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Abstract

We study a test statistic based on the integrated squared difference between a kernel es-
timator of the copula density and a kernel smoothed estimator of the parametric copula
density. We show for fixed smoothing parameters that the test is consistent and that the
asymptotic properties are driven by a U -statistic of order 4 with degeneracy of order 1. For
practical implementation we suggest to compute the critical values through a semiparametric
bootstrap. Monte Carlo results show that the bootstrap procedure performs well in small
samples. In particular size and power are less sensitive to smoothing parameter choice than
they are under the asymptotic approximation obtained for a vanishing bandwidth.

Key words and phrases: Nonparametric, Copula density, Goodness-of-fit test, U-
statistic.
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1 Introduction

Goodness-of-fit (gof) tests have a long history in statistics (D’Agostino and Stephens [4])
while copula models find new interesting applications in finance and insurance (see, e.g.,
McNeil, Frey and Embrechts [19], Denuit, Dhaene, Goovaerts and Kaas [6]) beside their long
acclaimed applications in reliability and survival analysis. Nevertheless relatively little is
known about properties of gof tests for copulas despite an obvious need for such tools in
applied work; see however Genest, Quessy and Rémillard [15], and Chen, Fan and Patton [3]
for study of gof tests based on the integral probability transformation. The main reason is
the technical difficulty induced by the probabilistic behaviour of the empirical copula process
(see, e.g., van der Vaart andWellner [23], Fermanian, Radulovic andWegkamp [11]). In order
to circumvent this difficulty Fermanian [10] suggests to use a gof test based on the integrated
weighted squared difference between a kernel estimator of the copula density and a kernel
smoothed estimator of the parametric copula density. In particular he shows that the test
statistic is asymptoticallly normally distributed when the bandwidth shrinks to zero. Fan
[7] has previously established similar results for bias-corrected gof tests of standard pdf via
kernel methods.
In this paper we study the asymptotic properties of the gof test introduced by Fermanian

[10], but holding the smoothing parameters fixed and the weight function equal to one as
in Fan [9]. We start with recalling the form of the test statistic in Section 2. We derive its
interpretation in terms of a weighted integrated squared difference between the characteristic
function of the empirical copula process and the characteristic function of the estimated
parametric copula of the null hypothesis. A direct consequence of such an interpretation is
test consistency for fixed smoothing parameters. We show that the asymptotic properties
are driven by a U-statistic of order 4 with degeneracy of order 1. This is to be contrasted
with the result for standard pdf obtained by Fan [9], namely asymptotic properties driven by
a U -statistic of order 2 with degeneracy of order 1. To work with copulas carries here a price
in terms of analytical tractability of the asymptotic distribution. Therefore for practical
implementation we recommend to compute the critical values through a semiparametric
bootstrap. Monte Carlo results of Section 3 reveal that the bootstrap performs well in
small samples. In particular size and power are less sensitive to smoothing parameter choice
than the same characteristics under the asymptotic approximation obtained for a vanishing
bandwidth.

2 Test statistic and asymptotic properties

We consider a setting made of i.i.d. observations {Xi = (Xi1, . . . , Xid)
0; i = 1, . . . , n} of a

random vector taking values in Rd. The distribution ofX is denoted by F , and the margins
are denoted by Fj, j = 1, ..., d. The copula function is denoted by C, and its density by c.
Following Deheuvels [5], let us define the empirical copula function by

Ĉ(u) :=
1

n

nX
i=1

I{F̂1(Xi1) ≤ u1, . . . , F̂d(Xid) ≤ ud}, u = (u1, . . . , ud)
0 ∈ [0, 1]d,

where F̂j is the empirical cumulative distribution functions computed from {Xij; i = 1, . . . , n},
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j = 1, ..., d. Observe that Ĉ is actually a function of the ranks of the observations since
nF̂j(Xij) is the rank of Xij among X1j, . . . , Xnj.
Nonparametric estimation procedures for the density of a copula function have been pro-

posed by Behnen, Huskova, and Neuhaus [2], and Gijbels and Mielniczuk [17]. They rely on a
kernel smoothing directly applied to the transformed samplen
Ŷ i = (F̂1(Xi1), . . . , F̂d(Xid))

0; i = 1, . . . , n
o
. The kernel estimator of the copula density

at point u is simply

ĉ(u) :=
1

n

nX
i=1

KH (u− Ŷ i), (2.1)

where KH (y) = K(H−1y)/detH, K is a d-dimensional kernel, and H is a nonsingular,
symmetric matrix of smoothing parameters.
Fermanian [10] suggests to use the following gof test statistic for the parametric family

C(u; θ) with density c(u; θ) and θ ∈ Θ ⊂ Rp:

Ĵ(w) :=

Z h
ĉ(u)−KH ∗ c(u; θ̂)

i2
w(u)du,

where ∗ denotes convolution, and w is a weight function.
The estimator θ̂ can be computed by a semiparametric maximum likelihood method as

in Genest, Ghoudi and Rivest [14], and Shih and Louis [22]. Let θ0 be the true value of the
parameter under the null hypothesis of well specification. Then the semiparametric estimator
θ̂ satisfies under the null hypothesis:

θ̂ − θ0 = n−1A(θ0)
nX
i=1

B(Xi; θ0) + op(n
−1/2),

where A(θ0) is a p× p positive definite matrix and B(X i; θ0) is a p× 1 random vector, such
that E[B(Xi; θ0)] = 0 and E[B(Xi; θ0)

0B(Xi; θ0)] <∞.
The following lemma justifies the use of Ĵ even if the bandwidth is not assumed to shrink

to zero when the sample size grows to infinity. The kernel K is chosen so that it is symmetric
about zero, square integrable, and admits a Fourier transform which vanishes on a set of
Lebesgue measure zero.

Lemma 2.1. For w = 1,

Ĵ := Ĵ(1) =

Z
| ¯̂C(t)− C̄(t; θ̂)|2K̄2(Ht)dt,

where ¯̂
C(t) :=

R
exp(it0u)Ĉ(du), C̄(t; θ̂) :=

R
exp(it0u)C(du; θ̂),

and K̄(t) := (2π)−d/2
R
exp(it0u)K(u)du.

The lemma states that Ĵ reduces to the comparison of two empirical characteristic func-
tions when the weight function is equal to one (see Fan [8] for use of empirical characteristic
functions in gof tests). The first term ¯̂

C(t) is the empirical characteristic function of the
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transformed sample, while the second term is the estimated characteristic function under the
parametric assumption. Decomposing the characteristic function C̄ of the copula C in its
real part Re C̄(t) =

R
cos(t0u)C(du) and its imaginary part Im C̄(t) =

R
sin(t0u)C(du), and

recognizing that the maps which assign to each copula function C the real and imaginary
parts are linear maps, we get from the delta method (van der Vaart and Wellner [23] Section
3.9) that Re ¯̂C(t), Im ¯̂

C(t), Re C̄(t; θ̂), and Im C̄(t; θ̂), are consistent and jointly asymp-
totically normally distributed. Hence we deduce that ¯̂C(t) and C̄(t; θ̂) are consistent and
asymptotically normally distributed in the complex plane (see Feueverger and Mureika [12]
for the results on the standard empirical characteristic function). Now recall that a copula
function is a cdf on the unit cube, and that there is a one-to-one correspondence between
distribution functions and characteristic functions. This gives that no matter the choice of
the bandwidth matrix H, the limit J of Ĵ when w = 1 is such that J ≥ 0 and J = 0 iff the
copula function is well specified, provided that the set {t ∈ Rd : K̄(t) = 0} has Lebesgue
measure zero. Hence we may conclude as in Fan [9] that a test based on Ĵ is consistent when
holding the smoothing parameters fixed and the weight function equal to one.
The following proposition describes the asymptotic behaviour of Ĵ when the bandwidth

matrix does not vanish.

Proposition 2.2. Under the null hypothesis of well specification the asymptotic behaviour
of Ĵ is that of a U-statistic of order 4 with degeneracy of order 1.

Contrary to the case of a non-vanishing bandwidth for standard pdf (Fan [9]) the asymp-
totic behaviour of the gof test statistic is not that of a U-statistic of order 2 but of order
4. From the degeneracy of order 1 the rate of convergence is still n, and the exact form of
the asymptotic distribution is an infinite sum of weighted chi-square random variables. The
weights can be computed in theory from the eigenvalues of an integral equation (see Lee [18]
p. 80). However the kernel of the U-statistic of order 4 involves 24 terms (see the proof of
the proposition), and the dimension of the integral is 3. This casts doubt on the numerical
accuracy of such a method in practice.
Hereafter we rely on a semiparametric bootstrap to compute the critical values of the test.

First we draw from the estimated copula C(u; θ̂) in order to impose the dependence structure
of the null hypothesis, and then we use the ranks of these draws to build the bootstrap
transformed sample. This semiparametric bootstrap is already exploited in Genest, Quessy
and Rémillard [15] since the distributions of their test statistics depend on the unknown
parameter value, even in the limit. Its validity for a broad class of gof testing problems is
shown in Genest and Rémillard [16]. In particular in the context of gof tests for copulas they
show that the sequence associated with the empirical copula is regular for the parametric
copula family of the null hypothesis (Genest and Rémillard [16] Proposition 4.2). They also
show the regularity of the parametric estimators we use in this paper (Genest and Rémillard
[16] Example 4.4). Since we work with linear maps the consistency of the semiparametric
bootstrap in our setting is a straightforward consequence of their results.
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3 Monte Carlo results

In this section we study the performance of kernel based gof tests for copulas in small samples
when the weight function is kept equal to one. We compare the performance of rejection
rules based on 1) asymptotic sets of the chi-square test statistic derived in Fermanian [10]
Corollary 4 for a vanishing bandwidth, 2) sets computed with a bootstrap procedure for the
same test statistic, 3) sets computed with a bootstrap procedure for the test statictic nĴ .
First we examine gof tests for the Frank copula. Table I gathers results concerning

the size of the different testing procedures, i.e., when the true copula is a Frank copula.
This parametric family is often used in actuarial and financial applications, and is easy
to draw from; see, e.g., Genest [13] or Nelsen [20]. The chosen values of the parameter
are θ ∈ {1, 2, 3}. They match low to moderate positive dependences as exhibited by the
corresponding true values of the Kendall tau, τ ∈ {.11, .21, .31}.
The sample sizes are fixed at n = 50 and n = 200. The first sample size can be thought

as rather small since we face a bivariate inference problem. For the sake of interpretation
samples are generated with both margins corresponding to an exponential distribution with
a unit parameter. This can be seen as mimicking the behaviour of claim or duration data.
Note that the numerical results below remain exactly the same if we use uniform margins or
other margins with strictly monotonic continuously differentiable cdf (such as Gaussian or
Student margins to mimick financial returns) and keep the same seeds in the pseudo-random
generators. The reason is that the testing procedures rely intrinsically on ranks.
The kernel estimator of the copula density is based on a bivariate quartic product kernel.

Then the Scott’s rule of thumb (Scott [21]) to select the smoothing parameters gives H =
2.6073n−1/6Σ̂1/2, where Σ̂ is the estimated covariance matrix of the transformed data. To
gauge the impact of the choice of the smoothing parameters we report sizes for multiples
of this bandwith matrix, namely δH with δ ∈ {.1, .25, .5, 1, 1.5}. In our simulations the
diagonal terms of the selected H are close to one third. We use a bivariate Gauss-Legendre
quadrature with 12 × 12 knots to compute the test statistic, and the optmum routine of
the Gauss statistical software with user-supplied analytical gradient and Hessian to optimize
the semiparametric loglikelihood. Since we use a Gauss-Legendre quadrature with knots
belonging to (0, 1)2 the restriction that the support of w should be strictly inside the unit
square (Fermanian [10] Assumption T) for the asymptotic distribution to be theoretically
valid has no practical impact here. The number of bootstrap samples to approximate the
p-value is set equal to 500. For each case 200 Monte Carlo simulations are performed, and
the rejection rates are computed for each method w.r.t. the conventional significance level
of α = 0.05. Programs are available on request.
The results in Table I show that the asymptotic testing procedure is highly sensitive to

the bandwidth choice, and that the size distortion may be large. Both bootstrap methods
do not suffer from these inconvenient features when n = 200. However they tend to slightly
underreject when n = 50. From bootstrap theory on higher-order improvements, we know
that the bootstrap is expected to yield better results when applied to asymptotic pivots.
However the difference between both simulation based methods is not striking in our finite
sample experiments. We might thus prefer to use the second bootstrap method, namely the
one relying simply on n2Ĵ , in light of its computational ease and speed. This second method
does not require computing complicated asymptotic bias and variance terms.
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In Table II, we gather some results about the power of the testing procedures. We consider
a case where 50% of the observed sample is substituted for data drawn from a Student copula
with 4 degrees of freedom and a .95 correlation parameter. Again the results indicate that
the asymptotic testing procedure is much more affected by the bandwidth choice than both
bootstrap procedures. Note further that the smoothing parameters should not be chosen
too large (oversmoothing) or too small (undersmoothing) in order to improve on power. We
may then conclude that, since the power may be weak in some cases, it is even more crucial
to get a well controlled size via the bootstrap.
To get further insight on the behavior of the testing procedure we have also considered

a non-Archimedean copula. Tables III and IV correspond to Tables I and II but with
the Gaussian copula replacing the Frank copula. The semiparametric and nonparametric
estimation methods are kept the same. The chosen parameter values of the Gaussian copula
are θ ∈ {.17, .32, .47} so that τ ∈ {.11, .21, .31}. Results are akin to those got for the Frank
copula, and conclusions remain unchanged.
Finally Table V allows for comparison with the Cramer-vonMises (CVM) and Kolmogorov-

Smirnov (KS) testing procedures of Genest, Quessy and Rémillard (GQR) [15]. Their pro-
cedures are very easy to implement for parametric copula models admitting a distribution
function of the probability integral transformation in closed form. This is the case for
Archimedean copulas, such as the Frank copula. We can see that results on size are simi-
lar to those reported in Table I, but results on power seem to be better in Table II when
δ ∈ {.25, .5, 1} . Of course these results are not extensive enough to have a definitive answer
(if possible) about which gof test for copulas to favour overall. Even if such an extensive
Monte Carlo study is certainly of interest, this is beyond the scope of this note.
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TABLE I: Impact of bandwidth choice on size
Rejection rates at 5% level with 200 replications
Pseudo copula: Frank, True copula: Frank

Size n = 50 n = 200

F: θ = 1 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .44 .00 .00 .00 .00 .51 .06 .00 .00 .00
As. Boot. .05 .03 .04 .03 .00 .06 .05 .06 .05 .05
Boot. .05 .03 .05 .04 .04 .06 .05 .07 .05 .06
F: θ = 2 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .50 .00 .00 .00 .00 .51 .06 .01 .00 .00
As. Boot. .05 .06 .05 .02 .00 .06 .06 .06 .06 .04
Boot. .05 .07 .05 .03 .03 .06 .06 .06 .06 .06

F: θ = 3 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .51 .01 .00 .00 .00 .48 .04 .01 .00 .00
As. Boot. .05 .06 .05 .03 .03 .03 .03 .06 .05 .05
Boot. .05 .06 .06 .04 .03 .03 .03 .06 .05 .05

TABLE II: Impact of bandwidth choice on power
Rejection rates at 5% level with 200 replications

Pseudo copula: Frank, True copula: mixture of Frank and Student

Power n = 50 n = 200

F: θ = 1 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .51 .08 .02 .00 .00 .65 .77 .77 .04 .00
As. Boot. .06 .20 .26 .09 .00 .13 .71 .96 .72 .18
Boot. .06 .19 .26 .18 .17 .14 .71 .96 .69 .26

F: θ = 2 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .46 .04 .00 .00 .00 .58 .67 .52 .01 .00
As. Boot. .07 .11 .22 .05 .00 .12 .58 .86 .50 .11
Boot. .06 .12 .21 .12 .13 .12 .57 .83 .47 .16

F: θ = 3 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .49 .00 .00 .00 .00 .64 .54 .26 .00 .00
As. Boot. .04 .10 .15 .04 .00 .09 .39 .61 .25 .07
Boot. .04 .10 .13 .10 .08 .10 .39 .60 .21 .12
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TABLE III: Impact of bandwidth choice on size
Rejection rates at 5% level with 200 replications
Pseudo copula: Gaussian, True copula: Gaussian

Size n = 50 n = 200

F: θ = .17 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .46 .00 .00 .00 .00 .48 .04 .00 .00 .00
As. Boot. .03 .02 .06 .04 .00 .03 .08 .06 .06 .04
Boot. .06 .04 .06 .05 .06 .05 .08 .07 .06 .05
F: θ = .32 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .51 .00 .00 .00 .00 .62 .03 .01 .00 .00
As. Boot. .04 .02 .04 .02 .02 .07 .05 .05 .05 .04
Boot. .04 .04 .04 .04 .06 .09 .07 .08 .05 .05

F: θ = .47 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .69 .00 .00 .00 .00 .73 .04 .01 .00 .00
As. Boot. .02 .03 .06 .01 .01 .04 .04 .06 .05 .03
Boot. .06 .05 .06 .06 .06 .06 .05 .07 .06 .06

TABLE IV: Impact of bandwidth choice on power
Rejection rates at 5% level with 200 replications

Pseudo copula: Gaussian, True copula: mixture of Gaussian and Student

Power n = 50 n = 200

F: θ = .17 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .72 .01 .02 .01 .00 .64 .49 .85 .35 .00
As. Boot. .06 .01 .38 .07 .01 .02 .39 1 1 .72
Boot. .07 .22 .39 .23 .12 .16 .92 1 1 .88

F: θ = .32 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .76 .02 .01 .00 .00 .75 .25 .52 .13 .00
As. Boot. .06 .01 .29 .03 .00 .01 .08 .96 .96 .45
Boot. .07 .20 .34 .18 .10 .12 .80 .99 .97 .69

F: θ = .47 δ = .1 .25 .5 1 1.5 δ = .1 .25 .5 1 1.5
Asym. .81 .09 .00 .00 .00 .83 .05 .21 .03 .00
As. Boot. .03 .03 .17 .02 .00 .03 .01 .72 .77 .21
Boot. .09 .12 .21 .14 .09 .10 .65 .96 .85 .48
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TABLE V: Comparison with CVM and KS tests of GQR
Rejection rates at 5% level with 200 replications

Size/Power: Pseudo copula: Frank, True copula: Frank/mixture

Size n = 50 n = 200 Power n = 50 n = 200

CVM KS CVM KS CVM KS CVM KS
F: θ = 1 .05 .03 .06 .05 F: θ = 1 .06 .04 .28 .23
F: θ = 2 .04 .03 .06 .05 F: θ = 2 .04 .04 .24 .19
F: θ = 3 .04 .03 .06 .05 F: θ = 3 .05 .04 .22 .16
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APPENDIX

A Proof of Lemma 2.1

The Fourier transform of ĉ(u)−KH ∗ c(u; θ̂) is given by

(2π)−d/2
R
exp(it0u)

h
ĉ(u)−KH ∗ c(u; θ̂)

i
du

= (2π)−d/2
R
exp(it0u)

hR
KH (u− v)

n
Ĉ(dv)− C(dv; θ̂)

oi
du

=
R
exp(it0v)K̄(Ht)

n
Ĉ(dv)− C(dv; θ̂)

o
.

The stated result is then deduced from an application of Parseval’s identity to Ĵ and the
last equality.

B Proof of Proposition 2.2

Let us introduce {Y i = (F1(Xi1), . . . , Fd(Xid))
0; i = 1, . . . , n}. Obviously C is the cdf of Y .

We consider

Î =

Z "
1

n

nX
i=1

a(u,X i)

#2
du, (B.1)

with

a(u,Xi) = KH (u− Y i) +K
(1)
H (u− Y i)

0(Ŷ i − Y i)

−
Z

KH (u− v)C(dv; θ0)− μ(u)A(θ0)B(Xi; θ0),

where K(1)
H denotes the first derivative of KH , and μ(u) =

R
KH (u− v)∂C(dv; θ0)/∂θ0.

As in Fan [9] Lemma 3.1, via simple second-order Taylor expansions of ĉ(u) around Y i,
and c(u; θ̂) around θ0, we may check that n(Ĵ − Î) = op(1) under the null hypothesis and
our assumptions since

√
n(θ̂ − θ0) = Op(1) and

√
n(Ŷ i − Y i) = Op(1). Indeed substituting

the expansions into Ĵ and collecting terms yield n(Ĵ − Î) = n
P7

i=1 Îi with Îi =
R
Îi(u)du

and

Î1(u) =
1

n2

nX
i=1

nX
j=1

h
KH (u− Y i) +K

(1)
H (u− Y i)

0(Ŷ i − Y i)
i

h
(Ŷ j − Y j)

0K
(2)
H (u− Y j)(Ŷ j − Y j)

i
,

Î2(u) =
1

4n2

nX
i=1

nX
j=1

h
(Ŷ i − Y i)

0K
(2)
H (u− Y i)(Ŷ i − Y i)

i
h
(Ŷ j − Y j)

0K
(2)
H (u− Y j)(Ŷ j − Y j)

i
,
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Î3(u) =

Z Z h
KH (u− v)

³
C(dv; θ0) + ∂C(dv; θ0)/∂θ

0(θ̂ − θ0)
´i

h
KH (u− s)(θ̂ − θ0)

0∂2C(ds; θ0)/∂θ∂θ
0(θ̂ − θ0)

i
,

Î4(u) =
1

4

Z Z h
KH (u− v)(θ̂ − θ0)

0∂2C(dv; θ0)/∂θ∂θ
0(θ̂ − θ0)

i
h
KH (u− s)(θ̂ − θ0)

0∂2C(ds; θ0)/∂θ∂θ
0(θ̂ − θ0)

i
,

Î5(u) = −1
n

nX
i=1

h
KH (u− Y i) +K

(1)
H (u− Y i)

0(Ŷ i − Y i)
i

∙Z
KH (u− v)(θ̂ − θ0)

0∂2C(dv; θ0)/∂θ∂θ
0(θ̂ − θ0)

¸
,

Î6(u) = −1
n

nX
i=1

h
(Ŷ i − Y i)

0K
(2)
H (u− Y i)(Ŷ i − Y i)

i
∙Z

KH (u− v)
³
C(dv; θ0) + ∂C(dv; θ0)/∂θ

0(θ̂ − θ0)
´¸

,

Î7(u) = − 1
2n

nX
i=1

h
(Ŷ i − Y i)

0K
(2)
H (u− Y i)(Ŷ i − Y i)

i
∙Z

KH (u− v)(θ̂ − θ0)
0∂2C(dv; θ0)/∂θ∂θ

0(θ̂ − θ0)

¸
.

Then since
1

n

nX
i=1

KH (u−Y i)−
Z

KH (u−v)C(dv; θ0) converges to zero and the absolute

value of each of its elements is bounded for any u, we can deduce that n(Î1 + Î6) = op(1)

and n(Î3 + Î5) = op(1), while nÎ2 = Op(n
−1), nÎ4 = Op(n

−1), and nÎ7 = Op(n
−1).

Now we can rewrite Equation (B.1) as

Î =
1

n4

nX
i=1

nX
j=1

nX
k=1

nX
l=1

g(Xi,Xj,Xk,X l), (B.2)

with

g(Xi,Xj,Xk,X l) =

Z
{KH (u− Y i) +K

(1)
H (u− Y i)

0(I[Xk ≤Xi]− Y i)

−
Z

KH (u− v)C(dv; θ0)− μ(u)A(θ0)B(Xi; θ0)}

{KH (u− Y j) +K
(1)
H (u− Y j)

0(I[X l ≤Xj]− Y j)

−
Z

KH (u− v)C(dv; θ0)− μ(u)A(θ0)B(Xj; θ0)}du,
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with I[Xk ≤Xi] = (I[Xk1 ≤ Xi1], ..., I[Xkd ≤ Xid])
0.

By symmetrization of the kernel g (Lee [18] p. 7) we know that Î shares the same
asymptotic behaviour as the V -statistic:

V̂ =
1

n4

nX
i=1

nX
j=1

nX
k=1

nX
l=1

ψ(Xi,Xj,Xk,X l),

where ψ is a symmetric kernel given by:

24ψ(Xi,Xj,Xk,X l) = g(Xi,Xj,Xk,X l) + g(Xi,Xj,X l,Xk) + g(Xi,Xk,Xj,X l)

+g(Xi,Xk,X l,Xj) + g(X i,X l,Xj,Xk) + g(Xi,X l,Xk,Xj)

+g(Xj,Xi,Xk,X l) + g(Xj,Xi,X l,Xk) + g(Xj,Xk,Xi,X l)

+g(Xj,Xk,X l,Xi) + g(Xj,X l,Xi,Xk) + g(Xj,X l,Xk,Xi)

+g(Xk,Xi,Xj,X l) + g(Xk,X i,X l,Xj) + g(Xk,Xj,Xi,X l)

+g(Xk,Xj,X l,Xi) + g(Xk,X l,Xi,Xj) + g(Xk,X l,Xj,Xi)

+g(X l,Xi,Xj,Xk) + g(X l,Xi,Xk,Xj) + g(X l,Xj,Xi,Xk)

+g(X l,Xj,Xk,Xi) + g(X l,Xk,Xi,Xj) + g(X l,Xk,Xj,Xi).

Through the connection between a V -statistic V̂ of order 4 and its associated U-statistics
Ûj of order j = 1, ..., 4 (Lee [18] p. 183) we can write

V̂ = S(4)4
(n− 1)(n− 2)(n− 3)

n3
Û4 + S(3)4

(n− 1)(n− 2)
n3

Û3 + S(2)4
(n− 1)
n3

Û2 + S(1)4
1

n3
Û1,

where the Stirling numbers of the second kind are given by S(4)4 = 1, S(3)4 = 6, S(2)4 = 7,
S(1)4 = 1 (Abramowitz and Stegun [1] p. 835). Hence the asymptotic behaviour of Î is that
of the leading U-statistic Û4 of order 4, whose kernel is equal to ψ(Xi,Xj,Xk,X l).
To determine the degree of degeneracy when the null hypothesis holds true, we need to

investigate the nullity of appropriate conditional expectations of ψ, namely

σ21 = Var[ψ1(Xi)],

σ22 = Var[ψ2(Xi,Xj)],

σ23 = Var[ψ3(Xi,Xj,Xk)],

where

ψ1(xi) = E[ψ(Xi,Xj,Xk,X l)|Xi = xi],

ψ2(xi,xj) = E[ψ(Xi,Xj,Xk,X l)|Xi = xi,Xj = xj],

ψ3(xi,xj,xk) = E[ψ(Xi,Xj,Xk,X l)|Xi = xi,Xj = xj,Xk = xk].

We can see that ψ1(xi) = 0 under the null hypothesis, so that σ21 = 0. On the contrary
ψ2(xi, ,xj) 6= 0 since E[g(Xi,Xj,Xk,X l)|Xi = xi,Xj = xj] 6= 0, for example, so that
σ22 > 0. Hence the degree of degeneracy is 1, and nÛ4 has a nondegenerate limit distribution
(Lee [18] p. 90). This yields the stated result.
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