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Abstract 
 

In most of meta-analyses of aggregated survival data, a pooled measure of the intervention’s 

effect is obtained by combining reported hazard ratios. Advanced statistical methods have 

been proposed for a better characterization of the effect. With these methods, published 

survival curves can be synthesized in a single summary survival curve and a variation over 

follow-up time of the effect can be tested. Besides the pooled intervention’s effect, the 

synthesis of survival in each arm is helpful for the appraisal of the intervention’s benefits. 

Moreover, some meta-analyses aim to evaluate survival in a single group. In meta-analysis 

of comparative studies, testing a variation of the effect over time can avoid simplistic 

conclusions. These methods have been published in journals of statistics and may not be 

accessible to a large audience. The purpose of this article is to review novel methods for 

meta-analysis of aggregated survival data. Distribution-free and regression methods are 

presented for the assessment of summary survival curves, as well as methods to obtain a 

pooled hazard ratio. Most methods are based on survival estimates collected at various 

points in time. The principle of each method, and its advantages and limitations are 

explained. 

 

Keywords: meta-analysis, aggregated survival data, summary survival curve, hazard ratio 

 

 

  



5 
 

 

Introduction 
 
The purpose of a meta-analysis is to summarize the statistics reported in a set of studies. 

The pooled statistic depends on the nature of the outcome analyzed. When the outcome is a 

time-to-event and in presence of censored data, the analysis of individual data requires 

specific statistical methods for the assessment of the risk of the event or of the intervention’s 

effect over the whole follow-up. Because of the nature of the reported statistics, meta-

analyses of survival studies are often more difficult than meta-analysis of studies with no 

follow-up. 

The most frequently reported statistics in survival studies are survival estimates, 

represented by survival curves to capture the variation of risk of event over the follow-up, and 

the hazard ratio (HR) which is a relative measure of the difference in survival between 

compared groups [1]. HRs from various studies can be combined easily by using the method 

of the inverse of variance, on condition that HRs are reported with their 95% confidence 

intervals or standard errors [2, 3]. Additional methods have been proposed to assess the 

pooled HR directly from the survival estimates. These methods are useful when HRs are not 

reported in all studies [2-5]. Moreover, methods based on survival estimates collected in 

each study at various points in time offer interesting possibilities in data analysis. For 

instance, the pooled HR can be assessed for various periods of follow-up and a variation 

over time of the intervention’s effect can be tested [5, 6]. In addition to the pooled HR, the 

level of risk in both arms is helpful in the appraisal of the benefits of a new intervention. Of 

note, the CONSORT statement recommends reporting of both relative and additive 

measures of effect [7]. Methods have been proposed to obtain summary survival curves 

using a distribution-free approach [8] or regression models [9-12]. These methods can also 

be used to synthesize studies evaluating survival in a single group.     

A review of methods for combining survival data was done in 2000 [13], but several 

methodologic developments have been published since. The aim of this paper is to propose 

a review of new statistical methods for meta-analysis of aggregated survival data. The 

principle of methods and data needed for their application are described. We explain how the 

heterogeneity is measured and how random effects are introduced in the models. The 

advantages and limitations are presented.  

 

  



6 
 

 

1) Survival estimates pooled at a single point in time 

Principle 
Reporting the survival estimate at a clinically relevant point in time, denoted t, is a common 

way to present results of a survival analysis. A pooled estimate of the survival estimates can 

be obtained, assuming a fixed effect model, by using the method of the inverse of the 

variance [14]: the survival estimates are averaged and each study is weighted by the inverse 

of the variance of the estimate. A condition for the application of this method is the normality 

of the estimator. The normality is achieved when sample size is large. Transformations 

(logarithm, arc-sine, complementary log-log and logit transformations) can also be applied to 

the survival estimates to help meet this requirement (Appendix A). With the arcsine 

transformation, the variance is only related to the sample size [15]. 

Data 
The survival estimates and their standard errors are needed to apply this approach. Standard 

errors are rarely reported but they can be extrapolated using the formula of the standard 

error for a proportion by replacing the number of observations by the effective number of at-

risk patients during the interval of time [0,t] (Appendix A). The effective number of at-risk 

patients is lower than the sample size because of censoring [2, 3, 5]. Details on calculation of 

the effective number of at-risk patients are given in Appendix B. 

Heterogeneity & Random effects 
The between-study variability is measured by I2 and H statistics and the Cochran Q test can 

be applied to test the null hypothesis that the survival is equal in all studies [16, 17]. The 

exploration of the source of heterogeneity can be performed by testing the heterogeneity 

between sub-groups and by using meta-regression [14, 18]. The DerSimonian and Laird’s 

approach is applied for accounting for between-studies variability (model with random 

effects) [19]. 

Comments 
This approach is suitable when the selected point in time is clinically relevant and when the 

variation of risk over time is not of interest. However, in most of survival studies, data 

analyses aim to capture the variation of risk over time and pooling survival estimates at a 

single point in time appears as a poor approach. The procedure for combining survival 

estimates can be repeated at various points in time to obtain a pseudo-summary survival 

curve but several concerns arise. First, the correlations between survival estimates at various 

points in time are omitted. It has been shown that ignoring between-study correlations can 

alter the results of the meta-analysis [20]. Second, studies with a follow-up ending prior the 
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selected point in time are omitted with a loss of precision and a potential bias as 

consequences. Especially, the pseudo-summary survival curve can increase if the survival in 

studies with long follow-up is better than in studies with short follow-up. Characteristics of this 

approach are summarized in Table 1.     

2) Distribution-free summary survival curve 

Principle 
Recently, a distribution-free approach for assessing a summary survival curve has been 

proposed [8]. With this approach, the follow-up is partitioned in intervals of time [ti-1, ti], i=1 to 

I. For each interval, the arc-sine transformation is applied to the estimates of the conditional 

survival probabilities and the transformed estimates are combined using the method of the 

inverse of the variance. The pooled estimate of the survival at any time ti, i=1,…I, is obtained 

by the product of the pooled estimates of the conditional survival until ti (denoted ): 

 

This approach is an extension of the product-limit estimator of survival to aggregated data. 

Since the pooled survival estimates are a product of estimated probabilities, the obtained 

survival function is decreasing over time, as it should be.   

Data 
The survival estimates are read off at a set of points in time (t0,t1,…,tJ) from the survival 

curves reported in the studies. The conditional survival estimates for the interval of time [ti-1, 

ti] are obtained in each study by dividing the survival estimate at time ti by the survival 

estimate at time ti-1. The effective number of at-risk patients during the interval [ti-1, ti] can be 

derived from the numbers of at-risk patients at times ti-1 and ti, (Appendix B). If numbers of at-

risk patients are not reported or are reported at points in time different from t1,…,tI, the 

effective numbers can still be extrapolated on certain conditions [2, 3, 5]. 

Heterogeneity & Random effects 
I2 and H statistics measure the between-study variability of the arcsine transformed 

conditional survival estimates [21]. In contrast to meta-analysis of survival at a single point in 

time, the homogeneity assumption is that the conditional survival probabilities are equal in 

the studies for any time ti. The Cochran Q test can also be applied to test the null hypothesis 

of homogeneity. The rejection of the null hypothesis means that the conditional survival 

probabilities are different across studies at least for one point in time. Potential heterogeneity 

factor can be explored by testing the between-strata heterogeneity, but meta-regression 

methods are not applicable. When a model with random effects is assumed, the between-

study covariance between the estimates of conditional survival has to be accounted for. 
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Therefore, the extension of DerSimonian and Laird’s approach to multiple outcomes is 

applied to obtain the pooled conditional survival estimates [22].  

Comments 
This approach allows the assessment of a summary survival curve by pooling the survival 

estimates at various points in time. The mean (or restricted mean when survival curve are 

incomplete) and the median survival times can be obtained from the summary curve. The 

caveat is the selection of points in time at which survival estimates are collected: the points in 

time should be abundant enough to capture the shape of the survival curve but they should 

be spaced enough to avoid conditional survival probabilities close to 1 because a bias can 

occur in this situation [8]. With this method, the advantage is that the summary survival curve 

is distribution-free and decreasing over time. Moreover, studies with various lengths of 

follow-up can be combined. The estimation of the pooled survival probability at time t also 

involves all the studies ending before t because the latter contribute to the estimation of 

conditional survival probabilities for intervals of time prior to t. Characteristics of this 

approach are summarized in Table 1. 

3) Regression models 

Principle 
The use of regression models to estimate simultaneously pooled survival at various points in 

time, accounting for the within-study correlations, has been proposed initially by Dear et al 

[23]. This approach has been expanded by Arends et al to account for between-study 

variability (mixed effects models) and to ensure that the pooled survival probabilities fall 

between 0 and 1 [9]. In the latter approach, a transformation is applied to the survival 

estimates and the transformed survival estimates are linearly modeled with a set of 

predictors including follow-up time. With the complementary log-log transformation, the 

regression model is equivalent to a Weibull survival model: 

 

Ln[-ln(Sk)]= +  ln(t)+εk,  εk ~N(0,Vk) 

 

where Sk is the vector of the survival estimates at all points in time and Vk the within-study 

correlation matrix of the survival estimates in study k. 

Data 
The approach proposed by Arends et al requires estimates of the survival probabilities at 

various points in time and their standard errors [9].  

Heterogeneity & Random effects 
Between-study variability is introduced in the regression model by adding random effects: 
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Ln[-ln(Sk)]= +  ln(t)+a+b ln(t)+εk,  εk ~N(0,Vk)  and (a,b)~ N(0,D)             (1) 

 

where a and b are the random effects with expectation 0 and D is the between-study 

covariance matrix. The amount of heterogeneity has to be interpreted from the size of the 

random effects. Potential heterogeneity factors, both continuous and categorical, can be 

added in the model to be tested. 

Comments 
This approach allows the estimation of a summary survival curve and the combination of 

studies with various lengths of follow-up. Its advantage is the possibility to conduct 

multivariate meta-regression, by adding study-related fixed effects into the model above 

(regression models are not limited to the model presented above). Other transformations for 

the survival estimates can be applied and any function of follow-up time can be introduced as 

a predictor. However, with complex models, there is a risk of overfitting and of obtaining a 

summary survival curve that is locally increasing. For instance, using splines for the follow-up 

time, the right-tail of the summary survival curve can be increasing if survival in studies with 

long follow-up is higher than in studies with short follow-up. Moreover, because the number 

of studies is usually low in meta-analyses, verification of the goodness-of-it may be difficult. 

Characteristics of this approach are summarized in Table 1. 

4) Combining hazard ratios reported with their 95% 
confidence intervals 

Principle 
When hazard ratios (HRs) are reported with their 95% confidence interval in all studies 

included in the meta-analysis, they can be combined using the method inverse of variance 

[2, 3]. A pooled estimate of the logarithm of HR is obtained by the averaged logarithm of 

estimated HR weighted by the inverse of the variance of the estimates. The variance is 

deduced from the lower and upper bounds of the 95% confidence intervals, for instance by 

dividing the range from the logarithm of the lower bound to the logarithm of the upper bound 

by 2*1.96 and squaring the result. 

Data 
Estimated HRs and their 95% confidence intervals from each study. 

Heterogeneity & Random effects 
As for meta-analysis of survival estimates at a single point in time, the amount of 

heterogeneity is investigated with I2 and H statistics and the Cochran Q test [16, 17]. The 

sources of heterogeneity are explored using sub-groups comparison and meta-regression 
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[14, 18]. The DerSimonian and Laird’s approach is applied for models with random effects 

[19]. 

Comments 
With this approach, the advantage is that censored data within each study are already taken 

into account in the estimate of HRs and the 95% confidence intervals. The extraction of 

survival estimates and calculation of effective numbers of at-risk patients are not needed. 

This approach does not allow an exploration of a possible variation over the follow-up of the 

intervention’s effect. Characteristics of this approach are summarized in Table 2. 

5) Combining hazard ratios using survival estimates at a 
single time point 

Principle 
When a HR is not reported, it is still possible to obtain an estimate from survival estimates at 

a single point in time since the ratio of the logarithm of survival, denoted RLS, is a natural 

estimator of the HR [24]: 

 

 

 

where SInt(.) and SCon(.) are the survival functions in intervention and control arms 

respectively. Since the logarithm of the estimator of the RLS follows asymptotically a normal 

distribution, the method of the inverse of the variance can be used to combined RLS(t) from 

various studies [4, 25]. The variance of the logarithm of RLS(t) is: 

 

 

 

where NCon and NInt are the effective numbers of at-risk patients during the interval of time 

[0,t] in both arms (control and intervention).  

Data 
The survival estimates and the effective numbers of at-risk patients during the interval of time 

[0,t] are needed to apply this approach (Appendix B). 

Heterogeneity & Random effects 
As for meta-analysis of combination of HRs reported with their 95% confidence intervals, the 

amount of heterogeneity is investigated with I2 and H statistics and the Cochran Q test [16, 

17]. The sources of heterogeneity are explored using sub-groups comparison and meta-
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regression [14, 18]. The DerSimonian and Laird’s approach is applied for models with 

random effects [19]. 

 

Comments 
With this approach, hazards are assumed proportional. Since HRs are not reported in 

studies, this assumption was likely not checked by the authors. The log cumulative hazard, 

obtained from survival estimates extracted at various points in time from published survival 

curve, can be plotted versus time to verify the proportionality of hazards for each study [5]. 

Even if hazards are approximately proportional, the estimate of RLS(t) can vary according to 

the point in time because of a lack of regularity in survival curves, especially when the size of 

steps of the curves is great. Characteristics of this approach are summarized in Table 2.   

6) Combining hazard ratios using survival estimates at 
multiple points in time (1) 

Principle 
Williamson et al proposed a method to test whether an intervention’s effect is constant over 

time from aggregated data [5]. The principle is to split the follow-up into several intervals of 

time and to extract the HR for each interval and for each study, denoted HRk,i for the study k 

and the interval of time [ti-1,ti]. By applying the method of the inverse of the variance to HRs, 

pooled estimates of the intervention’s are obtained for all intervals of time, denoted HRpooled,i. 

The hypothesis of homogeneity of the intervention’s effect across intervals of time is tested 

by a Cochran Q test. The tested null hypothesis is H0:log(HRpooled,1)= log(HRpooled,2)=..= 

log(HRpooled,I)=  where I is the number of intervals and  is the logarithm of the overall pooled 

HR. Under this null hypothesis, the intervention’s effect is constant over time and an overall 

HR is assessed for each study k by combining the HRk,i of the various intervals of time i=1,..,I 

(here also using the method of the inverse of the variance), denoted HRk,pooled. The pooled 

overall HR, denoted , is then the combination of HRk,pooled from all studies and the statistic Q 

of the Cochrane test is: 

 

where wi is the inverse of the variance of ln HRpooled,i. Under the null hypothesis, the statistic 

Q follows a Chi-squared distribution with I-1 degrees of freedom.  

Data 
Data needed for this approach are the estimates of HR for each interval of times and theirs 

standard errors. Williamson et al explained how to approximate the estimates of HRs from 

published survival curves [5]: the effective numbers of at-risk patients and the numbers of 
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events during intervals of time are derived from the published survival curves and reported 

number of patients still followed at various points in time (see Appendix B). Alternatively, the 

standard errors can be extrapolated from the p-value of a log-rank test [2].  

Heterogeneity & Random effects 
The between-study variability is measured within each interval of time by I2 or H statistics and 

the between-intervals variability of pooled HRs is tested by a Cochrane Q test. With this 

approach, models with fixed effects are assumed and the between-study heterogeneity is 

ignored. 

Comments 
This approach provides an easy way to test a variation of the intervention’s effect over time. 

If not accounted for, such variation can be a source of between-study heterogeneity when 

studies have different lengths of follow-up. When the effect is constant over time, the 

estimate of the pooled overall HR is more accurate than the combination of RLSs because 

the HR for each study, which is an average of HRs of various intervals of time, is less 

sensitive to the selection of points in time than the RLS, which assessed at a single point in 

time. The approach proposed by Williamson et al is suitable when there is little between-

study variability because models with fixed effect are assumed. The pooled HRs for the 

various intervals of time are independent when models with fixed effect are assumed, but not 

when models with random effects are assumed: random effects can be correlated within a 

study. For instance, a study with a greater intervention’s effect than other studies will 

produce HRs higher than those of other studies for any interval of time. If between-study 

variability is observed, models for multiple outcomes assuming random effects should be 

used [21, 22]. Characteristics of this approach are summarized in Table 2. 

7) Combining hazard ratios using survival estimates at 
multiple points in time (2) 

Principle 
This approach is an extension of the combination of RLS(t) at single point in time to several 

points in time [6]. The logarithm of RLS collected at various points in time ti, i=1,…,I, are 

modeled as a linear function of follow-up time, for instance the logarithm of time: 

Ln RLSk= +  ln(tk)+εk, εk ~N(0,Vk)   

 where RLSk is the vector of RLSs in a study k for all times ti and Vk is the within-study 

covariance matrix of RLSk. Alternatively, the predictor can be a piecewise constant function 

of time: 
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In both models, the hypothesis that the RLS is constant over time can be tested, and if 

necessary, rejected. If the RLS is assumed constant over time, it is modeled only by the 

intercept. 

Data 
The survival estimates and the effective numbers of at-risk patients during the intervals of 

time [ti-1,ti] are needed to apply this approach. 

Heterogeneity & Random effects 
Potential heterogeneity factors can be added as predictors in the models and tested. 

Assuming a fixed effect model, the estimates of regression coefficients are obtained with the 

generalized least squared method. A goodness-of-fit test, based on residuals, has been 

proposed by Combescure et al [6]. Because discrepancies between observed and predicted 

RLSs are caused not only by the between-study variability but also by an incorrectly 

specified time-effect, this test cannot be interpreted as a test for detection of heterogeneity. 

Models with random effects can also be used: a between-study covariance matrix is 

introduced and the regression coefficients are estimated by maximum likelihood method [26, 

27].  

Comments 
 

Like the previous approach, this approach provides a test for detecting a variation of the 

intervention’s effect over time. When the effect varies over time, the pooled estimate of RLS 

at the point in time t is a value of the HR averaged over [0,t] [4, 6, 28]. With this approach, it 

is possible to introduce potential heterogeneity factors as predictors in the models. When 

models with fixed effect are used, studies with various lengths of follow-up can be combined. 

In contrast, for models with random effects, the latest point in time tI must be the same in all 

studies. Studies with short follow-up have to be excluded from the analysis or the right tail of 

survival curves may be ignored in some studies. A code for S-plus (S-plus 8.0 for Windows, 

Insightful Corp., Seattle, USA) is available from the first author of Combescure et al [6]. 

Characteristics of this approach are summarized in Table 2. 

8) Regression models for intervention’s effect 

Principle 
The intervention’s effect is assessed in the regression model described in Equation (1) by 

adding the arm as covariate (variable taking 0 for reference arm and 1 for intervention arm):  

 

Ln[-ln(Sk)]= +  ln(t)+ Arm+εk,  εk ~N(0,Vk)  
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The within-study covariance matrix Vk is block diagonal (one block per arm). In this model, 

the exponential of regression coefficients  is an estimate of the HR because the model 

corresponds to a Weibull survival model. An interaction term between logarithm of time and 

arm can be tested to explore a variation of the intervention’s effect over time. Alternatively, 

other functions of time can be introduced as predictor (for instance a piecewise constant 

function) and other transformations can be applied to the survival estimates.  

Data 
Needed data are the same than for regression models with single arm studies. 

Heterogeneity & Random effects 
The modification of the intervention’s effect caused by a factor can be tested by adding an 

interaction term between this factor and the arm. Between-study variability is introduced in 

the regression model by adding random effects: 

 

Ln[-ln(Sk)]= +  ln(t)+ Arm+a+b ln(t)+c Arm+εk,  εk ~N(0,Vk)  and (a,b,c)~ N(0,D) 

 

where a, b and c are the random effects and D is the between-study covariance matrix. 

Comments 
The estimation of regression coefficients provides not only an estimate of the intervention’s 

effect but also summary survival curves in both arms. The variation of the effect over time 

can be tested. As in the previous approach, additional predictors can be introduced in the 

regression model. The main difference compared to the previous approach is that the 

dependent variable is the survival and not the intervention’s effect. Therefore, an assumption 

on the shape of survival has to be made (for instance a Weibull survival model). Moreover, 

study-level factors modifying the survival, but not the intervention’s effect, should not be 

ignored. Characteristics of this approach are summarized in Table 2. 

Discussion 
 

Various methods have been proposed to combine aggregated data from survival studies. 

Each method for combining aggregated data has advantages and limitations (Tables 1 and 

2). The choice of the method by the analyst depends also on the statistics reported in the 

studies. A review of randomized clinical trials with survival endpoints in oncology showed that 

hazard ratios were reported in 65% of articles [29]. These findings suggest that combining 

only the HRs reported with their 95% confidence intervals can be a source of bias because of 

a selection of studies that can be pooled. The methods to assess a pooled HR from survival 

estimates circumvent this concern. Some of these methods allow testing a variation of the 
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intervention’s effect over time. Besides the pooled HR, which is a relative measure of the 

intervention’s effect, summary survival curves provide information about the risk of the event 

in both arms. The risk in the reference arm is useful to appraise the benefit of a new 

intervention.  

A major concern in the meta-analysis of survival studies is to take censored data into 

consideration because the weight allocated to a study depends on the standard error of the 

estimate to be pooled, which in turn depends on the number of participants that is analyzed 

over time. Ignoring censorship (for instance by taking the initial sample size instead of the 

effective number of at-risk patients) leads to an underestimation of the standard error of the 

pooled estimate. When methods that require the number of at-risk patients are used, suitable 

approaches have to be applied to infer the effective numbers of at-risk patients at different 

points in time [2, 3, 5, 30]. User-friendly spreadsheets have been proposed for this purpose 

[3, 31].   

The complexity of some methods discussed in this paper limits their use in practice. In 

particular, statistical software dedicated to meta-analyses do not offer the possibility of 

analysis of aggregated survival data by regression models and, more generally, of analysis 

of survival estimates collected at various points in time. However, a R package (MetaSurv) is 

available to assess a distribution-free summary survival curve and some codes are available 

upon request from the authors the methods [6, 8, 9].   

The proposed review of methods is not exhaustive. Additional regression models 

have been proposed. Models proposed by Ouwens et al [12] are an extension of the 

regression models proposed by Arends et al [9] to network meta-analyses and are not 

reviewed in this paper. In a different approach, Fiocco et al modeled the counts of events in 

various intervals of time by a Poisson process [10, 11]. This approach, that requires 

advanced skills in statistics and computation, is not reviewed here. For readers interested by 

regression models, the performance of several models has been compared by Fiocco et al 

[32]. Guyot et al proposed an algorithm to extrapolate individual survival data from published 

survival curves [33] to which they applied methods for meta-analysis of individual survival 

data [34]. These methods specific to individual data have already been reviewed by 

Katashian et al [34]. In our review, we focused on methods for assessing summary survival 

curves and pooled HRs from survival estimates reported in studies. Some of the methods 

presented in the review may also be used to combine odds ratios or risk ratios as an 

alternative to HR when hazards are not proportional [6, 9]. Methods for combining the 

median and the ratio of median survival times have also been proposed [35, 36], but they 

have not been review because they can be used only when survival is below 50%. A 

perspective would be to expand meta-analysis methods to other statistics, for instance to the 

restricted C index when two arms are compared [37] or to time-dependent ROC curves when 

the predictor is continuous [38, 39].  



16 
 

 The recently developed statistical methods for meta-analysis of survival data are 

valuable tools for an accurate synthesis of combined studies. Authors of meta-analyses 

should be aware of these new methods. Our review aims to present the principle, 

advantages and limitations of methods in a way that is accessible to non statisticians and to 

promote their uses.  
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Appendix A: Transformations applicable to proportions   

 

Transformation F(.) F(S(t)) Asymptotic variance of 

F(S(t)) 

Untransformed S(t) S(t)[1- S(t)]/ Neff 

Arc sine Arcsin[√S(t)] 1/(4 Neff) 

Logarithm Ln S(t) [1- S(t)]/[S(t)Neff] 

Complementary log-

log 

Ln[-ln S(t)] [1- S(t)]/[Neff ln
2(S(t))] 

Logit p Ln[S(t)/(1- S(t))] 1/[S(t) Neff]+1/[Neff - S(t)Neff] 

S(t) is the survival at time t and Neff is the effective number of at-risk patients during the 

interval of time [0,t] (see Appendix B). 

Appendix B: Extraction of data from published survival 

curves  

The survival estimates are not systematically reported but they can be read off from 

published survival curves using software (for instance R package Digitize or DigitizeIt, a 

commercial software). With the R package Digitize, the digitalized picture of the survival 

curve (format .jpg) is loaded in R. Then, points of reference for the scale of the follow-up time 

(horizontal axis) and for survival (vertical axis) are selected by clicking on the picture. In the 

last step, the user clicks on points of the survival curve and their coordinates (time and 

survival) are given with respect to the scales indicated by the user.  

Most of methods presented in the review need not only survival estimates but also the 

effective numbers of at-risk patients because the variance of the estimates is needed to 

determine the weight of each study. The effective numbers of at-risk are not the number 

reported on survival curves, rather the number of patients at-risk during a time interval.  

Williamson et al proposed formula to obtain this effective number for an interval of time [ti-1,ti], 

denoted Neff,i when the number of patients still followed at ti-1 and ti, denoted Ni-1 and Ni 

respectively, are reported: 

Neff,i =(Ni-1+Ni) S(ti-1)/[S(ti-1)+S(ti)] 

This approach assumes that the censorship is uniform over the interval of time [ti-1,ti]. When 

survival estimates are pooled at a single time point, denoted t1, the previous equation can be 

simplified because S(ti-1) equal 1 and Ni-1 is the sample size:  
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Neff =(N+N1)/[1+S(t1)] 

The transformed survival estimates are combined using the method of the variance or the 

DerSimonian and Laird’s methodology with the variance given in Appendix A. If the numbers 

of at-risk patients are reported for other times than ti, it is still possible to extrapolate the 

effective number of at-risk patients. User friendly Excel Spreadsheets are available [3, 31]. 
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Tables 
 
Table 1: Comparison of methods for meta-analysis of aggregated survival data from a single arm 
 

 Survival estimates pooled at a 

single point in time t 

Distribution-free summary 

survival curve 

Regression models  

Summary survival curve No Yes Yes 

Assumption on the 

survival function 

No No Yes 

Combining studies with 

various length of follow-up 

Studies ending before t are omitted Yes Yes 

Statistics for heterogeneity I2, H I2, H Size of the random effects 

Fixed effect Method of the inverse of the 

variance 

Method of the inverse of the 

variance 

Generalized least squared 

Random effects DerSimonian and Laird’s 

methodology 

Extension of DerSimonian and 

Laird’s methodology to multiple 

outcome 

Mixed-effects models 

Data needed Survival estimates at time point t and 

standard errors or effective numbers 

of at-risk patients during [0,t] 

Survival estimates at various time 

points and effective numbers of at-

risk patients during each interval of 

time 

Survival estimates at various times 

and their standard errors 

Transformation applied to 

survival estimates 

Arc-sine, but other transformations 

are applicable (logit, log, log minus 

Arc-sine Log minus log, but other 

transformations are applicable 
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log…) 

Within-study correlation  Taken into account Taken into account 

Software Generic method of the inverse of 

variance (available in most of 

software) 

R package available MetaSurv SAS code available from first 

author of Arends et al upon request  

Pros -Easy to compute  

-Statistics for heterogeneity 

-Distribution-free summary survival 

curve 

-Summary survival decreases over 

time  

-Statistics for heterogeneity 

-R package available 

-Summary survival curve 

-Possibility to introduce several 

potential heterogeneity  factors 

(categorical and continuous) in 

models 

-Large panel of models 

Cons -Variation of risk over time not 

captured 

-Approach meaningful only of the 

selected time point is clinically 

relevant 

- Repeating the estimation at several 

points in time is not recommended 

because within-study correlations 

are omitted and survival can be 

increasing over time 

-No meta-regression 

-Approach biased when events are 

rare and sample sizes are small 

-Fit of model difficult to check 

because number of studies is often 

low 

-No clear measure of heterogeneity 

-Code available upon request 

-Complex models (using splines for 

instance) may fit well data but with 

the risk that the survival increases 

over time 
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Table 2: Comparison of methods for meta-analysis of aggregated survival data from comparative studies 

 
 Combining HRs 

reported with their 95% 

CIs 

Combining HRs 

using survival 

estimates at a single 

point in time 

Combining HRs 

using survival 

estimates at multiple 

points in time (1) 

Combining HRs 

using survival 

estimates at multiple 

points in time (2) 

Regression model 

for intervention’s 

effect 

Summary survival 

curve 

No No No No Yes 

Assumption on the 

survival functions 

Proportionality of 

hazards 

Proportionality of 

hazards 

Proportionality of 

hazards 

Proportionality of 

hazards 

Yes 

Combining studies 

with various length 

of follow-up 

Yes Only if the effect is 

assumed constant 

over time 

Yes Only with fixed effect 

models 

Yes 

Statistics for 

heterogeneity 

I2, H I2, H I2, H No Size of the random 

effects 

Fixed effect Method of the inverse of 

the variance 

Method of the inverse 

of the variance 

Method of the inverse 

of the variance 

Generalized least 

squared 

Generalized least 

squared 

Random effects DerSimonian and Laird’s 

methodology 

DerSimonian and 

Laird’s methodology 

No Maximum likelihood 

method 

Mixed-effects models 

Data needed HRs and 95% 

confidence intervals 

Survival estimates at 

time t and effective 

numbers of at-risk 

patients during [0,t] 

Survival estimates at 

various points in time 

and their standard 

errors 

Survival estimates at 

time t and effective 

numbers of at-risk 

patients during [0,t] 

Survival estimates at 

various points in time 

and their standard 

errors 
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Transformation 

applied to survival 

estimates 

No No No No Log minus log, but 

other transformations 

are applicable 

Within-study 

correlation 

  No need Yes Accounted 

Software Generic method of the 

inverse of variance 

(available in most of 

software) 

Generic method of the 

inverse of variance 

(available in most of 

software) 

Generic method of the 

inverse of variance 

(available in most of 

software) 

S-plus/R code 

available from first 

author of Combescure 

et al upon request 

SAS code available 

from first author of 

Arends et al upon 

request  

Pros -Easy to compute  

-Statistics for 

heterogeneity 

-Study-level factors 

modifying the survival, 

but not the intervention’s 

effect, can be ignored 

-Easy to compute  

-Statistics for 

heterogeneity 

-All studies reporting 

survival estimates at 

time t are combined 

-Study-level factors 

modifying the survival, 

but not the 

intervention’s effect, 

can be ignored 

-Easy to compute  

-Statistics for 

heterogeneity 

-Equality of pooled 

HRs from various 

intervals of time can 

be tested 

-Study-level factors 

modifying the survival, 

but not the 

intervention’s effect, 

can be ignored 

-A variation of the 

effect over time can 

be tested 

-Study-level factors 

modifying the survival, 

but not the 

intervention’s effect, 

can be ignored 

-Summary survival 

curves in both arms 

-Possibility to 

introduce several 

potential 

heterogeneity  factors 

(categorical and 

continuous) in models 

-Large panel of 

models 

Cons -Studies without HR and 

95% CI are omitted in 

-RLS(t) may be an 

inaccurate estimate of 

- only models with 

fixed effect 

-Studies with various 

length of follow-up 

-Fit of model difficult 

to check because 
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the analysis 

-A variation over time of 

effect cannot be tested 

HR 

-A variation of the 

effect over time 

cannot be tested 

can be combined only 

with fixed effect 

models 

-No clear measure of 

heterogeneity 

-Code available upon 

request 

 

number of studies is 

often low 

-No clear measure of 

heterogeneity 

-Code available upon 

request 

-Complex models 

(using splines for 

instance) may fit well 

data but with the risk 

that the survival 

increases over time 

- study-level factors 

modifying the survival, 

but not the 

intervention’s effect, 

cannot be ignored 

 
 


