
subgroups that fixes the same subset of T .
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5. Weakly maximal subgroups of branch groups

Coset tree
Proposition 5.4.4 shows that if G acts on a rooted tree in a branch way, then parabolic
subgroups are weakly maximal. In this subsection we want to go the other way around. That
is, start with a weakly maximal subgroup H and construct an action of G on some rooted
tree TH such that H is a parabolic subgroup for this action. In general, this action will not
be branch, but we can still study it and test if it satisfies good properties.
Definition 5.4.11. Let G be a group and H a subgroup. A descending chain for H, is a chain
A0 = G ≥ A1 ≥ . . . of subgroups of finite index such that

⋂
Ai = H. The associated coset

tree is the rooted tree where vertices of the nth level correspond to the right cosets of An,
and where there is an edge from Aig to Ajh if and only if j = i+ 1 and Ajh ⊆ Aig.

Observe that in general we can define a coset tree for any chain A0 = G ≥ A1 ≥ . . . , but
the tree will be locally finite if and only if the subgroups are of finite index.

If (g(j)
i )rjj=1 is a transversal system for Ai ≤ Ai−1, then the set of vertices of the ith level

is {Aigln . . . gl2gl1 | n ≤ r1r2 . . . ri and l1 < l2 < · · · < ln}. See Figure 5.4 for an example.
We will often make the abuse of notation of writing TH for the corresponding coset tree,

G

A1g1

A2g2g1

A3g3g2g1A3g2g1

A2g1

A3g3g1A3g1

A1

A2g2

A3g3g2A3g2

A2

A3g3A3

Figure 5.4: The coset tree of G >2 A1 >2 A2 >2 A3.

and we will always make the identification of the ray 0∞, and the ray corresponding to
the sequence of cosets (Ai)i. This tree is locally finite and spherically homogeneous: the
degree of a vertex depends only on its level. If H is of infinite index, then the tree is infinite.
There is a natural action by multiplication on right of G on TH . This action is spherically
transitive and StabG(0∞) = H. By spherical transitivity, StabG(n) > StabG(n+ 1) for all n.
Therefore, if G is just-infinite, then the action is faithful.

Lemma 5.4.12. Let G be a finitely generated group and H be a closed subgroup for the
profinite topology. Then there exists a descending chain for H.

Moreover, if G is a p-group, then every such chain can be completed in a chain such that
for all i, Ai+1 is a normal subgroup of Ai of index p.

Proof. Since H is closed, then H is the intersection of all subgroups of finite index that
contain it. Let Ai be the intersection of all such subgroups of index at most i. It is trivial
that Ai ≥ Ai+1 and that the intersection is H. Since G is finitely generated, Ni is a finite
intersection of finite index subgroups and thus of finite index.

Now, if G is a p-group and A is a subgroup of finite index, then its normalizer N is
a normal subgroup of finite index. In particular, G/N is a finite p-group. But in a finite
p-group, every proper subgroup is contained in a normal subgroup of index p. By applying
this to A/N and using the correspondence theorem, we have G > A′ ≥ A, where A′ is normal
subgroup of index p. An induction finishes the proof.
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5.5. Weakly maximal subgroups living deep in the tree

In particular, if H is a wmc subgroup in a p-group, then it is always possible to construct
a coset tree which is p-regular.

5.5 Weakly maximal subgroups living deep in the tree

This section is consecrated to the proof of Theorem 5.1.4. Let G be a finitely generated
regular branch group acting on T and Q an infinite index subgroup that does not fixes any
point in ∂T . Let l be the minimal integer such that Q does not fixes any vertex of level l.
For all vertex v of level k, we want to construct a weakly maximal subgroup that stabilizes v
but does not stabilize any vertex of level k + l.

We first demonstrate that if Q ≤ Aut(T ) stabilizes no point in ∂T , then there exists an
integer l such that Q stabilizes no vertex of level l. The proof is done by contradiction. Let
TQ be the full subgraph of T consisting of all vertices stabilized by Q, with edges coming
from edges in T . Assume that for each integer l, the group Q stabilizes a vertex v of level l.
Then Q stabilizes the path between the root and v. Therefore, TQ is a locally finite tree with
paths of arbitrary large length. By König’s lemma, TQ contains an infinite path ξ which is
stabilized by Q — a contradiction.

Proof of Theorem 5.1.4. Let d be the degree of T . Using Q we will, for any integer k ≥ 1,
produce the desired subgroup W of StabG(k). For any k, let ψk be the map

StabG(k) ↪→ Gd
k

and for any i = 1, . . . , dk, let πi be the projection of Gdk onto the ith factor. Let ∆
be a weakly maximal subgroup of G containing Q and look at (π1 ◦ ψk)−1(∆). Since
G is regular branch, the image of ψk has finite index in Gd

k . This and the surjectivity
of π1 implies that (π1 ◦ ψk)−1(∆) is an infinite index subgroup of StabG(k). Let H be
any weakly maximal subgroup containing it. We claim that H ≤ StabG(0k), where 0k is
the leftmost vertex of level k. Suppose, for the sake of contradiction, that there exists
γ = (g1, . . . , gdk)kτ ∈ H \ StabG(0k) for some τ permuting the dk coordinates. Then for any
(a1, . . . , adk)k ∈ H, we have γ(a1, . . . , adk)kγ−1 ∈ H. Since γ is not in StabG(v), we have
that

γ(a1, . . . , adk)kγ−1 = (gjajg−1
j , b2, . . . , g1a1g

−1
1 , . . . , bdk)k

for some j ∈ 2, 3, . . . , dk; with bl’s being a permutation of conjugates of the remaining ai’s.
However, since G is regular branch, the image of ψk is of finite index in Gdk . Thus, the image
of ψk contains Q1×Q2 · · ·×Qdk , where each Qi is a finite index subgroup of G for i = 1, . . . , dk.
It follows, then that ψk

(
H ∩ StabG(k)

)
contains 1×Q2 · · · ×Qdk , as 1×Q2× · · · ×Qdk is in

the kernel of π1. But then γ(H∩StabG(k))γ−1 = H∩StabG(k) and ψk(γ(H∩StabG(k))γ−1)
contains a conjugate of Qj in the first factor. Therefore, ψk(H ∩ StabG(k)) is of finite index
in Gdk . It follows, because ψk is injective, that H ∩ StabG(k) is of finite index in StabG(k),
which is impossible as H is weakly maximal and StabG(k) is a subgroup of G of finite index.
So we have found our desired contradiction and proved that H ≤ StabG(0k). By replacing
π1 with a suitable πi, we show that for every k and every vertex v of level k, there exists a
weakly maximal subgroup H ≤ StabG(v) that stabilizes no vertices of level k + l.

Finally, the map πi ◦ ψk maps H onto all of G for i 6= 1. And π1 ◦ ψk(H) contains Q.
Thus, it is impossible for H to stabilize any vertex of the (k + l)th level, as desired.

When G is the first Grigorchuk group or a group in C \G , it is possible to take Q = 〈a〉.
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5. Weakly maximal subgroups of branch groups

We remark here that it is now possible to produce countably many groups each of which
is not conjugate to any parabolic subgroup of G. For this, set Fix(H) to be the points in T
fixed by every element in H. For any g ∈ G and H ≤ G, recall that Fix(gHg−1) = g Fix(H).
By this relation, the conjugate of any parabolic group is parabolic. Thus, if Hk is conjugate
to a parabolic group, it must be parabolic itself. However, Hk does not fix any vertex of
level k + 1 and conjugation preserves levels of the tree, so this is impossible.

Next, we show that for i 6= j, the groups Hi and Hj are never conjugate. Suppose, for the
sake of contradiction, that Hi and Hj are conjugate and i < j. Then Fix(Hi) = g Fix(Hj)
for some g ∈ G. However, by construction, Hj fixes a vertex, v, of level j. It follows then
that Hi fixed gv, but Hi does not fix any vertex at level i+ 1, and hence cannot fix a vertex
at level j ≥ i+ 1. It follows then that Hi and Hj are not conjugate.

5.6 Weakly maximal subgroups containing a given finite subgroup

This section is devoted to the proof of Theorems 5.1.1, 5.1.3 and of Corollary 5.1.2.
Let T be a regular rooted tree, G ≤ Aut(T ) be a finitely generated regular branch group

and Q ≤ G a finite subgroup of G. We will prove that there are uncountably many weakly
maximal subgroups of G containing Q. This is sufficient to prove Theorem 5.1.1 since G is
finitely generated and therefore Aut(G) is countable.

Our proof here is a diagonal argument, similar, in a sense, to Cantor’s proof of uncount-
ability of the real numbers. In many ways, this proof is also to Margulis and Sŏıfer’s proof
that in a non virtually solvable linear group there is uncountably many maximal subgroups
of infinite index. In both cases, the main idea is to find a subgroup of infinite index Hi with
“good properties” such that for any weakly maximal (respectively maximal of infinite index)
subgroup M , there exists g /∈ M such that Hi+1 := 〈Hi, g〉 is still a subgroup of infinite
index with the same good properties. This general idea is a priori applicable for any class of
groups, we only need to properly define what would be the “good properties” of the Hi and
show that it is possible to do an induction. Since regular branch groups and linear groups
stand far away one from the other, the “good properties” involved and the technical tools
used are totally distinct.

Suppose, for the sake of contradiction, that there exists countably many non-parabolic
weakly maximal subgroups that contain Q. Enumerate them {Wi}i≥1. Since Q is finite, there
exists k1 such that StabQ(k1) = {1} and Q does not act transitively on Lk1 . If W1 contains
RistG(v) for all v ∈ Lk1 , then W1 contains RistG(k1). This is impossible as RistG(k1) is
of finite index in G because G is branch. Hence, there exists some v0 ∈ Lk1 such that
RistG(v0) \W1 is non-empty. Pick an element in this non-empty set and call it w1.
Claim 5.6.1. Set H1 := 〈Q,w1〉. Then there exists a vertex u of level k1 such that the
subtrees {Tq(u) : q ∈ Q} are all fixed by StabH1(k1). Moreover, StabH1(k1) is the normal
closure of w1 in H1.

Proof. Since w1 is in RistG(v0), for any q ∈ Q, qw1q
−1 belongs to RistG

(
q(v0)

)
. Hence, for

any g ∈ H1, gw1g
−1 fixes Tv for v ∈ Lk1 \Q(v0). By the choice of k1, Q(v0) cannot contain

all vertices of level k1, thus there exists a vertex u ∈ Lk1 \Q(v0) such that {Tq(u) : q ∈ Q}
are all fixed by the normal closure of w1 in H1.

We conclude by showing that StabH1(k1) is exactly the normal closure of w1 in H1.
By definition, the element w1, and hence any of its conjugates, are in StabH1(k1). Since
StabQ(k1) = {1}, we have that H1 = Qo 〈w〉H1

1 = QoStabH1(k1) with 〈w〉H1
1 ≤ StabH1(k1).

This implies that 〈w〉H1
1 = StabH1(k1) as desired.
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5.6. Weakly maximal subgroups containing a given finite subgroup

For a vertex w and a set S of vertices in T , we write w ≤ S if w ≤ v for some v ∈ S.
Suppose w1, . . . , wi ∈ G of level k1, . . . , ki have been constructed so thatHi := 〈Q,w1, . . . , wi〉
with

1. wj does not belongs to Wj for all 1 ≤ j ≤ i,

2. the normal closure of {w1, . . . , wi} in Hi is StabHi(k1), and

3. for 2 ≤ j ≤ i, there exist vertices uj of level kj with uj ≤ Q(uj−1), such that StabHj (k1)
fixes every point in {Tq(uj) : q ∈ Q}.

Claim 5.6.2. For all ki+1 big enough there exists wi+1 ∈ StabG(ki+1) such that Hi+1 :=
〈Q,w1, . . . , wi+1〉 is not included in any W1, . . . ,Wi,Wi+1, and, further, there exists a vertex
ui+1 ≤ Q(ui) of level ki+1 such that StabHi+1(k1) fixes every element in {Tq(ui+1) : q ∈ Q}.
Moreover, StabHi+1(k1) is the normal closure of w1, w2, . . . , wi, wi+1 in Hi+1.

Proof. Since Q is finite, it is possible to find ki+1 > ki such that Q does not acts transitively
on Lki+1 ∩ {Tq(ui) : q ∈ Q}. Since Wi+1 is of infinite index in G and RistG(ki+1) is of finite
index, there exist an element wi+1 ∈ RistG(v0) \Wi+1 for some v0 ∈ Lki+1 .

From now on, when we write v, we will always assume it is a vertex of level ki+1. By
assumption, StabHi(k1) acts trivially on {Tq(ui) : q ∈ Q}. Therefore, for any p ∈ StabHi(k1),
pwi+1p

−1 fixes Tv for all v ≤ Q(ui) with v 6= v0. By definition of ki+1, there exists ui+1 ≤
Q(ui) of level ki+1 with ui+1 /∈ Q(v0). For such a ui+1, every element in {Tq(ui+1) : q ∈ Q}
is fixed by the normal closure of {w1, . . . , wi+1} in Hi+1. In fact, since each of the trees
in {Tq(ui+1) : q ∈ Q} are contained in {Tq(ui) : q ∈ Q}, it follows that for all q ∈ Q
and j = 1, . . . , i + 1, qwjq−1 fixes {Tq(ui+1) : q ∈ Q}. Set N to be the normal closure of
{w1, . . . , wi+1} in Hi+1. Since N is generated by {qwjq−1 : q ∈ Q and j = 1, . . . , i+ 1}, it
follows that N fixes {Tq(ui+1) : q ∈ Q}. Since StabQ(k1) is trivial and N ≤ StabG(k1), it
follows that N = StabHi+1(k1), as desired.

By applying Claims 5.6.1 and 5.6.2, we construct an infinite sequence k1 < k2 < . . . and
an infinite sequence {wi}i≥1 in G such that:

• Hi := 〈Q,w1, . . . , wi〉 is not included in any W1, . . . ,Wi,

• there exists a vertex ui ∈ T of level ki, such that Hi ∩ StabG(k1) fixes every point in
Tui .

We further claim that for any i ∈ N, the associated group Hi has infinite index in G.
Suppose, for the sake of contradiction, that Hi is of finite index in G for some i.

Note that Hi ∩ StabG(k1) acts trivially on some Tv where v ∈ T has level ki > k1. Since
G is regular branch over K, Kdki is a finite index subgroup of ψki(StabG(ki) ∩K). This
implies that ψki

(
StabG(ki)

)
is a finite index subgroup of Gdki . The subgroups Hi and

StabG(ki) are of finite index in G, thus StabG(ki) ∩Hi has finite index in StabG(ki). Since
ψki
(
StabG(ki)

)
is a finite index subgroup of Gdki , ψki(StabG(ki) ∩Hi) has finite index in

Gd
ki . This conclusion is impossible as every element in Hi ∩ StabG(ki) ≤ Hi ∩ StabG(k1)

fixes every point in Tui . The claim is now shown.
Now, given that Hi is never of finite index, we claim that H = ∪i≥1Hi is an infinite-index

subgroup of G. Suppose not, then H, being of finite index in a finitely generated group G, is
finitely generated, say, by elements a1, . . . , am. Thus, as the sequence of groups {Hi}i≥1 is
increasing, there is a single Hi that must contain each a1, . . . , am. It follows that Hi is of
finite index – a contradiction.
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5. Weakly maximal subgroups of branch groups

Since G is finitely generated, there exists a weakly maximal subgroup A containing H in
G. Therefore, A contains Q and hence equal to one of the Wi. On the other hand, for any
Wi, H contains an element that is not in Wi, which give us the desired contradiction. Thus,
there cannot be countably many weakly maximal subgroups containing Q. This completes
the proof of Theorem 5.1.1.

We now prove Corollary 5.1.2 and Theorem 5.1.3 as direct corollaries of Theorem 5.1.1.

Corollary 5.1.2. Let T be a regular rooted tree and G ≤ Aut(T ) be a finitely generated
regular branch group. Suppose that G contains a finite subgroup Q that does not fix any
point in ∂T . Then there exist uncountably many automorphism equivalence classes of weakly
maximal subgroups of G, all distinct from classes of parabolic subgroups associated with the
action of G on T .

Proof. Let ϕ be an automorphism of G. Since G is weakly branch, by Theorem 7.3 of
[81] there exists ψ a homeomorphism of ∂T such that for all g ∈ G and ξ ∈ ∂T we have
ϕ(g)(ξ) = ψ−1 · g · ψ(ξ). Therefore, automorphisms of G send parabolic subgroups to
parabolic subgroups. On the other hand, if W is one of the uncountably many weakly
maximal subgroups containing Q, it fixes no ray and therefore is not parabolic.

Theorem 5.1.3. Let G be either the first Grigorchuk group, or a GGS group with E = (1,−1)
or E = (ε1, . . . , εp−1), p prime, such that the εi are not all zero and not all non-zero. Then
G has uncountably many automorphism equivalence classes of weakly maximal subgroups,
all distinct from classes of parabolic subgroups of any branch action of G on a spherically
regular tree.

Proof. Take Q = 〈a〉. Then, there exist uncountably many automorphism equivalence classes
of weakly maximal subgroups of G all distinct from classes of parabolic subgroups of the
action of G on T . The rigidity described in [57] implies that for any branch action of G on a
spherically regular tree, the parabolic subgroups are the same as the ones from the original
action.

5.7 From wmc subgroups to coset trees

In this section we will work with groups acting faithfully on locally finite rooted trees. Such
a group is residually finite and its profinite completion also acts on the tree. We will show
that there is a bijection between closed subgroups of finite index in G and closed subgroups
of finite index in Ĝ its profinite completion.

We will then study the relation between wmc subgroups of G and wmc subgroups of Ĝ.
Finally, given G a residually finite just-infinite p-group and H a wmc subgroup, we construct
in Theorem 5.7.20 an action of G on an infinite rooted tree such that there is a ray with
StabG(ξ) = H and all Ĝ parabolic subgroup are distinct and wmc.

First we begin with some results on topological groups.

Topological groups
Throughout this subsection, G will be a topological group not necessarily (topologically)
finitely generated. For us a subgroup of G will always be an abstract subgroup not necessarily
closed.
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5.7. From wmc subgroups to coset trees

Lemma 5.7.1. Let X be a topological space, Y a subspace with the subspace topology, F(Y )
the collection of closed subsets of Y and ·̄ the closure in X. Then we have two applications:

Θ: F(Y )→ F(X) Ψ: F(X)→ F(Y )
A 7→ Ā B 7→ B ∩ Y

which satisfy

1. Ψ ·Θ = IdF(Y );

2. Ψ is increasing, while Θ is strictly increasing;

3. Θ ·Ψ(B) ⊆ B;

4. If we restrict ourselves to Im(Θ), then Θ and Ψ are isomorphism of lattices and
Θ = Ψ−1;

5. If Y is dense and B open, Θ ·Ψ(B) = B;

6. If Y is dense, B open and ϕ an homeomorphism of X, we have ϕ(B) = ϕ(B) ∩ Y .

Proof. For A ∈ F(Y ), we have A ⊆ Ā and A ⊆ Y , thus A ⊆ Ā ∩ Y . For the other direction,
remember that U ∩ V ⊆ Ū ∩ V̄ . Now, by definition of the induced topology, A = B ∩ Y with
B a closed subset of X. Therefore, Ā∩ Y = B ∩ Y ∩ Y ⊆ B ∩ Y ∩ Y = B ∩ Y = A; and this
prooves the first statement. It is evident that both Ψ and Θ are increasing. The equality
Ψ ·Θ = IdF(Y ) implies that Θ is injective and thus strictly increasing.

The third and fourth statements are trivial.
For the fifth statement, we have to prove that B ∩ Y is dense in B. Take any open set U

of B (with the induced topology). Since B is open, U is also an open set of X. Therefore,
U ∩ (B ∩ Y ) = (U ∩B) ∩ Y = U ∩ Y 6= ∅ by density of Y .

For the last statement, since ϕ is an homeomorphism, ϕ−1(Y ) is dense in X and ϕ(B) is
clopen. Therefore, ϕ(B) ∩ Y = ϕ(B ∩ ϕ−1(Y )) = ϕ(B).

This lemma means that (when restricted to closed subset of X and Y ), ·̄ is section · ∩ Y .
Therefore, ·̄ is injective and · ∩ Y is surjective. Observe that even in the particular case of X
a topological group, Y a dense subgroup and B a closed subgroup, it is not necessarily true
that Θ ·Ψ(B) = B. For example, take X = R, Y = Q and B =

√
2Z.

Proposition 5.7.2. Let K be a topological group and G ≤ K an abstract subgroup. For
every pair of subgroups H ≤ L of G, if [L : H] is finite then [L̄ : H̄] ≤ [L : H]. If H is
a closed subgroup of G, then [L : H] is finite if and only if [L̄ : H̄] is finite, in which case
they are equal. Moreover, if H is a closed subgroup of finite index of G and {gi}ni=1 is a
transversal for H ≤ L, it is also a transversal for H̄ ≤ L̄

Proof. First suppose that [L : H] is finite. We have L = tni=1giH. Thus L̄ = tgiH =
∪ni=1giH = ∪giH̄, where the second equality holds because a finite union of closed subset is
closed and the last equality holds since left multiplication by gi is an homeomorphism.

Moreover, if H is closed in G and giH̄ ∩ gjH̄ is non-empty, then gig−1
j ∈ H̄ ∩ G = H

which implies i = j. This prove that in this case L̄ = tgiH̄.
Now suppose that H is closed in G and H̄ is of finite index in L̄. Then H̄ ∩ L is of finite

index in L̄ ∩ L = L. We have L ≤ L̄ and H closed in G implies that H is closed in L for the
subspace topology coming from L. Thus, we can apply Lemma 5.7.1 to L ≤ L̄ in order to
have H̄ ∩ L = H̄L̄ ∩ L = H of finite index in L.
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5. Weakly maximal subgroups of branch groups

Let K be a topological group. We denote by Subcl(K) the collection of closed subgroups
of K. This is a lattice with A ∧B = A ∩B and A ∨B = 〈A ∪B〉.

Corollary 5.7.3. If K is topological group and G a dense subgroup we have two applications:

Θ: Subcl(G)→ Subcl(K) Ψ: Subcl(K)→ Subcl(G)
H 7→ H̄ M 7→M ∩G

which satisfy

1. Ψ ·Θ = IdSubcl(G);

2. Ψ is increasing, while Θ is strictly increasing;

3. Θ ·Ψ(M) ⊆M ;

4. If we restrict ourselves to Im(Θ), then Θ and Ψ are isomorphism of lattices and
Θ = Ψ−1;

5. If M is clopen, Θ ·Ψ(M) = M ;

6. For all H, L in Subcl(G), the index [L : H] is finite if and only if [L̄ : H̄] is finite, in
which case they are equal;

7. For all M in Subcl(K), the index [K : M ] is finite if and only if [G : M ∩G] is finite.
In which case they are equal;

8. For all H, L in Subcl(G) and M , N in Subcl(K) we have

Θ(H ∨ L) = Θ(H) ∨Θ(L) Ψ(M ∨N) ≥ Ψ(N) ∨Ψ(N)
Θ(H ∧ L) ≤ Θ(H) ∧Θ(L) Ψ(M ∧N) = Ψ(N) ∧Ψ(N)

Proof. Assertions 1 to 6 are obvious.
For 7, we already know that [K : M ] ≥ [G : M ∩ G]. We also have that M ∩G ≤ M .

Therefore, we have [G : M ∩ G] ≤ [Ḡ : M ] ≤ [Ḡ : M ∩G]. If [K : M ] is finite, so is
[G : M ∩G] and we can use assertion 6. If [K : M ] is infinite, [G : M ∩G] can not be finite,
otherwise we would have [K : M ] ≤ [Ḡ : M ∩G] = [G : M ∩G].

For Assertion 8, the only non-obvious inequality is Θ(A) ∨ Θ(B) ≤ Θ(A ∨ B). If
g is in 〈Ā ∪ B̄〉, then g = a1b1 . . . anbn with the ai in Ā and the bi in B. Therefore,
g = limj→∞ a1,jb1,j . . . an,jbn,j , where for all i, ai = limj→∞ ai,j with the ai,j in A. This
shows that 〈Ā ∪ B̄〉 ≤ 〈A ∪B〉 = 〈A ∪B〉G = Θ(A ∨B). Since this last subset is closed, we
conclude that Θ(A) ∨Θ(B) = 〈Ā ∪ B̄〉 ≤ Θ(A ∨B).
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Profinite groups
Definition 5.7.4. A profinite group is a topological group that is isomorphic to the inverse
limit of an inverse system of discrete finite groups.

Let G be an abstract group. Its profinite completion Ĝ is the inverse limit of the system
(G/N)N∈N where N is the collection of finite index normal subgroup of G.
Remark 5.7.5. Profinite groups are topological groups, but in general this topology is coarser
than the profinite topology: it is possible that some subgroup of finite index are not open.
However, using classification of finite simple groups, Nokilov and Segal showed in [94, 95]
that if G is topologically finitely generated then both topology coincide.

Theorem 5.7.6 (Nikolov and Segal). Let G be a (topologically) finitely generated profinite
group. Then every finite index subgroup is open.

An important corollary of this result is that if two topologically finitely generated profinite
groups are abstractly isomorphic, then they are homeomorphic. Hence, the topology of
topologically finitely generated profinite groups is uniquely determined by their algebraic
structure. Therefore, in a topologically finitely generated profinite group G, finite index
subgroups are exactly clopen subgroups.

There is always a natural map η : G→ Ĝ, which is injective if and only if G is residually
finite. If G is residually finite, the profinite topology on G is the same as the subspace
topology induced by Ĝ (this follows from a universal property of Ĝ) and Ḡ = Ĝ, where ·̄
denotes the closure in Ĝ.

Profinite groups have a rather interesting topology, see [107] and [120] for a detailed
expositions of the following facts. It turns out that a group is profinite if and only if it is
Hausdorff, compact and totally disconnected. Since it is compact, its open subgroups are
exactly finite index closed subgroups. We also have that in a profinite group, the intersection
of all open normal subgroups is trivial and that the closure of a subgroup H is the intersection
of all open subgroups containing H. Finally, if G is a topologically finitely generated profinite
group, then it is metrizable.

Proposition 5.7.7. If G is a residually finite group and Ĝ its profinite completion, the two
applications

Θ: Subcl(G)→ Subcl(Ĝ) Ψ: Subcl(Ĝ)→ Subcl(G)
H 7→ H̄ M 7→M ∩G

of Corollary 5.7.3 satisfies that if M is of finite index, Θ ·Ψ(M) = M .

Proof. This is Corollary 5.7.3 and the fact that finite index subgroups of Ĝ are clopen
subgroups.

Corollary 5.7.8. If G is a residually finite group and Ĝ its completion, their lattice of
clopen subgroups are isomorphic, by ·̄ and · ∩G.

If moreover G is finitely generated, their lattice of finite index subgroups are isomorphic,
by ·̄ and · ∩G.

Lemma 5.7.9. Let G be a residually finite group. Then

1. for any subgroup M ≤ Ĝ, we have NG(M ∩G) ≥ NĜ(M) ∩G;

2. for any subgroup H ≤ G, we have NG(H) = NĜ(H̄) ∩G.
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Proof. Take g ∈ NĜ(M) ∩G then, for all h ∈M ∩G ≤M , ghg−1 is in M . But since g is in
G and h too, we have ghg−1 ∈M ∩G. This prove the first statement an half of the second
statement.

On the other hand, if g is in NG(H) and h ∈ H̄, we have h = limi hi with all the hi in
H. Therefore, ghg−1 = g(lim hi)g−1 = lim ghig

−1 belongs to H̄ since all the ghig−1 are in
H.

Corollary 5.7.10. Let G be a finitely generated residually finite group. Then if H ≤ G is
of finite index, we have NG(H) = NĜ(H̄).

Proof. Since H is of finite index, so is H̄. Hence, both NĜ(H̄) and NG(H) are of finite
index. Therefore, NĜ(H̄) = NG(H) if and only if NĜ(H̄) ∩G = NG(H) and the conclusion
follows.

The following lemma gives us some link between wmc subgroups in G and wmc subgroups
in Ĝ.

Lemma 5.7.11. Let G be a residually finite group, H ≤ G a closed subgroup and M ≤ Ĝ a
closed subgroup of the profinite completion.

1. If H̄ is a wmc subgroup of Ĝ, then H is a wmc subgroup of G.

2. If M ∩G is wmc in G, then M ∩G is weakly maximal among closed subgroups of the
form A ∩G.

Proof. If H̄ is a wmc subgroup, then it has infinite index and H has infinite index too. If H
was not a wmc subgroup, then we have H < A <∞ G, which gives us H̄ < Ā <∞ G.

On the other hand, suppose that M ∩G is a wmc subgroup. This implies that, M ∩G
is of infinite index. If there is M ∩G ≤ A ∩G <∞ Ĝ, then M ∩ G ≤ A ∩ G <∞ G. By
maximality, M ∩G = A ∩G and thus M ∩G = A ∩G.

This lemma and the fact that applications ·̄ and · ∩G are bijections that preserves indices
when restricted to finite index subgroups raise the following questions.

Question 5.7.12. Do the applications ·̄ and · ∩G send wmc subgroups onto wmc subgroups?
If it is the case, are they bijections when restricted to wmc subgroups.

If the answer to the first question is yes, then using proposition 5.1.6 we have that if H
is a wmc subgroup of G, then all parabolic subgroups for the action Gy TH are wmc and
two-by-two distinct.

Groups acting on infinite rooted tree
Recall that if G is a subgroup of Aut(T ), then G is residually finite. In this case, we also
have that ḠT := ḠAut(T ), the closure of G in Aut(T ), is a quotient of Ĝ. This implies that
Ĝ acts too on T , but this action is not necessarily faithful. If the action of G is transitive
on each level, then ḠT acts transitively on the boundary ∂T . The following lemma follows
immediately from the definition of just-infinite.

Lemma 5.7.13. Let G ≤ Aut(T ) be an infinite residually finite group such that Ĝ is
just-infinite. Then Ĝ = ḠT .
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Remark 5.7.14. Let H be any subgroup of G. Then we can consider different closure for H.
Firstly the closure in Ĝ, which we will denote by H̄. There is also the closure in Aut(T )
which we denote by H̄T . Finally, there is the closure of H in G, written H̄G, where the
topology on G is the profinite one.

Lemma 5.7.15. Let T be a rooted tree and let G ≤ Aut(T ) be a finitely generated group.
Then for all vertex v and all ray ξ we have

1. StabG(v) = StabĜ(v) ∩G and StabG(ξ) = StabĜ(ξ) ∩G;

2. StabG(v) = StabĜ(v).

Proof. The first statement is obvious.
The group G is dense in Ĝ which is a finitely generated profinite group. Therefore, the

statement on Stab(v) follows from the fact that it is a finite index subgroup.

Lemma 5.7.16. Let T be a spherically homogeneous rooted tree and let G ≤ Aut(T ) be a
finitely generated subgroup. Suppose that this action if spherically transitive. Let ξ be any
ray in T and M = StabĜ(ξ) be the corresponding parabolic subgroup in Ĝ. Then there exists
a partition of ∂T in [NĜ(M) : M ] subsets (Aλ) of size [Ĝ : NĜ(M)] such that two rays in
the same Aλ have distinct Ĝ-stabilizers and {StabĜ(ξ) | ξ ∈ Aλ} is the same for all β.

Proof. Let N = NĜ(M). Since G acts spherically transitive on T , Ĝ acts transitively on ∂T
— this action is not necessarily faithful.

It is evident that for this action, StabĜ(ξ.g) = StabĜ(ξ)g and the conclusion follows.

Remark 5.7.17. With the hypothesis of last lemma, the action of Ĝ on ∂T is extremely
nonfree if and only if NĜ(M) = M , that is if and only if all stabilizers are pairwise distinct.

Proposition 5.7.18. Let T be a spherically homogeneous rooted tree and G ≤ Aut(T ) be
a finitely generated subgroup which is torsion. Suppose that the action of G is spherically
transitive and there exists a ray ξ such that H = StabG(ξ) is wmc and H̄ ≤ Ĝ is wmc. Then

1. All Ĝ-parabolic subgroups are pairwise distinct and wmc;

2. All G-parabolic subgroups are distinct from H;

3. Suppose moreover that for all g ∈ Ĝ we have H̄ ∩Gg = H̄. Then all G parabolic
subgroups are pairwise distinct.

Proof. Let M = StabĜ(ξ). This is an infinite index closed subgroup of Ĝ and we have
M ∩ G = H. By maximality of H̄, we have M = H̄. Since G is a torsion group, we have
H = NG(H) = NĜ(M) ∩G. Since M ≤ NĜ(M) is wmc, either M = NĜ(M) or NĜ(M) is
of finite index in Ĝ. But this last possibility would implies that H = NĜ(M) ∩G is of finite
index in G which is impossible. Thus M = NĜ(M) and all Ĝ-parabolic subgroups are wmc
and pairwise distinct.

Now, let η be a ray. There exists g ∈ Ĝ such that Mη := StabĜ(η) = gM̄g−1. Therefore,
Hη := StabG(η) = Mη ∩G = gMg−1 ∩G.

Suppose that Hη = H. This implies that gMg−1 ∩G = H̄ = M and thus, M ≤Mg. By
maximality, we have M = Mg which implies that g fixes η.

Finally, observe that H̄ ∩Gg = H̄ for all g if and only if H̄g ∩G = H̄g for all g. Hence, we
can apply the same argument as above to prove that G stabilizers are pairwise distinct.
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p-Groups acting on rooted trees
In the following, we will consider finitely generated residually finite p-group1. In this case,
the pro-finite completion and the pro-p completion of G coincide.

Let G be a residually finite and Ĝ be its profinite completion. Suppose that Ĝ is virtually
pro-p (for example G a p-group). Let H be a wmc subgroup of G. Then H̄ is an infinite index
subgroup of Ĝ and therefore contained in a wmc subgroup M of Ĝ. Moreover, M ∩G = H.
If (Mi)i is a descending chain for M , then (Hi = Mi ∩G)i is a descending chain for H. Since
all the Mi are of finite index, we can choose the same transversal system for Hi and Mi.
Therefore, the coset tree TH and TM are isomorphic and the action and the actions of Ĝ on
TH and on TM are the same.

On the other hand, if (Hi)i is a descending chain for some wmc subgroup H ≤ G, then
(H̄i = Mi)i is a descending chain for M :=

⋂
Mi. This subgroup is of infinite index, but a

priori not necessarily wmc.

Proposition 5.7.19. Let G be a finitely generated residually finite p-group and M < Ĝ be
a wmc subgroup such that M ∩G is wmc. For the action of Ĝ on TM , all parabolic subgroups
are wmc and they are pairwise distinct.

Proof. Let H = M ∩ G. Since H is wmc and G is torsion, we have H = NG(H). On the
other hand, M ≤ NĜ(M). By Lemma 5.7.9, NĜ(M) ∩G ≤ NG(H) = H is of infinite index.
Therefore, M = NĜ(M) and we conclude by Lemma 5.7.16 and Remark 5.7.17.

Theorem 5.7.20. Le G be a residually finite just-infinite p-group and H be a wmc subgroup.
Then there exists a coset tree TH such that StabG(0̄) = H and

1. All Ĝ parabolic subgroups are wmc and pairwise distinct.

2. Any two rays in the NĜ(G)-orbit of 0̄ have distinct stabilizers.

Proof. We have H = NG(H) by Corollary 5.4.7. Since NĜ(H̄) ∩G = NG(H), the subgroup
NĜ(H̄) is of infinite index in Ĝ and contained in some wmc M . We have M ∩G = H (it is
an infinite index closed subgroup containing H).

Now, for the tree TH = TM , StabG(0̄) = H while StabĜ(0̄) = M . By Proposition
5.7.19, all Ĝ-parabolic subgroups are pairwise distinct and wmc. For all g ∈ Ĝ, we have
StabG(g0̄) = StabĜ(g0̄) ∩G = Mg ∩G. If ξ and ζ are in both in the NĜ(G)-orbit of 0̄, then
StabG(ξ) = Hg and StabG(η) = Hf for some g, f in NĜ(G). If these subgroups are equal,
we have H̄f = H̄g. Therefore gf−1 is in NĜ(H̄) ≤M , but this implies that ξ = η.

Remark 5.7.21. For G the grigorchuk group, NĜ(G) is countable. Indeed, Grigorchuk and
Sidki showed that for the original action on T we have NAut(T )(G) = Aut(G) is countable
and we obviously have NĜ(G) ≤ NAut(T )(G).

Theorem 5.7.20 is mainly a result on actions of Ĝ while we would like a result on actions
of G. This raises the following question.

Question 5.7.22. Let G ≤ Aut(T ) be a finitely generated spherically transitive group and
such that all Ĝ-parabolic subgroups are wmc and at least one G-parabolic subgroup is wmc.
What can be said about G-parabolic subgroups? Are they pairwise distinct, wmc? If not, is
this true for a subset of positive measure?

1In fact, it is sufficient to take G finitely generated residually finite torsion group such such that Ĝ is
virtually pro-p.
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One possible direction to answer this question is to look at the restriction of the function
Ψ(M) = M ∩G to the set of conjugates of M . Is this function injective? And if not, how
many preimage can have a subgroup Mg ∩G?

Another possibility is to look directly at StabG(ξ) and at the partion of ∂T by the subset
SA := {ξ | StabG(ξ) = A}. We have the following proposition.

Proposition 5.7.23. Let G be a residually finite just-infinite p-group, H a wmc subgroup
and TH the coset tree constructed in Theorem 5.7.20. Suppose that one of the following
conditions is true.

1. All parabolic subgroups are wmc;

2. For all ξ and η in ∂T , if StabG(ξ) ≤ StabG(η), then they are equal;

3. For all A ≤ G, the subset SA is closed;

4. The group G is hereditarily just-infinite and there is no ray with trivial stabilizer;

5. For all ξ ∈ ∂T and all v ∈ ξ, we have StabG(Cv) � StabG(ξ);

6. For all A and all v in T , there exists w ≤ v, such that Cw ⊂ ∂T \ SA.

Then, there is an uncountable number of pairwise distinct parabolic subgroups.

Proof. First of all, for all A, SA contains at most one ray in the G-orbit of 0̄. In particular,
for all A and all v ∈ T , the cylinder subset Cv of ∂T is not contained in SA. Indeed, by
Theorem 5.7.20, all rays in the G-orbit of 0̄ have pairwise distinct stabilizers.

It is clear that Hypothesis 1 implies Hypothesis 2. If ξi are all in SA and ξi converge to
ξ, we have A ≤ StabG(ξ). Hence, Hypothesis 2 implies Hypothesis 3.

Now, take A such that SA is closed. Since SA is closed, SA = ∂T \⋃λ∈Λ Cwλ . We already
know that for any v we have Cv 6⊂ SA and thus, there exists ξ in Cv \ SA. Therefore, there
exists λ ∈ Λ such that ξ belongs to Cwλ . Since ξ belongs to Cv and to Cwλ , we have either
v ≤ wλ or wλ ≤ v. Let z be the smallest of the two vertices. Then z ≤ v and Cz ⊆ ∂T \ SA.
This shows that Hypothesis 3 implies Hypothesis 6.

Observe that StabG(Cv) is a normal subgroup of StabG(v), a finite index subgroup of
G. Therefore, if G is herediteraly just-infinite, we have StabG(Cv) = {1} for all v. Hence,
Hypothesis 4 implies Hypothesis 5.

For all ξ and all v ∈ ξ we have StabG(Cv) ≤ StabG(ξ). Suppose that Hypothesis 6 does
not hold. That implies that there exists A and v such that for all w ≤ v there exists ξw with
w ∈ ξw and ξw ∈ SA. This implies that StabG(ξw) = A and that StabG(ξv) = A ≤ StabG(Cv).
We just proved that Hypothesis 5 implies Hypothesis 6.

Finally, suppose that Hypothesis 6 holds and that there is only a countable number of
pairwise distinct parabolic subgroups (Ai)i≥0. We thus have that ∂T =

⋃
i≥0 SAi . Let v0

be the root of the tree. By hypothesis, there exists v1 ≤ v0 with Cv1 ⊂ ∂T \ SA1 . There
also exists v2 ≤ v1 with Cv2 ⊂ ∂T \ SA2 , and so on. Let ξ = (v1v2v2 . . . ). By definition, ξ
belongs to ∂T but does not belong to any SAi , which is absurd.

In order to prove that all G parabolic subgroups are distinct fromH, we want StabG(g0̄) =
H̄g (Theorem 5.7.20). But in general, StabG(g0̄) = Mg ∩G ≥ H̄g ∩G and H̄g ∩G ≤ H̄g.
Remark 5.7.24. Suppose that the following holds: if M 6⊂Mg then M ∩G 6⊂Mg ∩G. Then
all G parabolic subgroups are pairwise distinct.
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5.8 Open questions and further research directions

In Section 5.6 we proved that in a regular branch group containing a finite subgroup that
does not fix any rays, there is uncountably many distinct weakly maximal subgroups that
are not parabolic subgroups of the original action. Each such subgroup is contained in a
maximal subgroup. In the Grigorchuk group, all maximal subgroups are of infinite index, but
this is not the case for example in some Šuniḱ groups. Francoeur and Garrido [42] proved
that every Šuniḱ group with p = 2 such that it has an element of infinite order contains at
least countably many maximal subgroups of infinite index, which are all finitely generated.
For example this applies to the so-called Grigorchuk-Erschler group — the only self-similar
group in the uncountable family of groups of intermediate growth constructed by Grigorchuk,
beside the so-called “first Grigorhuk group”.

Question 5.8.1. Does all these groups have uncountably many maximal subgroups of infinite
index?

A possible approach to this question is to use techniques of Section 5.6. Indeed, given
countably many subgroups Bi of infinite index, we are able to produce a new subgroups
of infinite index A such that for each i there exists gi ∈ A \ Bi. The subgroup A is the
increasing union of subgroups Ai. To pass from Ai to Ai+1 we added gi and showed that
Ai+1 retains some “good properties”. Such an A is contained in a weakly maximal subgroup
which is itself contained in a maximal subgroup M , but a priori M could be of finite index.
In order to force M to be of infinite index, it is sufficient to have A dense in the profinite
topology. This can be done if for all i, for all finite index subgroup and all left coset gC
there is an element f ∈ gC such that 〈Ai, f〉 still have the desired “good properties”.

In Section 5.7 we proved that given a wmc subgroup of G, the action of Ĝ on the coset tree
has all parabolic subgroups wmc and distinct. Nevertheless, the original question remains.

Question 5.8.2. Le G be a residually finite just-infinite p-group and H be a wmc subgroup.
Then the action of G on the coset tree TH is spherically transitive and StabG(0̄) = H.

Is it true that all G-parabolic subgroups for this action are

1. pairwise distinct?

2. wmc?

Positive answer to the first question would imply the construction of new IRSs.
Partial results are given in Proposition 5.1.6 and Theorem 5.1.7. As discussed in Section

5.1, the following conjecture implies positive answers to Question 5.8.2.

Conjecture 5.8.3. The two functions H 7→ H̄ and M 7→ M ∩ G send wmc subgroups to
wmc subgroups.

It is thus of interest to study the behavior of the functions H 7→ H̄ and M 7→ M ∩G,
even in the specific case of the Grigorchuk group.
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Chapter 6
Weakly maximal subgroups of the

Grigorchuk group

In Chapter 5 we have shown that there exist, in any finitely generated regular branch group,
uncountably many weakly max subgroups different from parabolic ones. The question of
their classification remains largely open. In this chapter we present some partial results
towards such a classification on the example of Grigorchuk’s group.

We begin with Section 6.1 which contain preliminary results on Schreier graphs of the
Grigorchuk group. We also describe the lattice of all subgroups containing B = 〈b〉G , see
Figure 6.10. These subgroups are of special interest since they naturally appear in the
classification of weakly maximal subgroups by projections in Section 6.5.

In Section 6.2 we turn our attention to non-linear Schreier graphs of G. In particular, we
prove that there exist uncountably many weakly maximal subgroups with non-linear Schreier
graphs. This contrasts the fact that all Schreier graphs of parabolic subgroup for the original
action (which are weakly maximal) are linear, [118].

Section 6.3 studies a broad equivalence relation on weakly maximal subgroups. Namely,
two subgroups are said to be tree equivalent if they arises as parabolic subgroups for the
same action of G on a tree. In particular, parabolic subgroups off the original action are one
tree equivalence class. We show that there is at least 4 distinct tree equivalence classes.

In Section 6.4 we discuss the case of finitely generated weakly maximal subgroup in G.
We start with a particular example due to Pervova that was presented in [49]. We then use
it to construct infinitely many non-conjugated weakly maximal subgroups that we conjecture
to be finitely generated.

Finally, in Section 6.5 we give a quick look at right and left projections of weakly maximal
subgroups, following an idea of Grigorchuk. Parabolic subgroups of the original action are
characterized by their projections. Therefore, a better understanding of the general case may
lead to the beginning of a classification of weakly maximal subgroups of Γ.

6.1 Schreier graphs of G
The aim of this section is to describe subgroups of G via their Schreier graph. This allows to
describe the top of the lattice of subgroups of the Grigorchuk group and to exhibit weakly
maximal subgroups with “non-linear” Schreier graph.
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label of the edge color of the edge
a red
b black
c cyan
d green

Table 6.1: Label of edges in Schreier graph of the Grigorchuk group.

Introduction
The description of the top of the lattice of normal subgroups was done by Ceccherini-
Silberstein, Scarabotti and Tolli in [28] and by Bartholdi in [8]. In particular, there are seven
subgroups of index 2, all of them normal and seven normal subgroups of index 4. Bartholdi
also wrote a program in GAP that listes all subgroups of finite index by looking at finite
quotient of G.

In this section, we will describe all Schreier graphs and give the lattice of subgroups
of index at most 4. We will also describe all subgroups containing B = 〈b〉G since they
naturally appears in the classification of weakly maximal subgroups. Finally, we will look at
“non-linear” Schreier graphs of G.

In the following, we will use the notation of [28] for normal subgroups. We will make
extensive use of the following presentation of the Grigorchuk group due to Lysenok [89]. Let
A be the set of words on {a, b, c, d} such that one letter out of two is an a and the other
belongs to {b, c, d}. Define σ : A→ A by σ(ww′) = σ(w)σ(w′) and

σ : a 7→ aca b 7→ d

c 7→ b d 7→ c.

Let w0 = ad and for all n, define wn+1 = σ(wn) = σn(ad). The the first Grigorchuk group
admits the following presentation

G =
〈
a, b, c, d

∣∣∣∣∣
a2 = b2 = c2 = d2 = bcd = 1
∀n ≥ 0, (wn)4 = (wnwn+1)4 = 1

〉

Notice that the relators in this presentation come naturally in two distinct groups:

a2 = b2 = c2 = d2 = bcd = 1(6.1)
∀n ≥ 0, (wn)4 = (wnwn+1)4 = 1.(6.2)

Since X = {a, b, c, d} contains only element of order 2, any Schreier graph of G is a
4-regular graph such that at every vertex there is exactly one edge with label x for all x ∈ X.

In the following, label edges will be drawn in colors, according to the Table 6.1. Recall
that for any group G = 〈X | R〉 and subgroups H1 and H2, we have H1 = H2 if and only
if the corresponding Schreier graphs are isomorphic as labeled rooted graphs. Moreover,
H1 and H2 are conjugated if and only if their Scheier graphs are isomorphic as labeled
graphs. We also have that H1 ≤ H2 of and only if there is a X-covering sending root to
root from the Schreier graph of H1 to the one of H2. Therefore, there is a X-covering from
the Schreier graph of H1 to the one of H2 if and only if H1 is a subgroup of a conjugate of
H2. A X-graph is a graph labeled by X such that for any vertex v and any x ∈ X, there is
exactly one outgoing edge with label x. Recall also that a (rooted) X-graph is a Schreier
graph of 〈X | R〉 if and only if, for all vertices v and all r ∈ R, the unique path with initial
vertex v and label r has final vertex v.
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6.1. Schreier graphs of G

Figure 6.1: {b, c, d}-components arising in Schreier graphs of the Grigorchuk group: the rose,
the tetrahedron and 3 “mickeys” Black edges are labeled by b, cyan by c and green by d.

For a X-graph (V,E) and T ⊆ X, the T -components of (V,E) are the connected
components of the subgraph of (V,E) consisting of all edges labeled by elements of T .

Now, let us have a look at the relators of (6.1). They exactly state that 〈b, c, d〉 is the
Vierergruppe. If (V,E) a Schreier graph of G, then this implies that each {b, c, d}-component
is isomorphic to a quotient of the Cayley graph of the Vierergruppe with generating set
{b, c, d}, see Figure 6.1. This gives us a total of 1 + 3 + 1 = 5 possibilities. On the other hand,
(ad)4 = 1, and therefore {a, d}-components are quotient to the octogone, see Figure 6.2.

Figure 6.2: {a, d}-components arising in Schreier graphs of the Grigorchuk group.

The classification of Schreier graphs of finite index subgroups of G can be done by looking
at 2-covering. Indeed, by Lemma 5.2.2, if Γ is a Schreier graph of a finite index proper
subgroup of G, then it is a double strong cover of another Schreier graph of G. By Relations
6.1, Schreier graphs corresponding to subgroup of index 2i can be parametrized by triple of
involutions (pa, pb, pc) of the symmetric group Sym2i , where pa is the involution given by
pa(v) = v.a, where v ∈ {1, . . . , 2i} is view as a vertex of the Schreier graph. Given such a
triple, it is easy to find all double strong covers of the corresponding graph. It then remains
to keep only the one that are connected and to test if they indeed correspond to subgroups of
G. Since everything happen in a finite quotient of G, this can be done by a finite algorithme.

Before looking at subgroups of index 4, let us draw the graphs of subgroups of index at
most 2, see Figure 6.3.

In the notation of [28], the first line of figure 6.3 corresponds (from the left to the right)
to G and subgroups J0,1 to J0,4, the second line to J1,2 = H (the stabilizer of the first level
of the 2 regular rooted tree) and subgroups J0,5 to J0,7.

Recall that there is a 1 − 1 correspondence between Schreier graphs of G = 〈X〉 and
conjugacy classes of subgroups. Under this correspondence, the number of conjugates of
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6. Weakly maximal subgroups of the Grigorchuk group

Figure 6.3: Schreier graphs of subgroups of index at most 2. Edges in red are labeled by a,
in black by b, in cyan by c and in green by d.

A is the number of orbits in Sch(G,A,X±) under its group of strong automorphisms (i.e.
label preserving automorphisms) and changing the root in the Schreier graph corresponds to
conjugating A. We also have that A ≤ B if and only if Sch(G,A,X±) covers Sch(G,B,X±),
where the covering preserves the labeling and the root. Finally, generators of A can be read
on the Schreier graph. Therefore, Schreier graphs encode all the information about the
lattice of subgroups and their generators.

Subgroups of index 4
For index 4 subgroups, the corresponding Schreier graph has 4 vertices and we can do the
classification by hands. The following technical proposition will be useful in order to classify
{a, b, c, d}-graphs over 4 vertices that are Schreier graphs of G.

Proposition 6.1.1. Let X = {a1, . . . an} be a finite alphabet (we allow a2
i = 1 for some i’s).

Let (V,E) be a X-graph on 4 vertices such that under its group of X-automorphisms, there
is either only one orbit, or two orbits consisting each of them of two vertices. Then for all
w ∈ X∗, pw4 , the permutation induced on V by w4 is trivial.

Proof. First, observe that for any X-automorphism α of the graph, if pw : i 7→ j, then
pw : α(i) 7→ α(j).

If the graph is not connected, then it consist of two X-transitive graphs on 2 vertices each.
Since Sym2 has only elements of order 1 or 2, the proposition is trivially true. Therefore, we
may assume (V,E) to be connected.

Now, if there is 2 orbits of 2 vertices each, there is an X-automorphism of order 2. If
there is only 1 orbit, the groups of X-automorphism is a transitive subgroup of Sym4 and
thus also have an element of order 2. Let ¯ be this X-automorphism of order 2. This allows
us to label the vertices of (V,E) by 0, 0̄, 1, 1̄. Indeed, if the vertices are {0, 1, 2, 3} we may
assume, up to relabeling that 0̄ = 3. This implies that either 1̄ = 2 or 1̄ = 1. Assume fo the
sake of contradiction that 1̄ = 1. This implies that 2̄ = 2. Now, if there is an edge from 1
to 0, say labeled by l, then there is an edge labeled by l from 1̄ = 1 to 0̄ 6= 0. This is not
possible. Repeating the same argument shows that 1 and 2 do not belong to the connected
component of {0, 0̄}, which is absurd.

Finally, take w ∈ X∗ and x ∈ {0, 0̄, 1, 1̄} If pw(x) = x or pw(x) = x̄, then pw
4(x) =

pw
2(x) = x. Otherwise, pw(x) = y with y 6= x, x̄. This implies that pw(x̄) = ȳ and therefore

that pw(y) ∈ {x, x̄}. In both case, we have pw4(x) = x.

We now look at all 4 vertices X-graphs such that every path labeled by a relation from
(6.1) is closed. Such graphs are exactly the one such that every {b, c, d} connected component
is one of the 5 graphs in figure 6.1. A quick investigation gives us 16 possible graphs. Among
these 16 graphs, 7 are X-transitive. They correspond to normal subgroup of index 4, see
Figure 6.3. The 9 remaining graphs split into 3 family consisting of 3 graphs each, see Figure
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6.1. Schreier graphs of G

6.4. Such a family consist of graphs that can be obtained one from another by changing the
labeling according to any permutation of {b, c, d}. The graphs of the first two families have
2 X-orbits, while the graph in the third family have 4 X-orbits.

Proposition 6.1.2. All the 12 graphs defined by Figure 6.4 are Schreier graphs of the
Grigorchuk group.

Proof. For all these graphs, the paths labeled by relators in (6.1) are closed. The 9 graphs
defined by the first three diagrams satisfy the hypothesis of the Proposition 6.1.1. Therefore,
for these graphs, the paths labeled by relators in (6.2) are also closed.

Finally, we look at the last 3 graphs, corresponding to the last diagram in Figure 6.4.
These graphs have 4 X-orbits. But we know that any letter in {b, c, d} is a product of the
two others. Therefore, for any x ∈ {b, c, d}, a {a, b, c, d}-graph is a Schreier graph of G if and
only if the graph obtained by deleting all edges with label x is a Schreier graph of G. In our
case, if we delete gray edges of (V,E), we obtain a graph (V,E′) satisfying the hypothesis of
Proposition 6.1.1. This implies that (V,E′) is a Schreier graph of G (paths labeled by relators
in (6.1) and (6.2) are closed) and hence that (V,E) is itself a Schreier graph of G.

Figure 6.4: Schreir graphs of non-normal subgroups of index 4. Edges in red are labeled by
a. Violet, gray and brown edges correspond to any choice of 3 distinct letters in {b, c, d}.

As a corollary, using relation true in G to reduce the number of generators, we obtain

Proposition 6.1.3. There is 37 subgroups of index 4 of the Grigorchuk group, which belong
to 19 conjugacy classes. More precisely, there is 7 normal subgroups, 9 conjugacy classes of
size 2 and 3 conjugacy classes of size 4. They are all listed in Table 6.2.

The corresponding Schreier graphs are depicted in Figures 6.5 to 6.9. Where we adopted
the following notation. A subgroup of finite index of G is be denoted by Si,j,k,l with the
following conventions. The index i will denote the “level” of this subgroup, that is Si,j,k,l
is of index 2i. The index j will classify class of {a, b, c, d}-length-isomorphic subgroups (i.e.
subgroups with isomorphic unlabeled Schreier graphs on generating set {a, b, c, d}), the index
k class of conjugated subgroups (i.e. subgroups with isomorphic labeled Schreier graphs) and
the index l distinct subgroups in the same conjugation class. We will omit the last index for
normal subgroups and the third index if there is only one subgroup in the length-isomorphic
class. By convention, for each level we will firstly list the normal subgroups and then the
non-normal ones.
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6. Weakly maximal subgroups of the Grigorchuk group

Figure 6.5: Schreir graphs of normal subgroups of index 4. From left to right we have (in the
notation from [28]), J0,8 to J0,11 on the first line and J1,3, J1,9 and J1,5 on the second line.

0 1 1 0 0 1 1 0 0 1 1 0

Figure 6.6: From left to right, the subgroups S2,3,0,l to S2,3,2,l with 0 ≤ l ≤ 1 depending on
the choice of the root.

0 1 1 0 0 1 1 0 0 1 1 0

Figure 6.7: From left to right, the subgroups S2,4,0,l to S2,4,2,l with 0 ≤ l ≤ 1 depending on
the choice of the root.
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Figure 6.8: From left to right, the subgroups S2,5,0,l to S2,5,2,l with 0 ≤ l ≤ 1 depending on
the choice of the root.
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Figure 6.9: From left to right, the subgroups S2,6,0,l to S2,6,2,l with 0 ≤ l ≤ 3 depending on
the choice of the root.
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Subgroup Generators Transversal System
S2,0 a, ab, ac, ad {1}
S2,1,1 ba, dac {1}
S2,1,2 ca, dab {1}
S2,1,3 da, bac {1}
S2,2,1 c, ca, bba {1}
S2,2,2 d, da, cca {1}
S2,2,3 b, ba, dda {1}
S2,3,0,0 b, c, ba, baca, caca {1, a}
S2,3,1,0 c, d, ca, cada, dada {1, a}
S2,3,2,0 d, b, da, daba, baba {1, a}
S2,4,0,0 a, b, bd, bda, adad {1, d}
S2,4,1,0 a, c, cb, cba, abab {1, b}
S2,4,2,0 a, d, dc, dca, acac {1, c}
S2,5,0,0 d, (ca)2, bca {1, a}
S2,5,1,0 b, (da)2, cda {1, a}
S2,5,2,0 c, (ba)2, dba {1, a}
S2,6,0,0 ab, ad, ac {1, a, b, c}
S2,6,1,0 ac, ab, ad {1, a, c, d}
S2,6,2,0 ad, ac, ab {1, a, b, d}

Table 6.2: The 37 subgroups of index 4 of G and their generators.

We want to explore the lattice of subgroups of index at most 4 and of subgroups
containing B = 〈b〉G . For the lattice of all normal subgroups up to index 28, see for example
[28]. Therefore, in order to describe the lattice of subgroups of index at most 4 it only
remains to describe in which subgroups of index 2 live the non-normal subgroups of index 4.

For each subgroup S2,3,k,l, its Schreier graph is a strong cover of degree 2 of only one
graph. The resulting graph is obtained by identifying vertices of “type” 0 together and
vertices of “type” 1 together. This is exactly the Schreier graph of H.

For each subgroup S2,4,k,l, its Schreier graph is a strong cover of degree 2 of only one
graph. The resulting graph is obtained by identifying vertices of “type” 0 together and
vertices of “type” 1 together. This is exactly the Schreier graph of S1,0,k.

For each subgroup S2,5,k,l, its Schreier graph is a strong cover of degree 2 of only one
graph. As before, the resulting graph is obtained by identifying vertices of “type” 0 together
and vertices of “type” 1 together and correspond to the Schreier graph of H.

For each subgroup S2,6,k,l, its Schreier graph is a strong cover of degree 2 of only one
graph. Indeed, the vertex 2 can only be identified with the vertex 3 (the only other vertex
with a loop labeled by a). The resulting graph is a Schreier graph of S1,0,k.

We hence have thatH contains 12 non-normal subgroups of index 4 and for each 0 ≤ k ≤ 2,
the subgroup S1,0,k contains 6 non-normal subgroups. The 3 remaining subgroups of index
2 do not contain non-normal subgroups of index 4. Finally, we turn our attention to one
particular subgroup of index 8, namely B = 〈b〉G . Since B is a normal subgroup containing b,
there is a loop labeled by b at each vertex of its Schreier graph. Since the {a, b, d}-component
of the Schreier graph of B is connected, its {a, d} is also connected and is therefore an
octogone. This gives us the graph at the bottom of Figure 6.10.

Since there is a loop labeled by b at each vertex of its Schreier graph, any subgroup A
containing B has also a loop labeled by b at each vertex of its Schreier graph. This implies
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6. Weakly maximal subgroups of the Grigorchuk group

that A is either S2,2,3 = J1,5, S2,3,0,l or S2,4,0,l, l ∈ {0, 1}. An easy verification shows that
the Schreier graph of B indeed strongly covers the Schreier graphs of S2,3,0 and S2,4,0, and
this was already known for the others subgroups, see [28]. Therefore, there is exactly 10
subgroups containing B, of which 5 are of index 4. The lattice of Schreier graphs of G covered
by the Schreier graph corresponding to B is shown in Figure 6.10.

0 1 0 1

B = 〈b〉G

G

H = StabG(1)J0,5J0,2

J1,5

S2,3,0,iS2,4,0,i

Figure 6.10: The lattice of Schreier graphs of G that are covered by the Schreier graph of B.
Two of these graphs have two orbits under the group of X-automorphisms. Therefore, each
of them corresponds to two (conjugated) subgroups of G.

6.2 Non-linear subgroups

In this section, we focus on subgroups with non-linear Schreier graphs, where a graph is linear
if after erasing loops and identifying multiple edges it is isomorphic to a (possibly infinite or
bi-infinite) path. Parabolic subgroups for the original branch action of G are weakly maximal
and their Schreier graphs are know to be linear, [118]. There is uncountably many non-
strongly isomorphic such graphs, but if we forget the labelling, there is only two isomorphism
classes of such graphs. We will prove that there exist uncountably many (non-strongly
isomorphic) non-linear Schreier graphs corresponding to weakly maximal subgroups.

For the relevant definitions, see Section 6.1.
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6.2. Non-linear subgroups

Our conclusion will follows from the fact that in G the following relations holds

a2 = b2 = c2 = d2 = 1(6.3)
bcd = 1(6.4)

(ad)4 = (ac)8 = 1(6.5)

In the following, G will be any group that is a quotient of

(6.6) 〈a, b, c, d | a2, b2, c2, d2, bcd, (ad)4, (ac)8〉

with generating set X = {a, b, c, d}. We will list all possible T -components for T = {b, c, d},
{a, d} or {a, c}. Observe that since G is a quotient of the group given by Presentation (6.6),
some listed T -components may actually never appear in Schreier graphs of G.

Let us have a look at the relators of (6.3) and (6.4). They exactly state that 〈b, c, d〉 is
a quotient of the Vierergruppe V4 = (Z/2Z)2. If (V,E) a a Schreier graph of G, then the
Relations (6.3) and (6.4) implies that each {b, c, d}-component is isomorphic to a quotient of
the Cayley graph of {b, c, d}, see Figure 6.1. This gives us a total of 1 + 3 + 1 = 5 possibilities:
a rose, a tetrahedron and three “bigons”.

Now, for the {a, d}-components of Schreier graphs of G, we have that (ad)4 = 1. Therefore,
they are all quotients of an octagon, leaving us with eight possibilities, see Figure 6.2.

On the other hand, we have (ac)8 = 1 which implies that in Schreier graphs of G,
{a, c}-components are quotients of a 16-gone. See Figure 6.11 for the list of possible {a, c}-
components with a loop labeled by a.

Figure 6.11: {a, c}-components with a a-loop that may arise in Schreier graphs of G.

Proposition 6.2.1. Let A ≤ G be a subgroup that contains a conjugate of a. Then either
the corresponding Schreier graph has at least one {b, c, d}-component which is a tetrahedron,
or A has index 2i for some 0 ≤ i ≤ 3.

More precisely, if the index of A does not divide 8, then each a-loop is at distance
0, 2, 4 or 6 from a tetrahedron. On the other hand, if the index of A divides 8, then
the corresponding Schreier graph is linear, except for A one of the four conjugates of
〈a, d, dc, d(ca)3

, d(ca)3c, a(ca)3c, (bac)ca, (da)cac〉.

Proof. The subgroup A contains a conjugate of a if and only if the corresponding Schreier
graphs as a loop labeled by a. There is only 3 choices for the corresponding {a, d}-component
and 4 choices for the {a, c}-component. We now assume that the graph has no tetrahedron.
Therefore, there is only 4 possibilities for the {b, c, d}-components.

If both the {a, d}-component and the {a, c}-component are rose with 2 petals, then
A ≥ 〈a, d, c〉 = G.

If the {a, c}-component is not a rose with 2 petals, it is a path of length 1, 3 or 5. In
each case, gluing {b, c, d}-components on it does not add more vertex and we obtain the full
Schreier graph. In this case, A is of index 2, 4 or 8.
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6. Weakly maximal subgroups of the Grigorchuk group

We proved that each a-loop is in a connected component of at most 8 vertices, or at
distance 0, 2, 4 or 6 from a tetrahedron.

Now, if the index of A divides 8, a quick check of possible components give us the graphs
of Figures 6.12 and 6.13 as only possibilities. Except one, all these graphs are linear.

If G is a 2-group (for example, the Grigorchuk group), then “the index of A divides 8” is
equivalent to “A is of index at most 8”.

Corollary 6.2.2. There exists uncountably many weakly maximal subgroups H ≤ G with
non strongly-isomorphic Schreier graphs such that the graphs are non-linear.

Proof. By Theorem 5.1.1, there exist uncountably many weakly maximal subgroups of G
containing a. For all this subgroups, the corresponding Schreier graph contains a tetrahedron
and is therefore non-linear. Since G is countable, there are uncountably many non strongly
isomorphic such graphs.

Remark 6.2.3. It is possible to list all subgroups A that contains a conjugate of a such that
the Schreier graph does not have a tetrahedron. Indeed, the proof of Proposition 6.2.1 give us
the list of all candidates, see Figure 6.12 It then remains to show that they indeed correspond
to subgroups of G. Table 6.3 give the list of all these subgroups that contains a for the group
〈a, b, c, d | a2, b2, c2, d2, abc, (ad)4, (ac)8〉. Observe that all subgroups of index at most 4 are
subgroups of G, the first Grigorchuk group.

Subgroup index # of conjugates
G 1 1

〈a, b, ac〉 2 1
〈a, c, ad〉 2 1
〈a, d, ab〉 2 1

〈a, b, bd, bda, adad〉 4 2
〈a, c, cb, cba, abab〉 4 2
〈a, d, dc, dca, acac〉 4 2

〈a, d, dc, (dc)ca, d(ca)2
, d(ca)2c, d(ca)3

, d(ca)3c, a(ca)3c〉 8 8
〈a, d, dc, dca, dcac, d(ca)2

, d(ca)2c, d(ca)3
, d(ca)3c, a(ca)3c〉 8 4

Table 6.3: Subgroups of G = 〈a, b, c, d | a2, b2, c2, d2, abc, (ad)4, (ac)8〉 that contain a a and
do not have tetrahedron in the Schreier graph.

Corollary 6.2.2 shows that Schreier graphs of weakly maximal subgroups of G may be
non-linear, contrasting with the situation for parabolic subgroups. This is done by showing
that these graphs have one tetrahedron. Nevertheless, this results does not say anything
about the large-scale geometry of such graphs. In particular, it is unclear if such graphs are
always quasi-isometric to either N or Z. A better study of these graphs would lead to a
better understanding of how far away from parabolic subgroups are general weakly maximal
subgroups. It may also be possible to classify weakly maximal subgroups in term of the
geometry of their Schreier graphs.
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Figure 6.12: Schreier graphs of G = 〈a, b, c, d | a2, b2, c2, d2, abc, (ad)4, (ac)8〉 that contain an
a-loop and are linear.

Figure 6.13: Schreier graph of 〈a, d, dc, d(ca)3
, d(ca)3c, a(ca)3c, (bac)ca, (da)cac〉.

6.3 Counting weakly maximal subgroups in G
We proved in Chapter 5 that in G there are uncountably many weakly maximal subgroups
containing a given finite subgroup Q. Since G is finitely generated, there are uncountably
many such subgroups, up to conjugacy, and even up to Aut(G) equivalence. Nevertheless,
all parabolic subgroups for the original action come together even if they are not Aut(G)-
equivalent. This motivates the definition of a broader equivalence relation on the set of
subgroups.
Definition 6.3.1. Let G be a group endowed with the profinite topology. Two closed subgroups
A and B are tree equivalent if there exists a coset tree TA with B a parabolic subgroup for
the G action on TA.

Observe, that this is an equivalence relation. Indeed, if B = StabG(x1x2 . . . ) is a parabolic
subgroup, then B =

⋂
i≥1 StabG(x1x2 . . . xi) and thus TA is a coset tree for B. This implies

that ∼ is symmetric. On the other hand, if A ∼ B and B ∼ C, then A and C are both
parabolic subgroups of TB = TC .

If G ≤ Aut(T ) is branch, then all parabolic subgroups (of this branch action) are weakly
maximal and tree equivalent. For finitely generated residually finite p-group, tree equivalence
roughly corresponds to conjugation in Ĝ.

Lemma 6.3.2. Let G be a finitely generated residually finite p-group and A and B two
closed subgroups for the profinite topology. Then A and B are tree equivalent if and only if
there exists M a wmc subgroup of Ĝ containing A and g ∈ Ĝ such that B = Mg ∩G.

Proof. Suppose that A and B are tree equivalent. The tree TA corresponds to
⋂
Ai. Therefore,

it is isomorphic to the tree TM corresponding to M =
⋂
Āi, see the discussion before

Proposition 5.7.19. In particular, we have A = StabG(ξ) and M = StabĜ(ξ). On the other

133



6. Weakly maximal subgroups of the Grigorchuk group

hand, B = StabG(η) = StabĜ(η) ∩G. Since Ĝ acts transitively on ∂TM , there exists g ∈ Ĝ
such that StabĜ(η) = Mg.

On the other hand, if B = Mg ∩G, then we can construct TM ' TA which gives us the
tree equivalence.

It may be interesting to classify weakly maximal subgroups up to tree equivalence. This
raises the following question.

Question 6.3.3. How many tree equivalence classes of weakly maximal subgroups has G?

It is possible that such a class is uncountable (for example, for the original action, the
class as the cardinality of the continuum), and therefore the number of such classes is a priori
smaller than the number of classes under automorphism equivalence.

Lemma 6.3.4. If A ∼ B are equivalent by a coset tree TA corresponding to A0 > A1 > . . . ,
then they are equivalent by T ′A corresponding to G > A′1 > A′2 > . . . where each A′i+1 is
maximal in Ai.

Proof. Refining the sequence G = A0 > A1 > . . . does not change the set of rays and thus
does not change the set of parabolic subgroups.

Proposition 6.3.5. The Grigorchuk group G has at least 4 tree equivalence classes of weakly
maximal subgroups.

Proof. In this special case, all maximal subgroups are of index two and hence normal. Now,
take A1 = 〈b, c〉, A2 = 〈a, b〉, A3 = 〈a, c〉 and A4 = 〈a, d〉. These subgroups are finite. In
fact, they are respectively isomorphic to the dihedral group of order 4, 16, 8 and 32 [65].
Therefore, each Ai is contained in a weakly maximal subgroups A′i. Since G = 〈a, x, y〉 for
any choice of x 6= y ∈ {b, c, d}, all the A′i are pairwise distinct.

It is easy to see that for each i, there exists only one index 2 subgroup Ãi of G containing
Ai and that all the Ãi are pairwise distinct. It can for example be done by looking at the
Schreier graphs of maximal subgroups, see Figure 6.3. Therefore, if i 6= j, the subgroups
A′i and A′j are not tree equivalent. Indeed, if it was the case, we would have A′j a parabolic
subgroup of a coset tree TA′

i
. By Lemma 6.3.4, we could suppose that the stabilizer of any

first level vertex in TA′
i
is Ãi. This implies that A′j ≤ Ãi which is absurd.

Observe that with the same kind of proof we may hope to find up to 7 tree equivalence
classes of weakly maximal subgroups, one for each maximal subgroup. Indeed, in order to
have n different classes, it is sufficient to find n weakly maximal subgroups such that each of
them is contained in a unique maximal subgroup (and that all these maximal subgroups are
pairwise distinct).

It is natural to ask the following

Question 6.3.6. Does there exist uncountably many tree equivalence classes of subgroups?
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6.4 Finitely generated weakly maximal subgroups of G
In this section we investigate a particular example, due to Pervova, of a weakly maximal
subgroup of the Grigorchuk group. The first published proof of the weak maximality of this
example can be found in [49]. After that, we turn our attention to finitely generated weakly
maximal subgroups.

Recall that G = 〈a, b, c, d〉 is the first Grigorchuk group. This group is branch over
K := 〈(ab)2〉G and we have1 K <2 B := 〈b〉G <2 B̃ := 〈B, (ad)2〉 <4 G, where all this
subgroups are normal. Another important subgroup of G is H := StabG(1) <2 G, the
stabilizer of the first level.

The left and right projections are denoted by π0, π1 : G→ G.

Pervova’s example
Lemma 6.4.1. Let 1 6= x ∈ StabG(1). Then 〈x〉B̃ has infinite index in G if and only if
πi(x) = 1 for some i ∈ {0, 1}.

Proof. If πi(x) = 1, then 〈x〉B̃ ≤ {1} × G (or 〈x〉B̃ ≤ G × {1}) and thus cannot contain
StabG(n) for any n. Therefore, if πi(x) = 1, then 〈x〉B̃ has infinite index in G by the
congruence subgroup property.

On the other hand, suppose that x = (x0, x1) with xi 6= 1. In this case, by [109], the
centralizer CG(xi) has infinite index in G. This implies that there exists yi ∈ K, i ∈ {0, 1}
such that yi does not belongs to the centralizer of xi. We then have [xi, yi] 6= 1 and thus
[x, (1, y1)] = (1, [x1, y1]) and [x, (y0, 1)] = ([x0, y0], 1) with both [xi, yi] belonging to K. Since
πi(B̃) = G, we have 〈x〉B̃ ≥ 〈[x0, y0]〉G × 〈[x1, y1]〉G . Both 〈[xi, yi]〉G are non-trivial normal
subgroups of G and therefore of finite index since G is just-infinite. This shows that 〈x〉B̃
itself is of finite index in G.

Conjecture 6.4.2. Let 1 6= x be any element of Ĝ. Then [G : CG(x)] =∞.

Observe that the above conjecture is true if x belongs to G. In general, this implies that
for every 1 6= x ∈ Ĝ, there exists y ∈ K̄ such that [x, y] 6= 1. Indeed, [Ĝ : CĜ(x)] =∞ if and
only if [G : CĜ(x) ∩ G] = [G : CG(x)] =∞. In this case, the finite index subgroup K̄ cannot
be contained in CĜ(x).

If this conjecture is true, then as a direct corollary we have.

Conjecture 6.4.3. Let 1 6= x ∈ StabĜ(1). Then 〈x〉B̃ has infinite index in Ĝ if and only if
πi(x) = 1 for some i ∈ {0, 1}.

We now turn our attention on the following example of weakly maximal subgroup due to
Pervova:

W := 〈a,diag(B̃ × B̃), {1} ×K × {1} ×K〉
where diag(B̃ × B̃) = {(x, x) | x ∈ B̃} ≤ G × G is the diagonal subgroup.

Lemma 6.4.4. The group W is a subgroup of G.

Proof. By definition a belongs to G and it is well known that {1}×K×{1}×K is a subgroup
of G. Therefore, it remains to check that diag B̃ × B̃ is also a subgroup of G. We have
B = 〈K, b, (ad)2〉 and we know that for every k ∈ K the element (k, k) belongs to G. On the
other hand, (b, b) = d · da and ((ad)2, (ad)2) = ((ad)2, (da)2) = (c · ca)2 also belong to G.

1The fact that K <2 B <8 G is well known. The other indices are easily computed on Schreier graphs.
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Proposition 6.4.5. The subgroup W is a finitely generated weakly maximal subgroup of G.

Proof. The subgroup K and B̃ being of finite index in G, a finitely generated group, are
finitely generated and so is W . Now, if g is an element of W ∩ (K × {1} × {1} × {1}), we
have g = (k, 1, 1, 1) and also g = (g0, g1, g0, g3) which implies g = 1.We have shown that
W ∩ (K × {1} × {1} × {1}) = {1} and therefore that W is of infinite index.

We now want to prove thatW is weakly maximal. That is, for all x ∈ G\W , the subgroup
W̃ := 〈W,x〉 is of finite index in G. Since a belongs to W , we can assume that x belongs to
H and x = (x0, x1). We have G/B = {1, a, d, ad, ada, . . . , (ad)3a} ∼= D2·4, the dihedral group
of order 8, and hence G/B̃ = {1, a, d, ad}. By factorizing the first coordinate by π0(W ) ≥ B̃
we can assume that x0 belongs to {1, a, d, ad} which leave us with four cases to check. If x0
is not in H, then W̃ contains ({1} ×K × {1} × {1})x0 = K × {1} × {1} × {1} and a. In this
case, W̃ contains K ×K ×K ×K and is therefore of finite index. We can hence suppose
that x0 is in H, and by symmetry, that x1 is also in H. It thus remains to check to cases:
(1, x1) and (d, x1) with x1 in H.

(i) If x0 = 1, then x1 6= 1. In this case, W̃ contains {1}×〈x1〉B̃ and diag(〈x1〉B̃×〈x1〉B̃) ≤
diag(B̃ × B̃). This implies W̃ ≥ 〈x1〉B̃ × 〈x1〉B̃. If 〈x1〉B̃ has finite index in G, then
W̃ has also finite index in G. We can therefore assume that 〈x1〉B̃ has infinite index
in G, which implies by Lemma 6.4.1 that x1 = (1, z) or x1 = (z, 1), z 6= 1. In both
cases, we have x = (1, x1) is an element of RistG(2) = K ×K ×K ×K which implies
that z is in K. This rules out the case x1 = (1, z), since in this case we would have
x = (1, 1, 1, z) ∈ {1} ×K × {1} ×K ≤ W . On the other hand, 〈z〉G is a non-trivial
normal subgroup of G and thus of finite index. Therefore, W̃ contains A := 〈z〉G ×K,
a finite index subgroup of B̃, and hence it also contains diag(A×A). Altogether, we
have W̃ ≥ A× A, where A = 〈z〉G ×K is a finite index subgroup of G. This implies
that W̃ is of finite index.

(ii) We will now show that the case x0 = d cannot happen if xi is in H. Indeed, (d, x1)
belongs to G if and only if (1, ax1) = ca · (d, x1) is in G. But in this case, (1, ax1)
belongs to RistG(1) = B ×B and so ax1 is in B ≤ H, which is impossible if x1 ∈ H.

Lemma 6.4.6. The subgroup W ∩H is a weakly maximal subgroup of H with both left and
right projections equal to B̃ <4 G.

Proof. We have W ∩H = 〈diag(B̃ × B̃), {1} ×K × {1} ×K〉 and the result on projections
follows directly.

For the weak maximality, let x be in H \W and look at W̃ := 〈x,W 〉. Then x = (x0, x1)
and factorizing the first factor by B̃, we can assume that x0 is either 1 or d. The rest of the
proof is the same as the proof of the weak maximality of W in G.

Conjecture 6.4.7.

1. W is a (topologically) finitely generated wmc subgroup of Ĝ;

2. There is a continuum of two-by-two distinct conjugates of W in Ḡ (and all of them are
weakly maximal).
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Proof. We will prove the conjecture under the assumption that Conjecture 6.4.3 is true.
The application ¯ : Subcl(G) → Subcl(Ĝ) that send a close (in the profinite topology)

subgroup of G to its closure in Ĝ send infinite index subgroups to infinite index subgroups.
Since W is weakly maximal in G, it is close and we have that W is an infinite index subgroup
of Ĝ. The element a normalizes both diag(B̃×B̃) and {1}×K×{1}×K and sinceK is normal
and B̃ ≤ H, the subgroup {1}×K ×{1}×K is normalized by diag(B̃× B̃) Therefore, W =
{1, a} ·diag(B̃× B̃) · ({1}×K×{1}×K) and W = {1, a} ·diag(B̃ × B̃) · {1} ×K × {1} ×K.
The subgroup {1, a} is closed and we have {1} ×K × {1} ×K = {1} × K̄ × {1} × K̄ and
diag(B̃ × B̃) = diag( ¯̃B × ¯̃B). Altogether, we have

W = 〈a,diag( ¯̃B × ¯̃B), {1} × K̄ × {1} × K̄〉

is a (topologically) finitely generated subgroup of Ĝ.
For all n we have StabG(n) = StabĜ(n) ∩ G and RistG(n) = RistĜ(n) ∩ G. Since these

subgroups are of finite index, for all n we have

StabG(n) = StabĜ(n) RistG(n) = RistĜ(n)

In particular, we have

RistĜ(1) = B̄ × B̄ RistĜ(2) = K̄ × K̄ × K̄ × K̄

On the other hand, the closure preserves transversals for finite index subgroups. In particular,
Ĝ/H̄ = {1, a} and Ĝ/ ¯̃B = {1, a, ad, d}. Let x be an element from G \ W and look at
W̃ := 〈W,x〉. The proof that W̃ is of finite index is the same as the one for W̃ , where
Lemma 6.4.1 is replaced by Conjecture 6.4.3.

Since W is weakly maximal we can construct a 2-regular coset tree TW . Since W is wmc,
then for the action of Ĝ on TW , parabolic subgroups are 2-by-2 distinct; and there is 2ℵ0

many such subgroups.

Remark 6.4.8. We have te following alternative. Either some parabolic subgroups for the
action G on TW are finitely generated and some are infinitely generated, or there is only a
countable number of distinct parabolic subgroups. Indeed, since G is finitely generated, there
are only countably many finitely generated subgroups.

In both cases we have a comportment that is far away from the classical action, where all
parabolic subgroups are of infinite rank and two-by-two distinct.

Block subgroups
Since G is finitely generated, it has at most countably many finitely generated subgroups. In
particular, it has at most countably many finitely generated weakly maximal subgroups.

Conjecture 6.4.9. The group G has infinitely many distinct, up to Aut(G), finitely generated
weakly maximal subgroups.

An important tool for the study of finitely generated subgroups of G is the notion of
block subgroups due to Grigorchuk and Nagnibeda [54]. Write Ku for the subgroup of G
acting as K on Tu and trivially outside. Observe that if u is the root, then Ku = K and if u
is of level at least 2, then Ku = RistG(u).
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6. Weakly maximal subgroups of the Grigorchuk group

Definition 6.4.10. Let S be a section of T and S = E t {Ei}i∈I t S′ a covering of S with
all Ei of cardinality at least 2. Observe that S is necessarily finite. If Ei = u1, . . . , uj we
can define a diagonal subgroup Di := diag(Ku1 × ϕ2(Ku2)× · · · × ϕj(Kuj )) where the ϕt are
automorphism of G. These datas (the covering of S and the choices of ϕt) determine a block
subgroup U of G by

U :=
∏

u∈E
Ku ×

∏

i∈I
Di ×

∏

u∈S′
{1}

It is obvious that block subgroups are finitely generated. On the other hand, we have the
following result.

Proposition 6.4.11 (Grigorchuk-Nagnibeda [54]). A subgroup of G is finitely generated if
and only if it contains a block subgroup as a finite index subgroup.

In order to find weakly maximal subgroups that are finitely generated, it may be interesting
to start with infinite index block subgroups that are maximal among infinite index block
subgroups. The following lemma directly follows from the congruence subgroup property.

Lemma 6.4.12. A block subgroup

U =
∏

u∈E
Ku ×

∏

i∈I
Di ×

∏

u∈S′
{1}

is of finite index if and only if E = S, that is if S′ = I = ∅

Lemma 6.4.13. Let
U =

∏

u∈E
Ku ×

∏

i∈I
Di ×

∏

u∈S′
{1}

be a block subgroup that is maximal among block subgroup of infinite index. Then, S = EtE1
with E1 = {v, w} and S is the “uppermost” section that contains v and w.

Proof. By assumption, U is of infinite index and either S′ or I is non-empty. If S′ is
non-empty, then U is not maximal. Indeed, let u ∈ S′ and v and w be the two children of
u. Then U is properly contained in U ′, the block subgroup obtained from U by replacing
the factor {1}u by {1}v × {1}w. By the lemma, U ′ is still of infinite index. Therefore, S′ is
empty and I is non-empty.

If I has more than one element, than U is contained in U ′, the block subgroup obtained
by replacing D2 by Ku1 ×Kuj , which is still of infinite index. This implies that I has exactly
one element.

Now, if E1 has more than two elements, we can construct U < U ′ by replacing D1 by
diag(Ku1 × ϕ2(Ku2))×Ku3 × · · · ×Kut .

Finally, we want to prove that S is the “uppermost” section containing v and w. To
be precise, we can put a partial order on section by saying that S ≤ S̃ if every ele-
ment of S is below some elements of S̃. Among sections containing v and w, there
is a greatest element S̃ which consist of v, w and all roots of maximal trees in T \
path from v to the root,path from w to the root. It is evident that if our block subgroup
correspond to a section S < S̃, then it is a subgroup of the block subgroup corresponding to
S̃.

We know turn our attention to a special case of block subgroups. Define Un by E =
{0, 10, . . . , 1n−10}, E1 = {1n0, 1n+1} and D1 = diag(K1n0 × K1n+1). The subgroups Un
are maximal among block subgroups of infinite index and they are in the stabilizer of 1n.
Moreover, U0 is the block subgroup corresponding to W , the weakly maximal subgroup of
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6.4. Finitely generated weakly maximal subgroups of G

the last subsection. In order to construct more weakly maximal subgroups, we are going to
extend Un to a bigger subgroup Wn which will be weakly maximal. Since Un is of infinite
index, such a Wn can always be founded, but we want to ensure that it will be finitely
generated.

In order to do that, it is useful to have a description of StabG(1n). This was done
by Kravchenko [80] (see also [10, Theorem 4.4]) who describes StabG(1n) has an iterated
semi-direct product, as depicted in Figure 6.14.

〈c, (ac)4〉

B

〈d, (ac)4〉

K

〈(ac)4〉

K

〈(ac)4〉

K

〈(ac)4〉

K

〈(ab)2〉

K
1n

K

Figure 6.14: The stabilizer in G of the vertex 1n.

Observe that the projection of StabG(1n) on 1n is equal to G. Therefore, for all weakly
maximal subgroup M of G, we can define Mn as the subgroup of StabG(1n) consisting of
elements g such that the projection of g on 1n is in M .

Lemma 6.4.14. For all weakly maximal subgroup M and all n, the subgroup Mn is weakly
maximal.

Proof. Let g be in G \Mn. If g does not stabilizes 1n, then Mn contains Kg(1n). Therefore,
〈g,Mn〉 contains K1n and also Kv for every v 6= 1n of level n. This implies that 〈g,Mn〉 has
finite index in G. On the other hand, if g is in StabG(1n), then by definition, g1n does not
belong to M . This implies that the projection of Mn on qn, which is equal to 〈g1n ,M〉, has
finite index in G. Therefore, 〈g,M〉 is a finite index subgroup of G. This concludes the proof
of the weak maximality of Mn.

Proposition 6.4.15. Let (Wn)n∈N be the subgroups constructed from W , the Pervova’s
example. Then they are all weakly maximal and if n 6= m, the subgroups Wn and Wm are
distinct, non-conjugate and even not in the same class of equivalence under Aut(G).

Proof. Grigorchuk and Sidki showed that NAut(T )(G) = Aut(G). We are going to prove that
if m > n, then for every 1 6= ϕ ∈ Aut(G), the subgroup 〈Wn, ϕ(Wm)〉 has finite index in G.
If ϕ does not stabilizes 1n, then 〈Wn, ϕ(Wm)〉 contains Kv for every vertex of level n and is
thus of finite index.

If ϕ does stabilizes 1n, then ϕ(Wm) contains either K1n+1 or K1n0. On the other hand,
Wn contains diag(K1n+1 ×K1n0). Hence, 〈Wn, ϕ(Wm)〉 contains Kv for every vertex of level
n+ 1 and is thus of finite index.

Conjecture 6.4.16. For each n, the subgroup Wn is finitely generated.
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6. Weakly maximal subgroups of the Grigorchuk group

Remark 6.4.17. For n = 0 we have W0 = W which is obviously finitely generated. In
general, StabG(1n) is generated by the normal subgroup N := B0 ×K10 × · · · ×K1n−10 and
by L := 〈K1n , (c)1, (b)2, ((ab)2)n−1((ac)4)i, 0 ≤ i ≤ n− 2〉, where (g)n denotes the element
(1, . . . , 1, g) in StabG(n) — for example (b)2 = (1, b) = d. Therefore, Wn = 〈N,L′〉 where
L′ := {g ∈ L | g1n ∈W} and Wn is finitely generated if L′ is finitely generated.

One interesting open question of this section is the existence of infinitely many non-
conjugated finitely generated weakly maximal subgroups. This is implied by Conjecture
6.4.16. Another interesting question is the weak maximality of W̄ , see 6.4.7. Indeed, this is
the first step in solving Conjecture 5.8.3 and answering Question 5.8.2.

6.5 Projections of weakly maximal subgroups of G
In this section, following an idea of Grigorchuk we turn our attention to left and right pro-
jections of weakly maximal subgroups. Progress in this direction may lead to a classification
of weakly maximal subgroups of G.

Here G = 〈a, b, c, d〉 is the first Grigorchuk group, B := 〈b〉G the normal closure of b and
H := StabG(1) = 〈b, c, d, aba, aca, ada〉 the stabilizer of the first level. Let A < G be a weakly
maximal subgroup. There is two possibilities. Either A is a subgroup of H or not. If A is a
subgroup of H, we can look at A0 and A1, the action of A on the left and right subtrees.
Since G is self-replicating, A0 and A1 are subgroups of G. Thus A ≤S A0 ×A1 is a subgroup
of the product.

Lemma 6.5.1. Suppose that A ≤ H and [G : A0] is of infinite index. Then A0 is a weakly
maximal subgroup of G and A1 contains B.

Proof. Suppose that A0 < A′0 is of infinite index. Then for α ∈ A′0 \A0 there exists β ∈ G
such that (α, β) ∈ G and we have

A < 〈A, (α, β)〉 ≤S A′0 × 〈A1, β〉 [G : 〈A, (α, β)〉] =∞

since A′0 is of infinite index. This proves the weak maximality of A0.
On the other hand, if there exists β ∈ B \A1, then (1, β) ∈ G and

A < 〈A, (1, β)〉 ≤S A0 × 〈A1, β〉 [G : 〈A, (1, β)〉] =∞

since A′0 is of infinite index.
We even have:

B ≤ D := {β ∈ G | ∃α ∈ A0 : (α, β) ∈ G} ≤ A1.

Since in this case A1 contains B, it is interesting to know all subgroups of G containing
B. The classification of such subgroups is done in [28] for normal subgroups and in Section
6.1 for the general case. There is exactly 10 such subgroups: G, 3 subgroups of index 2 —
J0,2, H, J0,5 — 5 of index 4 — J1,5 (normal), S2,3,0,0, S2,3,0,1, S2,4,0,0 and S2,4,0,1 and B
itself, see Figure 6.10. The following questions remain open.

Question 6.5.2. Which of the 10 subgroups containing B could appear as A1?

Question 6.5.3. Is it possible that A ≤ H if A is not parabolic?
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Question 6.5.4. What about the case where both Ai are of finite index? Is it possible? Does
it imply that A is finitely generated?

Now, if A is not a subgroup of H, we can look at A′ := A ∩H, A0 and A1, the action of
A′ on the left and right subtrees. Since G is self-replicating, A0 and A1 are subgroups of G.
Thus A′ ≤S A0 ×A1 is a subgroup of the product.

Lemma 6.5.5. Suppose that A′ is weakly maximal in H and that [G : A0] is of infinite
index. Then A0 is a weakly maximal subgroup of G and A1 contains B.

The proof is the same as the for Lemma 6.5.1.

Question 6.5.6. What about the general case: i.e. A′ not weakly maximal in H? Can it
happen?

Lemma 6.4.6, shows that in the case of W , the Pervova’s example, W ∩ H is weakly
maximal and has both projection of index 4 in G.

Parabolic subgroups
Let A be a weakly maximal subgroup of G. We can look as before at A0 and A1 the left and
right projections (of A ∩ StabG(1)). But, for any vertex v ∈ T of level n we can also look at
Av the projection on v (of A ∩ StabG(n)). It is obvious that if v ≤ w, then Av = (Aw)v.

The following lemma shows that the closure (in Ĝ) of the projection and the projection
of the closure agree

Lemma 6.5.7. For all subgroup A ≤ G and all v ∈ T , we have (Ā)v = Av.

Proof. Observe that since H is maximal of index 2 in G we have either A ≤ H — in which
case Ā ≤ H̄ — or A ∩H <2 A — in which case Ā ∩ H̄ <2 A. Since the closure preserves
finite index, if A 6≤ H, we have A ∩H <2 A and A ∩H ≤ Ā∩ H̄ <2 A. Therefore, we always
have A ∩H = Ā ∩ H̄.

Suppose now, that v is a vertex of the first level; say v = 0. If g belongs to (Ā)0,
there exists h ∈ Ḡ such that (g, h) is an element of Ā ∩ H̄ = A ∩H. This implies that
(g, h) = limi(gi, hi) with (gi, hi) ∈ A∩H. In particular, g = lim gi with gi ∈ A0 and therefore
(Ā)0 ≤ A0.

On the other hand, if g is in Av, then g = limi gi for some gi in Av. For all i, there exists
hi such that (gi, hi) is in A. By compacity, there exists a converging subsequence of the hi
such that limi(gi, hi) belongs to Ā. This proves that (Ā)v ≥ Av.

For the general case where v is of level n, we do an induction, using the fact that for
v ≤ w we have Av = (Aw)v.

Lemma 6.5.8. Let A ≤ G be a weakly maximal subgroup. Then the following are equivalent.

1. A is a parabolic subgroup of the original action;

2. There exists a infinite ray ξ = x1x2 . . . such that for all j ≥ 0, the subgroup Ax1...xj is
contained in H (where A∅ = A).

Proof. The condition on Ax1...xj ≤ H implies that A stabilizes the ray ξ for the original
action. Therefore, A ≤ StabG(ξ) and we conclude by weak maximality. The other direction
is obvious.

Finally, we have a full description of the projections of parabolic subgroups.
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6. Weakly maximal subgroups of the Grigorchuk group

Proposition 6.5.9. If A = StabG(ξ), with ξ = x1x2 . . . , then for all j we have

Ax1...xj = StabG(σj(ξ)) Ax1...xj−1x̄j = J0,2 <2 G

Proof. If A = StabG(ξ) with ξ = x1x2 . . . , then Ax1 stabilizes σ(ξ). Therefore, Ax1 is an
infinite index subgroup of H. This implies that Ax̄1 contains B and that Ax1 is weakly max-
imal and hence equal to StabG(σ(ξ)). An easy induction shows that Ax1...xj = StabG(σj(ξ))
and B ≤ Ax1...xj−1x̄j ≤ G.

Let P := StabG(1∞). We have the following description of P from [10, Theorem 4.4]

P =
(
B ×

(
(K × ((K × . . . )o 〈(ac)4〉)

)
o 〈b, (ac)4〉

))
o 〈c, (ac)4〉

This immediately implies that for all j we have

P1j = P P1j−10 = 〈B, (ad)2, a〉 = J0,2 <2 G

For the general case, let ξ be any ray in T and A = StabG(ξ). There exists g ∈ Ĝ such that
Ā = StabĜ(ξ) = StabĜ(1∞) = P̄ . Therefore, for all j, we have Āx1...xj−1x̄j = J0,2

g = J0,2.

There is still a long way before understanding the structure of weakly maximal subgroups
in G. The first important step would be to understand the structure of subgroups contained
in H and in particular to answer the following

Question 6.5.10. Let A be a weakly maximal subgroup of G contained in H and A1 and
A2 its left and right projections.

1. If A2 is of infinite index, which of the 10 subgroups of G containing B could appear as
A1?

2. Is it possible that A ≤ H if A is not parabolic?

3. What about the case where both Ai are of finite index? Is it possible? Does it imply
that A is finitely generated?
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., 81�� ��A
Adjacency matrix, 10
Almost normal subgroup, 36
Almost transitive graph, 24
Alternating path, 24
Asymptotical complexity, 76, 77
Augmenting path, 24�� ��B
Bad vertex of A∗F , 84
Benjamini-Schramm limit, 12
Block subgroup, 138
Boundary of a tree, 58
Branch action, 104
Branch group, 104
Busemann rank function, 82�� ��C
Cayley digraph, 16
Cayley graph, 16
Characteristic polynomial, 64
Cofinal tree of ξ, 81
Coinitial tree of η, 81
Compatible with the covering (morphism),

36
Complexity, 76, 77
Connected graph, 10
Consistent with the labeling (morphism),

34
Coset tree, 110
Covered (vertex by a matching), 24
Covering of graphs, 11
Critical group, 77
Critical vertex (for a matching), 24
Cycle, 10

�� ��D
De Bruijn digraph, 55
Degenerate edges, 10
Degree (of a vertex), 10
Degree of a covering, 35
Degree of a group (with respect to a

generating set), 27
Derangement of a graph, 14
Derangement of a path, 14
Descending chain for a subgroup, 110
Diagonal subgroup, 138
Diameter of a fiber (in a covering), 35
Digraph, 9
Digraph of an action, 16
Directed automorphism, 105
Directed tree, 10�� ��E
Edge, 9
Exponent of a generating set (in a word),

52
Exponent of a letter (in a word), 52
Extremely nonfree action, 108�� ��F
(n-) factor, 18
(2-) factorization, 21
Final vertex, 9
Finite type (for a subshift), 80
Forbidden words, 80
Fractal group, 104�� ��G
Generalised multi-edge spinal group, 105
Generating system of a group, 16
Golden-mean shift, 92
Good vertex of A∗F , 84
Graph, 9
Grigorchuk group, 99
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In-degree (of a vertex), 10
Initial vertex, 9
Inverse edge, 9
Irreducible matrix (or digraph), 81�� ��J
Just-infinite, 102�� ��L
Labeled digraph, 11
Labeled graph, 11
Labeled Rauzy digraph, 80
Labeling of a (di)graph, 11
Length (of a path), 10
Length-isomorphic subgroups, 27
Length-transitive subgroup, 28
Level of an automorphism, 105
Line digraph, 14
Linear graph, 130
Locally finite, 10
Loop, 9�� ��M
Matching, 24
Missed (vertex by a matching), 24
Morphism of digraphs, 11
Morphism of graphs, 11
Multiple edge, 9�� ��N
Nearly normal subgroup, 36
Non-linear graph, 130�� ��O
Obvious categorial constructions, 2
Orientation on a graph, 10
Out-degree (of a vertex), 10�� ��P
Palindrome, 93
Parabolic subgroups, 99
Path in a graph, 10
Perfect matching, 18, 24
Period of a matrix (or digraph), 81
Polylogarithm, 77
Preserving length morphism, 27

Profinite completion, 117
Profinite group, 117
Profinite topology, 103�� ��Q
Quasi-isometry, 35�� ��R
Rank function on ~R′F,∞, 83
Rank of a vertex, 51
Reduced path, 10
Regular branch group, 104
Return probability generating function, 79
Rigid stabilizer of a level, 104
Rigid stabilizer of a vertex, 104
Root (of a rooted (di)graph), 12
Rooted automorphism, 105
Rooted digraph, 12
Rooted graph, 12
Rooted labeled digraph, 12
Rooted labeled graph, 12
Rooted morphism, 12
Rose, 10�� ��S
Schreier digraph, 16
Schreier graph, 16
Signature of a path, 14
Simple graph, 24
Spectral measure, 67
Spectral zeta function, 78
Spherically homogeneous tree, 103
Spherically transitive action, 103
Spider-web digraph, 56
Stabilizer, 103
Star of a vertex, 11
Strong morphism, 11
Strongly connected graph, 10
Strongly maximal matching, 24
Strongly simple group, 42�� ��T
T -components, 125
Tarski monster group, 43
Tensor product, 13
Transitive graph, 24
Tree, 10
Type of a vertex in TF , 90�� ��U
Underlying graph of a digraph, 10
Unoriented edge, 9
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�� ��V
Vertex, 9�� ��W
Weakly branch action, 104
Weakly branch group, 104
Weakly connected graph, 10
Weakly irreducible matrix (or digraph), 81

Weakly maximal closed subgroup, 108
Weakly maximal subgroup, 108
Weighted graph, 64

�� ��X
X-graph, 124
X-morphism, 11
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